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Abstract

Big data, machine learning and AI inverts adverse selection problems. It allows insur-

ers to infer statistical information and thereby reverses information advantage from the

insuree to the insurer. In a setting with two-dimensional type space whose correlation

can be inferred with big data we derive three results: First, a novel tradeoff between a

belief gap and price discrimination emerges. The insurer tries to protect its statistical

information by offering only a few screening contracts. Second, we show in a setting

with näıve agents that do not perfectly infer statistical information from the price of

offered contracts, price discrimination significantly boosts insurer’s profits. Third, in-

troducing competition sucks out the informational advantage of the insurer, and forcing

the monopolistic insurer to reveal its statistical information can be helpful to the insuree

even though it may reduce total surplus. We also discuss the significance of our analysis

through four stylized facts: the rise of data brokers, the perils of market concentration

with advent of big data, the importance of consumer activism and regulatory forbear-

ance, and the merits of a public data repository.
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1 Introduction

Advances in big data analytics, artificial intelligence and the Internet of Things promise

to fundamentally transform the insurance industry and the role data plays in insurance.

New sources of digital data, for example in online media and the Internet of Things, reveal

information about behaviours, habits and lifestyles that allows us to assess individual

risks much better than before.

International “Geneva” Association for the Study of Insurance Economics, Keller et al.

[2018]

The rise of big data, artificial intelligence (AI), and machine learning is one of the defining

characteristics of the 21st century economy. Almost every action we take is recorded and

correlates are constructed, to better predict our behavior. The direct effects of these develop-

ments are being felt in the insurance industry, which is undergoing a radical transformation—

price discrimination and contract structures will fundamentally change.

Most models in information economics assume that customers have an informational

advantage. Hence, the principal, e.g. the insurance company, faces an adverse selection

problem, which it tries to mitigate by offering a menu of screening contracts to potential

customers.1 While customers might still have private information about some of their char-

acteristics, big data allows insurance companies to develop superior aggregate information,

using new statistical tools to better infer correlates about the characteristics and the ulti-

mate risk. In other words, the principal here can “invert” the mapping from characteristics

to risks through an informational and technical advantage. Thus, big data and AI transform

many adverse selection problems to what we call “inverse selection” problems.

Our setting is close in spirit to the informed principal approach in mechanism design

(Myerson [1983] and Maskin and Tirole [1990, 1992]). It departs from the canonical struc-

ture in two ways: first, while the agent has hard private information— family history, eating

habits, zip code, etc; the principal has statistical private information— how all these char-

acteristics interact and determine the agent’s probability of say, getting cancer; and, second,

as a regulatory constraint, it asks the principal to commit to a menu of contracts. Also,

the basic structure of our model is inspired from the classical insurance problem studied

by Rothschild and Stiglitz [1976] with two key differences: we consider a richer information

structure, and for the most part restrict attention to a monopolistic screening setup.

Inverse selection does not only differs from the standard adverse selection but also from

the more recent advantageous selection literature. Advantages selection stresses the impor-

tance of preference heterogeneity in order to overturn the standard theoretical, but em-

pirically counterfactual, result that the high-risk agents get full insurance whereas low-risk

1Akerlof [1970] pionnered the study of adverse selection and screening. The core idea has found applications
is variety of settings: Rothschild and Stiglitz [1976] study the insurance problem, Mailath and Postlewaite
[1990] study public goods provision, and Biais, Martimort, and Rochet [2000] and Tirole [2012] study various
aspects of financial markets, to name a few. See Green and Laffont [1979] and Laffont and Martimort [2009]
for general theoretical treatments of the principal agent screening problem.
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agents opt for partial insurance. With preference heterogeneity, highly risk-averse agents buy

more insurance, despite the fact that they are less risky, since they behave more cautiously.2

In both settings, adverse and advantageous selection, the insurance provider suffers from an

informational disadvantage. This is in contrast to our inverse selection setting, which in the

chronology of ideas may thus be regarded as a third generation of models.

We model the inverse selection problem using a two-dimensional type space. Both di-

mensions determine the riskiness of the agent, and the marginal distribution along both

dimensions is common knowledge. The agent perfectly knows one (type of) characteristic,

the first dimension of the type. In contrast, the principal, e.g. the insurer, knows the entire

joint distribution, her statistical advantage manifests in private information about the cor-

relation between the two dimensions. At a high level, we equip the agent with greater hard

or physical information and the principal with greater soft or statistical information. This

marks a departure from most standard principal-agent models of asymmetric information.3

The basic tension the principal faces is the following: She can use a set of screening con-

tracts, i.e. price discrimination, to elicit agent’s private information, but she has to beware

that by offering more fine-tuned screening contracts, she may partially reveal her informa-

tional advantage, the statistical correlation. In other words, the principal faces a belief

gap-versus-price discrimination trade-off. By offering a richer set of contracts, the principal

can discriminate more but will also end up giving up some of its statistical informational

advantage. Note that this trade-off is different from the rent-versus-efficiency trade-off preva-

lent in standard principal agent problems, where the principal worsens efficient risk-sharing

in order to minimize the information rent that the agent can extract. Of course, the stan-

dard rent-versus-efficiency trade-off is also present in our setting with respect to the agent’s

private information.

As in the classical setup, the optimal contract separates along the insuree’s private in-

formation. However, along the private statistical information of the insurer, the optimal

contract features either complete pooling or partial pooling; complete separation along both

dimensions is never optimal for the insurer. When the insurer pools certain correlation types

she is giving up on price discrimination in order to maintain the statistical information ad-

vantage, i.e. the belied gap. We show that revealing small bits of information is too costly,

so that the insurer prefers to offer only a finite number of contracts. In the language of

Myerson [1981], the optimum features ironing almost everywhere. In fact, we further show

that the number of contracts turns out to be small, highlighting that the belief gap-versus-

price discrimination trade-off is firmly resolved in the favor of the former. In most cases

the contract space along the statistical information is partitioned into one or two contracts.4

2Einav and Finkelstein [2011] provide an overview of the key ideas. See Finkelstein and McGarry [2006]
and Fang, Keane, and Silverman [2008] for empirical evidence on adverse and advantageous selection.

3The model can be equivalently interpreted as the first dimension being the set of all characteristics and
the second dimension being the riskiness of the agent. Then the agent has private information about personal
characteristics, and the principal understands the mapping between characteristics and risks.

4Eilat, Eliaz, and Mu [2020] study a standard quasi-linear monopolistic screening where the information
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For a large class of parameters, the optimal contract features one partition, i.e. complete

pooling along the private information of the insurer. So the insurer prefers to not use her

information in contract design at all—the benefit of greater of price discrimination is offset

by cost imposed by larger number of incentive constraints to satisfy for the insuree.

To better understand this trade-off it is instructive to consider a few “special cases”: First,

we say the insuree is gutgläubig if he does not infer any statistical information from the menu

of contracts and in addition believes whatever the insurer tells him about the correlation

coefficient. For such an insuree, only two correlations are ever reported— the lowest and

highest possible values, and a distinct contract is chosen for each possible actual realization

of the correlation. The low risk agent is overinsured and the high risk agent is often excluded

from the market. This model, although theoretically non-standard, clarifies the direction in

which the insurer would like to push the contract if she could create the maximal belief gap

and implement the maximal price discrimination. The profits of the insurer are uniformly

higher in comparison to the standard model. Second, we say that insuree is näıve if he again

does not infer any statistical information from the menu of contract, but unlike gutgläubig,

sticks to the prior. Here too the insurer gains on average, but ex post the ranking is not

uniform: dictated by feasibility constraints, the insurer would like the insuree to update his

belief (even correctly) in certain situations. For the näıve case, the belief gap is exogenously

fixed by the prior and the insurer maximizes on the price discrimination channel, given this

constraint.5

A reasonable regulatory question to ask is whether the insurer should be forced to reveal

her private statistical information to the insuree prior to the posting of contracts. Such

a regulatory or societal requirement would ensure that the insuree is not kept in the dark

about his own risks. Formally, a mechanism design problem is solved as if the correlation

is common knowledge in the extensive form of the interaction, for each possible report of

correlation by the insurer. The innovation here is that the insurer has to be incentivized to

reveal the information, and hence a family of shadow prices now constrain the size of the

pie. The profit of insurer is uniformly reduced (and sometimes the total size of the pie too),

but the hope is that it can still increase the insurance coverage towards the efficient value.

We show that the insuree’s surplus is uniformly positive, the variance in insurance coverage

decreases (so less discrimination), and the total coverage may go up or down as a function

of the primitives of the environment.

Now, in each of the four cases, the standard model, gutgläubig, näıve, and optimal full

revelation, we compare the insurance premiums to the benchmark model where the statistical

correlation is common knowledge at the outset— in this latter case, the problem collapses

change of the principal is exogenously restricted by a cap on KL-divergence between the prior and posterior.
They too find that the number of contracts offered at the optimum is finite. Their model, mechanism and
the application are however quite different than ours.

5In recent work, Fang and Wu [2020] also study a model of belief based behavioral biases and how these
can be exploited systematically by firms in the market for insurance contracts.
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to the standard monopolistic Rothschild and Stiglitz [1976] insurance problem, but with a

twist. What is the “high risk” or “low risk” type is determined by the realized correlation

between the two dimensions. The same piece of information would signify a high risk type

if correlation is high and it would signify a low risk type if the correlation is low.

Finally, we introduce competition into the model in the following tractable way: There

are other ’regular’ insurers who do not have the big data technology available and are thus

uninformed about correlation structure between the two dimensions. They offer the bench-

mark (or Rothschild-Stiglitz) contract averaging over all possible correlations in order to

screen the insuree along the first dimension. How does this outside competition impact the

insurer with big data at its disposal? If the insuree is gutgläubig, it reduces the extent to

which the insurer can be misled and reduces price discrimination. If the insuree is can do

full Bayesian inference, it reduces the number of contracts offered at the optimum; in fact for

most parameters, the insurer completely pools along its private insurance offering the same

contract as other ’regular’ insurers. The introduction of competition benefits the insuree by

reducing the extent to which statistical information can be used in an adversarial fashion.

While our model is admittedly stylistic, it provides a framework to think about the role

of big data and AI in the design of screening contracts. The contrast between our standard

model and the gutgläubig case shows that the returns to statistical information for the princi-

pal can be quite large, especially when the agents are not sophisticated. This points towards

a market for acquiring consumer information, which in reality has manifested in the rise of

data brokers such as Oracle, Nielsen and Salesforce; see, for example, Financial Times [2019].

On the other hand, the limits to exploitation of consumer data when consumers are com-

pletely sophisticated points towards the returns to consumer activism and greater regulatory

forbearance; see, for example, the call for transparency by the Federal Trade Commission

(Ramirez et al. [2014]) and the framework for a general data protection regulation issued

by the European Parliament (Council of the European Union [2016]). The positive surplus

guarantee and greater equality of insurance provision from forcing the principals to make

private statistical information public points towards the merits of a public data repository;

see, for example, Rajan [2019]. Finally, competition leading to a reduction in extent of price

discrimination along the dimension of statistical information generated from big data nudges

towards the regulation of data monopolies; see, for example, Khan [2017].

The informed principal problem seems to us a likely candidate to capture the essence of

inverse selection. To the best our knowledge, Villeneuve [2005] is the first paper to think

systemically about insurance markets in the realm of the informed principal model. This has

been followed up by Abrardi, Colombo, and Tedesch [2020], simultaneously, with our work.

Both these papers though focus on competing principals, in contrast to our monopolistic

setup. Moreover, Villeneuve [2005], and for the most part, Abrardi et al. [2020] focus on

one-dimensional private information on the side of the principal, whereas, we look at a

two-dimensional state, part of which is known to the principal and part is known to the
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agent.6 In recent work, Luz, Gottardi, and Moreira [2020] and Bhaskar, McClellan, and

Sadler [2021] also look at a two-dimensional type space for insurance contracts; the former

considers heterogeneity in preferences, specifically risk-aversion, as the second-dimension and

the latter assumes that the first dimension is commonly known and can used by a third party

such as a regulator to offer a large number of contracts to implement the efficient outcome.

While the setups and results of all these papers are quite different to ours, we view these

papers as being complimentary to our work in a push towards the aforementioned “third

generation” of insurance models.

2 Model

As discussed in the introduction, the model we present can be thought of as an informed

principal problem (Myerson [1983]): A risk-neutral principal holds some statistical private

information about an underlying state and can commit to a menu of insurance contracts to

screen the agent. The agent is risk averse and holds some hard private information about

the risk he faces.

Preferences. A profit maximizing monopolist insurer (principal/seller) interacts with an

insuree (agent/buyer) who wants to insure himself against some damage/loss. The insurer

is risk neutral and offers a standard insurance contract (p, x), where p represents the price

(or premium), and x represents the proportion of the insuree’s loss that is covered by the

contract. So, x < 1 means under insurance, x = 1 means exact insurance, and x > 1 means

over insurance.

The insuree has an initial wealth w. The uncertain loss he faces is a random variable

with a well defined mean µ and variance ν. So, given a contract (p, x) and realized loss ℓ,

his final wealth is given by z = w− p− (1− x)ℓ. The insuree is assumed to have a standard

mean-variance preference. Thus, his utility is given by:

u(x, p) = E[z]− γ

2
V[z] = w − p− (1− x)µ− η

2
(1− x)2

where γ measures the extent of risk aversion, µ = E[ℓ] and η = γ × V[ℓ] = γ × ν captures

the level of risk faced by the insuree. This expression can be simplified further as follows:

u(x, p) = w − µ︸ ︷︷ ︸
a

+
[
xµ− η

2
(1− x)2

]
︸ ︷︷ ︸

v(x)

−p

= a+ v(x)− p.

which lends a tractable structure to the insuree’s preferences so that his utility is linear in

6Beyond insurance markets, see also Mylovanov and Tröger [2014] and Koessler and Skreta [2019] for
related theoretical models of the informed principal.
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money and concave in the extent of loss.7

Information. A standard approach to the insurance model would assume that the mean

loss, µ, is the agent’s private information. We depart from this crucial assumption on

the “endowment” of information as follows. A relevant bidimensional state θ = (θ1, θ2)

determines µ, where θi ∈ {L,H} for i ∈ {1, 2}. So, given state θ, the mean loss of the agent

is given by µθ. Without loss of generality, we assume that

µHH > µHL > µLL and µHH > µLH > µLL.

The joint distribution is of θ, given by q = (qHH , qHL, qLH , qLL), is depicted in Table 1. Here

θ2

L H

θ1 L qLL qLH q1

H qHL qHH 1− q1

q2 1− q2

Table 1: Joint distribution of θ.

q1 = qLL+ qLH and q2 = qLL+ qHL are the marginal distributions of θ1 and θ2, respectively.

Let ρ be the correlation between θ1 and θ2, and define σ =
√

q1(1− q1)
√

q2(1− q2). As

shown in Table 2, the distribution can then be rewritten using three parameters: ρ, q1, q2.

θ2

L H

θ1 L q1q2 + ρσ q1(1− q2)− ρσ q1

H (1− q1)q2 − ρσ (1− q1)(1− q2) + ρσ 1− q1

q2 1− q2

Table 2: Joint distribution of θ in terms of correlation.

The insuree observes θ1 and knows the marginal distribution of θ2, and the insurer

knows the joint distribution of θ. In terms of the primitives, we assume that q1 and q2 are

common knowledge, the agent is privately informed about θ1, and the principal privately

knows ρ. Finally, to close the model, we assume that ρ is drawn from F on [ρ, ρ], where F

is differentiable, has a continuous density f , and is common knowledge.8

7A standard behavioral foundation for the mean-variance preference is the CARA-Gaussian model, which
has been used in many seminal papers, including Grossman and Stiglitz [1980].

8The entire set of possible correlation is of course [-1,1]. However, once we fix the marginals to be q1 and
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The question we ask is: what is the principal optimal contract in this insurance problem?

Remarks on modeling. A few remarks on modeling choices are in order. In a direct

generalization of the monopolistic screening version of Rothschild and Stiglitz [1976], we

could have written down the following model: The bidmensional state θ determines the

probability of meeting an accident, say αθ. The insurer is risk neutral as before, and the

insuree has some general concave utility function over final wealth, which is w− p in case of

no-accident (with probability 1−αθ) and w−p+x− l in case of an accident (with probability

αθ); and x ≥ 0 here is the total coverage in monetary value. The information structure and

initial endowment of information would be the same as above—q is the joint distribution of

θ, etc. This model is similar in spirit to the one we write down, but is much harder to solve,

because of the lack of structure on the agent’s payoff.

In addition, we intentionally model the distribution of information between the insurer

and insuree as the former knowing ρ and latter knowing θ1 to capture the idea that the

insurer has some statistical knowledge and the insurer has some concrete knowledge about

the underlying state. After the endowment of initial information, the insurer knows more

about the general environment in the form of the correlation coefficient between the two

dimensions, and the insuree knows something specific about his situation in the form of θ1.

Once the insurer incentivizes the insuree to reveal θ1, the insurer can make better inference

about the state than the insuree, this inverts the selection problem.

3 The optimization problem

To write down the problem formally, we introduce the associated mechanism design lexicon

in the spirit of Myerson [1982, 1983]. A message rule r : [ρ, ρ] → ∆(M) represents how

coarsely (or finely) the insurer wants to communicate her information about the correlation

coefficient to the insuree, as part of the optimal contract. Further, invoking the revelation

principle, we simply look at a direct mechanism where the insurer reports her “type” ρ, the

insuree reports his “type” θ1, and a contract is selected from the menu:

C = (cm)m∈M where cm = {cm(H), cm(L)} and cm(θ1) = (pm(θ1), xm(θ1)) for θ1 = H,L.

A direct mechanism is then completely captured by (r, C), which is chosen by a mediator

with the objective of maximizing the profit of the insurer subject to incentive compatibility

for the insurer, and incentive compatibility and individual rationality for the insuree.

The exact timing of the (dynamic) mechanism is as follows.

q2, it can be easily checked that the set of feasible correlations is [ρ, ρ], where ρ = min
{

q1(1−q2)
σ

, q2(1−q1)
σ

}
and ρ = max

{
− q1q2

σ
,− (1−q1)(1−q2)

σ

}
. Thus, the support of F is restricted by the marginals q1 and q2.
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Stage 1

• nature draws ρ ∼ F ∧ θ ∼ q.

• insurer learns ρ and reports it.

• r generates message m.

• insuree forms posterior Fm.

Stage 2

• menu {cm(H), cm(L)} is offered.

• insuree learns θ1 and reports it.

• contract cm(θ1) is implemented.

• payoffs π and u are realized.

The goal going forward is to characterize the optimal choice of (r, C). To that end, we

now define the objective and constraints of the optimization problem. Let π(ρ; ρ̂) be the

(ex post) profit of the insurer if her type is ρ but she reports ρ̂ to the mediator. So, under

truthtelling, the optimal profit is given by π(ρ; ρ) which we will simply refer to as π(ρ). The

(ex ante) objective of the mechanism design exercise is then given by:

Π =

∫
π(ρ)f(ρ)dρ.

For a fixed menu cm, the payoff of the insuree type θ1 ∈ {H,L} from reporting θ̂1 is:

um(θ1; θ̂1) = w − pm(θ̂1)−
[
1− xm(θ̂1)

]
µm(θ1)−

η

2

[
1− xm(θ̂1)

]2
= w − µm(θ1)︸ ︷︷ ︸

am(θ1)

+

[
xm(θ̂1)µm(θ1)−

η

2

{
1− xm(θ̂1)

}2
]

︸ ︷︷ ︸
vm(θ1;θ̂1)

−pm(θ̂1)

= am(θ1) + vm(θ1; θ̂1)− p(θ̂1) (1)

where µm(θ1) is the expected value of µ based on the realized value of θ1 and the insuree’s

beliefs about ρ after observing the message m. Assuming truthteling by the agent, the

mathematical expression for the insurer’s profit is:

π(ρ; ρ̂) = q1
[
pr(ρ̂)(L)− µρ(L)xr(ρ̂)(L)

]
+ (1− q1)

[
pr(ρ̂)(H)− µρ(H)xr(ρ̂)(H)

]
(2)

where µρ(θ1) is the expected value of µ based on realized value of ρ and (truthfully) reported

value of θ1.

Three types of constraint are imposed on the optimization problem. First is the incentive

constraint of the insurer, that the insurer wants to truthfully report her type to the mediator:

ICρ : π(ρ; ρ) ≥ π(ρ; ρ̂) ∀ ρ̂.

Second is the incentive constraint for the insuree, that the insuree wants to truthfully report
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his type to the mediator:

ICθ1 : um(θ1; θ1) ≥ um(θ1; θ̂1) ∀ θ̂1.

As pointed out in the description of the dynamic mechanism above, insuree’s incentive con-

straint incorporates the report of the insurer by conditioning the (expected) utility on the

message m, and hence the posterior Fm. Third is the individual rationality constraint of the

insuree which guarantees him a minimum expected utility:

IRθ1 : um(θ1; θ1) ≥ 0.

Any contract (r, C) that satisfies these three (class of) constraints is said to be incentive-

feasible. Finally, the optimization problem can be written simply as:

max
r,C

Π s.t. ICρ, ICθ1 , IRθ1 .

4 Three “special” cases

Before we solve the main problem, we consider three related models that help identify the

key economic forces at work.

4.1 ρ is common knowledge

If ρ is common knowledge, the problem becomes isomorphic to the monopolistic version of

the classical Rothschild and Stiglitz [1976] problem, studied first by Stiglitz [1977]. Both

parties take expectations over θ2, and insuree is incentivized to reveal θ1 truthfully. Since

there is no need of communication from the insurer, r here is irrelevant. The optimal contract

is as follows.

Proposition 1. ∃ ρ∗ ∈ [ρ, ρ] s.t. πRS(ρ∗) = max
ρ

πRS(ρ) and coverages are generically

separating:

1. ρ > ρ∗ ⇒ 1 = xRS
ρ (H) > xRS

ρ (L),

2. ρ < ρ∗ ⇒ xRS
ρ (H) < xRS

ρ (L) = 1.

As in the standard monopolistic screening model, the optimal contract is always separat-

ing: “high” risk type is offered exact coverage and “low” risk type is offered partial coverage,

though which type is high risk pivots around ρ∗. Fix ρ∗ to be the correlation where the

expected value of mean loss is the same for both θ1-types: that is ρ
∗ solves µρ(H) = µρ(L).

Then, for ρ > ρ∗, high risk type is θ1 = H and for ρ < ρ∗, the high risk type is θ1 = L

(see Figure 1b). The profit is maximized at ρ∗, because the agent’s private information of θ1

10



(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 1: Benchmark model when ρ is common knowledge

becomes statistically irrelevant: the principal offers a pooling contract and extracts all the

surplus associated with it (see Figure 1a). We will refer to this as the benchmark model, and

christen it RS, pointing to the classical reference.9

For the case ρ > ρ∗, for an interior solution, the optimal coverages are given by:

xρ(H) = 1 and xρ(L) = 1− 1− q1
ηq1

(µρ(H)− µρ(L)) < 1 (3)

As can be seen transparently, the extent of distortion for the “low” risk type is further

determined by the primitives of the problem. In particular, the distortion is decreasing in η

and q1, and increasing in ∆ρ = µρ(H) − µρ(L). Analogous comparative statics emerge for

the case ρ < ρ∗.

The economic force driving this result is typically known as the rent-versus-efficiency

tradeoff. Since insurer is the residual claimant of the surplus, she wants to maximize efficiency

by offering full (or exact) insurance to both types with different premia (or prices) that hold

each of them at their reservation utility. But due to asymmetric information she provides two

different coverages, one full and another partial, and chooses premia in way that incentivizes

insurees to self select into the contract corresponding to their type. In fact if the proportion

of low risk types is too small, the insurer will simply offer full insurance to the high risk

types and exclude the low risk ones from the market (see Figure 1b for high values of ρ).

In all the models that follow, ρ is not common knowledge, rather it is the insurer’s private

information. These will feature an inversion of adverse selection: by designing an incentive

compatible mechanism, once the insurer learns θ1, she knows more than the agent about the

probability of the state θ. The insurer will exploit, to varying degrees, this belief gap, and

one of the tools we will use to capture this intuition will be termed flipped allocation.

9Technically speaking for ρ > ρ∗, ICH binds at the optimum, and for ρ < ρ∗, ICL binds at the optimum.
This determines which type is offered the efficient contract and which one is distorted.
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Definition 1. A contract C is said to feature flipped coverages if there exists ρ̂ such that

xr(ρ)(H) > xRS
ρ (H) and xr(ρ)(L) < xRS

ρ (L) for ρ < ρ̂;

xr(ρ)(H) < xRS
ρ (H) and xr(ρ)(L) > xRS

ρ (L) for ρ > ρ̂.

In that case, will say that the coverages are flipped around ρ̂.

This represents the idea that with private information on the joint distribution of the

underlying state, insurer will want to sell more insurance to the “low” risk type and less

insurance to the “high” risk type. The final allocation is then flipped in comparison to the

standard case where ρ is common knowledge. In the inequalities above, θ1 = H is the “low”

risk type and θ1 = L is the “high” risk type for ρ < ρ̂. So the flipped allocation assigns more

coverage to the θ1 = H and less coverage to θ1 = L in comparison to the benchmark. The

analogous statement is true for ρ > ρ̂.

Further, the insurer limits the extent of price discrimination in the contract on the basis

of ρ through the function r because if the insuree is sophisticated, she can extract the private

information of the insurer through Bayesian inference. In what follows we first discuss two

cases in which the insuree cannot perfectly infer the value of ρ from the set of contracts

offered by the insurer.

A final thought on the appropriate benchmark: It is also possible to let the benchmark

to be the case where both parties are perfectly uninformed about the correlation coefficient

and take expectations over it. In this case the optimal profits and coverages will be given by

their counterparts in Proposition 1 evaluated at the expected correlation: πRS
e = πRS(E[ρ]),

xRS
e (H) = xRS

E[ρ](H), and xRS
e (L) = xRS

E[ρ](L).

4.2 Gutgläubig insuree

Another useful, and rather non-standard model to consider is one where in addition to

offering a contract, the insuree tells the insurer the correlation coefficient and the latter

simply believes it. This setting is different than the (standard) näıveté model that we discuss

in the next subsection. We will refer to such an insurer as gutgläubig, which is a German

word that approximately translates to gullibly trusting.

Knowing that she can basically mislead the insuree about the way in which the two

dimensions are correlated provides the insuree with great freedom in selecting contracts.

She will choose r and C in tandem to create both the maximal belief gap and the maximal

price discrimination.10

Proposition 2. If the insuree is a gutgläubig, ∃ ρ̃ ∈ [ρ, ρ] such that:

10Since the Bayes’ consistency condition is not valid, technically the class of contract is given by C = (cm,ρ)
because the contract offered for the actual realization of ρ has no relation to the reported value m.
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gutgläubig profits

(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 2: Model with gutgläubig insuree

1. binary messages are sent: M = {m,m} s.t. r(ρ) = m for ρ < ρ̃ and m(ρ) = m for

ρ > ρ̃,

2. posterior of the insuree is extreme: Fm = δρ and Fm = δρ where δρ is Dirac measure

on ρ,

3. profits are uniformly higher than benchmark: π(ρ) > πRS(ρ) ∀ ρ almost surely,

4. coverages are generically separating and inexact: xρ(H) ̸= xρ(L) ∀ρ ̸= ρ̃, and xρ ̸= 1

∀ ρ a.s.,

5. coverages are flipped around ρ̃.

There exists a threshold value of ρ, to the right of which the insuree reports the extreme

negative correlation, ρ, and to the left of which she reports the extreme positive correlation,

ρ. Even though the cardinality of the message space is just 2, a distinct contract is offered for

each value of ρ, since the insuree does not infer anything about ρ from the menu of contracts.

When the actual correlation is high, it means that the type θ1 = H is likely to suffer a

large loss and θ1 = L is likely to suffer a small loss. In this scenario, the insurer reports a

large negative correlation, in fact the largest possible negative value, and overinsures θ1 = L

and underinsures θ1 = H. In the process, she is able to achieve dramatic price discrimination

while maintaining an extreme belief gap. The exact opposite is true for the case when the

actual correlation is low: insuree reports large positive correlation, and overinsures θ1 = H

and underinsures θ1 = L. In sum, the insurer sells a large amount of insurance at a high

price to the type who actually has a low probability of loss, and a small amount of insurance

to the type who actually has a high probability of loss.

Figure 2 depicts the profit and coverages when the insuree is gutgläubig. That the profits

are uniformly higher (Figure 2a) is intuitive—the model allows the insurer to input any value

of the correlation in the insuree’s incentive compatibility condition, which in turn allows her
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to manipulate which type is perceived to be high risk type and then decide what coverages

to offer each θ1 type (Figure 2b).11

The last part of the proposition points out that allocations are flipped in comparison to

the benchmark model, capturing the role of private information of the insuree. The extent of

flip will be maximal in the gutgläubig case because the competing force limiting the extent

of price discrimination, i.e. Bayesian sophistication of the agent, is shut down and further

through gullibility, made to work against the agent.

This analysis has two take away messages: First, private information on the side of the

insuree, especially statistical information, fundamentally changes the incentives of the insurer

and hence the nature of contracts that are observed in the market for insurance. Second,

an inability on part of the insuree to infer information and further be misled by the insurer

results in a maximal belief gap and maximal price discrimination at the optimum, leading

to large increase in profits for the insurer in comparison to the benchmark.

4.3 Naive insuree

A more standard “behavioral” way of modeling limitations on information processing is

to assume that the agent ignores the signals offered by the contract about the correlation

coefficient, so that Fm = F ∀m ∈ M .12 Thus, in this situation, the role of r is moot. The

insurer designs the contract as a function of ρ with the knowledge that the insuree will

evaluate his payoffs using the prior F .

Proposition 3. If the insuree is naive (and thus sticks to the prior):

1. profits are higher in expectation: E(π(ρ)) > E(πRS(ρ)),

2. coverages features both pooling and separation,

3. coverages are generically inexact: xρ(θ1) ̸= 1 ∀ ρ a.s.,

4. coverages are flipped around E(ρ).

The salient difference between the naive model and gutgläubig case (and also the general

model we will present next) is that here the belief gap is determined exogenously by the fixed

prior and the realization of ρ, and the insurer cannot influence it. This works in the insurer’s

favor sometimes and other times it works against her. As a consequence, when the insuree is

naive, the insurer is better off on average in comparison to the benchmark, however, unlike

the gutgläubig case, this ranking is not uniform (see Figure 3a).

Here is a simple intuition for the result: Suppose the expected correlation according to F

is high enough, so that according to insuree, the “high” risk type is θ1 = H. If the realized

11The large overinsurance offered at the extremes brings out the message starkly. One can limit the coverage
exogneosuly to be below one, that is, x ≤ 1. Whenever it is optimal to set x > 1, the bound will be hit and
will get full but not over insurance. All other results will continue to hold qualitatively.

12See Benjamin [2019] for an overview of the literature.
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(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 3: Model with naive insuree

correlation is close to ρ, the insurer wants to sell a lot of insurance to θ1 = H and little

insurance to θ1 = L, because θ1 = H is actually the “low” risk type but believes his risk

to be at a higher level, according to F , and θ1 = L is actually “high” risk (see left part

of Figure 3b). On the other hand, when the realized correlation is close to ρ, the insurer

cannot sell a lot of insurance to θ1 = H because he does not internalize the extent of risk

he faces, and moreover, she cannot sell a lot of insurance to θ1 = L, because the nature of

binding incentive constraints demands xρ(H) ≥ xρ(L); thus, for extremely high correlations,

the insuree is forced to pool the coverages.13

4.4 Breakdown of the key forces

The key take away message from these special cases is this. The coverages vary as a function

of ρ, the insurer’s private information, and θ1, the insuree’s private information. The latter

due to is the classical rent-versus-efficiency tradeoff which runs through each of the cases

since the insuree’s incentive constrain needs to be satisfied. The former generates a distinct

tension of belief gap versus price discrimination.

In the first case, when correlation is common knowledge, belief gap is zero, and price

discrimination is determined exogenously through the realized value of ρ. In the gutgläubig

case, both belief gap and price discrimination are endogenously determined. Since the insurer

can choose the contract independently from the insuree’s belief, there is a no-longer a tradeoff

between belief gap and price discrimination, and both are selected to maximize the insurer’s

profit. In the näıve case the belief gap exists but is determined exogenously for the insuree

sticks to the prior no matter what contract is offered. Price discrimination is endogenously

chosen to maximize the insurer’s profit given the exogenous belief gap constraint. In what

follows, both these forces will be determined endogenously and will interact with each other

13If expected correlation according to F is low enough, then in a symmetric contrast to Figure 3, the profit
curve would intersect benchmark profits from below, and pooling in coverages will happen for high negative
correlations.
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and with the rent-versus-efficiency tradeoff to pin down the optimal contract.

5 Characterizing incentive compatibility

Our model differs from the standard screening problem in that it also features an incentive

constraint for the principal, i.e. the insurer. In this section, we analyze the incentive con-

straints of the insurer for any fixed reporting strategy r : [ρ, ρ] → ∆(M) by the mediator.

The standard Myersonian characterization of the insurer’s incentive compatibility is first

stated.

Lemma 1. ICρ holds if and only if π satisfies the following

1. envelope characterization of local incentives:

∂π(ρ; ρ̂)

∂ρ

∣∣∣∣
ρ̂=ρ

= σxr(ρ)(L) · (µLH − µLL)− σxr(ρ)(H) · (µHH − µHL) ≡ c(ρ), (4)

and,

2. convexity: π(ρ) is convex in ρ.

Proof. Part two is a standard property of value functions that satisfy incentive compatibility

on a continuous type space (see, for example, Börgers [2015], Chapter 3). We show here the

exact functional form of the envelope characterization stated in Equation (4). Start with

Equation (2), i.e. assuming truthteling by the insuree, the profit function from (mis)reporting

ρ̂ is given by

π(ρ; ρ̂) = q1
[
pr(ρ̂)(L)− µρ(L)xr(ρ̂)(L)

]
+ (1− q1)

[
pr(ρ̂)(H)− µρ(H)xr(ρ̂)(H)

]
where the only terms that are a function of ρ are

µρ(L) = (q2 + ρσ/q1)µLL + ((1− q2)− ρσ/q1)µLH , and

µρ(H) = (q2 − ρσ/(1− q1))µHL + (1− q2 + ρσ/(1− q1))µHH

Taking a derivative with respect to ρ, then gives us:

∂π(ρ; ρ̂)

∂ρ
= −σxr(ρ̂)(L)(µLL − µLH)− σxr(ρ̂)(H)(−µHL + µHH)

and, substuiting ρ̂ = ρ delivers Equation (4).

By fixing r, we fix M , which partitions type space of possible correlations, [ρ, ρ]. Hence

we also fix the number of contracts offered at the optimum, |C| = |M |. Now, for a given r,

Lemma 1 tells us two things. First, the slope of the profit function can be written as

c(ρ) = kLϕL(ρ)− kHϕH(ρ),
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(a) optimal profit ignoring convexity (b) costs/benefits of adding an extra partition

Figure 4: Structure of optimal partitions

where kL and kH are positive constants, and ϕL(ρ) = xr(ρ)(L) and ϕH(ρ) = xr(ρ)(H) are the

coverages chosen for θ1 = L and θ1 = H, as a function of the partition of M in which ρ falls.

And, second, by convexity of π, that c(ρ) must be non-decreasing. These two together put

restrictions on what coverages/allocations are feasible, specifically they limit the extent of

price discrimination that the insurer can employ even for a fixed number of contracts.

The typical approach taken in mechanism design is to ignore the convexity constraints,

solve the relaxed problem using only the envelope condition, and invoke a regularity con-

dition such as the monotone hazard rate. But this problem is not standard in at least

three ways: (i) the “policy function” is multidimensional, there are two allocation rules in

the envelope condition, ϕL and ϕH , (ii) these functions in turn solve another downstream

screening problem for the agent, and (iii) the mechanism still has to jointly choose r and C
at the optimum.

All of the aforementioned constraint the contract space in non-trivial ways. At the first

pass, we show that an optimal contract must in fact be finite:

Proposition 4. The optimal mechanism has a finite number of messages and contracts:

|M| = |C| = κ for some κ ∈ N.

Recollect that C = {cm | m ∈ M} where M is essentially a partition of [ρ, ρ]. For every

additional element we introduce in M, there is a cost and benefit associated with it. Figure

4 presents an example where the optimal number of contracts offered at the optimum is two,

that is, |M| = |C| = 2. Figure 4a delineates the role of the convexity constraint and Figure

4b shows why going from two to three partitions is not profitable.

In both figures, the single peaked blue curve is the optimal profit in the benchmark model

discussed in Section 4.1. The red line depicts the optimal profit line with two partitions—in

Figure 4a while ignoring the convexity constraint, and in Figure 4b while imposing it. Each

partition has its expected correlation marked at the two vertical dotted lines. Feasibility

demands that red profit line must not be above the blue benchmark profit at each of those
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two points. This is because in the subgame in which correlation is common knowledge, the

best the insurer can do is to achieve a profit of πRS(ρ). In the two subgames, one for each

of the two partitions, it is as if the insurer is in the benchmark model with the correlation

being the expectation of correlation in those partitions.

Now, in the relaxed problem in which we ignore the convexity constraint from Lemma

1, we could choose the highest piecewise linear curve that crosses the blue curve at those

expected correlations. This would culminates in a concave kink in the piecewise linear profit

function, as shown in Figure 4a. The ignored convexity constraint is obviously violated, and

this observation is not limited to the parameters chosen here—any two (or more) partition

contract which solves the relaxed problem will generate such a concave kink. Thus, to make

the contract incentive compatible, it has to be ironed. The highest convex profit function

that the insurer can construct while satisfying incentive-feasibility is the one shown as the

straight red line in Figure 4b.

Finally, we increase the the number of partitions from two to three, as shown in Figure

4b. The new profit curve is the piecewise liner black line. This transition still needs to satisfy

all the incentive-feasibility restrictions we imposed before. Following those similar logics, we

draw the best piecewise linear function that is convex and weakly below the benchmark

profit at each of the three expected correlations corresponding to the three partitions. In

doing this, the insurer incurs some costs and some benefits. The cost is shown in the lower

yellow triangle in what constitutes the loss in profit, and the benefit is shown in the upper

green triangle in what constitutes the gain in profit. In this case going from two to three

partitions is clearly sub-optimal.

This intuition holds more generally. At the optimum the principal does not want to have

an arbitrary number of contracts for the costs of doing so in terms of the restrictions imposed

on the slope of the profit function, i.e. distortions introduced to satisfy incentive compatibil-

ity across partitions, outweigh the benefits accrued from greater price discrimination. Thus,

the number of contracts offered is not just countable, it is also finite. This is documented in

Proposition 4.

6 Optimal contract

In the previous section, we showed that incentive compatibility restricts the shape of the

profit function and further evaluated the cost and benefit of having partitions of the corre-

lation type space to conclude that set of the contract offered at the optimum must be finite.

This dramatically simplifies the search for the optimal contract. The problem though is still

quite hard to pin down in general. This is because both the number of partitions and their

placement is endogenously determined. Here we argue that the number of contracts offered

at the optimum is actually quite small, often the number of optimal partitions is one or two,

that is, |M| = |C| ⩽ 2, and then characterize the contract for one and two partitions.
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Limit result on number of partitions: Recollect that η = γν, where γ is the risk

aversion parameter, and ν is the variance of loss. Thus, η is a sufficient statistic of risk in

our setup. We show that in both limits of arbitrarily large and arbitrarily small risk, the

number of contracts offered at the optimum is one.

Proposition 5. Fix η = γν and ε = q1
η
2 . Then:

1. As η → ∞, insurer finds it optimal to offer one message and contract, |M| = |C| = 1.

2. For any small η > 0, the difference between the optimal profit and the profit generated

by the optimal one-partition contract is smaller than ε.

When the insurer sets |M| = |C| = 1, there is complete pooling across ρ. Thus, she

simply does not use her informational advantage towards price discrimination, opting rather

to maintain the ex ante belief gap. Thus, the power of Bayesian inference essentially compels

the seller to resolve the trade-off between belief gap and price discrimination completely in

favor of the former force, at least in the two limits specified in Proposition 5.

As η becomes large, for the case when ρ is common knowledge, we can note from Equation

(3) that the optimal contract approximates full insurance for both θ1 = H and θ1 = L. Since

the insurer is risk neutral, fixing the average correlation in a partition, the ideal outcome is to

offer the benchmark contract corresponding to the average correlation in that partition. Since

this coverage is converging to 1 irrespective of the value of ρ, the only price discrimination

the insurer can introduce is to charge different prices (or premia) as a function of ρ for this

approximately full insurance contract. But, given that there is not much room to discriminate

along the quantity dimension, discriminating only along the price dimension is not beneficial

enough to outweigh the costs associated with revealing information about ρ to the insuree.

On the other hand, when η becomes small, since the surplus to be accrued from insurance

is so small, the insuree again does not find it worthwhile to temper the belief gap in favor of

price discrimination.

Intermediate numerical results on number of partitions: What about other pa-

rameters? Recollect that the number of contracts offered at the optimum depends on the

slope of the profit function: c(ρ) = kLϕL(ρ)− kHϕH(ρ), which in turn depends on the prim-

itives kL and kH , and the allocations ϕL(ρ) and ϕH(ρ). The allocations are of course driven

by the extend of risk and uncertainty in the environment, viz η. Hence, to understand the

structure of optimal contracts, we split parametric space along these two dimensions.

Figure 5 documents when the optimal contract features complete pooling, |M| = |C| = 1,

and when it features some price discrimination along ρ, that is |M| = |C| > 1. In fact, in the

numerical simulation we allow the program to accept up to three partitions and it selects

either one (in the dark/purple region) or two (in the light/yellow region) but never three.

This further provides credence to the claim that the number of contracts offered at the
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(a) case kL = kH (b) fixing kL, varying kH

Figure 5: Splitting the parameters space into two regions: |M| = |C| = 1 and |M| = |C| > 1.

optimum with Bayesian sophisticated agents is small.14

Restricting the possible correlations to two: To gain further intuition on the

optimal contract, we ask what if type space of the possible correlations is also restricted

to be two, say ρ ∈ {ρ1, ρ2} ⊂ [ρ, ρ]. When does the insurer choose to offer a pooling contract

in ρ and when does she choose to separate the two types? Loosely speaking, this question is

”equivalent” to when the insurer offers one or two partitions in the original continuous type

space model. The next result offers a characterization of pooling versus separation in the

two types model. Recollect that ρ is defined as the solution to µρ(H) = µρ(L).

Proposition 6. Suppose ρ ∈ {ρ1, ρ2} where ρ1 < ρ2.

1. If ρ1 < ρ∗ < ρ2, the insurer offers one pooling contract across ρ: cρ1 = cρ2.

2. If ρ1 < ρ2 ⩽ ρ∗ or ρ∗ ⩽ ρ1 < ρ2, depending upon the slope of the profit function the

insurer may pool or separate across ρ.

When offering a separating contract, it is as if the insurer is creating two partitions in

the continuous types model where the expected correlations of the partitions are ρ1 and ρ2

respectively. One way to interpret Proposition 6 is that when the primitives of the model

push the two partitions to be such that the expected correlations are on different sides of ρ∗,

it is always better to offer a completely pooling contract along ρ. Maintaining the belief gap

is more valuable for such parameters than the price discrimination afforded by separating ρ1

14In fact in all our numerical simulations across a range of parameters, the optimal number of partitions
is capped at two. This we conjecture is a global result: |M| = |C| ⩽ 2. If we don’t impose the convexity
constraint on the optimization problem then the allocation rule generates a c(ρ) which turns out to be a
decreasing function. However, the convexity constraint demands that c(.) be non-decreasing. Thus, the
contract must be ironed everywhere. In a typical Myerson problem, ironing everywhere would generate a
constant slope of the value function, see for example, Hartline and Roughgarden [2008]. Due to the complexity
of our mechanism design problem with an informed principal, we cannot at the outset rule out that ironing
could lead to the slope increasing locally at some point. Though we conjecture this case to not be optimal so
that c(.) is always constant at the optimum and the total number of partitions is either one or two.
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and ρ2. Moreover, {ρ1, ρ2} on the same side of ρ∗ is necessary but not a sufficient conditions

for separation. The result, as show in the appendix, depends further on the slope of the

profit function.

Characterization of the optimal one and two partition contracts: Now back

to the model ρ ∈ [ρ, ρ]. If the optimal number of partitions turns out to be one, it is

fairly intuitive to conclude that the coverages offered would be same as those offered in

the benchmark model at the ex ante expected correlation, and the optimal profit too will

be equal to the optimal profit at that correlation. This result is summarized in the next

proposition. Recollect that πRS
e = πRS(E[ρ]), xRS

e (H) = xRS
E[ρ](H), and xRS

e (L) = xRS
E[ρ](L).

Proposition 7. When the optimal contract chooses |M| = |C| = 1:

1. expected profits are the same as in benchmark at the expected correlation: E[π(ρ)] =
πRS
e ,

2. coverages are the ones offered for the expected correlation in the benchmark: xr(ρ)(H) =

xRS
e (H) and xr(ρ)(L) = xRS

e (L) ∀ ρ.

Figure 6 plots the optimal profit and coverages for this case. The coverages are simply

straight horizontal lines for the insurer is not using any of her private information about

ρ and instead offers a completely pooling contract along ρ. As in the benchmark model,

the ”high” risk insuree (which is type θ1 = H in the figure) is given full insurance and the

”low” risk insuree is given partial insurance. The profit function is a straight downward

sloping line since the allocations are fixed, and π is linear in ρ. The dotted vertical line

captures the expected correlation at which point the red straight line and benchmark blue

curve intersect.15

Next, we consider the case where the optimal number of partitions is two. In this case,

the type space of correlations is split into two intervals, say I1 and I2. The coverages in each

interval are evaluated using the expected correlation in those intervals while ensuring that

the insuree’s incentive constraint is satisfied between reporting interval I1 or I2 and within

each interval, the insurer’s incentive constraint is satisfied in reporting θ1 = H or L. The

following result summarizes the key aspects of the optimal contract.

Proposition 8. When the optimal contract chooses |M| = |C| = 2, let I1 and I2 be the

two intervals in the partition of M , let ci = (xi(H), xi(L)) be the two contracts offered, and

define ρ1 = E[ρ | ρ ∈ I1], ρ2 = E[ρ | ρ ∈ I2]. Then:

1. profits are linear in correlation: dπ(ρ)
dρ = c for some constant c,

15For all the optimal contracts, we plot the profit and the coverages of the benchmark model simultaneously
to help motivate the impact of the privacy of statistical information on the side of the insurer, which separates
our model form (most of) the literature on insurance markets.
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(a) profit (b) coverage and its benchmark counterpart

Figure 6: Optimal contract features complete pooling

2. expected profits are larger than the benchmark: E[π(ρ)] > πRS
e

3. coverages are flipped in comparison to the benchmark in the following sense:

(a) x1(H) ≥ xRS
ρ1 (H) and x1(L) ≤ xRS

ρ1 (L), whenever x1H ̸= x1L,

(b) x2(H) ≤ xRS
ρ2 (H) and x2(L) ≥ xRS

ρ2 (L), whenever x1H ̸= x1L.

Figure 7 plots the optimal profit and coverages when the optimal number of partitions is

two. Each partition corresponds to two coverages, one for each insuree type, which gives the

profit function its slope. The first result in Proposition 8 states that optimality forces both

these slopes to be the same. This follows from the intuition given in Section 5 that without

imposing the convexity constraint the optimal profit line has a concave link. So the highest

profit line that satisfies convexity is then simply the straight line which equates the slope

of the profit function along the two partitions, as shown in Figure 7a. The second result in

Proposition 8 simply states that if the insuree is employing two partitions at the optimum

than the profit must be greater than expected profit in the benchmark model since the latter

can always be attained by offering a completely pooling contract as in Proposition 7.

The third result in Proposition 8 documents that the coverages are flipped in each par-

tition. In the left partition where θ1 = L is the ”high” risk type, θ1 = H is overinsured.

But, unlike the gutgläubig case, incentive constraints force the allocation to always satisfy

x1(H) ⩾ x1(L). So, in the right partition, θ1 = H, which is now the ”high” risk type, is

offered under insurance, and θ1 = L is forced out of the market with no coverage. See Figure

7b.

Summary: To summarize, when the insuree is Bayesian sophisticated, the total number

of contracts offered at the optimum is small, often at most two. This illustrates the fact the

trade-off between belief gap and price discrimination is resolved mostly in favor of the former.

When the optimal contract features complete pooling across ρ, the contract corresponding
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(a) profit (b) coverage and its benchmark counterpart

Figure 7: Optimal contract features two partitions

to the benchmark model at the expected correlation is offered and the insurer does not use

her informational advantage at all. When the optimal number of contracts offered is two, we

see both over and under insurance at the optimum, owing to forces similar to the ones seen

in the gutgläubig case, but significantly tempered by the fact the agent cannot be misled and

perfectly infers all information from the offered contracts.

7 Two interventions

In this section we look at two extensions of the basic model. First, we allow for competition

from firms that do not posses the big data advantage, they average over θ2 using the prior.

Second, we explore the implications of forcing the insurer to publicly reveal her informational

advantage, that is report ρ to the insuree. In each case we make a comparison with the

gutgläubig case and the case where the agent can do perfect Bayesian inference.

7.1 Introducing competition from ‘regular’ insurers

Suppose there is an insurer that knows the value of ρ and there are other insurers in the

market that do not know this value and work with the prior F . Borrowing from the bench-

mark (in Section 4.1), the latter group of insurers are assumed to offer the Rothschild-Stiglitz

contract evaluated at the expected value of ρ. As before, the big data insurer can send a

message disclosing some information about the correlation and offer a contract. The idea

here is to introduce competition in a tractable way from regular firms who do not have the

in-house expertise of big data.

The insuree can choose to buy insurance from any one seller. However, independent of

which insurer he buys from, the belief is updated as before from the contract offered by

the big data insuree and as a function of his level of Bayesian sophistication. Therefore, the

insurer will buy from the big data seller only if he obtains a utility higher than the one offered

by the Rothschild-Stiglitz contract evaluated at the expected correlation. So, in effect, the
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introduction of regular insurers simply modifies the individual rationality constraint for the

optimization problem of the big data insurer. This problem can be stated as follows:

max
r,C

Π s.t. ICρ, ICθ1 , IR
e
θ1

where r, C, ICρ, ICθ1 are as defined before, and IRe
θ1

is modified so that the insuree’s outside

option is evaluated at the contract ce =
{
pRS
e (H), xRS

e (H), pRS
e (L), xRS

e (L)
}
. Here xRS

e (H)

and xRS
e (L) are defined in Section 4.1, and pRS

e (H) and pRS
e (H) are respectively the prices

that maximize the insurer’s expected utility when the correlation is common knowledge and

equal to E[ρ].16

We document below the change in the structure of the optimal contract from the intro-

duction of competition from regular insurers.

Proposition 9. Suppose the big data insurer faces competition from regular insurers that

offer ce.

1. Suppose the insuree is gutgläubig. Then, all features of the optimal contract stated in

Proposition 2 continue to hold. The main departure is that the coverage of the ”low

type” insuree goes up.

2. Suppose the insuree is Bayesian sophisticated. Then the number of partitions at the

optimum is weakly lower the standard model.

In summary, the introduction of competition forces the insurer not to exploit price dis-

crimination even further. In the gutgläubig case, it increases the coverage of the “low” risk

type. In the Bayesian sophisticated case, it sometimes forces the insurer to reduce the num-

ber of partitions from two to one, and if it is was one in benchmark case, then it stays at

one with competition as well. Competition thus weakly increases the surplus of the insuree.

7.2 Optimal full revelation contract

So far we have analyzed the case where the insurer is the sole proprietor of statistical in-

formation ρ and can decide, as part of the optimal contract, how much of it to reveal to

the insuree. For a variety of regulatory and (presumably) welfare concerns, the insurer can

be asked to reveal the information about ρ publicly. One obvious way to model this is to

assume that we “nationalize” the system by taking over the insurance company and putting

this information in the public domain. Abstracting from the costs of this nationalization, the

model would then become equivalent to the one studied in Section 4.1, where ρ is common

knowledge.

An alternate way is to assume the insurer develops her private information at an arm’s

length distance from the government, and is then incentivized to put this in the public

16Here, we assume that if indifferent, the insuree buys from the informed (or big data) insurer.
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domain. The underlying assumption here is that it is difficult to construct a statistical

model that increases the precision in predicting θ and then use it effectively in designing

insurance contracts. At a high level, what we have in mind is that information is dispersed

in a society and collecting it and making it public is a non-trivial exercise (Hayek [1945]).

There are shadow prices associated with incentivizing the insurer to publicly reveal ρ.

We model this situation by exogenously fixing the message rule chosen by the mediator

to be the identity mapping: r(ρ) = ρ, and requiring the principal (i.e., the insurer) be

compensated for this through her incentive constraint. This obviously has the downstream

effect of influencing the contract C that is offered to the insuree. The entire optimization

problem can be written in one piece as follows:

max
C⋆

Π s.t. ICρ, IC
⋆
θ1 , IR

⋆
θ1

where C⋆ =
{
cρ | ρ ∈ [ρ, ρ]

}
, cρ =

{
cρ(H), cρ(L)

}
and cρ(θ1) = (pρ(θ1), xρ(θ1)) for θ1 =

H,L, and IC∗
θ1

IR∗
θ1

are evaluated using um which plugs in the actual realization of ρ since

m is pre-fixed to be ρ here. The optimal coverages will be denoted by xρ(H) and xρ(L).

The following proposition summarizes the optimal full revelation contract.

Proposition 10. Suppose the insurer is required to reveal all information, that is r(ρ) = ρ

is fixed exogenously. Then:

1. profits are uniformly lower than the benchmark: π(ρ) < πRS(ρ) ∀ρ,

2. coverages are generically inexact: xρ(θ1) ̸= 1 ∀ ρ a.s.,

3. there is pooling and separation at the optimum:

(a) ρ > ρ∗ ⇒ xρ(H) ≥ xρ(L),

(b) ρ < ρ∗ ⇒ xρ(H) ≤ xρ(L).

(c) one of these may hold as an equality.

4. ∃ ρ̃ such that the contract is flipped around ρ̃.

The first observation is that the insurer’s profits are uniformly lower in the full revelation

contract than the benchmark, see also Figure 8a. This makes intuitive sense for the subgame

following the reporting of ρ is exactly the same as the benchmark model, but the mandatory

revelation of ρ is subjected to the binding constraint, ICρ. The second result documents

the fact that there is both under and over provision of insurance at the optimum; Figures

8b and 8c document that partial insurance or under-provision dominates. The third result

states that similar to the benchmark model, the “high” types that is offered larger insurance

changes around ρ∗, but unlike the benchmark model this ranking is weak for there can also
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(a) optimal profit

(b) optimal coverage for θ1 = H (c) optimal coverage for θ1 = L

Figure 8: Optimal contract with full information revelation

be pooling at the optimum. Pooling across the insuree’s type occurs because of the binding

incentive constraints of the insurer. Finally, the coverage is flipped around ρ̃ in comparison

to the benchmark. As can be seen in the figures, typically ρ̃ is very close to ρ∗.

It can be noted (in Figures 8b and 8c) that a continuum of contracts are offered at the

optimum in the full revelation model in comparison to the optimal contract where the insurer

controls the release of information (in Section 6). This is because the the insuree is being

forced to relinquish the belief gap, so it tries to maximize on the price discrimination part

to the extent feasible.

What are welfare implications of forcing the insurer to reveal her private information?

A global result is elusive due to the complexity of the mechanism design problem with an

informed principal. However, for most parameters numerical results suggest that the total

surplus often reduces in comparison to the benchmark and standard models and expected

utility of the insuree goes up. Here we often two qualitative results on the payoffs and

coverage.

We have seen thus far that the insurer’s profits are uniformly higher in the gutgläubig

model than the benchmark and uniformly lower in the full revelation model than the bench-

mark. In the next result we document the surplus guarantees for the insuree under the two
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specifications. Let um,ρ(θ1) is the payoff of the insuree of type θ1 in the gutgläubig case where

m is the correlation reported by the insurer and ρ is the actual realization correlation. In

addition, let uρ(θ!) be the payoff of the insuree of type θ1 in the full revelation case where

ρ is the actual realized and reported correlation and correspondingly uρ(θ1) be the payoff if

the insuree does not accept any insurance. Then we have the following simple result.

Corollary 1. The insuree’s surplus (or utility)

1. is uniformly negative in the gutgläubig case, i.e., Eθ [um,ρ(θ1)] < 0 for m = ρ, ρ, ∀ ρ;

2. is uniformly positive for the full revelation contract.i i.e., uρ(θ1) ⩾ uρ(θ1) for all ρ, θ1.

In the first case the insurer is able to maximally mislead the insurer about the true

probability of loss. The high price charged to the “low” risk insurer culminates in a negative

surplus. On the other hand, by construction, since the individual rationality constraint for

the insurer holds pointwise–for each θ1 and ρ– we get that the insurer’s payoff is non-negative.

In the appendix we offer another result that characterizes the total extent discrimination

and total coverage offered at the full information revelation model. Since the insurer has to

incentivized to reveal ρ the extra shadow prices constraint the amount of price discrimination

that can be sustained at the optimum. Moreover, as a function of the parameters the total

coverage offered at the optimum can go up or down in comparison to the benchmark model.

8 Final remarks

A big debate in ensuing right now on the merits of technological advancements in data

documentation and processing. Foregrounding these issues, in the summer of 2019, the New

York Times carried a series of articles under the rubric of The Privacy Project.17 One of the

key topics of discussion therein was the impact of big data and AI on the insurance industry.

This paper is an attempt to mainstream these discussions in the modeling choices made by

classical economic theory in formalizing the key ideas in insurance markets.

Traditionally mechanism design models of insurance assume that the agent (or insuree)

has some private information about the probability of incurring a loss or meeting with an

accident. This results in the proverbial rent-versus-efficiency trade-off wherein the principal

(or insurer) gives up on efficiency and provides information rents in order to separate the

high risk from the low risk agents. We depart from this standard model in one crucial way—

we make the state of world that parametrizes the loss to be two dimensional, and allow

the agent to posses information about one of these dimensions and the principal to know

the statistical correlation between the two dimensions. This creates an informed principal

problem where the principal too has private information.

17See www.nytimes.com/interactive/2019/opinion/internet-privacy-project.html.
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Private statistical information on the side of the insurer introduces a novel trade-off

between belief gap and price discrimination, in addition to the usual rent versus efficiency

in standard screening contracts. The insurer wants to price discriminate using her private

information dimension but is also wary that fine-tuning the contract too much to the details

of the environment will allow the insuree to infer that information. This latter desire to

maintain a belief gap pulls against the desire to price discriminate.

In the standard framework in which the agent is Bayesian sophisticated, the insuree

resolve this tradeoff by offering very few contracts (at most two in most cases) in order to

maintain the belief gap. In the case where the insurer is gullible, this tradeoff disappears, the

the insurer is able to maximize price discrimination while maintaining the maximal belief gap.

Forcing the insurer to reveal the statistical information leads to less price discrimination and

often greater total coverage. Moreover, introducing competition reduces the informational

advantage of big data.

The result on fewness of contracts under Bayesian sophistication should be viewed as

a theoretical benchmark— when the consumers can do proper inference there are limits to

deployment of big data in extracting surplus. However, at the other extreme the gutgläubig

case shows that there are significant gains to be made from big data when the consumer has

limited inference capacities. This provides a foundation of sorts for both the rise of data

markets and the returns to consumer activism whereby implications of data disclosure and its

deployment by sellers can be better understood. Finally, putting this data in public domain

along with an understanding of how to interpret this information can benefit consumers, and

so will competition by endogenously limiting the extent to which the big data can be used

against the consumers.

The ideas developed here can potentially be applied to contexts other than insurance.

For example, in credit markets, owing to big data and AI, the credit issuing agency may

also have some statistical information about the credit worthiness of a client, in addition

to the client knowing some hard information about his financial circumstances.18 Finally,

aggregating across multiple principal-agent interactions. greater statistical information on

the side of the principal may encourage more market concentration, of the kind we see in

the tech-industry these days. Endogenizing data collection and market size is a promising

question for future work.

9 Appendix

Proofs of results stated in the main text are presented in this section.

18See Vives and Ye [2021] for some recent work in this direction.
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9.1 Proofs for Section 4

Proof of Proposition 1. Since ρ is common knowledge, the mapping r is redundant and the

seller’s profit for a specific ρ is given by

π(ρ) = q1(pρ(L)− µρ(L)xρ(L)) + (1− q1)(pρ(H)− µρ(H)xρ(H)) (5)

The insurer’s problem is to choose a contract cρ = {pρ(θ1), xρ(θ1)}θ1=H,L to maximize π(ρ)

to subject to incentive feasibility. Using Equation (1), the constraints can be written as:

µρ(θ1)xρ(θ1)− η
2 (1− xρ(θ1))

2 − pρ(θ1) ⩾ µρ(θ1)xρ(θ
′
1)−

η
2 (1− xρ(θ

′
1))

2 − pρ(θ
′) ∀θ1, θ′1 ∈ {L,H} ICθ1−θ′

1

µρ(θ1)xρ(θ1)− η
2 (1− xρ(θ1))

2 − pρ(θ1) ⩾ −η
2 ∀θ1 ∈ {L,H} IRθ1

Let ρ∗ be the correlation for which µρ(H) = µρ(L). Thus, when ρ = ρ∗, there is no

asymmetric information, and the principal/insurer does not need to provide an information

rent to any of the types. She can simply maximize efficiency by offering a unique pooling

contract of full insurance xρ∗(H) = xρ∗(L) = 1 and bind the IR constraints to extract

expected surplus.

Suppose that µρ(H) > µρ(L), that is, ρ > ρ∗. Then, we are in the standard Rothschild

and Stiglitz [1976] setup where θ1 = H is the ”high” type and θ1 = L is the “low” type. It is

standard practice (see for example Laffont and Martimort [2009]) to show that in this case

ICH and IRL bind, and ICL and IRH are slack. Let λ be the multiplier on ICH and δ the

multiplier on IRL. Th following FOCs that characterize an interior solution:

[pρ(L)] : q1 − δ + λ = 0

[xρ(L)] : − µρ(L)q1 + δµρ(L)q + σ(1− xρ(L))δ − λµρ(H)− λη(1− xρ(L)) = 0

[pρ(H)] : (1− q1)− λ = 0

[xρ(L)] : − (1− q1)µρ(H) + λµρ(H) + η(1− xρ(H))λ = 0.

From the first and third conditions it can be concluded that λ = (1 − q1) and δ = 1.

Using these values it is straightforward to see that

xρ(H) = 1 and xρ(L) = 1− 1− q1
ηq1

(µρ(H)− µρ(L)) < 1.

In case of a corner solution, xρ(H) = 1 and xρ(L) = 0.

An analogous argument shows the result for the case in which µρ(H) < µρ(L), that is,

when ρ < ρ∗.

Proof of Proposition 2. Since the insuree doesn’t do Bayesian inference, the mapping r is

independent of the contract offered at the optimum. The insurer’s profit for a specific ρ is

π(ρ) given by Equation (5). And due to the disentangling of the inference problem from the
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contractual problem, the insurer can solve the optimization independently for each value of

ρ:

max
c,µ̂

π(ρ) subject to

µ̂(θ1)x(θ1)− η
2 (1− x(θ1))

2 − p(θ) ⩾ µ̂(θ)x(θ′1)−
η
2 (1− x(θ′))2 − p(θ′1) ∀θ1, θ′1 ∈ {L,H} ICθ1−θ′

1

µ̂(θ1)x(θ1)− η
2 (1− x(θ))2 − p(θ1) ⩾ −η

2 ∀θ1 ∈ {L,H} IRθ1

where c = {p(θ1), x(θ1)}θ1=H,L is the contract and µ̂ is the belief that the insurer generates

for the insuree. Note that both the contract and the belief chosen by insurer depend on ρ,

but since ρ is fixed for the optimization problem, we have simplified notation here for the

rest of the calculations.

The objective is independent of µ̂(θ1), and the constraint set is linear. Thus, it is straight-

forward to conclude that the solution in bang-bang in µ̂(θ1). So, the insurer will report either

extremes of the feasible set of correlations, ρ or ρ. This implies only two messages are sent

at the optimum, say m and m, that generate buyer’s posteriors Fm = δρ and Fm = δρ.

Suppose that the seller sends the message m. This message generates posterior beliefs

µ(H) = µρ(H) and µ(L) = µρ(L), where µ(H) > µ(L). Furthermore, for any ρ, we have

µ(H) > µρ(H) and µ(L) < µρ(L). Now, using the first-order approach, following steps from

the proof of Proposition 1, it is straightforward to show that in an interior solution

x(H) = 1 +
µ(H)− µρ(H)

η
> 1 and x(L) = 1− (1− q1)µ(H) + q1µρ(L)− µ(L)

q1η
< 1,

and at a corner solution x(L) = 0 and x(H) takes the same value. An analogous argument

shows that when sending the message m, we obtain x(H) < 1 and x(L) > 1.

As a final step, we need to argue that for low correlations the seller will send messages m

and for high correlations the seller will send the message m. Let π(ρ) be the profits the seller

obtains after sending message m when the actual correlation is ρ, and analogously define

π(ρ). Plugging in we obtain that when the optimal contract is interior:

∂π(ρ)

∂ρ
− ∂π(ρ)

∂ρ
=

−µ(L) + (1− q1)µ(H) + q1µ(L)

η

∂µρ(L)

∂ρ
+

µ(H)− (1− q1)µ(H)− q1µ(L)

η

∂µρ(H)

∂ρ

< 0,

since
∂µρ(L)

∂ρ < 0,
∂µρ(H)

∂ρ > 0, µ(L) < µ(L), µ(L) < µ(H), µ(H) > µ(H), and µ(H) < µ(L).

Thus, if for a correlation r(ρ) = m, then for all ρ′ > ρ the seller sends the same message,

r(ρ′) = m. Analogously if r(ρ) = m, then for all ρ′ < ρ, r(ρ′) = m. This and our

characterization above shows that there is a ρ̃ ∈ [ρ, ρ̄] such that r(ρ) = m for ρ < ρ̃ and

r(ρ) = m for ρ > ρ̃. Moreover, it is easy to see that the contract flips around ρ̃ (in the sense

of Definition 1). Finally, notice that when ρ̃ ∈ (ρ, ρ̄) the argument above shows that the

seller always offer contracts that over insure or under insure the insuree.
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Proof of Proposition 3. Here the mapping r is redundant since the insuree does not update

his prior. Since the IC and IR constraints are linear in beliefs, what matters for the insuree

is the expected probability of loss as evaluated through the prior F , call these µe(H) and

µe(L). The insurer offers a contract cρ = {pρ(θ1), xρ(θ1)}θ1=H,L to maximize π(ρ) subject

to appropriate notions of IC and IR—same as in the proof of Proposition 1 with µρ(θ1)

replaced with µe(θ1). Suppose µe
H > µe

L.

Following steps as before, we obtain that at an interior solution:

xρ(H) = 1 +
µe(H)− µρ(H)

η
and xρ(L) = 1− (1− q1)µ

e(H) + q1µρ(L)− µe(L)

q1η
.

Notice that xρ(H) is decreasing in ρ and xρ(L) is increasing in ρ. Then there are two ”corner”

solutions: one in which xρ(L) = 0 and xρ(H) = 1 +
µe(H)−µρ(H)

η , and another one in which

xρ(L) = xρ(H) = 1 + µe(L) − q1µρ(L)+(1−q1)µρ(H)
η . This happens when the two allocation

listed above violate xρ(L) = 0 and xρ(H) ⩾ xρ(L), respectively.

This proves part 2 that coverages can be pooling and separating and part 3 that coverages

are generically not equal to 1. Moreover, comparing the allocations with Proposition 1 it is

easy to see that coverages are the same as the benchmark at the expected correlation E(ρ)
and flipped around it otherwise (part 4). So, we are now only left to show part 1, that is,

E(π(ρ)) > E(πrs(ρ)).

We show that the profit generated by contract above is concave in ρ. Since at correlation

E(ρ) we have π(E(ρ)) = πRS(E(ρ)), Jensen’s inequality implies that E(π(ρ)) > πRS(E(ρ)).
In an interior contract, we have that

∂2π

∂ρ2
=

q1
η

(
∂µL

∂ρ

)2

+
1− q1

η

(
∂µH

∂ρ

)2

> 0,

for the corner solution in which xL(ρ) = 0 we have that ∂2π
∂ρ2

= 0 and for the corner solution

in which x(L, ρ) = x(H, ρ) we have

∂2π

∂ρ2
=

1

η

(
q1
∂µL

∂ρ
+ (1− q1)

∂µH

∂ρ

)2

> 0.

Therefore, the profit function is concave and we obtain the inequality as desired.

An analogous argument shows the proposition for the case µe
H < µe

L.

9.2 Interim profit function

To prove the next set of results, we will introduce the concept of interim profit for the

insurer, and state and prove a lemma characterizing it. Define the function π̂(ρ, c) to be the

maximum profit that an insurer can obtain in the subgame in which both parties believe

that the correlation is ρ, and the slope of the profit function as defined by Equation (4) is

equal to c, that is c(ρ) = c.
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The analysis here is stated for the case when ρ is common knowledge in the subgame,

that is, r is the identity mapping, r(ρ) = ρ ∀ ρ. Since profits (π) and utility (u) are both

linear in ρ, we will later replace ρ with the expectation of the partition in which it lies and

all results stated here would carry through.

We reproduce Equation (4) here for completeness:

∂π(ρ; ρ̂)

∂ρ

∣∣∣∣
ρ̂=ρ

= σxr(ρ)(L) · (µLH − µLL)− σxr(ρ)(H) · (µHH − µHL) ≡ c(ρ).

The following lemma establishes that the interim profit function, π̂(ρ, c) is (i) single peaked

with respect to ρ, with a peak at ρ∗, (ii) it is convex with respect to ρ both to the right and

the left of ρ∗; and (iii) it is strictly concave with respect to c. The next result states some

other key properties of the interim profit function.

Lemma 2. Let ρ∗ solve µρ(H) = µρ(L) and fix ρ ≥ ρ∗. Then:

1. ∃ ρ1 and ρ2 with ρ̄ ≥ ρ2 ≥ ρ1 ≥ ρ∗ such that

(a) for ρ ∈ [ρ∗, ρ1], π̂(·, c) is linear and strictly decreasing in ρ;

(b) for ρ ∈ [ρ1, ρ2], π̂(·, c) is strictly convex and strictly decreasing in ρ;

(c) for ρ > ρ2, π̂(·, c) is constant in ρ.

2. The function π̂(ρ, ·) is strictly concave in c.

Analogous characterization holds for ρ < ρ∗.

Proof. We prove the result in xx steps.

Step 1. Fix ρ ≥ ρ∗, so that µρ(H) ⩾ µρ(L). To simplify notation, let µL = µρ(L),

µH = µρ(H), xL = xρ(L), xH = xρ(H), pL = pρ(L) and pH = pρ(H). As in the main text,

let kL = σ(µLH − µLL) and kH = σ(µHH − µHL). We prove part 1 first.

Step 2. In an interior solution we obtain that:

xL = 1− 1−q1
ηq1

(µH − µL) +
β
ηq1

kL

xH = 1− β
η(1−q1)

kH

where β = ηq1(1−q1)(c−kL+kH)+(1−q1)2(µH−µL)kL
(1−q1)k2L+q1k2H

is the Lagrange multiplier for the convexity

constraint. Further, substituting for xL and xH , the optimal profit is

π̂ =
η

2
− (1− q1)(µH − µL) +

(1− q1)
2

2ηq1
(µH − µL)

2 −
(1− q1)k

2
L + q1k

2
H

2ηq1(1− q1)
β2.

Since β depends on ρ only through µH − µL, π is quadratic in ρ. Its first derivative with

respect to ρ is

(1− q)

(
∂(µH − µL)

∂ρ

)(
−1 +

1− q1
ηq1

(µH − µL)−
βkL
ηq1

)
< 0,
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since the partial derivative is positive and the last term has to be negative to guarantee that

xL is positive. Its second derivative with respect to ρ is given by

(1− q1)
2k2H

η((1− q1)k2L + q1k2H)

(
∂(µH − µL)

∂ρ

)2

> 0.

Therefore, π(ρ, c) is strictly decreasing and strictly convex with respect to ρ when the solution

is interior. Next we will construct the bounds for interiority: ρ1 and ρ2.

Step 3. A corner solution in which the insurer sells only to θ1 = H insuree occurs when xL

is negative, that is, when
η(q1k2H+(1−q1)(c+kH)kL)

(1−q1)k2H
< µH −µL. Since µH −µL is increasing in ρ

this condition may hold only for large correlations. Let ρ2 to be equal to the correlation that

makes this condition to hold with equality if it is smaller than ρ̄ and equal to ρ̄, otherwise.

In such a corner it has to be that xH = max{−c
kH

, 0}. Using the constraint IRH we obtain

that (1 − q1)(pH − µHxH) = (1 − q1)max{−ηc
2kH

(
2 + c

kH

)
, 0}, so that the profit function is

constant in ρ.

Step 4. Finally, to satisfy both IC constraints of the isnuree it has to be that xH ⩾ xL,

but this might not be the case in the interior solution we characterized above. In particular

for ρ < ρ2 the constraint xH ⩾ xL is not satisfied if µH − µL < η(c−kL+kH)((1−q1)kL+q1kH)
−(1−q1)kH(−kH+kL)

if − kH + kL > 0

µH − µL > η(c−kL+kH)((1−q1)kL+q1kH)
−(1−q1)kH(−kH+kL)

if − kH + kL < 0.

Notice that in the first case the inequality is never true if c − kL + kH < 0 and in the

second case it is never true if c− kL + kH > 0. In the domain in which the inequalities can

be true, the correlation that makes the first inequality to hold with equality is smaller than

ρ2, and the correlation that makes the second inequality to hold with equality is larger than

ρ2. Then we define ρ1 in the first case as the maximum of the correlation that makes the

inequality to hold with equality and ρ∗, and in the second case we just define it as ρ∗.

For correlations in [ρ∗, ρ1] the insurer offers a unique package xH = xL = c
−kH+kL

> 0 at

the price that makes the constraint IRL to hold with equality. This generates profits equal

to

π̂ =
η

2
− η

2

(
1− c

kL − kH

)2

− (1− q1)(µH − µL)
c

kL − kH
.

Since the profits depend on ρ only trough µH −µL and this dependence is linear we conclude

that the profits are linear with a slope s1 = − ((1−q1)kL+q1kH)c
q1(kL−kH) < 0.

The second inequality is true only for correlations for which the constraint xL ⩾ 0 binds

as well, that is, in the solution to the problem without these constraints both xL and xH are

negative. Therefore, since the H type is willing to pay more for insurance, the insurer sells

only to him and we are back to the case in step 3.
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Step 5. To prove 2, we only need to take the second derivative of the profit functions

with respect to c for all possible cases. In the corner solution with xL = 0 and xH > 0 we

have
∂2π̂

∂c2
=

−(1− q1)η

k2H
< 0,

in the corner solution with xL = xH > 0 we have

∂2π̂

∂c2
=

−η

(kL − kH)2
< 0,

and in the interior solution with xH > xL > 0 we have that

∂2π̂

∂c2
=

−ηq1(1− q1)

(1− q1)k2L + q1k2H
< 0.

Therefore, the function π̂(ρ, ·) is strictly concave with respect to c.

As a final thought, the interim profit function is useful not only for the case in which both

players hold the same ex-post belief. It can be used as well to characterize the expected or ex-

ante profits of the insurer by replacing the first argument of π̂ with the expected correlation

of the various partitions the insurer intends to communicate to the insuree. Therefore, we

will use this function in multiple cases by replacing the observe correlation by the expected

correlation that is generated by a message function in more complicated selling mechanisms,

i.e. where r is not the identity mapping.

9.3 Proof of finiteness: Proposition 4

Proof. We do the proof in five steps. First we argue that the optimal mechanism has at

most countable partitions and then use the next four steps to gradually build towards the

finiteness of the number of partitions.

Step 1. From Lemma 1 we know that incentive compatibility of the insuree is equivalent

to the envelope and a convexity condition. Start by considering the relaxed version of the

optimization problem without the convexity constraint, i.e, without the condition that c(ρ)

is non-decreasing. Let cRS(ρ) the implied profits’ slope obtained from the solution of the

Rothschild-Stiglitz problem. From Proposition 1 it is clear that whenever there is an interior

solution the resulting cRS(ρ) is strictly decreasing. Furthermore, this is true even if the

non-decreasing condition is not imposed for some arbitrary interval.

Now, go back to the original problem which imposes the convexity condition. The analysis

of the relaxed problem implies that the non-decreasing (or convexity) condition binds almost

everywhere. So in the solution to the original problem, c(ρ) must be a step function, which

implies that π(ρ, ρ′) is piecewise linear. Therefore, the profit function’s slope can take at

most a countable number of different values. We will now show that the profit function’s
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slope actually can take only a finite number of different values.

Step 2. Suppose by contradiction that the profit function’s slope takes an infinite number

of different values. Fix ϵ1 > 0. As the slope take an infinite number of different values, there

exists two different messages m1 and m2 with the following properties:

1. the preimages r−1(m1) and r−1(m2) are contiguous,

2. the contracts cm1 and cm2 generate different profits slopes c1 < c2 such that there are

not other posted contracts that generate the same slopes, and

3. the insuree’s expected correlations after observing those messages, ρ1 = E[ρ | r(ρ) =
m1] < ρ2 = E[ρ | r(ρ) = m2], are such that ρ2 − ρ1 < ϵ.

Without loss assume that ρ1 > ρ∗. By Proposition 1 we have that cRS(ρ1) > cRS(ρ2).

Further, Lemma 2 shows that the functions π̂(ρ1, ·) and π̂(ρ2, ·) are concave in c. Therefore,

cRS(ρ1) and cRS(ρ2) correspond to the unique maximizers of these functions, respectively,

because Rothschild-Stiglitz problem does not impose constraints on c. Therefore, for any

c < cRS(ρ), π̂(ρ, ·) is increasing, and for any c > cRS(ρ), π̂(ρ, ·) is decreasing.

Step 3. Before delving into impossibility to infinite slopes, we show as an intermediate

step that it cannot be that c1 < cRS(ρ1) and c2 > cRS(ρ2). If they were, c1 would be in the

increasing part of π̂(ρ1, ·) and c2 would be in the decreasing part of π̂(ρ2, ·). Then by slightly

increasing c1 and slightly decreasing c2 the firm relaxes the feasibility constraints and is able

to increase its profits (see Figure 9). Therefore, the original c1 and c2 cannot be optimal, a

contradiction. Thus, we conclude that c1 ≥ cRS(ρ1) or c2 ≤ cRS(ρ2).

Figure 9: Improvement arguments for Step 3 of the proof.

Step 4. Suppose first that c1 ≥ cRS(ρ1). We show by contradiction that in this case

whenever the slope takes an infinite number of different values, the resulting profit function

cannot be continuous, contradicting the convexity constraint.

As c2 > c1 and cRS(ρ1) > cRS(ρ2), the previous discussion implies that both c1 and c2

are located in the decreasing part of π̂(ρ2, ·). Therefore, π̂(ρ2, c1)− π̂(ρ2, c2) = δ > 0.

Let π(.) denote the optimal profit function. By feasibility it must be that π(ρ1) <

π̂(ρ1, c1) and π(ρ2) < π̂(ρ2, c2). We argue that it has to be that π(ρ1) = π̂(ρ1, c1) by showing
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perturbations that increase the seller’s profits. We pick perturbations that do not change

the function π outside the two partitions we are considering. There are two cases.

If both π(ρ1) < π̂(ρ1, c1) and π(ρ2) < π̂(ρ2, c2) then the insurer/seller can slightly increase

c1 and move ρ2 to the right. Figure 10a shows that this allows the seller to increase profits

and it is feasible because both inequalities are strict and all functions are continuous.

Instead, if π(ρ1) < π̂(ρ1, c1) and π(ρ2) = π̂(ρ2, c2) then the seller can slightly decrease c2

and move ρ1 to the left. As the initial c2 is in the decreasing part of π̂(ρ2, ·) this relaxes the
constraint at the second partition and makes the perturbation feasible. Figure 10b depicts

why this change benefits the firm.

(a) Increase c1 and move ρ2 to the right. (b) Decrease c2 and move ρ1 to the right.

Figure 10: Improvement arguments for Step 4 of the proof.

Let ρ̇ be the threshold correlation between the two partitions. Fixed δ > 0. By continuity

of π̂(ρ, c) with respect to ρ there exists ϵ2 such that if | ρ1 − ρ2 |< ϵ2 then | π̂(ρ1, c1) −
π̂(ρ2, c1) |< δ

4 . Take ϵ2 small enough such that if c1 < 0 then ϵ2 < −δ
4c1

and if c1 > 0 then

ϵ2 <
δ

4c1
.

Let ϵ = min{ϵ1, ϵ2}. Putting all our calculations together we obtain that

π(ρ1) + c1(ρ̇− ρ1) = π̂(ρ1, c1) + c1(ρ̇− ρ1)

> (π̂(ρ2, c1)− δ
4)−

δ
4

= π̂(ρ2, c2) + δ − δ
2

> π̂(ρ2, c2) +
δ
4 + c2(ρ2 − ρ̇)

> π̂(ρ2, c2) + c2(ρ2 − ρ̇)

≥ π(ρ2) + c2(ρ2 − ρ̇),

but this implies that the pasting conditions is not satisfied. This is a contradiction because

the insurer’s optimal profit function π is convex and therefore it is continuous. Therefore,

there cannot exist such elements of the partition.

An analogous argument leads to a contradiction in the case in which c2 ≤ cRS(ρ2).

Step 5. Finally, we argue that in the optimal contract there can be at most two elements

of the partition that generate the same profit’s slope c. Lemma 2 implies that π̂(·, c) is

convex. Therefore, a contract with three different messages that generate the same slope
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is trivially dominated by a contract with only two different messages that lead to the same

slope.

So, the partition in the optimal contract can contain only a finite number of elements.

9.4 Proofs for Section 6

Proof of Proposition 5. We prove part 1 first. Notice that E(ρ) > ρ∗. From Proposition 1

we obtain that as η → ∞, xRS
H = 1 and xRS

L → 1 if ρ > ρ∗, and xRS
L = 1 and xRS

H → 1

otherwise. That is, the contract that is offered in Rothschild-Stiglitz becomes independent

of the correlation. Therefore, the seller can approximate the optimal profits at each point

by offering only one contract that consists of the Rothschild-Stiglitz menu at the ex-ante

expected correlation. In the limit, when the seller offers full insurance to both types, can

obtain profits equal to η
2 .

If instead the seller decides to offer more than one contract, he has to face a non-vanishing

cost that is imposed by the convexity constraint. Actually, from the proof of Lemma 2 can

be observed that π̂(ρ, c) is always smaller and away from η
2 as long as c ̸= kL − kH , the

contract’s slope that is generated by the full insurance contract. Therefore, in the limit the

seller cannot improve upon having one contract.

Now to the second part. At the expected correlation the seller can always attain a profit

at least equal to (1 − q1)
η
2 by offering only full insurance to the H type at the monopolist

price, and this is exactly the optimal profit when η ≤ 1−q1
q1

(µH(E(ρ))−µL(E(ρ))). Therefore,

(1− q1)
η
2 is a lower bound of the seller profits when offering a one-partition contract and it

coincides with its profit for η small.

The profits that the seller can obtain at ρ∗ are equal to π(ρ∗) = η
2 . This value is an

upper bound of the profits that the seller can obtain: for any belief the buyer has, the seller

can never obtain this profit unless the buyer’s belief is exactly ρ∗.

Let ϵ = q1
η
2 , an upper bound of the difference between the profits in the optimal contract

and the one-partition contract. As η converges to 0, ϵ converges to 0.

Proof of Proposition 6. Let the prior be given by P(ρ = ρ1) = f and P(ρ = ρ2) = 1 − f ,

where ρ1 < ρ2. Also, denote by ρ̄ the expected ex-ante value of ρ, that is, ρ̄ = fρ1+(1−f)ρ2.

And, recollect ρ∗ solves the equation µρ(H) = µρ(L).

We first show that for ρ1 < ρ∗ < ρ2, the insurer offers a pooling contract along ρ. In this

case, Lemma 2 implies that for any c, π̂(ρ̄, c) > pπ̂(ρ1, c) + (1− p)π̂(ρ2, c). Suppose the firm

chooses to offer different contracts for correlations ρ1 and ρ2 with profit slopes c1 and c2,

respectively. To satisfy the IC constraints it has to be that c2 ≥ c1. Then, Lemma 2 implies

that either π̂(ρ1, c1) < π̂(ρ1, c2) or π̂(ρ2, c2) < π̂(ρ2, c1) (since the optimal c for ρ2 is smaller

than the one that is optimal for ρ1). Both pieces imply that in the first case the firm would

be better off by offering the same contracts for both correlations with an implied slope c2,

and in the second case with implied slope c1.
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Now, suppose ρ1 < ρ2 ⩽ ρ∗ or ρ∗ ⩽ ρ1 < ρ2. We offer parametric examples to show that

both pooling or separation is possible at the optimum. Assume f = 1
2 and kL = kH = k

(say).

We first compute the profits that the insurer can get by pooling along ρ. When pooling,

the insurer can do no better than offering the Rothschild-Stiglitz contract at the expected

correlation ρ̄. Therefore, the insurer’s profit in this case is given by

π1 =
η

2
− γ + ρ̄K

2
+

γ2 + 2γρ̄K + ρ̄2K2

4η
.

On the other hand, if the insurer wants to offer different contracts for different correla-

tions, then it has to solve the problem

max
c

1

2
π̂(ρ1, c) +

1

2
π̂(ρ2, c)

such that π̂(ρ1, c) + c(ρ2 − ρ1) = π̂(ρ2, c).

The equality constraint follows from the two IC constrains that need to be satisfied: The

insurer wants to offer contracts with a unique slope because it wants to offer a large slope

for correlation ρ1 and a small one for ρ2, but the IC constraint requires that the second one

is at least as large as the first one, hence the equality.

The only value of c that satisfies the constraint is c = k(−2η+γ+ρ̄)
3η . With a slope c the

firm will obtain the following ex-ante profits:

π2 =
η

2
− γ + ρ̄k

2
+

γ2 + 2γρ̄k

8η
+

ρ21k
2 + ρ22k

2

16η
− ηc2

8k2
+

c(γ + ρ̄k)

4k

Therefore, with the optimal slope it is better for the insurer to offer the pooling contract

for both correlations rather than separating one iff

γ2 + 2γρ̄k + ρ1ρ2k
2

2
> −(−2η + γ + ρ̄)2

18
+

(−2η + γ + ρ̄)(γ + ρ̄k)

3

⇔4γ2 + 6γρ̄k + 9ρ1ρ2k
2 + 4η2 + ρ̄2 + 8ηγ + 12ηρ̄k > 4ηρ̄+ 4γρ̄+ 6ρ̄2k.

When ρ1 < 0, ρ̄ > 0, η and γ are small and k is large the condition is violated and the

insurer will offer a separating contract. For the same correlations, when η and γ are large

and k is small, the condition is satisfied and the firm would prefer to offer pool across the

two correlations.

For example, when γ = 0.05, η = 0.01, k = 2, ρ1 = −0.1 and ρ2 = 0.3, the insurer prefers

to offer a separating contract for the two correlations, but when γ = 0.1, η = 0.05, k = 0.1,

the insurer prefers to offer the same contract for both correlations.

Proof of Proposition 7. When the seller sends only one message, the buyer’s belief is equal

to the prior. Since the profits are linear on the correlation and the same contract is offered
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for all correlations, the expected value of the profits is equal to the profits generated by the

contract when the correlation is equal to the expected correlation.

Therefore, the optimal contract coincides with benchmark at the correlation E(ρ). Then
we have:

E[π(ρ)] = πRS
e and xr(ρ)(H) = xRS

e (H), xr(ρ)(L) = xRS
e (L) ∀ ρ.

Proof of Proposition 8. We first argue that the profit function slope has to be constant.

Suppose by contradiction that optimally the seller offers two contracts that generate slopes

c1 < c2. To satisfy convexity of the profit function it has to be that the first contract is

targeted to small correlations and the second one to large correlations. Fix the optimal

message function r which sends message m when the realized correlation is in [ρ, ρ̃] and

message m̄ when the realized correlation is in (ρ̃, ρ].

In terms of the interim profit function π̂(ρ, c) defined in Section 9.2, the insurer solves

the following problem:

max
c1,c2,ρ̃,π1,π2

Pr(ρ < ρ̃)π1 + Pr(ρ > ρ̃)π2

s.t. π̂(ρi, ci) ≥ πi ∀i ∈ {1, 2} feasibility i

π1 + c1(ρ̃− ρ1) = π2 + c2(ρ̃− ρ2) continuity

where ρi is the expected correlation after observing the respective message; the first con-

straints are feasibility constraints, i.e., they guarantee that the insurer does not accrue more

profits than those that the insurer can obtain in the subgame when the buyer beliefs corre-

spond to the partition’s expected value.

First, notice that the feasibility constraint has to bind. If not we can decrease c1 (increase

c2) which relaxes the continuity constraint, and allows to increase π1 (π2).

Denote by c(ρi) the unique value the maximizes π̂(ρi, c), which exists by Lemma 2 and

coincides with Rothschild-Stiglitz implied profits’slope by Proposition 1. Proposition 1 im-

plies that c(ρ1) > c(ρ2). Then since c2 > c1 there are three cases: c(ρ2) ≤ c2 and c(ρ1) ≥ c1,

c1 < c2 < c(ρ2) < c(ρ1), and c(ρ2) < c(ρ1) < c1 < c2.

In the first case, when increasing c1 and decreasing c2 simultaneously, Lemma 2 implies

that the LHS of the feasibility constraints increases (at least one of them and the other one

stays constant). Then it is possible to increase π1 and/or π2, contradicting that the initial

contract is optimal.

In the second case, increasing c2 reduces the RHS of the continuity constraint and in-

creases the LHS of the feasibility constraint 2. Then it is possible to increase π2, contradicting

that the initial contract is optimal. A similar argument shows that in the third case the initial

contract cannot be optimal.
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Then, it has to be that c1 = c2 = c, that is, the slope of the profit function is constant.

Further, we have shown that c(ρ1) ≥ c ≥ c(ρ2).

The characterization of equilibrium in the proof of Lemma 2 shows that when contracts

are separating, xL is increasing in c and xH is decreasing in c. Since Rothschild-Stiglitz

contracts use constants c(ρ1) and c(ρ2), we have that when contracts are separating x1(H) ≥
xRS
ρ1 (H), x1(L) ≤ xRS

ρ1 (L), x2(H) ≤ xRS
ρ1 (H), and x2(L) ≥ xRS

ρ1 (L).

9.5 Proofs for Section 7

Proof of Proposition 9. First note that the insuree can choose from which seller to buy.

However, independently of which seller he buys from, he has the same belief and this belief

corresponds to the one that is implied by the message sent by the informed insurer and

insuree’s updating rule (which depends on her sophistication).

Therefore, the insuree will buy from the informed seller only if he can obtain a (weakly)

higher utility from buying an insurance contract from this insurer than buying the benchmark

contract at the expected correlation, ce .

Fix µe
H = µρ̄(H) and µe

L = µρ̄(L) be the expected probabilities at the expected correlation

ρ̄ = E[ρ]. Let µ̃H and µ̃L be the expected beliefs of types θ1 = L and H after observing

the message send by the informed insurer, respectively, and µL and µH the actual loss

probabilities which are only known to the informed insurer.

To simplify notation, since the optimization is pointwise, we will write xeH for xRS
e (H)

and xH for xr(ρ)(H), etc. The informed insurer solves the following problem:

max q1(pL − µLxL) + (1− q1)(pH − µHxH)

s.t. µ̃HxH − η

2
(1− xH)2 − pH ≥ µ̃HxL − η

2
(1− xL)

2 − pL

µ̃LxL − η

2
(1− xL)

2 − pL ≥ µ̃LxH − η

2
(1− xH)2 − pH

µ̃HxH − η

2
(1− xH)2 − pH ≥ max{µ̃Hxe

H − η

2
(1− xe

H)2 − p̄H , µ̃Hxe
L − η

2
(1− xe

L)
2 − p̄L,−

η

2
}

µ̃LxL − η

2
(1− xL)

2 − pL ≥ max{µ̃Lx
e
H − η

2
(1− xe

H)2 − p̄H , µ̃Lx
e
L − η

2
(1− xe

L)
2 − p̄L,−

η

2
}

Suppose that µ̃H > µ̃L. Then θ1 = H is the high risk type and as is standard the ICH

constraint binds and ICL is slack, which implies that xH is offered the efficient contract since

xH does appear on the RHS on any binding constraint. Analogously, when µ̃H < µ̃L, then

θ1 = L is the low risk type and it gets the efficient contract.

So, when the insuree is gutgläubig, as before r(ρ) = ρ or r(ρ) = ρ, the seller always sells

to both types due to the binding IR constraints at the expected correlation and rest of the

analysis carried through as is from Proposition xx.

Now, suppose that the insuree can do Bayesian inference. If the informed insurer only

offers one partition in the original model without competition then it is obvious that she

continues to to do the same here and the optimal contract coincides with Rothschild-Stiglitz
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contract at the expected correlation.

Next, suppose the optimal contract without competition features more than two parti-

tions. The new RHS of the IC constraints impose extra restrictions in the problem : for

ρ > ρe xeH generates to type H a surplus larger than −η
2 and for ρ < ρe, xeL to type L a

surplus larger than −η
2 . Therefore, the maximum profits that can be reached have decreased

for any possible partition that the firm can offer.

Finally, if the insurer offers two partitions in the model without competition, then it is

obvious that in the model with competition ether one or two partitions will be offered which

completes the proof.

Proof of Proposition 10. Let [c, c̄] be the smallest interval that contains all the slopes of the

profit function in the optimal contract. Let cRS(ρ) and cRS(ρ̄) be the maximizers of the

function π̂(ρ, c) for correlations ρ and ρ̄, respectively. Proposition 1 implies that cRS(ρ̄) <

cRS(ρ).

We argue that cRS(ρ) ≥ c or cRS(ρ̄) ≤ c̄. Suppose none of the two is true in the optimal

contract. Then cRS(ρ̄) < cRS(ρ) < c or c̄ < cRS(ρ̄) < cRS(ρ). Suppose the first case is true.

Then, by decreasing the slope of the profit function uniformly, Lemma 2 implies that the

profits that are feasible for each correlation increase uniformly. Therefore, since increasing

the optimal profit function by a constant, does not affect the seller’s IC constraints, the

original contract was not optimal. The argument for the second case is analogous.

Since convexity requires that the profits’ slope c(ρ) is weakly increasing and cRS(ρ)

is decreasing by Proposition 1, they can coincide at most a one correlation, call it ρ̃.19

Therefore, only at ρ̃ is possible that the optimal profits are equal to Rothschild-Stiglitz’

profits.

By definition of ρ̃ we have that for ρ < ρ̃, c(ρ) < cRS(ρ) and for ρ > ρ̃, c(ρ) > cRS(ρ).

The characterization of equilibrium in the proof of Lemma 2 shows that when contracts

are separating, xL is incresaing in c and xH is decreasing in c. Then when contracts are

separating xH(ρ) ≥ xRS
H (ρ), and xL(ρ) ≤ xRS

L (ρ) for ρ < ρ̃, and xH(ρ) ≤ xRS
H (ρ), and

xL(ρ) ≥ xRS
L (ρ) for ρ > ρ̃, with a strict inequality in each case.

Lastly, we state and prove a result which is described in words in Section 7.

Proposition 11. 1. For any ρ ∈ [ρ, ρ̄] \ I, discrimination along θ1 in the full revelation

model is less than in the benchmark when ρ is common knowledge: ∥xρ(H)−xρ(L)∥ <

∥xRS
ρ (H)− xRS

ρ (L)∥.

2. If Γ < 0, then

(a) total coverage is higher for the full information revelation model when ρ > ρ̃:

xH(ρ) + xL(ρ) < xRS
H (ρ) + xRS

L (ρ), and

19If they do not cross it means that there is a discontinuity at some correlation in c(ρ). In this case call ρ̃
the correlation at which the discontinuity occurs.
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Figure 1: Configuration of contracts for the case ρ̃ < ρ∗.
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Figure 11: Configuration of contracts for the case ρ̃ < ρ∗.
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Figure 12: Configuration of contracts for the case ρ̃ > ρ∗

.

(b) total coverage is higher for the benchmark model when ρ < ρ̃: xH(ρ) + xL(ρ) <

xRS
H (ρ) + xRS

L (ρ).

And, the opposite is true if Γ > 0.

Proof of Proposition 11. From Lemma 2 we have that the multiplier on the convexity con-

straint, β(ρ), is positive for each correlation ρ < ρ̃ and negative for each correlation ρ > ρ̃.

There are two main cases: ρ̃ < ρ∗ and ρ̃ > ρ∗. Suppose first that ρ̃ < ρ∗. The configu-

ration of contracts according to the value of the correlation is depicted in Figure 11. In the

figure the optimal full information revelation contracts are shown on the bottom line and the

Rothschild-Stiglitz contracts in the top one. To simplify the expressions, we do not specify

how they depend on ρ.

Let us show the first property on the extent of discrimination. Suppose the solution is

interior for both sets of assumptions. In that case, it is easy to check by using the sign of β

that for ρ < ρ∗ xL < xRS
L and xH > xRS

H and for ρ > ρ∗ xL > xRS
L and xH < xRS

H . Next,

suppose the correlations in such that we have a corner solution, the same properties are

concluded from continuity since the multipliers are larger in absolute value as ρ is farther

away from ρ̃, and µH − µL is increasing in ρ.

Now we prove the second property on total coverage. Suppose the solution is interior. We

calculate the difference between xH+xL and xRS
H +xRS

L which equals β
(

kL
ηq1

− kH
η(1−q1)

)
. Then

the second property follows for these cases follows from the sign of β and rearranging terms.
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For correlations in which there is no interior solution, the result follows from continuity and

that the multipliers are larger as the absolute value of ρ is farther away from ρ̃.

If ρ̃ > ρ∗ the configuration of contracts slightly changes, and it is depicted in Figure 12.

The same argument as before implies that both properties are satisfied.
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