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Abstract

A dominant BigTech trading platform can set up a ledger that al-
lows agents to issue unsecured tradable IOUs (“digital tokens”). Unlike
a stand-alone ledger, the platform can incentivize the use of the ledger
and enforce repayment so long as it can compromise the universal liq-
uidity of public money. This lowers the equilibrium interest rate, but
also increases rent extraction by the platform. A CBDC provides com-
petition but can undermine ledger credit enforcement by reintroducing
a universal public money alternative. A higher inflation rate weakens
the public money alternative, enabling platform-operated ledger credit
enforcement.
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1 Introduction

Historically, payment and credit services have been provided differently from
the current bank-centric arrangement. For example, in early modern London
a credit system emerged that involved tradable, uncollateralized “I Owe You”
promises (IOUs). Merchants bought grain from farmers in exchange for IOUs,
sold the grain in London and subsequently repaid the IOU holders. This meant
that the merchants became active participants in both the grain and secondary
IOU markets. That is, a “bills-of-exchange” system emerged. However, scaling
this system proved challenging because of limitations on record keeping and
IOU enforcement. Many proposals were put forward to address these chal-
lenges (e.g. Smith (1776)) but ultimately a collateral-dependent bank lending
system emerged. Recent advancements in ledger and trading platform tech-
nologies have led to renewed interest outside of the banking sector in scaling
up an uncollateralized credit system. BigTech platforms have taken steps to
overcome the record keeping and enforcement challenges. In China, Alibaba’s
MyBank offers members of their ecosystem uncollateralized loans, while supply
chains platforms organize tradable account receivables (e.g. Liu et al. (2022)).
In India, FinTech startups have attempted to offer similar services without
the “backing” of large trading platforms and with less success (e.g. Rishabh
and Schäublin (2021)).

This paper investigates when and how a large private BigTech trading plat-
form will provide a settlement ledger where suppliers issue and repay uncollat-
eralized IOUs with each other. To study this, we build a general equilibrium
model where producers need to issue uncollateralized IOU contracts to pur-
chase input goods but cannot commit to repayment. The economy has two
technologies for making payments. The first option is unmonitored “spot”
exchange that requires a payment asset (e.g. cash) to be held in advance.
The second option is that a profit maximizing intermediary can provide a cen-
tralized ledger for settling payments without cash and executing contracts.
Our ledger technology can be thought of as analogous to Kocherlakota (1998).
However, unlike in Kocherlakota (1998) where a benevolent planner organizes
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a monopolistic ledger, we study how different private profit-motivated opera-
tors could (or could not) offer a centralized ledger that competes with standard
cash payments. We start with a two-period real model in Section 2 where the
endowment good acts as “commodity money” in spot trades and then extend
to an infinite-horizon macroeconomic model with fiat money in Section 3.

In the real model, we first consider a standalone operator that provides a
centralized ledger to the economy. Producers issue IOUs to purchase input
goods that are recorded on the ledger. Contracts are automatically enforced
when payments are received through the ledger because the ledger automat-
ically redirects payments to settle IOUs. Conceptually, this is similar to a
worker who takes a loan from their employer and accepts a portion of his
wages being deducted to repay the loan. The issue in our economy is that
agents do not have to make payments through the ledger because there is also
an outside option to conduct spot trade with “universally liquid” commodity
money. When agents receive a spot payment, the producer may default on
their IOUs and so producers can charge higher prices to buyers who can pay
with commodity money. As a result, in equilibrium, all savers prefer to store
commodity money and all producers plan to default on IOUs. In anticipation
of this, no IOUs are accepted and funding dries up: the universal liquidity of
commodity money prevents the issuance of uncollateralized IOUs.

We next consider a BigTech platform that operates both a trading platform
and a centralized ledger. The trading platform insists that on-platform trades
must be settled on the ledger. In doing so, it breaks the universal liquidity
of commodity money. Now, agents who saved with commodity money, rather
than with IOUs, may be stuck with an unusable payment instrument if they
need to trade through the platform. If a sufficiently large fraction of trades
occur on the platform, and the platform’s markup charges are sufficiently low,
then agents stop storing commodity money and it becomes impossible for
producers to conduct spot trades in which they can default. Consequently,
IOUs are perfectly enforced and defaults do not occur. The key insight is that
producers can only default in a ledger economy if buyers choose to store the
commodity money required for hidden trades. So, by changing incentives in
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the payment system, the platform can change the feasibility of default. The
difficulty for policy makers is that the platform only finds it attractive to set
up a ledger that incentivizes contract repayment if it controls a large fraction
of the goods trading. That is, we have a “natural” monopoly on contract
enforcement.

Our finding that the platform’s ability to break the universality liquidity
of money is essential for the emergence of an unsecured credit market has
important implications for the introduction of a central bank digital currency
(CBDC). CBDC can be thought of as a public government ledger. The design
of the CBDC ledger determines whether an unsecured private credit market
is viable. If the CBDC ledger is universal, in the sense that the platform is
forced to accept CBDC payments in addition to platform ledger payments,
and the CBDC ledger is set up to respect privacy (e.g. with zero-knowledge
proofs), then it essentially reintroduces the option to conduct hidden spot
trades and default. In this case, the unsecured private credit market is not
viable. By contrast, if a CBDC is set up without privacy to record and enforce
contracts, then it can implement the Kocherlakota (1998) environment. So the
government faces a tradeoff between introducing a payment technology that
respects privacy and one that ensures efficient contracting.

In Section 3, we extend our analysis to an infinite-horizon monetary model
to study the relationship between the payment and trading systems. Settle-
ment is made with two possible financial assets: “fiat” government money and
claims to assets on the ledger. The ledger asset system could be interpreted
as a “bills-of-exchange” model where tradable IOUs are used as the medium
of exchange on the platform or as a model of “tokenization” where claims to
future income become tradable tokens on the ledger. In our monetary model,
we derive conditions under which the ledger-operating platform can and will
ensure IOU repayment, generalizing our results from Section 2.

Our dynamic, monetary model yields two main additional insights. First,
we show that the platform markup has large general equilibrium effects in the
credit market. For a fixed interest rate, an increase in the markup leads to
fewer agents trading on the platform and consequently lower IOU issuance.
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To ensure the credit market clears, the interest rate must increase. This can
offset the markup disincentive to trade through the platform. Ultimately, this
allows the platform to increase markups without losing customers but the re-
sulting higher interest rate leads to a large output decline. Our optimizing
platform has to balance these general equilibrium trade-offs. Second, whether
the platform ledger credit and payment system is viable depends on the infla-
tion rate on public money. The platform has to offer a payment technology
that is more attractive than holding public money. So, a higher the inflation
rate makes public money less competitive and allows the platform to charge a
higher markup without losing additional customers. In this sense, a platform
ledger system is most likely to appear in economies where the government
inflating their currency.

We conclude our analysis by studying competition between two private
platforms, each providing its own trading and settlement technologies. We
show that competing private platforms that bundle ledger and trading tech-
nologies will cooperate on contract enforcement as long as the gap between
their respective trading technologies is not too large and financial frictions do
not prevent the less efficient platform from committing to pay the more effi-
cient platform. Otherwise, a dominant platform will emerge that will attract
more trades and extract higher rents.

Literature Review. Our paper is related to several branches of research.
First, it connects to the literature concerning the role of ledgers and settle-
ment assets in organizing trading systems. Aiyagari and Wallace (1991) and
Kocherlakota (1998) study how a planner can increase the contracting space
by updating a common ledger with trading histories. Freeman (1996b,a) stud-
ies how the choice of settlement asset creates or mitigates trading frictions
in the currency market. Our model shares many features with these papers.
However, we consider an environment where a private profit-maximizing agent
controls the ledger. This brings an industrial organization perspective to the
literature on ledgers and settlement assets.

Second, we relate to the literature studying how FinTech can expand un-
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collateralized debt limits. In our model, the BigTech ledger operator can in-
centivize the repayment of debt contracts by forcing agents to use their ledger.
In this sense, forcing the use of the ledger creates a form of “digital collateral”
that can be used in automated contracting (e.g. Garber et al. (2021), Kahn
and van Oordt (2022)). This would resolve the supply chain contracting issues
presented in Bigio (2023). In Brunnermeier and Payne (2023), we extend our
model to study strategic information portability decisions. Empirically, Liu
et al. (2022) documents BigTech uncollateralized lending successes in China.
Rishabh and Schäublin (2021) document for India that, without a coordinating
BigTech platform, borrowers’ non-cash revenue drops after fintech companies
disbursed “digitally collateralized” loans. Copestake et al. (2025) documents
the positive effects of interoperability from introducing India’s Unified Pay-
ment Interface.

Third, we relate to the growing field of digital currencies. Like in our
paper in Ozdenoren et al. (2025) the platform takes seigniorage income into
when setting markup charges, but they do not include credit market impli-
cations. We are most closely related to the papers that study private Tech
platforms providing centralized currencies, (e.g. Chiu and Wong (2020), Chiu
and Koeppel (2025), Cong et al. (2020), Ahnert et al. (2022)). More generally,
we touch upon the growing literature on central bank digital currency (e.g.
Fernández-Villaverde et al. (2020), Keister and Sanches (2019), Kahn et al.
(2019)) and decentralized, programmable cryptocurrencies (e.g., Fernández-
Villaverde and Sanches (2018), Benigno et al. (2019), Abadi and Brunnermeier
(2024), Schilling and Uhlig (2019), Cong et al. (2021)).

Fourth, we relate to the literature on currency competition (e.g., Hayek
(1976), Kareken and Wallace (1981), Brunnermeier and Sannikov (2019)).
Formally, our dynamic model in section 3 expands on the two currency cash-in-
advance model from Svensson (1985) and endogenizes currency demand using
search and trading frictions in the tradition of the new monetarist literature
(e.g. Lagos and Wright (2005), Lagos et al. (2017)).

We structure the paper in the following way. Section 2 solves the two-period
version of the model with a monopoly ledger controller and exogenous platform
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demand. Section 3 extends the analysis to an infinite-horizon macroeconomic
model in which agents endogenously choose whether to trade on or off the
platform. Section 4 concludes.

2 An Illustrative Model of Ledgers, Platforms,
and Contract Enforcement

In this section, we outline a two-period version of our model. We use this
model to highlight why a large trading platform is important for expanding
uncollateralized lending in the economy. To do this, we first show that in-
troducing an independent stand-alone common record keeping ledger is not
sufficient to achieve first best allocations. We then show that a large trading
platform can provide a ledger technology that leads to contract enforcement
and the first-best allocation. Finally, we consider when the introduction of a
public ledger alternative helps or undermines the provision of uncollateralized
lending.

To keep the focus on enforcement issues, we start with a real model where
goods are traded without fiat currency and where the ledger manages physical
trades as well as record keeping. We consider a monetary economy in Section
3. Contracting in our economy is difficult because debtors can potentially sell
output for commodity money off platform in private side-trades and default.
The platform can eliminate this behavior by setting payment rules that en-
courage payment through a centralized ledger, and so discourage agents from
storing the commodity money that facilitates private side trades. In doing
so, they can create an equilibrium in which agents coordinate on contract
enforcement through their choice of payment technology.

2.1 Environment and First Best Allocation

Setting, production, and preferences: Time lasts for two periods: t ∈ {0, 1}.
The economy contains a collection of storable “endowment goods” (which can
be interpreted as “commodity money”) and a collection of perishable “output
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goods”. The economy is populated by a unit continuum of savers and a unit
continuum of producers. Each saver is born with one unit of an endowment
good at t = 0. Each producer can transform one endowment good at t = 0
into z ∈ (1, 2) output goods at t = 1. Each saver can store one endowment
good at t = 0 to get one endowment good at t = 1. Savers get linear utility
from consuming goods at the start of t = 1 while producers get linear util-
ity from consuming goods at the end of t = 1. No agent gets utility from
consuming the goods that they are endowed with or have produced. Instead,
they only derive utility from goods endowed to or produced by other agents.
Ultimately, this means that agents need to trade endowment goods in order to
produce at t = 0 and output or endowment goods in order to consume at t = 1.

Information, commitment, and matching frictions: Agents have publicly ver-
ifiable identities and can therefore be identified at t = 1. However, agents’
actions are not publicly observable, agents cannot commit, and there is no
public legal system for contract enforcement.

A benevolent planner who cares equally about all agents, reallocates one
endowment good to each producer at t = 0 to maximize production and re-
allocates output goods across agents. We refer to this as the first-best allo-
cation. The goal of this section is to explore which private payment, record-
keeping, and trading technologies are able to implement the best allocation
despite information and commitment frictions in the economy.

2.2 Payment Technologies and a Common Ledger

In order to consider whether the private sector can implement the first-best
allocation, we need to specify the trading and payment arrangements in the
economy. In this section, we introduce a ledger technology that (i) collects and
records trades and contracts, and (ii) settles all trades and contracts at the
end of each period. In the next section we introduce a platform that controls
the trading system.
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Trading arrangements and payment technologies: At t = 0, a competitive
market opens for IOU contracts between savers and producers that promise R
goods in period t = 1 for each endowment good given in period t = 0.

At t = 1, producers start with output goods and savers start with either
stored endowment goods or IOUs. At the beginning of the period, a com-
petitive market opens for trading goods and IOUs but is subject to payment
frictions. There are two payment technologies in the economy for settling
goods trades at t = 1: spot payments and ledger payments. Spot payments
(indexed by s) are not recorded and are settled immediately. We impose that
spots trades can only be undertaken in exchanges that involve endowment
goods. We interpret this as saying that endowment goods are universally liq-
uid, whereas output goods are not. Ledger payments (indexed by l) are
recorded and can be made with any goods. At the time of the transaction,
agents give their output goods to the ledger. At the end of the period, agents
can return to the ledger, and the ledger settles all transactions and IOUs with
seniority given to earlier claims. This means that the ledger automatically uses
revenue from ledger trades to settle contracts but cannot settle contracts using
revenue from spot trades. Since all trades occur before IOU settlement, con-
tracts are only enforced when the output producer trades through the ledger.
We let φ denote the endogenous probability that an IOU is repaid. We use
output goods as the numeraire and let (p, q) denote the number of endowment
goods and IOUs required to purchase one output good (i.e. the prices at t = 1).

Producer’s problem: At t = 1, a producer chooses whether to trade their
output good for other output goods, IOUs, or endowment goods to solve:

V p
1 = max{z −R, φRqz −R, pz}, (2.1)

where the first, second, and third terms are the payoff when the producer
trades for output goods, IOUs, and endowment goods respectively. In the first
and second cases, the producer must pay through the ledger and so cannot
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default. By contrast, in the third case they can undertake spot trade and
default. At t = 0, producers issue IOUs if V p

1 ≥ 0.

Saver’s problem: At t = 1, a saver trades for output goods or other endowment
goods. If they hold an endowment good, then they solve:

V s,e
1 = max{1, φRq/p, 1/p}, (2.2)

where the first, second, and third terms are the payoff when they trade for
other endowment goods, IOUs, or output goods. If they hold an IOU, then
they solve:

V s,i
1 = max{p/q, φR, 1/q}, (2.3)

where the first, second, and third terms are the payoffs when they trade their
IOU for endowment goods, other IOUs, or output goods. At t = 0, the
saver’s problem is to decide whether to store endowment goods or exchange
endowment goods for IOUs. They make this choice by solving:

max{V s,e
1 , V s,i

1 }. (2.4)

Equilibrium: An equilibrium is a collection of prices (R, p, q) such that savers
and borrowers make optimal choices satisfying (2.1), (2.2), (2.3), and (2.4) and
markets clear at t = 0 and t = 1.

Proposition 1. The only equilibrium is that savers store endowment goods,
no IOUs are issued, and no production takes place.

Proof. See Appendix A.

The intuition for Proposition 1 is that savers prefer to store endowment
goods to facilitate side trades rather than save by holding IOUs. If all the other
savers are buying IOUs and so production takes place, then an individual
saver would prefer to store endowment goods to conduct side trades rather
than purchase IOUs. This is because producers offer a relatively high price for

10



endowment goods (a high 1/p) since they enable the producer to default. It
follows that IOU issuance is not an equilibrium. Conversely, if all other savers
are storing endowment goods and so there is no production, then an individual
saver would also prefer to store endowment goods rather than holding IOUs
because all future trades will be spot trades, and no IOUs will be repaid. It
follows that endowment good storage is an equilibrium.

Proposition 1 highlights that introducing a stand-alone record keeping
ledger does not resolve the contracting problems in the economy. This is
because agents have an alternative payment option: a universally “liquid” en-
dowment good that facilitates side default trades and offers a better saving
vehicle for agents. Put another way, relative to Kocherlakota (1998), the ledger
in our environment has competition from another payment technology and so
agents need to be incentivized to use the ledger.

2.3 Trading Platform

We now introduce a large trading platform into the economy. This means that
the economy has a large institution that can force trades onto the ledger and
break the universal liquidity of endowment goods.

Trading technologies: Suppose there are now two trading technologies for con-
necting agents in the economy, indexed by n ∈ {o, p}. Trading technology
n = o is not controlled by anyone and is referred to as the “open” public
marketplace. Trading technology n = p is controlled by a profit maximiz-
ing organization, which we refer to as the private platform. Agents are
randomly allocated to the technologies each period. With probability 1 − η

producers are allocated to posting on the public marketplace and with prob-
ability η they post on the private platform. We endogenize η in Section 3.
The platform charges a markup µ on the profit received by savers using their
trading technology. We impose that all profits from markups collected by the
platform at t are redistributed lump sum to the agents as dividends.

We assume that the platform provides both the trading technology and
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the common settlement ledger for the economy. We further assume that the
platform can control which payment technology is used for its trades, forces
agents using the platform to make payments using their ledger, and blocks
agents from using endowment goods for trades on the ledger. We also allow
the platform to guarantee IOUs.

Producer’s problem: At t = 1, if the producer goes to the public marketplace,
then their decision is the same as in Subsection (2.2). By contrast, if they go
to the platform, then they are only allowed to post trades using the ledger and
so they can only trade for output goods and IOUs. This means their value at
time t = 1 becomes:

V p
1 = ηmax{z −R, φRqz −R}+ (1− η) max{z −R, φRqz −R, pz}

At t = 0, producers once again issue IOUs if V p
1 ≥ 0.

Saver’s problem: At t = 1, if the saver is assigned to the public marketplace,
then their problem is the same as in (2.2). By contrast, if they go to the
platform, then they can only trade if they saved with IOUs. Thus, the value
of saving with endowment goods, V s,e

1 , and IOUs, V s,i
1 , become:

V s,e
1 = (1− η) max{1, φRq/p, 1/p}
V s,i

1 = η(1− µ) max{φR, 1/q}+ (1− η) max{p/q, φR, 1/q}

At t = 0, their optimization problem is once again max{V s,e
1 , V s,i

1 }, as in
equation (2.4).

Proposition 2. For a sufficiently large η, the platform operates the ledger,
offers to discount IOUs, and sets the maximum markup µ̄ that is incentive
compatible with contract enforcement:

µ ≤ 1−
(4
z
− 1

) 1− η
η

=: µ̄ (2.5)
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In this case, the first-best allocation is implemented. For a sufficiently low η,
the platform does not set up a ledger and there is no production in the economy.

Proof. See Appendix A.2.

The intuition for Proposition 2 is that the platform can incentivize agents
to use the ledger. If η = 1, then it is clear that the platform can ensure
contract enforcement because it can force all trades in the economy through
their ledger. The reason why they can ensure full contract enforcement when
η < 1 and they don’t control all trade is more subtle. The platform makes
two changes to the environment from Section 2.2: (i) they prevent savers
from using endowment goods when trading on their platform, and (ii) they
guarantee IOUs.

The first change, preventing endowment good payment, breaks the uni-
versal liquidity of endowment goods and creates an equilibrium with contract
enforcement. This occurs because savers are discouraged from saving with
endowment goods, which can be used for private side trades, and encouraged
to save with IOUs, which can only be traded through the ledger technology
and so are automatically used to settle contracts. So, blocking payment with
endowment goods on platform trades leads to all savers choosing the payment
technology that ensures contracts are enforced in all trades.

The second change, guaranteeing IOUs, eliminates the possibility of a sec-
ond equilibrium in which all savers store endowment goods. This occurs be-
cause guaranteeing IOUs ensures that having an IOU repaid offers a higher
return than storing IOUs when all other agents are storing endowment goods
and the relative price of endowment goods at t = 1 is low. It is important to
note that guaranteeing IOUs without blocking endowment good payment on
the platform is not sufficient to create an equilibrium with full contract en-
forcement. This is because when all savers save with IOUs, endowment goods
are relatively scarce at t = 1 and so have a relatively high price. This leads to
savers switching to endowment storage unless the platform makes endowment
good unattractive by blocking their use as payment on the platform.

Theorem 2 also shows that the dominance of the trading platform, as mea-
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sured by η, characterizes whether the economy has a problem with monopoly
“rent” extraction or a problem with credit “fragility”. The intuition for this is
the following. The platform derives profit from charging markups on trades.
However, it also incentivizes loan repayment by discouraging savers from stor-
ing the endowment goods required to facilitate default. This means that
increasing the markup to increase profits will also diminish the disincentive
to store endowment goods. Together, these forces mean that the maximum
markup the platform can charge while maintaining contract enforcement is
given by (2.5). When η is high, the platform can maintain a positive markup
while still disincentivizing default, and so is willing to set up the ledger. How-
ever, when η is low, the platform would have to offer a negative markup (i.e.
a subsidy) to make exclusion from trade sufficiently costly to disincentivize
default. In this case, it prefers to not set up the common ledger.

Corollary 1. If the common settlement ledger and trading technology are op-
erated independently by separate institutions and the institutions do not co-
ordinate on blocking payment with commodity money, then all output good
producers default and there is no production in the economy.

Why is cooperation between the ledger operator and the platform required
to ensure contract enforcement? If the ledger automatically enforces contracts,
then it need cooperation from the platform. If the platform allows agents to
undertake spot payments regardless of whether they have defaulted, then all
agents use spot trades and default. If the platform attempts to ensure IOU
repayment, then it needs cooperation from the ledger. Agents trade before
contract settlement, which means the platform needs to force agents to use
the ledger so that revenue can be seized to fulfill the contract. If the ledger
operator does not allocate payments to settle contracts and instead gives the
resources directly to the sellers, then the sellers can walk away and default.

Taking stock, we have the following key lessons from our stylized two-period
model that we explore further in Section 3.

(i) Ledgers are only useful if they are “backed”: The ledger record
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keeping technology is potentially very powerful in the economy but only
if agents use it. This means that the platform controlling the trading
technologies in the economy needs to “back” the ledger by forcing agents
to use it. Otherwise, introducing the ledger technology will not change
the equilibrium. In this sense, BigTech platforms are natural providers of
currency ledgers. This suggests the dominance of Alibaba and WeChat
in the Chinese payment system might reflect an underlying advantage or
synergy in providing payments.

(ii) The payment technology can collateralize sales revenue: In this
economy, the type of payment technology matters for the collateralizabil-
ity of future sales revenue. Trades settled using the common ledger can
always be used for the repayment of contracts and so essentially act as
digital “collateral” for borrowing. Trades not settled using the ledger are
not automatically used for the repayment of contracts and so can only
be used as collateral if the agents coordinate on reporting and excluding
defaulting agents. In this sense, the model is set up so the platform
can choose to what extent future sales revenue can be effectively used as
“collateral” across the economy. We extend this in the monetary model
in Section 3, where “bills-of-exchange” compete with government fiat
currency as a medium of exchange.

(iii) A natural monopoly dilemma: We can also see that there is a type
of natural monopoly force in this economy. The more trades that use
the ledger (the higher is η), the easier it is for the ledger controller to
enforce contracts. For example, suppose that η must be greater than
1/2 in order for the no-default incentive compatibility constraint (2.5)
to be satisfied for a positive markup. In this case, there is no way for
multiple ledgers to operate in the economy and enforce contracts unless
they cooperate on enforcement. In other words, one large ledger provider
can better enforce contracts than a collection of non-cooperative smaller
ledger providers. So, a regulator in this environment needs to find a
way to get a monopoly ledger provider to behave more competitively or
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have multiple large platforms compete on markups while coordinating
on contract enforcement. We take up these questions in Section 3.6.

2.4 “Central Bank Digital Currency” Ledger

So far we have only considered the private provision of a ledger technology.
We now introduce a public ledger provided by the government, which can be
thought of as a form of central bank digital currency (CBDC) or as broad
access to the central bank payment system (FedNow). We show that the way
the government designs the ledger has significant implications for contracting
in the economy.

Public ledger: Suppose that now the government offers a public ledger technol-
ogy that can be used to settle trades. The government can choose whether the
ledger just provides payment settlement that respects agent privacy (similar
to a private “payment” CBDC or anonymous FedNow) or whether the ledger
also records and settles contracts (a “smart” CBDC). The former option can
be thought of as providing a public technology for undertaking spot trades
without needing to store endowment goods. The latter option can be thought
of as a publicly provided version of the platform ledger from Section 2.5.

Corollary 2.

(i) If the government provides a privacy-respecting “payment” ledger and
forces the platform to accept payments through the public ledger (i.e.
makes it universal), then there is no equilibrium with full contract en-
forcement unless η = 1.

(ii) If the government provides a “smart” ledger and eliminates endowment
good payments (i.e. blocks commodity money), then all contracts are
enforced and first best production is achieved.

Proof. See Appendix A.2.
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Corollary 2 say that the government needs to be careful not to provide a
public payment option that ends up reintroducing spot trade into the econ-
omy. A privacy-respecting government payment ledger essentially introduces
a universally liquid payment technology that does not require agents to store
endowment goods in advance. So, agents can always make side trades and
default. By contrast, if the government gives up privacy protections and uses
the CBDC ledger to enforce contracts, then it can implement the Kocherlakota
(1998) ledger system. This poses a tradeoff for the government: introducing a
public payment ledger that respects privacy makes the payment system work
more effectively but prevents efficient contracting.

2.5 Extensions and Discussion

We close this section by discussing how effectively an uncollateralized IOU
system could be created in extended environments with aggregate risk and/or
other private institutional arrangements.

• Production risk: Our production process in Section 2.1 was risk free. If,
instead, productivity z is a random variable, then savers and producers
would need to write contracts to share output risk at t = 1. As long
as the platform dis-incentivizes endowment good storage and all revenue
goes through the ledger, the savers and producers can contract on any
division of output. That is, as long as the IC constraint is satisfied, the
platform-ledger arrangement brings the additional advantage that agents
have access to complete contracting. In practical terms, this can be
thought of as a modern variation on the “share-cropping” arrangements
historically employed in the US South, where tenants were allowed to
use land in exchange for a share of crop output, Stiglitz (1974).

• Banks as ledger and uncollateralized credit providers: There is a large
literature showing that the threat of exclusion from future access to the
loan market can incentivize the repayment of uncollateralized loans (e.g.
Kehoe and Levine (1993)). This might suggest that traditional banks
should be able to provide the ledger for uncollateralized loans instead of
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platforms. The reason why this is not possible in our model is because
agents only need to access the loan market once, and so exclusion from
future credit is not costly. If we expanded the model to have additional
periods and repeated borrowing, then there could be equilibria with un-
collateralized credit supported by exclusion from future lending, as in
many finance models. We do not consider such equilibria for two rea-
sons. First, this credit could be provided by either the bank or platform
(or any other large agent in the economy). In this sense, the bank is not
better at excluding agents from future credit than the platform. Second,
exclusion from future credit has already been comprehensively studied
in the literature, and we want to focus on new mechanisms related to
the emergence of platforms and ledgers.

• Industry supply chains as ledger and uncollateralized credit providers:
We could also ask whether a platform on which all goods are traded is
a superior ledger provider compared to a supply chain platform that is
restricted to a subset of goods, e.g., everything related to cars for an
automobile supply chain platform. Answering this question requires us
to extend our model so that agents get different utility from different
types of goods. If the platform covers all types of goods, then IOUs on
the platform ledger are denominated in the overall consumption basket.
In this case, neither the platform nor the agents face any “exchange rate
risk”. By contrast, in a setting with a platform that covers only a subset
of goods, IOUs on the platform ledger are denominated in a fraction of
the consumption basket. In this case, agents face exchange rate risk,
which makes the threat of exclusion less powerful.

3 Dynamic Model of Platform & Ledger Pro-
vision

The two-period model in Section 2 illustrates the value of having a large trading
platform that provides a settlement ledger. In this section, we set up an
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infinite-horizon monetary model where agents choose whether to trade on-or-
off-platform. There are now two key endogenous prices: the real exchange rate
between money and ledger IOUs/tokens and the spread between the return on
IOUs and money. This allows us to derive the following two results. First,
platform markup choices impact both the real exchange rate and the interest
spread in the economy. Second, the inflation rate on public money influences
whether the platform ledger credit and payment system is viable.

3.1 Environment

Time is discrete with an infinite horizon. There is a collection of goods that
can be used for production and consumption. The economy contains a contin-
uum of agents, financial intermediaries, and a private platform that operates a
ledger for the economy. There is a “fiat” money asset provided by the govern-
ment, interperiod IOUs that agents can create through the ledger, and equity
shares in the platform. There are two marketplaces for exchanging goods: a
private platform and an open public marketplace. Each period is divided into
a morning subperiod when a goods market opens and an evening subperiod
when the asset market opens. Agents need money to make payments in the
morning subperiod on the public marketplace, as in Svensson (1985) and Lagos
and Wright (2005), but the platform prevents money being used for payment
on its marketplace.

Production, preferences, and life-cycle: Each agent follows a “life-cycle” where
they start as producers and then become savers looking to consume. An agent
born in the morning of time t (at age 0) arrives without resources but with a
technology to convert xt goods at time t into yt+1 = zxαt goods at time t+ 1,
where z > 0 is productivity and α ∈ (0, 1). At t+ 1 (at age 1), they sell their
produced goods, consume, and save. At time t + 2 (at age 2), they consume
again and exit. Agents in generation t rank consumption allocations accord-
ing to (1 − β)u(c1,t+1) + βu(c2,t+2), where u(c) = log(c), cτ,t is consumption
of goods produced by other agents at time t when the agent’s age is τ , and
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Figure 1: Timeline of the OLG Infinite Horizon Model.

β ∈ [0, 1].

Timing: We show the timeline visually in Figure 1, sketch the key points
below, and then subsequently describe the environment in detail. The timing
in the morning subperiod is the following:

(i) Age-0 agents are born and begin the period without any assets or goods.
Age-1 agents begin with produced goods and a payment type that they
have chosen to accept. Age-2 agents begin with holdings of deposits in
financial intermediaries, which hold a portfolio of money, old IOUs, and
equity shares in the platform.

(ii) The goods markets open on each trading technology. Age-0 agents issue
new IOUs to buy input goods. More specifically, if they buy on the
platform, then they exchange IOUs directly for goods. If they buy off
the platform, then they sell their IOUs to a financial intermediary in
exchange for the money to make payments. Age-1 agents sell the goods
they have produced. Age-2 agents agents withdraw their wealth from
the financial intermediary in the required currency. All agents trading
on a particular trading technology participate in a competitive goods
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market.1

(iii) At the close of the goods market, the ledger settles payments made
through the ledger and IOUs issued in the previous period that are now
due. If the ledger does not have sufficient payment revenue to settle an
IOU, then it declared in default. Age-2 agents exit after consuming the
goods they purchased.

In the afternoon subperiod, age-1 agents deposit revenue with the financial
intermediary. The currency and asset markets open. In order to manage
household currency needs, financial intermediaries choose their asset portfolio
for the next period, including their currency reserves.

We now explain the operation of the different markets in more detail.

Goods trading frictions: As before, there is both a public marketplace and
a private platform to connect buyers and sellers, indexed by n ∈ {o, p} re-
spectively. However, now, agents can choose where to trade at each age. We
model this as a discrete choice problem. In addition to the pecuniary ben-
efits from trading, we incorporate amenity benefits. Formally, at each time
period t, for each technology n ∈ {o, p}, each agent i gets an idiosyncratic,
independent amenity draw to trade on that platform.2 The draw for agents of
age τ is distributed according to ζ̃niτ,t ∼ log(ζnτ ) + Gu(1/γτ ,−(1/γτ )E), where
Gu denotes the Gumbel distribution, E is the Euler–Mascheroni constant, ζnτ
is a technology-specific component that characterizes the average quality of
service provided by the platform to sellers, and γτ is the elasticity of substi-
tution. For convenience, we normalize ζoτ = 1 and denote ζpτ = ζτ .3 At age 0,

1The search literature often studies models where pricing is determined through one-
to-one matching and bargaining over prices. Throughout this paper, we instead consider
segmented competitive markets. We believe this is a closer approximation to the markets
we are studying, especially in later sections when we model trade taking place on platforms
such as Amazon or Alibaba.

2We introduce idiosyncratic risk in order to avoid “bang-bang” solutions to the platform
choice problem. Our model uses tools from the discrete choice literature. This is analogous
to assuming a CES preference function across the trading technologies.

3We do not impose a physical interpretation on the amenity values but they could be
modeled as idiosyncratic search costs or good quality. For the cost interpretation, note
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in the morning subperiod, the agents observe their amenity shock for trading
at age 0 and 1.4 At age 2, in the morning subperiod, the agents observe their
amenity shock for trading at age 2. As before, the platform charges a markup
µ on buyers.

Assets and financial intermediaries: At each time t, newly born agents issue
IOUs that promise to pay one good in the morning market at t + 1. At time
0, the platform issues equity shares that pay firm profits πt each period t.
The government issues “fiat” public money, in supply Mt each period t, and
rebates seigniorage to agents proportional to their wealth. We let gMt denote
the growth rate of money supply.

There is a continuum of competitive financial intermediaries that take de-
posits and pool resources across agents to purchase assets. From an economic
point of view, the intermediaries provide liquidity services and, from a tech-
nical point of view, they simplify the exposition of the asset pricing.5 On the
liability side, the financial intermediary issues one-period deposits that allow
agents to withdraw IOUs or money in the morning subperiod. We allow the
platform to block intermediaries from participating on the ledger if they have
accepted defaulting agents. So financial intermediaries only accept depositors
who have repaid IOUs.6 Consequently, defaulting agents lose access to the
platform and financial intermediary investment services, which leaves them
only able to hold money.

that the Gumbel distribution takes values across the real line and so ζniτ would represent a
normalized cost. For the good quality interpretation, observe that we can write the total
utility a buyer receives as: log(eζniτ ζnτ c), and so eζniτ ζnτ is essentially scaling the utility that
the buyer gets from the good they consume.

4We make the assumption that agents observe their amenity shock for age 1 at age 0 for
mathematical convenience so that we can get a closed-form solution to the agent problem.

5An equivalent structure would be to have a “Lucas family” that pools resources together
but penalizes agents based on where they choose to trade or what type of currency they
bring back to the family.

6We could equivalently consider a model where some intermediaries accept defaulting
depositors and some do not. This is equivalent to our model because intermediaries accepting
defaulting depositors can only hold money and so they are not able to provide any liquidity
services.
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Payment technologies in the morning markets: Each morning subperiod, a
competitive goods market opens on each trading technology among the sellers
and buyers who chose to go to that trading technology. Once again, there
are two payment technologies in the economy: spot trade and ledger trade.
However, now currencies and financial assets are used for payment. Spot trans-
actions are not recorded and are subject to a resource-in-advance constraint:
the payment must be made using goods and/or public money (“dollars”) issued
by the government. Let Pm

t denote the units of money required to purchase a
good through the public marketplace in the morning market in period t.

The other payment technology is the digital ledger provided by the plat-
form, which is not subject to a resource-in-advance constraint. During the
morning market, the digital ledger allows agents to make payments on the
platform up to the value of the assets they hold on the ledger. This means
that agents can use risk-free future ledger income to purchase goods so the
ledger is essentially creating “bills of exchange” or “tokenized” claims on the
revenue within the ledger ecosystem. Let P b

t and P s
t respectively denote the

number of (t+1)-maturity IOUs and shares required to purchase a good on the
private platform in the morning market in period t. Since t-maturity IOUs are
settled in goods at the end the period t morning market, they can be traded
for goods at a 1-1 rate so long as there is no default. The financial intermedi-
ary buys IOUs issued by newly born agents (i.e. “discounts” them to money)
wanting to trade on the public marketplace at rate Ĕt IOUs per unit of money.

As in Section 2, we impose that the platform restricts the liquidity of public
money by preventing sellers from accepting money when trading on their plat-
form. Rather than considering all the different choices of payment technology
on the public marketplace, like we did in Section 2, we start by imposing that
all trade on the public marketplace is spot-trade. In this sense, money is the
currency for spot trade, while IOUs (and other financial assets on the ledger)
are the currency for ledger trade.

Asset market in the afternoon: In the afternoon subperiod, a competitive as-
set market opens for trading all currencies and financial assets. Let Et denote
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the number of (t + 1)-maturity IOUs required to purchase one dollar in the
afternoon market in period t. i.e. the “nominal exchange rate” between IOUs
and money. Let Qs

t denote the number of (t + 1)-maturity IOUs required to
purchase one platform share. Following the monetary literature, it is helpful to
distinguish between “money-goods” traded in dollar transactions and “token-
goods” traded in ledger transactions. We typically use platform-goods as the
numeraire and use “real prices” to refer to prices in terms of platform-goods.
We define the real prices of money, (t+1)-maturity IOUs, and platform shares
as qmt := Et/P

b
t , qbt := 1/P b

t and qst := Qs
t/P

b
t . We define the real exchange

rate between marketplace-goods and platform-goods as εt := EtP
m
t /P

b
t and

the real price of shares as qst . Where appropriate, we use Rm
t,t+1, Rb

t,t+1, and
Rs
t,t+1 to denote the real return on the holdings of money, bonds, and equity

shares between t and t + 1. We let Rbn
t,t+1 denote the effective real borrowing

rate when the agent issues an IOU to trade on market n (after any finan-
cial intermediary discounting to convert it into the required currency) and let
Rdn
t,t+1 denote the effective real deposit return set by the financial intermediary

when agents withdraw deposits in the medium of exchange on market n. We
summarize the prices and returns on the underlying assets in Table 1.

Goods price
(morning)

Real asset price
(afternoon) Real return

Money Pm
t qmt Rm

t,t+1
IOUs P b

t qbt Rb
t,t+1

Platform shares P s
t qst Rs

t,t+1

Table 1: Summary of prices and returns. The first column is the number of
assets to purchase one good in the morning market. The second column is
the real asset price in the afternoon market. The third column is the real
one-period return from holding the asset.

Information frictions: The environment has analogous information frictions
to Section 2.1 except for two differences. First, if an agent defaults on an IOU,
then the IOU holder can recover a fraction χ ∈ [0, 1) of the input good and
the producer keeps the rest of their production. Second, as outlined above, the
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platform now excludes the financial intermediaries accepting defaulting agents
from the ledger technology rather than the individual agents.

3.2 Comparison to Other Models

Our environment attempts to nest or reflect canonical models with currency
and settlement frictions. To illustrate this, we discuss how our model relates
to key models in the literature and why we have made deviations.

(i) Cash-in-advance models: The timing of trade and construction of the
“synthetic” real exchange rate between the two segmented markets is
taken from the two-currency cash-in-advance model proposed by Svens-
son (1985). The difference in our setup is that the cash-in-advance con-
straint is only relevant off-platform because the platform allows trade
using claims to future revenue on the ledger. That is, trade on the
platform is settled using digital bills of exchange that are automatically
enforced at the end of the morning market. This is similar to the exis-
tence of both cash-good trades and credit-good trades in Lucas Jr and
Stokey (1985). However, in our model, the creation of bills-of-exchange
is not exogenous. Instead, the platform endogenously chooses whether
to set up trading rules to facilitate the creation of bills-of-exchange or
credit-good trades in order to maximize their markup profit.

(ii) Money search models: Like in Lagos and Wright (2005), we adopt a
morning-evening subperiod structure where search frictions in the morn-
ing market require that agents hold money or have access to a currency
ledger. Unlike many papers in this literature, for simplicity, we abstract
from bargaining between agents and instead consider segmented com-
petitive markets. We also take the view that digital money trades occur
with access to a ledger and so are necessarily monitored trades rather
than anonymous trades in a decentralized markets. For this reason, we
focus on how large institutions monitoring trades might supply digital
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currency ledgers rather than on how demand for digital money is differ-
ent from demand for other monies.

(iii) Social planner ledger provision: Like in Kocherlakota (1998), we focus
on how the introduction of a common record keeping technology can
change equilibrium allocations. We have two main points of departure
from Kocherlakota (1998): (a) we consider a ledger provided by a profit-
maximizing platform and (b) agents choose whether to use the ledger or
an outside payment technology. If we eliminated spot trade and treated
the platform as a benevolent planner, then we would get the results in
Kocherlakota (1998).

(iv) OLG models with financial assets: Our model nests a classic OLG en-
vironment in which agents need an asset that they can buy when they
are young and sell when they are old (e.g. Samuelson (1958), Diamond
(1965)). In our environment, there are multiple assets available for stor-
age that are differentiated by their usefulness in trade. In this sense, the
financial assets in our model have both a role of storage and of a medium
of exchange. Like in these models, the risk-free rate in our model will end
up being distorted. However, unlike in these models, it is the strategic
behavior of the platform controlling trade that leads to the interest rate
distortion.

3.3 Market Equilibrium Without Default

In this subsection, we characterize the equilibrium with full IOU repayment.
We first outline the buyer and seller problems under no-default. We then solve
for market prices and show how platform markups affect general equilibrium.
We use our characterization to study how platform decisions interact with
general equilibrium. In the next subsection, we return to the difficulties of loan
enforcement and derive the incentive compatibility constraint for no-default.
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3.3.1 Agent Problem

We consider the problem of an agent in the generation born at time t ≥ 2
and use the following terminology. Let nτ denote the agent’s choice of goods
trading technology at age τ .

We now set up the budget constraints. Consider the agent at age 0. The
agent chooses where to buy input goods, n0, and where to sell output goods,
n1. If the agent purchases x0,t input goods, then they issue IOUs discounted
through the financial intermediary at real borrowing cost Rbn0

t,t+1(1 + µn0
t )x0,t.

Here, µn0
t is the markup when buying on marketplace n0 and Rbn0

t,t+1 is the
effective borrowing rate when trading on platform n0 (i.e. the borrowing rate
when selling IOUs to producers on the platform n = p or the borrowing rate
when selling IOUs to financial intermediaries for money to use on the public
marketplace n = o).

At age 1, the agent then produces and sells y1,t+1 = z(x0,t)α goods, repays
the IOU, consumes c1,t+1 goods, and deposits d1,t+1 in a financial intermediary.
If the agent sells on the private platform, i.e. n1 = p, then their revenue in
platform goods is y1,t+1. If the agent sells off-platform, i.e. n0 = o, then their
revenue in units of platform goods is εtyt+1. Thus, their budget constraint at
t = 1 in real terms when they buy inputs on n0 and sell on n1 is:

d1,t+1 ≤ εn1
t+1

(
z(x0,t)α − (1 + µn1

t+1)c1,t+1
)
−Rbn0

t,t+1(1 + µn0
t+1)x0,t (3.1)

where εnt denotes the real exchange rate between goods on the trading tech-
nology n ∈ {o, p} and goods on the private platform, i.e. is εt if n = o and 1
if n = p.

At age 2, the agent chooses a marketplace on which to consume, n2. If they
choose n2 ∈ {o, p}, then the real value of their withdrawals is Rdn2

t+1,t+2d1,t+1

and so the agent faces the budget constraint:

(1 + µn2
t+1)εn2

t+2c2,t+2 ≤ Rdn2
t+1,t+2d1,t+1 (3.2)

Finally, taking the price and return processes as given, at age 0, an agent

27



in generation t solves problem (3.3) below:

Et
[

max
x0,c1,c2,d1,n

{
ζ̃n0

0,t + ζ̃n1
1,t+1 + (1− β)u(c1,t+1) + β(ζ̃n2

2,t+2 + u(c2,t+2))
} ]

s.t. (3.1), (3.2).
(3.3)

Theorem 1. An agent choosing trading technologies n = (n0, n1, n2), under-
takes production:

x0,t =
(

εn1
t+1αz

(1 + µn0
t )Rbn0

t,t+1

) 1
1−α

, y1,t+1 = z

(
εn1
t+1αz

(1 + µn0
t )Rbn0

t,t+1

) α
1−α

,

(3.4)

π1,t+1 =
(

εn1
t+1αz

((1 + µn0
t )Rbn0

t,t+1)α

) 1
1−α (1− α

α

)
.

and chooses consumption and saving:

c1,t+1 = (1− β)π1,t+1

εn1
t+1(1 + µn1

t+1) , d1,t+1 = βπ1,t+1, c2,t+2 =
Rdn2
t+1,t+2βπ1,t+1

εn2
t+2(1 + µn2

t+2) .(3.5)

The fraction of producers and consumers respectively choosing trading tech-
nologies n0, n1, and n2 are:

ηn0
0,t =

(
ζn0

0 ((1 + µn0
t )Rbn0

t,t+1)−
α

1−α
)γ0

∑
n′0

(
ζ
n′0
0 ((1 + µ

n′0
t )Rbn′0

t,t+1)−
α

1−α
)γ0 (3.6)

ηn1
1,t+1 =

(
ζn1

1 (εn1
t+1)

1
1−α+β−1 (1 + µn1

t+1)β−1
)γ1

∑
n′1

(
ζ
n′1
1

(
ε
n′1
t+1

) 1
1−α+β−1

(1 + µ
n′1
t+1)β−1

)γ1 (3.7)

ηn2
2,t+2 =

(
ζn2

2 Rdn2
t+1,t+2/((1 + µn2

t+2)εn2
t+2)

)γ2

∑
n′2

(
ζ
n′2
2 R

dn′2
t+1,t+2/((1 + µ

n′2
t+2)εn

′
2
t+2)

)γ2 (3.8)

Proof. See Appendix B.

Theorem 1 shows that we get an intuitive closed form solution to the agent’s
problem. Holding all else constant, an increase in the private platform’s trad-
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ing advantage, ζpτ /ζoτ , leads to more agents using the private platform at each
age. An increase in the effective cost of borrowing to purchase on a trading
technology, Rbn0

t,t+1, leads to fewer agents purchasing input goods there. Like-
wise, an increase in the effective price of goods on a trading technology, εn2

t+2,
leads to fewer agents purchasing consumption goods there. Finally, an increase
in the markup, (1 + µt), leads to fewer agents buying on the platform at all
ages.

3.3.2 Financial Intermediary Problem

Financial intermediaries manage agents’ wealth. From an economic point of
view, the intermediaries provide liquidity services to agents in the sense that
they ensure they have the currency they need to trade. From a modeling point
of view, the intermediaries provide a convenient way of pricing the assets in
the economy without complicating the agent problem.7 In the evening of each
period t, the financial intermediaries accept agents’ wealth and purchase money
Mt (to back deposit withdrawals in the morning market and purchase newly
issued IOUs in the morning market), bonds Bt, and shares in the platform St.
Their budget constraint in the evening at time t is:

qmt Mt + qbtBt + qstSt ≤ At.

In the morning of t+1, depositors who trade on the public marketplace (n = o)
withdraw money, and depositors who trade on the private platform (n = p) ex-
change the market value of their remaining assets in the financial intermediary
through the ledger. Lemma 1 shows that, in equilibrium, the effective agent
borrowing and saving rates offset the financial intermediary’s opportunity cost
of holding money or IOUs.

Lemma 1. If the financial intermediary holds excess reserves, then the bor-
rowing rate and deposit rate faced by agents using trading technology n are

7An alternative would be to open up a currency market in the morning market.
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given by:

Rbn
t,t+1 = εnt

Rb
t−1,t

Rn
t−1,t

Rb
t,t+1, Rdn

t,t+1 = Rn
t,t+1 (3.9)

Proof. See Appendix B.3.

3.3.3 Market Equilibrium

We define market equilibrium for an arbitrary markup policy.8

Definition 1. Given a sequence of ledger policies, µµµ, a competitive equilibrium
is a collection of price and return sequences, (Rb,Rm, rd, rb,qs), and agent
choice sequences, ({ηηη

τ
}τ≤2, x, y, c1, c2), such that: (i) given prices, the

agent choices solve optimization problem (3.3), (ii) given prices, the financial
intermediary choices solve equation (3.9), and (iii) market clearing is satisfied
for the goods market on each trading technology, the IOU market, the money
market, and the equity market:

Y n
t = Xn

0,t + Cn
1,t + Cn

2,t, ∀n ∈ {o, p}

Bt = I0,t

Mt = M̄t

St = 1

where at time t on trading technology n:

• Y n
t := ηn1,t

∑
n0 η

n0
0,t−1y

(n0,n)
1,t is aggregate output,

• Xn
0,t := ηn0,t

∑
n1 η

n1
1,t+1x

(n,n1)
0,t is aggregate input good purchases,

• I0,t := ∑
n0,n1 η

n0
0,tη

n1
1,t+1Rbn

t,t+1(1 + µn0
t )x(n0,n1)

0,t is aggregate IOU issuance,

• Cn
1,t := ηn1,t

∑
n0 η

n0
0,t−1c

(n0,n)
1,t is aggregate consumption by age-1 agents,

8In numerical examples, we will ultimately focus on the steady-state limit with a fixed
markup.
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• Cn
2,t := ηn2,t

∑
n0,n1 η

n0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t is aggregate consumption by age-2

agents.

To develop intuition for the model, we discuss the characterization of each
market’s equilibrium separately.

3.3.4 Goods Markets

A major difference compared to Section 2 is that agents now choose on which
platform to trade goods, which makes goods market clearing more involved. At
each time t, the total goods supplied to each market in the morning subperiod
is predetermined by the input good and trading marketplace choices that age-1
agents made in the previous period when they arrived in the economy. The rel-
ative goods price, εt, adjusts to ensure that age-0 and age-2 buyers spread out
on-and-off-platform and each market clears. Thus, the goods market clearing
condition on each market n ∈ (o, p) becomes:

ηn1,t
∑
n0

ηn0
0,t−1y

(n0,n)
1,t = ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn1,t

∑
n0

ηn0
0,t−1c

(n0,n)
1,t

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

where the left-hand-side is total produced goods brought to the market and
the right-hand-side is the total purchases of goods as inputs or for consump-
tion. Imposing the household choices and rearranging gives the closed form
expression for εt in Theorem 2 below.

Theorem 2. Suppose that 1+αγ0
1−α = 1 + γ2 and (ζn0 )γ0 = (ζn2 )γ2.9 Then the real

exchange rate satisfies:

εt =
ζγ1

1
ζγ2

2

(1 + µt)−γ1(1−β)+1+γ2

(Rb
t−1,t/R

m
t−1,t)1+γ2

 1− (1−β)(1−α)
1+µt

1− (1− β)(1− α)


1

α
1−α (γ1+1)+γ1β+1+γ2

(3.10)

Proof. See Appendix B.4.
9These assumptions ensure that age-0 and age-2 agents have sufficiently similar market-

place choice functions that we can get a closed form expression for εt.
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Theorem 2 illuminates how the variables affect the equilibrium prices.
First, observe that, holding all else constant, the real exchange rate is de-
creasing in the excess return on bonds relative to money, Rb

t−1,t/R
m
t−1,t, and

increasing in the markup, µt. This is because a decrease in Rb
t−1,t/R

m
t−1,t and an

increase in µ both encourage buyers to choose the public marketplace instead
of the private platform, which increases demand on the public marketplace
and so its relative price.

3.3.5 Asset Markets

Theorem 3 implicitly characterizes the equilibrium in the asset markets for
IOUs, money, and platform equity.

Theorem 3. Suppose that 1+αγ0
1−α = 1 + γ2 and (ζn0 )γ0 = (ζn2 )γ2. Then the bond

return, money return, and equity price satisfy:

ηp2,t+1βΠ1,t =
∑
n1

(∑
n0

ηn0
0,tη

n1
1,t+1ε

n0
t

Rb
t−1,t

Rn0
t−1,t

(1 + µn0
t+1)x(n0,n1)

0,t

+ ηo0,t+1η
n1
1,t+2

εt+1

Rm
t,t+1

x0,t+1

)
+ qst (3.11)

Rm
t,t+1 =

(
M̄t

M̄t+1

)ηo2,t+2βΠ1,t+1 + 1
Rmt,t+2

Xo
0,t+2

ηo2,t+1βΠ1,t + 1
Rmt,t+1

Xo
0,t+1

 (3.12)

qst = 1
Rb
t,t+1

(
πst+1 + qst+1

)
(3.13)

where Π1,t = ∑
n0,n1 η

n0
0,t−1η

n1
1,tπ

(n0,n1)
1,t is aggregate agent profit at time t and

Xo
0,t := ∑

n1 η
o
0,tη

n1
1,t+1εtx

(o,n1)
0,t is aggregate input purchases on marketplace o at

time t.

Proof. See Appendix B.4.

Although the equations in Theorem 3 appear involved, they have a clear
interpretation. The return on money satisfies equation (3.12), which is the
ratio of money demand growth to money supply growth. This implies that,
in a steady state with constant money growth rate gM , we have the familiar
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relationship that Rm
t,t+1 = 1/gM . As is standard in “currency-in-advance”

models, the environment has money neutrality in the sense that the level of
money supply does not affect real variables. However, it does not have super-
neutrality; the growth rate of money does affect real variables by impacting
agent trading and borrowing decisions.

The return on IOUs satisfies (3.11). The left-hand-side of this equation
denotes the supply of deposits that can be used to purchase ledger assets. The
right-hand-side denotes the demand for ledger assets. Evidently, a decrease in
the fraction of agents wanting to trade on the private platform, ηp2,t+1, leads
to a decrease in the supply of deposits available to purchase ledger assets (a
decrease in supply in the loan market). Likewise, a decrease in input good
purchases, x(n0,n1)

0,t , leads to a decrease in the issuance of IOUs (and a decrease
in demand in the loan market).

Finally, the price of equity is given by future dividends and capital gains
discounted by the bond rate.

3.3.6 Numerical Illustration

To help illustrate these forces, we plot the steady state equilibrium in Figure 2
as a function of the platform markup. The blue dashed line shows the partial
equilibrium allocations as µ varies when the interest rate is fixed at 3% and
there is an exogenous external source of credit. The black solid line shows
general equilibrium with an adjusting interest rate such that the credit mar-
ket clears (i.e. IOU-borrowing equals IOU-saving). There a sharp difference
between the partial and general equilibrium outcomes. In partial equilibrium,
a higher markup leads to fewer agents going to the platform and more agents
going to the public marketplace, which ultimately increases the real exchange
rate (i.e., makes the public marketplace relatively cheaper). In general equi-
librium, a higher markup leads to a higher equilibrium interest rate, Rb, less
substitution away from the platform, and a greater decline in output. This is
because the interest rate needs to increase to make the platform ecosystem suf-
ficiently attractive to ensure there are enough IOU-savings to clear the credit
market. In this sense, the platform trying to extract rents in the goods market
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pushes up the interest rate in the credit market and so restricts production in
the economy.

Although our numerical example model is an illustrative experiment rather
than a calibrated quantitative exercise, we can none-the-less see some quanti-
tative features of the equilibrium. One feature is that interest rates are high
and very sensitive to η0, η1, and η2. This is because age-0 agents are only able
to borrow if other agents are willing to save and spend using their uncollaterl-
ized IOUs. There is no alternative collateralized debt market for borrowers to
access. Quantitatively, this means that, in order to target an uncollaterlized
interest rate less 10% at a markup of 5%, the equilibrium is such that η0 and η2

are close to 1. Finally, note that the apparent monotonicity in the η-functions
with respect to µ does not persist higher levels of µ.

Figure 2: Equilibrium for µ ∈ [0, 0.1].

Other variables are z = 1, α = 0.6, β = 0.9, γ1 = 1.9, γ2 = 1.9, and ζ = 1.0. Black line
denotes general equilibrium. The blue dashed line denotes partial equilibrium with fixed
interest rate Rb.
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3.4 Default and Incentive Compatibility

We now return to the question of incentive compatibility in the dynamic model.
Agents can only access financial intermediaries if they repay loans. So, if agents
default and deposit into a financial intermediary, then they are restricted to
the monetary system. The agent problems are very similar to Subsection 3.3,
so we defer the details to Appendix B. Theorem 4 states the main result: the
incentive compatibility constraint to deter agents from defaulting.

Theorem 4. No agents default if the following incentive compatibility con-
straint is satisfied ∀t ≥ 0:

π̌1,t

π1,t
≤
(
ν̄2,t+1

ν̌2,t+1

)β
, (3.14)

where π1,t is agents’ profit at age 1 if they repay, π̌1,t is agent profit at age

1 if they default, ν̄2,t+1 :=
(∑

n2

(
ζ
n2
2 R

dn2
t,t+1

(1+µn2
t+1)εn2

t+1

)γ2)1/γ2

is the average marginal

utility of wealth at age 2 if the agent repays at age 1, and ν̌2,t+1 := ζo2R
o
t,t+1

εot+1
is

marginal utility of wealth at age 2 if the agent defaults at age 1 and can only
trade with public money on the public marketplace. Imposing equilibrium, the
incentive compatibility constraint becomes ∀t ≥ 0:

1 + µt+1 ≤
ζp2 εt+1R

b
t,t+1/R

m
t,t+1((

χ−1 min{εn0
t−1R

b
t−2,t−1/R

n0
t−2,t−1, 1}Rb

t−1,t

) αγ2
1−α − 1

)1/γ2
,(3.15)

For χ > 0, the incentive compatibility constraint will be satisfied for sufficiently
large ζ2.

Proof. See Appendix B.5.

Contract enforcement is similar to that of the two-period model in Section
2. If agents trade using the platform, then they have to repay because the
platform forces them to use the ledger. If they trade using the public market-
place, they can trade using money and subsequently default. As in Section 2,
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the difficulty for defaulting agents is that the platform has broken the univer-
sal liquidity of government money. Once an agent defaults, they are unable to
bring money back to the financial intermediaries. This means they lose access
to the assets on the ledger and the ability to trade on the platform. These
conditions are stated formally in the IC constraint (3.14), which says that
agents repay if the benefit of having access to ledger assets and the platform
trading system at age 2 is greater than the additional profit from defaulting.
This ultimately places an upper bound on how large the markup can be, as
described by equation (3.15). In this sense, equation (3.15) is the dynamic
analogue of equation (2.5) in Section 2.

To help illuminate the enforcement in the dynamic model, we consider a
collection of special cases with different liquidity of the outside option.

Case: No government money. Suppose that β = 1 and there is no govern-
ment money (so there is no universally liquid off-ledger payment option and
no cash-in-advance constraint on the public marketplace). In this case, the
presence of a ledger is sufficient to incentivise repayment, regardless of what
the platform does. To see this, observe that when β = 1, agents do not value
consumption at t = 1 and do not engage in barter trade with other agents
of their generation for perishable goods. Instead, they only trade goods to
agents of other generations in exchange for financial assets. Because there is
no money, the age-1 agents selling goods can only receive newly issued IOUs
from the age-0 agents and old IOUs from the age-2 agents purchasing goods.
Since all IOUs are on the ledger, there is no way for age-1 agents to default,
regardless of whether the platform excludes defaulting agents or not. In this
sense, the agents are locked into the ledger payment system because they need
a way to store wealth.

Case: Government money. Suppose that now we introduce government
money into the model (so there is a universally liquid off-ledger payment option
and a cash-in-advance constraint on the public marketplace). In this case, the
agents are no longer locked into the ledger payment system because they can
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use government money to make side spot trades and subsequently default. The
presence of a platform is now necessary to disincentivize government money
storage by breaking its universal liquidity, as outlined in Theorem 4.

Case: Government money and ledger IOUs payments off-platform.
So far, we have assumed that government money is used on the public mar-
ketplace and that defaulting agents cannot bring government money back to
the platform. An alternative arrangement is that the platform allows IOUs to
be used as payment on the public marketplace and prevents all agents from
bringing public money back to the platform. This can be thought of as a closer
analogue to the restrictions in Section 2. In this case, agents have no reason
to use public money (so long as µ is set sufficiently low that IOUs are repaid)
and so ledger payment dominates both markets, as in Section 2.

3.5 Platform Problem

We can now write down the problem of the private platform. Suppose the
economy starts with an initial collection of age-1 agents with loans and goods
(b0,0, y1,0) and a collection of age-2 agents with wealth (a2,0) in a collection of
financial intermediaries. We consider a platform that takes interest rates as
given but internalizes equilibrium in the goods markets.10 Specifically, taking
the interest rate processes {Rb,Rm} as given, the platform chooses a sequence

10We set up the platform problem in this way for a number of reasons. First, we believe it
is realistic to study a trading platform that internalizes how their markups affect equilibrium
on their goods market but does not internalize how their markups affect the discount factor
that is used to price their equity. Second, for log utility, allowing the platform to internalize
their impact on the household’s discount factor leads to the result that the platform is
indifferent about the amount of output produced in the problem because low output is
exactly offset by a high household marginal value of output. These issues (and additional
issues about the choice of numeraire) are discussed in Kelsey and Milne (2006) and Böhm
(1994).
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of markups µ to maximise their equity price by solving problem:

qs0 = max
µ

{ ∞∑
t=0

ξ0,tπ
s
t

}
s.t.

πst = µtη
p
1,t
∑
n0

η0,t−1y
(n0,p)
1,t , t ≥ 1

πs0 = µ0η1,0y1,0

Agent choices: (3.4), (3.5), (3.6), (3.7), (3.8),
Equilibrium prices: (3.10), (3.12), (3.13), (3.11)

(3.16)

where ξ0,t = ∏t
j=0(Rb

j,j+1)−1 is the household SDF.
The market equilibrium in the economy is the collection of price and return

sequences, (Rb,Rm, rd, rb,qs), and agent choice sequences, ({ηηη
τ
}τ≤2, x, y, c1,

c2) such that Definition 1 is satisfied for the choice of markup sequence that
solves the platform problem (3.16). That is, the market equilibrium that
emerges from the platform’s optimization problem.

Compared to Section 2, the platform problem is now more involved because
the platform considers how its choice of markup affects agents’ choices of where
to trade (η0, η1, η2). The resulting first order condition for the platform’s choice
of µt is:

0 = ξ0,t
∂πs(µt, µt−1, εt, εt−1,Rt)

∂µt
+ ξ0,t+1

∂πs(µt+1, µt, εt+1, εt,Rt+1)
∂µt

+ ξ0,t
∂πs(µt, µt−1, εt, εt−1,Rt)

∂εt

∂ε(µt, Rb
t−1,t, R

m
t−1,t)

∂µt

+ ξ0,t+1
∂πs(µt+1, µt, εt+1, εt,Rt+1)

∂εt

∂ε(µt, Rb
t−1,t, R

m
t−1,t)

∂µt

which we fully characterize in Appendix B.6. Evidently, the platform faces
the standard “monopoly” tradeoff that increasing the markup increases their
profit per trade (↑ µt) but also discourages agents from coming to the platform
(↓ η1,t) and decreases production (↓ y(n0,p)

1,t ). These tradeoffs appear in the first
line of the first order condition. In addition, the platform has to consider how
their decisions affect the real exchange rate, which is captured by the last two
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lines.

Credit Fragility: In Section 2, we explored how the platform’s share of trade
affects their willingness to set up the ledger. We have now endogenized trade
shares, which illustrates how exchange rates, interest rates, and platform trad-
ing advantage impact the platform’s willingness to set up a ledger and enforce
contracts. From the IC constraint (3.14), we can see that a low ζ2 makes it
unprofitable for the platform to set up the ledger while age-2 elasticity of sub-
stitution, γ2, determines how the exchange rates and interest rates influence
the profitability of setting up the ledger.

Monetary Policy: Figure 3 depicts the platform’s optimal markup charge,
µ, for different rates of constant public money supply growth, gM . The blue
dashed line, µ∗, indicates the platform’s choice of markup if the platform need
not care about the incentive constraint. The incentive constraint requires that
the markup is below the red dashed line, µ̄IC . If either the IC constraint
or competition with public money requires the markup to be negative, then
the platform derives negative value from running a non-default ledger and so
would not set up the ledger system. In our illustrative example, this occurs at
around an inflation rate of 2% per annum. In this sense, the uncollateralized
credit equilibrium is “fragile”; strong competition from the dollar – due to low
dollar-inflation – makes it too costly for the platform to set up a no-default
ledger. This implies that a platform ledger credit system is more likely to be
set up in countries where the government runs high inflation.

3.6 Discussion of Regulatory Options

We have shown that a tech platform provides and “backs” a common settle-
ment ledger in an unregulated economy if they have a sufficiently dominant
trading technology. This incentivizes the financial sector to coordinate on en-
forcement, but also gives the platform market power to extract rents. In this
sense, regulators have a “natural monopoly” dilemma. We discussed one po-
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Figure 3: Markup as a function of public money supply growth rate

The blue dashed line depicts the platform’s markup choice, µ∗, if they are not constrained by
having to ensure no-default. The red dashed line depicts the maximum markup µ̄ at which
financial intermediaries are deterred from defaulting. The green line depicts the markup for
the equilibrium chosen by the platform, µmin.

tential government response in Subsection 2.4 when we explored introducing a
public ledger. We close the paper by discussing an alternative policy response:
regulated competition between platforms and a public ledger option.

Environment changes: The environment is the same as in Subsection 3.1 but
with the following changes. There are now two private platforms, labeled
n ∈ {1, 2}. There is no public marketplace nor public currency. Both platforms
manage their own ledger, charge a markup µn, and have an average trading
advantage ζn. For simplicity, we assume that each platform chooses a fixed µn

at time t = 0 for all periods. We let ητ,t denote the fraction of agents at age τ
choosing platform 1.

Since there is no public dollar, agents cannot undertake side payments; all
transactions are observed by one of the two platforms. In other words, in this
new environment the only way producers can default is by writing a contract
on the ledger provided by platform n, then defaulting and trading on the other
platform n′. We use the currency provided by ledger 1 as the numeraire for
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asset pricing. So, εt now refers to the real exchange rate from tokens provided
by platform 1 to tokens provided by platform 2.

Regulation: The regulator allows the platforms to bargain at time t = 0 over
committing to exclude financial intermediaries who allow their depositors to
default on contracts on the other ledger. We assume that financial interme-
diaries face no borrowing constraints nor commitment problems during this
bargaining and the Nash bargaining protocol is followed. The regulator does
not allow the platforms to collude on setting markups at times t ≥ 0.

Platform competition at t = 0: For t > 0, the equilibrium is the same as in the
Subsection 3.3 but with (1−µt) replaced by (1−µ1

t )/(1−µ2
t ). Let qEn0 denote

the price of equity in platform n at t = 0 under cooperation on enforcement
for t ≥ 0 and let q̃En0 denote price of equity in platform n at t = 0 if there
is no cooperation on enforcement for t ≥ 0. The surplus from cooperation is
S = qE2

0 − q̃E2
0 +qE1

0 − q̃E1
0 . If the surplus is positive, then the platforms bargain

over coordination on contract enforcement. We assume that platform 2 makes
a (positive or negative) transfer T to platform 1 at time 0 and the payment is
determined by a Nash Bargaining protocol. In particular, we have:

T = arg max
T

{(
qE2

0 − T − q̃E2
0

) (
qE1

0 + T − q̃E1
0

)}
= 1

2
(
qE2

0 − q̃E2
0 − (qE1

0 − q̃E1
0 )

)
If the surplus is negative, then the platforms do not coordinate. Proposition 3
shows that, when platforms are symmetric, the outcome of the bargaining is
contract enforcement on both ledgers whereas when platforms are asymmetric
the dominant platform provides the ledger.

Proposition 3. We have the following:

(i) If the platforms are symmetric, then the outcome of the bargaining at
time 0 is that contracts are enforced on both ledgers and no transfer is
made.
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(ii) If ζ := ζ1
τ /ζ

2
τ > 1, then for χ and ζ sufficiently high, the outcome of

the bargaining at t = 0 is platform 2 pays a transfer to platform 1 for
providing the ledger in the economy.

Proof. See Appendix B.

The first part of the proposition says that contract enforcement coordi-
nation is straightforward when the platforms are similar. The second part
of theorem reinforces the market structure result in Section 2. Ultimately, it
shows that the only viable ledger operators are those that also possess a plat-
form trading technology. In other words, there is a natural bundling between
offering ledger and trading services. This implies that a financial intermedi-
ary with no trading technology (which would be modeled as ζ2 = 0 in our
environment) would never provide the ledger in equilibrium.

4 Conclusion

In this paper, we model the strategic decision making of a private controller
of the ledger used for settling transactions and writing contracts. We find
that in an unregulated economy “BigTech” platforms are likely to provide
“FinTech” services. This brings both benefits and costs. Tech platforms can
expand uncollateralized credit across a supply chain by exploiting their control
of the payment system to break the universal liquidity of public money and
better coordinate the financial system to enforce contracts. However, Tech
platforms will also use their control of the ledger to increase their market
power and charge high markups. We see these issues playing out in China
where tech platforms Alibaba and WeChat have created a well-functioning
payment system with very limited competition.

Ultimately, our model suggests that ledgers may need to be regulated like
other natural monopolies. This could include restrictions on when ledgers
can cooperate on contract enforcement and compete on markups. It could
also include a competing public option in the form a programmable Central
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Bank Digital Currency (CBDC) ledger. We consider further modeling of the
government’s regulatory options as important future work.
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A Supplementary Proofs For Section 2 (On-
line Appendix)

A.1 Proof of Proposition 1
Proof. The key equilibrium objects in the t = 1 market are (p, q), the price
of endowment goods and IOUs in terms of output goods, and the key equilib-
rium objects in the t = 0 market are (ϕ,R), the fraction of savers who store
endowment goods (which ultimately pins down φ the fraction of IOUs that
are repaid) and the interest rate on IOUs. We proceed by backwards induc-
tion. We first characterize the equilibrium (p, q) at t = 1 for different values
of (ϕ,R). We then characterize the possible equilibrium values of (ϕ,R) at
t = 0.

The t = 1 market. Suppose that (ϕ,R) is the outcome in the t = 0 market.
All production decisions are taken at t = 0 so quantities cannot adjust at t = 1.
Instead, the prices adjust to ensure competitive market clearing (sometimes
referred to as “resource-in-the-market” or “cash-in-the-market” pricing).

If ϕ = 1, then only endowment goods are stored so savers enter with
endowment goods and no production takes place. In this case, savers trade
endowment goods with each other at a 1:1 rate.

If ϕ = 0, then no endowment goods are stored, so savers enter with IOUs
and producers enter with output goods. In this case, producers potentially
trade output goods with each at a 1:1 rate and savers trade IOUs for output
goods at the price q = 1/(φR) at which producers are indifferent between
purchasing IOUs and output goods. (Observe that savers do not trade IOUs
with each other because they need to consume in the morning of t = 1).

Finally, if ϕ ∈ (0, 1), then both endowment goods and output goods are
potentially traded in equilibrium, so the equilibrium is more involved. Since
the market is competitive, the price is determined by relative scarcity. If the
quantity of production goods is greater than the quantity of endowment goods,
(1 − ϕ)z > ϕ (equivalently 0 < ϕ < z/(1 + z)), then endowment goods are
relatively scarce. In this case, the prices are p = (z − R)/z < 1 and q =
1/(φR) so all savers trade endowment goods for output goods and producers
are indifferent between trading output goods for other output goods, IOUs,
and endowment goods. If the quantity of endowment goods is greater than the
quantity of production goods, ϕ > (1− ϕ)z (equivalently z/(1 + z) < ϕ < 1),
then output goods are relatively scarce. In this case, the price is p = 1 and
q = 1/(φR) so all output producers trade output goods with savers and all
savers are indifferent between trading with producers and with each other.
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Observe that the price p is lower (i.e. better for endowment good holders)
when endowment goods are scarce because then producers end up giving all
the surplus from defaulting to the endowment good holders.

The t = 0 equilibrium. We now look for the values of (ϕ,R) that are pos-
sible equilibria at t = 0 given agent behavior at t = 1.

First observe that (ϕ = 1, R <∞) is an equilibrium. In this case, there is
no production so the producer’s problem is irrelevant. This also means that no
loans are repaid so φ = 0, which implies that savers strictly prefer endowment
goods and so (2.4) is satisfied.

Now consider ϕ ∈ [0, 1). If (1 − ϕ)z > ϕ, then, at t = 1, endowment
goods are scarce and producer indifference prices the assets. So, the prices are
p = (z−R)/z and q = 1/(φR). Producers default if they trade with endowment
good savers and so the probability of default is 1 − φ = ϕ/((1 − ϕ)z). Since
some savers store endowment goods and some savers buy IOUs, in equilibrium
savers must be indifferent between the two options. This implies that:

1/q = 1/p
⇒ φR = z/(z −R)

⇒ R =
z ±

√
z2 − 4z/φ

2

which cannot have a real solution since z ∈ (1, 2) implies that:

(1− φ)z < (1− φ)2 < 4
⇒ z2 < 4z/(1− φ)

Thus, by proof by contradiction, there is no equilibrium (ϕ,R) with 0 < ϕ ≤
z/(1 + z).

Alternatively, if (1 − ϕ)z ≤ ϕ, then, at t = 1, p = 1, q = 1/(φR) and all
producers trade for endowment goods, which implies that φ = 0. In this case,
indifference in the t = 0 IOU market requires:

φR = 1

but this cannot be satisfied because φ = 0. Thus, by proof by contradiction,
there is no equilibrium (ϕ,R) with z/(1 + z) < ϕ ≤ 1.
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A.2 Proof of Proposition 2
Proof. As in Proposition 1, the key equilibrium objects in the t = 1 market
are (p, q), the price of endowment goods and IOUs in terms of output goods,
and the key equilibrium objects in the t = 0 market are (ϕ,R), the fraction
of savers who store endowment goods (which ultimately pins down φ the frac-
tion of IOUs that are repaid) and the interest rate on IOUs. We need to find
conditions on µ such that there is an equilibrium with ϕ = 0 (and full repay-
ment φ = 1). We also need to show there is no equilibrium with ϕ > 0 (and
imperfect repayment φ < 1). We proceed by backwards induction. We first
characterize the equilibrium (p, q) at t = 1 for different values of (ϕ,R). We
then characterize the possible equilibrium values of (ϕ,R) at t = 0.

The t = 1 market. The equilibrium on the public marketplace is the same
as in Subsection 2.2 and the proof of Proposition 1. The equilibrium on the
platform is that no endowment goods are traded and agents trade output goods
and IOUs with price q = 1/(φR).

The t = 0 market. We start by finding the condition on µ under which
ϕ = 0 (no default φ = 1) is an equilibrium. In this case, the equilibrium at
t = 1 on the platform is the price q = 1/R and the equilibrium on the public
marketplace is (p, q) = ((z − R)/z, 1/R) since endowment goods are scarce.
So, the saver at time 0 chooses IOUs if:

η(1− µ)R + (1− η)R ≥ (1− η)z
z −R

⇒ R2 − zR + (1− η)z
η(1− µ) + 1− η ≤ 0

⇒
z −

√
z2 − 4(1−η)z

η(1−µ)+1−η

2 ≤ R ≤
z +

√
z2 − 4(1−η)z

η(1−µ)+1−η

2

So, the maximum markup for which there exists an IOU interest rate at which
the sellers are willing to purchase IOUs must satisfy:

z2 ≥ 4(1− η)z
η(1− µ) + 1− η

⇒ µ ≤ 1−
(4
z
− 1

) 1− η
η

(A.1)

48



So, if (A.1) is satisfied, then the equilibrium at t = 0 is:

ϕ = 0, R =
z +

√
z2 − 4(1−η)z

η(1−µ)+1−η

2 < z.

Finally, we show that there is no equilibrium with ϕ > 0. From the point of
view of the saver, they price loans assuming repayment because the platform
has guaranteed the IOUs. So, in this case, the equilibrium at t = 1 on the
platform is the price q = 1/R and the equilibrium at t = 1 on the public
marketplace is (p, q) = (1, 1/R) since endowment goods are plentiful. Thus,
savers choose IOUs if µ satisfies (A.1) because:

η(1− µ)R + (1− η)R ≥ (1− η)z
z −R

> 1− η

and so ϕ = 0. So, by proof by contradiction, there is no equilibrium with
ϕ > 0.

Proof of Corollary 2. (i) If the government offers a payment CBDC ledger
that respects privacy and forces the platform to accept payment using CBDC,
then agents can always undertake spot trade regardless of whether endowment
goods are stored. As a result, all agents on the public marketplace use CBDC
and default.

(ii) This follows immediately from observing that every trade goes through
the ledger.

B Supplementary Proofs For Section 3 (On-
line Appendix)

B.1 Discrete Choice Problems
This section of the appendix contains the derivation of the discrete choice
problems. Since these are standard results, we provided limited detail.

Lemma 2. Let {ζn}n≤N be a collection of independent draws from Gu(µ, γ),
where γ = −µE and E represents the Euler–Mascheroni constant. Let u(c) =
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log(c). Then:

max
n≤N
{ζn + ϕnu(πn)} ∼ Gu

(
µ+ γ log

(∑
n

(πn)ϕn/γ
)
, γ

)
(B.1)

and so we have:

E[max
n
{ζn + ϕn log(πn)}] = γ log

(∑
n

(πn)ϕn/γ
)
,

P
(
n = argmaxn′

{
ζn
′ + ϕn

′ log(πn′)
})

= (πn)ϕ
n/γ∑

n′ (πn′)ϕ
n′/γ

Proof. Using the definition of the Gumbel distribution and the independence
of the N draws, we have that:

P(max
n
{ζn + ϕnu(πn)} ≤ k) =

∏
n

P(ζn + ϕnu(πn) ≤ k)

= exp
(∑

n

−e−(k−µ)/γeϕ
nu(πn)/γ

)

= exp
(
−e−(k−µ−γ log(∑n

eϕ
nu(πn)/γ))/γ

)
which implies result (B.1). From the properties of the Gumbel distribution,
the expectation is:

E[max
n
{ζn + ϕn log(πn)}] =

[
µ+ γ log

(∑
n

(πn)ϕn/γ
)]

+ γE

= γ log
(∑

n

(πn)ϕn/γ
)

and the probability of choosing n is:

P
(
n = argmaxn′

{
ζn
′ + ϕn

′ log(πn′)
})

= eϕ
nu(πn)/γ∑

n′ eϕ
n′u(πn′ )/γ

= (πn)ϕ
n/γ∑

n′ (πn′)ϕ
n′/γ
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B.2 Agent Problem and Proof of Theorem 1
Proof of Theorem 1. We solve the problem recursively.

At age 2:, taking price processes as given, an agent with deposits d chooses
on which platform to search to solve problem (B.6) below (dropping the explicit
i superscript and the time subscript on the choice n2):

V2,t+2(d) = E
[
max
c,n

{
ζ̃n2,t+2 + u(c)

}]
s.t. (1 + µnt+2)c ≤ Rdn

t+1,t+2d/ε
n
t+2, ∀n ∈ {0, 1},

(B.2)

where V2,t+2 is the value function at the start of the agent’s final period. Using
standard discrete choice results (summarized in Lemma 2 in the Appendix),
the value function satisfies:

V2,t+2(d) = log (ν̄2,t+2d) (B.3)

where the average purchasing power at time τ is:

ν̄2,t+2 :=
∑

n2

(
ζn2

2 Rdn2
t+1,t+2

(1 + µn2
t+2)εn2

t+2

)γ2
1/γ2

(B.4)

and the fraction of buyers who choose n2 at time t+ 2 is given by:

ηn2
2,t+2 =

(
ζn2

2 Rdn2
t+1,t+2/((1 + µn2

t+2)εn2
t+2)

)γ2

∑
n′2

(
ζ
n′2
2 R

dn′2
t+1,t+2/((1 + µ

n′2
t+2)εn

′
2
t+2

)γ2

At age 1:, after selling production goods, taking price processes as given, an
agent who has made profit π in token goods selling on platform n solves the
problem:

V n
1,t+1(π) = max

c,d
{(1− β)u(c) + βV2,t+2 (d)}

s.t. d ≤ π − εnt+1(1 + µnt+1)c,

Substituting in the constraint gives the standard consumption saving decision:

max
d

{
(1− β)u

(
π − d

εnt+1(1 + µnt+1)

)
+ βV2,t+2(d)

}
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The first order condition gives:

0 = − (1− β)u′(c1,t+1)
εnt+1(1 + µnt+1) + βV ′2,t+2(d)

Imposing the functional forms and rearranging gives:

1− β
εnt+1(1 + µnt+1)c = β

d
= β

π − εnt+1(1 + µnt+1)c

and so:

c1,t+1 = (1− β)π
εnt+1(1 + µnt+1) , d1,t+1 = βπ

And so we have:

V n
1,t+1(π) = (1− β) log

(
(1− β)π

εnt+1(1 + µnt+1)

)
+ β log (ν̄2,t+2βπ)

= log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εnt+1(1 + µnt+1)

)
+ log(π)

At age 0: Now consider the problem of an agent at age 0 during the morning
market. They choose where to purchase input goods, where to sell output
goods, and the quantity of input goods to solve (B.7) below:

V0,t = Et
[

max
n0,n1,x,π

{
ζ̃n0

0,t + ζ̃n1
1,t+1 + V n1

1,t+1(π)
}]

s.t. (B.5)

π = εn1
t+1zx

α − (1 + µn0
t )Rbn0

t,t+1x

For a given choice of n1, the agent chooses x to maximize:

max
x

{
εn1
t+1zx

α − (1 + µn0
t )Rbn0

t,t+1x
}

Taking the FOC gives that producer labor demand, output, and profit are
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given by:

x0,t =
(

εn1
t+1αz

(1 + µn0
t )Rbn0

t,t+1

) 1
1−α

, yn0
1,t+1 = z

(
εn1
t+1αz

(1 + µn0
t )Rbn0

t,t+1

) α
1−α

,

π1,t+1 =
(

εn1
t+1αz

((1 + µn0
t )Rbn0

t,t+1)α

) 1
1−α (1− α

α

)
.

And so we have:

V0,t = Et
[

max
n0,n1,x,π

{
ζ̃n0

0,t + ζ̃n1
1,t+1 + V n1

1,t+1(π(n0,n1)
1,t+1 )

}]

= Et

max
n0,n1

ζ̃n0
0,t + ζ̃n1

1,t+1 − log
((
εn1
t+1(1 + µn1

t+1)
)1−β

)

+ log
( εn1

t+1αz

((1 + µn0
t )Rbn0

t,t+1)α

) 1
1−α (1− α

α

)


+ log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)

= Et

max
n0,n1

ζ̃n0
0,t + ζ̃n1

1,t+1 + log

(εn1
t+1)

1
1−α−(1−β) (1 + µn1

t+1)−(1−β)(
(1 + µn0

t )Rbn0
t,t+1

) α
1−α





+ log
(

(αz)
1

1−α

(1− α
α

))
+ log

(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)

and Lemma 2 implies that the fraction of agents at age 0 choosing to purchase
inputs on n0 and at age 1 choosing to purchase on n1 satisfies:

ηn0
0,t =

(
ζn0

0 ((1 + µn0
t )Rbn0

t,t+1)−
α

1−α
)γ0

∑
n′0

(
ζ
n′0
0 ((1 + µ

n′0
t )Rbn′0

t,t+1)−
α

1−α
)γ0

ηn1
1,t+1 =

(
ζn1

1 (εn1
t+1)

1
1−α+β−1 (1 + µn1

t+1)β−1
)γ1

∑
n′1

(
ζ
n′1
1

(
ε
n′1
t+1

) 1
1−α+β−1

(1 + µ
n′1
t+1)β−1

)γ1
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and:

V0,t = log(ν̄0,t) + log(ν̄1,t+1) + β log (ν̄2,t+2)

+ log
(

(αz)
1

1−α

(1− α
α

))
+ log

(
(1− β)1−βββ

)
where:

ν̄0,t :=
(∑
n0

(
ζn0

0

(
(1 + µn0

t )Rbn0
t,t+1

)− α
1−α

)γ0
)1/γ0

ν̄1,t+1 :=
(∑
n1

(
ζn1

1

(
εn1
t+1

) 1
1−α+β−1

(1 + µn1
t+1)β−1

)γ1
)1/γ1

and ν̄2,t+2 is given by (B.4).

B.3 Financial Intermediary Problem and Proof of Lemma
1

Before starting the proof, we need to set up the budget constraints for the
financial intermediaries. In the evening of each period t, the financial interme-
diaries take real deposit wealth At from agents. They then purchase money
Mt to back deposit withdrawals and discount the issuance of IOUs in dollars,
purchase bonds Bt, and purchase shares in the platform, St. So their budget
constraint at t is:

qmt Mt + qbtBt + qstSt ≤ At.

In the morning of t+1, depositors who trade on the public marketplace (n =
o) withdraw money, and depositors who trade on the private platform (n = p)
exchange the market value of the remaining assets in the financial intermediary.
The financial intermediary offers depositors withdrawing in money the return
on money and the other depositors the return on assets that can be used in
exchange on the ledger. So the “money-in-advance” constraint on the financial
intermediary is:

Rm
t,t+1η

m
2,t+1At ≤ qmt+1Mt ⇔ ηm2,t+1At ≤ qmt Mt

Let M̆t := Mt−ηm2,t+1At/q
m
t denote the excess money holdings that can be used

to discount new IOUs in the morning of t+ 1. In addition, the intermediaries
offer to discount new IOUs into money at rate Ĕt+1 IOUs per unit of money.
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Thus, the real wealth available to depositors trading on the platform is:

Ăt = qbt+1Ĕt+1M̆t +Bt + qst+1St

Proof of Lemma 1. Afternoon at time t: Let At denote the real value of de-
posits in the afternoon sub-period at time t. The financial intermediary invests
the portfolio by purchasing Bt (t+ 1)-IOUs, Mt money, and St shares subject
to the budget constraint:

qbtBt + qmt Mt + qstSt ≤ At

The financial intermediary offers the return on money for money withdrawals
so it must hold that:

qmt+1Mt ≥ Rm
t,t+1η

o
2,t+1At

⇒ qmt Mt ≥ ηo2,t+1At

Morning at time t: Let M̆t := Mt − ηo2,t+1At/q
m
t denote excess holdings of

money beyond the money-in-advance constraint. The financial intermediary
uses its excess money to discount new IOUs. This leaves it with ĔtM̆t IOUs.
Incorporating discounting, the wealth available to depositors trading on the
platform is M̆tĔt (t+ 2)-IOUs, Bt (t+ 1)-IOUs, and St shares. In real terms,
this gives wealth:

Ăt+1 = 1
P b
t+1

M̆tĔt+1 +Bt + 1
P s
t+1

St

= qbt+1M̆tĔt+1 +Bt + (qst+1 + πst+1)St

=
(
qbt+1Ĕt+1

qmt
θ̆mt + 1

qbt
θbt + qst+1 + πst+1

qst
θst

)
At

where θ̆mt := qmt M̆t/At, θbt := qbtBt/At, and θst := qstSt/At.
Optimization and equilibrium: In an equilibrium with discounting of IOUs,

optimizing financial intermediaries must be indifferent across asset classes.
That is, the risk free returns must equate:

qbt+1Ĕt+1

qmt
= 1
qbt

= qst+1 + πst+1
qst
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so we have that:

Ĕt+1 = 1
qbt

qmt
qbt+1

= 1
qbt

qmt
qmt+1/Et+1

= Et+1
Rb
t,t+1

Rm
t,t+1

and the depositor returns are:

Rdp
t,t+1 = Rb

t,t+1

Rdo
t,t+1 = Rm

t,t+1

Entrepreneur borrowing costs: Now we can return to the problem of the
entrepreneur. The entrepreneur needs to purchase x0,t goods. If they trade on
the platform, then they issue P b

t (1+µn0
t )x0,t IOUs. If they trade on the public

marketplace, then they issue ĔtPm
t (1 + µn0

t )x0,t IOUs. Each IOU promises 1
good so their total borrowing costs are:

(1 + µn0
t )Ĕn0

t P
n0
t x0,t.

That is, Rbn
t,t+1 := Ĕn0

t P
n0
t is given by (imposing the indifference condition):

Rbp
t,t+1 := P b

t = 1
qbt

= Rb
t,t+1

Rbo
t,t+1 := ĔtP

m
t = Et

Rb
t−1,t

Rm
t−1,t

Pm
t =

Rb
t−1,t

Rm
t−1,t

εtP
b
t =

Rb
t−1,t

Rm
t−1,t

εtR
b
t,t+1

Equilibrium balance sheet: In equilibrium, the financial intermediary must
hold enough money at t to discount all IOUs and fulfill withdrawal requests
at t+ 1:

Mt =
Rm
t,t+1

qmt+1
ηo2,t+1At +

∑
n1

ηo0,t+1η
n1
1,t+2P

m
t+1(1 + µot+1)x(o,n1)

0,t+1

=
ηo2,t+1

qmt
At + 1

qmt+1

∑
n1

ηo0,t+1η
n1
1,t+2εt+1(1 + µot+1)x(o,n1)

0,t+1

=
ηo2,t+1

qmt
At + 1

qmt R
m
t,t+1

∑
n1

ηo0,t+1η
n1
1,t+2εt+1(1 + µot+1)x(o,n1)

0,t+1

where µot+1 = 0. So, in real terms the portfolio is:

qmt Mt = ηo2,t+1At + 1
Rm
t,t+1

∑
n1

ηo0,t+1η
n1
1,t+2εt+1x

(o,n1)
0,t+1
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B.4 Equilibrium Characterization
Summarising the equilibrium and optimization equations gives the following
characterization of equilibrium. Given states {Mt, µt−2, µt−1, Rt−1} and cur-
rent policy µt, we can solve for the equilibrium variables at time t:(

cnt
1,t, c

nt
2,t,x

nt+1
t ,ynt

t
,π

nt
t ,d

nt
t , εt, R

bn
t , R

dn
t ,η

nt
t

)
using the equations for agent choices:

x
n1
0,t =

(
εn1
t+1αz

(1 + µn0
t )Rbn0

t,t+1

) 1
1−α

y
n1
1,t = z

(
εn1
t αz

(1 + µn0
t−1)Rbn0

t−1,t

) α
1−α

π
n1
1,t =

(
εn1
t αz

((1 + µn0
t−1)Rbn0

t−1,t)α

) 1
1−α (1− α

α

)
c

n1
1,t =

(1− β)πn1
1,t

(1 + µn1
t )εn1

t

d
n1
1,t = βπ

n1
1,t c

n2
2,t =

Rdn2
t−1,tβπ

n1
1,t−1

(1 + µn2
t )εn2

t

ηn0
0,t =

(
ζn0

0 ((1 + µn0
t )Rbn0

t,t+1)−
α

1−α
)γ0

∑
n′0

(
ζ
n′0
0 ((1 + µ

n′0
t )Rbn′0

t,t+1)−
α

1−α
)γ0 ηn2

2,t =

(
ζn2

2 Rdn2
t−1,t/((1 + µn2

t )εn2
t )
)γ2

∑
n′2

(
ζ
n′2
2 R

dn′2
t−1,t/((1 + µ

n′2
t )εn

′
2
t

)γ2

ηn1
1,t =

(
ζn1

1 (εn1
t )

1
1−α+β−1 (1 + µn1

t )β−1
)γ1

∑
n′1

(
ζ
n′1
1

(
ε
n′1
t

) 1
1−α+β−1

(1 + µ
n′1
t )β−1

)γ1

financial intermediary equations:

Rbn
t,t+1 = εnt

Rb
t−1,t

Rn
t−1,t

Rb
t,t+1 Rdn

t,t+1 = Rn
t,t+1

At = qmt Mt + qbtBt + qstSt ηm2,t+1At ≤ qmt Mt

At =
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t
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and the market clearing conditions:

ηn1,t
∑
n0

ηn0
0,t−1y

(n0,n)
1,t = ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn1,t

∑
n0

ηn0
0,t−1c

(n0,n)
1,t

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

qbt B̆t =
∑
n0,n1

ηn0
0,tη

n1
1,t+1Rbn0

t,t+1(1 + µn0
t+1)x(n0,n1)

0,t

B̆t = Bt

qmt M̄t = ηo2,t+1At + 1
Rm
t,t+1

∑
n1

ηo0,t+1η
n1
1,t+2εt+1x

(o,n1)
0,t+1

St = 1

Proof of Theorem 2. We start by solving for εt. Substituting the financial
intermediary returns into the agent choices gives:

ηn0
0,t =

(
ζn0

0 ((1 + µn0
t )Rn0

t,t+1)−
α

1−α
)γ0

∑
n′0

(
ζ
n′0
0 ((1 + µ

n′0
t )Rn′0

t,t+1)−
α

1−α
)γ0 ηn2

2,t =

(
ζn2

2 Rn2
t−1,t/((1 + µn2

t )εn2
t )
)γ2

∑
n′2

(
ζ
n′2
2 R

n′2
t−1,t/((1 + µ

n′2
t )εn

′
2
t

)γ2

Now, return to the goods market clearing condition. After rearranging, we
have:

ηn1,t
∑
n0

ηn0
0,t−1

(
y

(n0,n)
1,t − c(n0,n)

1,t

)
= ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

where the LHS can be computed using:

y
(n0,n)
1,t − c(n0,n)

1,t

= z

(
αzεnt

(1 + µn0
t−1)Rbn0

t−1,t

) α
1−α

− (1− β)
(1 + µnt )εnt

(
αzεnt

((1 + µn0
t−1)Rbn0

t−1,t)α

) 1
1−α (1− α

α

)

=
(

1− (1− β)(1− α)
1 + µnt

)
z

(
αzεnt

(1 + µn0
t−1)Rbn0

t−1,t

) α
1−α

=
(

1− (1− β)(1− α)
1 + µnt

)
y

(n0,n)
1,t
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and so:

ηn1,t
∑
n0

ηn0
0,t−1

(
y

(n0,n)
1,t − c(n0,n)

1,t

)

= ηn1,t
∑
n0

ηn0
0,t−1

(
1− (1− β)(1− α)

1 + µnt

)
z

(
αzεnt

(1 + µn0
t−1)Rbn0

t−1,t

) α
1−α

= ηn1,t

(
1− (1− β)(1− α)

1 + µnt

)
z(αzεnt )

α
1−α

∑
n0

ηn0
0,t−1

((1 + µn0
t−1)Rbn0

t−1,t)
α

1−α
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and where the RHS can be computed using:

ηn0,t
∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

= ηn0,t
∑
n1

ηn1
1,t+1

(
εn1
t+1αz

(1 + µnt )Rbn
t,t+1

) 1
1−α

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

Rdn
t−1,tβ

(1 + µnt )εnt

(
εn1
t−1αz

((1 + µn0
t−2)Rbn0

t−2,t−1)α

) 1
1−α (1− α

α

)

=

(
ζn0 ((1 + µnt )Rbn

t,t+1)−
α

1−α
)γ0

∑
n′

(
ζn
′

0 ((1 + µn
′
t )Rbn′

t,t+1)−
α

1−α
)γ0

∑
n1

ηn1
1,t+1

(
εn1
t+1αz

(1 + µnt )Rbn
t,t+1

) 1
1−α

+

(
ζn2

2 Rdn2
t−1,t/((1 + µn2

t )εn2
t )
)γ2

∑
n′2

(
ζ
n′2
2 R

dn′2
t−1,t/((1 + µ

n′2
t )εn

′
2
t

)γ2

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

Rdn
t−1,tβ

(1 + µnt )εnt

(
εn1
t−1αz

((1 + µn0
t−2)Rbn0

t−2,t−1)α

) 1
1−α (1− α

α

)

= (ζn0 )γ0
(
(1 + µnt )Rbn

t,t+1

)− 1+αγ0
1−α 1

ν̄γ0
0,t

∑
n1

ηn1
1,t+1

(
εn1
t+1αz

) 1
1−α

+ (ζn2 )γ2

(
Rdn
t−1,t

(1 + µnt )εnt

)1+γ2 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1β

(
εn1
t−1αz

((1 + µn0
t−2)Rbn0

t−2,t−1)α

) 1
1−α (1− α

α

)

= (ζn0 )γ0

(
(1 + µnt )εnt

Rb
t−1,tR

b
t,t+1

Rn
t−1,t

)− 1+αγ0
1−α 1

ν̄γ0
0,t

∑
n1

ηn1
1,t+1

(
εn1
t+1αz

) 1
1−α

+ (ζn2 )γ2

(
Rn
t−1,t

(1 + µnt )εnt

)1+γ2 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1β

(
εn1
t−1αz

((1 + µn0
t−2)Rbn0

t−2,t−1)α

) 1
1−α (1− α

α

)

Under the assumption that 1+αγ0
1−α = 1 + γ2 and (ζn0 )γ0 = (ζn2 )γ2 , we can take
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out the n specific component to get:

ηn0,t
∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

= (ζn2 )γ2

(
Rn
t−1,t

(1 + µnt )εnt

)1+γ2
 1
ν̄γ0

0,t

∑
n1

ηn1
1,t+1

(
αzεn1

t+1
(Rb

t−1,tR
b
t,t+1)1+αγ0

) 1
1−α

+ 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1β

(
αzεn1

t−1

((1 + µn0
t−2)Rbn0

t−2,t−1)α

) 1
1−α (1− α

α

)
So, the market clearing condition in goods market n becomes:

ηn1,t

(
1− (1− β)(1− α)

1 + µnt

)
z(αzεnt )

α
1−α

∑
n0

ηn0
0,t−1

((1 + µn0
t−1)Rbn0

t−1,t)
α

1−α

= (ζn2 )γ2

(
Rn
t−1,t

(1 + µnt )εnt

)1+γ2
 1
ν̄γ0

0,t

∑
n1

ηn1
1,t+1

(
αzεn1

t+1
(Rb

t−1,tR
b
t,t+1)1+αγ0

) 1
1−α

+ 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

(
αzεn1

t−1

((1 + µn0
t−2)Rbn0

t−2,t−1)α

) 1
1−α (1− α

α

)
Dividing the market clearing condition in market n by the market clearing
condition in market n′ gives: ζn1 (εnt )

1
1−α+β−1 (1 + µnt )β−1

ζn
′

1

(
εn
′
t

) 1
1−α+β−1

(1 + µn
′
t )β−1


γ1 (

1− (1−β)(1−α)
1+µnt

)
(

1− (1−β)(1−α)
1+µn′t

) ( εnt
εn
′
t

) α
1−α

=
(
ζn2
ζn
′

2

)γ2


Rnt−1,t

(1+µnt )εnt
Rn
′
t−1,t

(1+µn′t )εn′t


1+γ2

which implies that:
(
εnt
εn
′
t

) α
1−α (γ1+1)+γ1β+1+γ2 ( 1 + µnt

1 + µn
′
t

)−γ1(1−β)+1+γ2
(
1− (1−β)(1−α)

1+µnt

)
(

1− (1−β)(1−α)
1+µn′t

)

=
(
ζn2
ζn
′

2

)γ2 ( ζn1
ζn
′

1

)−γ1 (Rn
t−1,t

Rn′
t−1,t

)1+γ2
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which gives:

εnt
εn
′
t

=

( ζn2
ζn
′

2

)γ2 ( ζn1
ζn
′

1

)−γ1 (Rn
t−1,t

Rn′
t−1,t

)1+γ2 ( 1 + µnt
1 + µn

′
t

)γ1(1−β)−(1+γ2)
1− (1−β)(1−α)

1+µn′t

1− (1−β)(1−α)
1+µnt




1
α

1−α (γ1+1)+γ1β+1+γ2

and so for n = o and n′ = p we have:

εt =
ζγ1

1 ζ
−γ2
2

(
Rm
t−1,t

Rb
t−1,t

)1+γ2

(1 + µt)−γ1(1−β)+1+γ2

 1− (1−β)(1−α)
1+µt

1− (1− β)(1− α)

( α
1−α (γ1+1)+γ1β+1+γ2)−1

Proof of Theorem 3. (i) Solve for Rb
t,t+1: We have the following equations for

the morning “primary” IOU market, the morning deposit market, the after-
noon financial intermediary budget constraint, the afternoon bond market, the
afternoon money market, and the afternoon equity market.

qbt B̆t =
∑
n0,n1

ηn0
0,tη

n1
1,t+1Rbn0

t,t+1(1 + µn0
t+1)x(n0,n1)

0,t

At =
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t

At = qbtBt + qmt Mt + qstSt

Bt = B̆t

qmt Mt = ηo2,t+1At + 1
Rm
t,t+1

∑
n1

ηo0,t+1η
n1
1,t+2εt+1x

(o,n1)
0,t+1

St = 1

Substituting the other equations into the financial intermediary budget con-
straint:

∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t =

∑
n0,n1

ηn0
0,tη

n1
1,t+1ε

n0
t

Rb
t−1,t

Rn0
t−1,t

Rb
t,t+1(1 + µn0

t+1)x(n0,n1)
0,t

+ ηo2,t+1
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t

+
∑
n1

ηo0,t+1η
n1
1,t+2

εt+1

Rm
t,t+1

x0,t+1 + qst
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and so after rearranging and imposed dt,1 = βπ1,t we have:

(1− ηo2,t+1)
∑
n0,n1

ηn0
0,t−1η

n1
1,tβπ

(n0,n1)
1,t

=
∑
n1

(∑
n0

ηn0
0,tη

n1
1,t+1ε

n0
t

Rb
t−1,t

Rn0
t−1,t

Rb
t,t+1(1 + µn0

t+1)x(n0,n1)
0,t

+ ηo0,t+1η
n1
1,t+2

εt+1

Rm
t,t+1

x
(o,n1)
0,t+1

)
+ qst

which gives the expression in the main text.
(ii) Return on Money: Rearranging the money market clearing condition:

qmt M̄t = ηo2,t+1At + 1
Rm
t,t+1

∑
n1

ηo0,t+1η
n1
1,t+2εt+1x

(o,n1)
0,t+1

= ηo2,t+1βΠ1,t + 1
Rm
t,t+1

Xo
0,t+1

gives that:

Rm
t,t+1 = qmt+1

qmt
=
(
M̄t

M̄t+1

)ηo2,t+2βΠ1,t+1 + 1
Rmt,t+2

Xo
0,t+2

ηo2,t+1βΠ1,t + 1
Rmt,t+1

Xo
0,t+1


so in the steady state, this is:

R
m = 1/gM

(iii) Equity Price: The equity price satisfies:

qst = 1
Rb
t,t+1

(
πst+1 + qst+1

)
In the steady state, this implies that:

q̄s = π̄s

R̄b − 1
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B.5 Incentive Compatibility
Proof of Theorem 4. We consider the value for an agent who chooses to de-
fault when other agents are choosing to not default. We solve the problem
recursively.

At age 2: an agent who has defaulted and joined a financial intermediary
taking defaulting agents can only hold cash and so only trade on the public
marketplace. Taking price processes as given, an agent with deposits d chooses
on which platform to search to solve problem (B.6) below (dropping the explicit
i superscript and the time subscript on the choice n2):

V̌2,t+2(d) = E
[
max
c

{
ζ̃o2,t+2 + u(c)

}]
s.t. c ≤ Rm

t+1,t+2d/ε
o
t+2,

(B.6)

where V̌2,t+2 is the value function at the start of the agent’s final period.
Evaluating this expression gives:

V̌2,t+2(d) = log (ν̌2,t+2d)

where ν̌2,t+2 := ζo2Rm
t+1,t+2/ε

o
t+2 = Rm

t+1,t+2/ε
o
t+2.

At age 1: the agent cannot default if they end up trading on the private
platform. So, their value is:

V p
1,t+1(π) = max

c,d
{(1− β)u(c) + βV2,t+2 (d)}

s.t. d ≤ π − εpt+1(1 + µpt+1)c,

and from the proof of Theorem 1 we have:

V p
1,t+1(π) = (1− β) log

(
(1− β)π

εpt+1(1 + µpt+1)

)
+ β log (ν̄2,t+2βπ)

= log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log (εpt+2(1 + µpt+1)) + log(π)

However, if they trade on the public marketplace, then they can trade with
cash, default, and go to a bank accepting cash trades without reporting them
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to the ledger. In this case, their value at t = 1 is given by:

V̌ o
1,t+1(π) = max

c,d

{
(1− β)u(c) + βV̌2,t+2 (d)

}
s.t. d ≤ π̌ − εot+1c,

where π̌ is the profit if the agent defaults. As before, we have that:

c1,t+1 = (1− β)π̌
εt+1

, d1,t+1 = βπ̌

And so we have:

V̌ o
1,t+1(π) = (1− β) log

(
(1− β)π̌
εot+1

)
+ β log (ν̌2,t+2βπ̌)

= log
(
(1− β)1−βββ

)
+ β log (ν̌2,t+2)− (1− β) log

(
εot+2

)
+ log(π̌)

At Age 0: Now consider the problem of an agent at age 0 conditional on
choosing to sell on the public marketplace (n0, n1) = (n0, o).

If they intend to repay at age 1, then they solve the same problem as before:

V0,t|n0,n1=o = ζ̃n0
0,t + ζ̃o1,t+1 + max

x,π

{
V o

1,t+1(π)
}

s.t. (B.7)

π = εot+1zx
α − (1 + µn0

t )Rbn0
t,t+1x

Taking the FOCs gives profit:

π
(n0,o)
1,t+1 =

(
εot+1αz

((1 + µn0
t )Rbn0

t,t+1)α

) 1
1−α (1− α

α

)
.

From the proof of Theorem 1, for the optimal choice of (x, π), we have that:

V o
1,t+1 = log

(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εot+1

)
+ log(π(n0,o)

1,t+1 )
= log

(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εot+1

)
+ log

( εot+1αz

((1 + µn0
t )Rbn0

t,t+1)α

) 1
1−α (1− α

α

)
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If they intend to default at age 1, then they solve (B.8) below:

V̌0,t|n0,n1=o = ζ̃n0
0,t + ζ̃o1,t+1 + max

x,π

{
V̌ o

1,t+1(π̌)
}

s.t. (B.8)

π̌ = εot+1zx
α − χ(1 + µn0

t )x

For a given choice of n0, they choose x to maximize:

max
x

{
εot+1zx

α − χ(1 + µn0
t )x

}
Taking the FOC gives profit:

π̌
(n0,o)
1,t+1 =

(
εot+1αz

(χ(1 + µn0
t ))α

) 1
1−α (1− α

α

)
.

So, for the optimal choice of (x̌, π̌), their value is:

V̌ o
1,t+1 = log

(
(1− β)1−βββ

)
+ β log (ν̌2,t+2)− (1− β) log

(
εot+1

)
+ log(π̌(n0,o)

1,t+1 )
= log

(
(1− β)1−βββ

)
+ β log (ν̌2,t+2)− (1− β) log

(
εot+1

)
+ log

( εot+1αz

(χ(1 + µn0
t ))α

) 1
1−α (1− α

α

)
Incentive compatibility: An agent choosing (n0, o) chooses to repay if:

V0,t|n0,n1=o ≥ V̌0,t|n0,n1=o

⇒ V o
1,t+1 ≥ V̌ o

1,t+1

⇒ β log (ν̄2,t+2) + log(π(n0,o)
1,t+1 ) ≥ β log (ν̌2,t+2) + log(π̌(n0,o)

1,t+1 )

⇒ β log
(
ν̄2,t+2

ν̌2,t+2

)
≥ log

 π̌(n0,o)
1,t+1

π
(n0,o)
1,t+1


⇒ β log

(
ν̄2,t+2

ν̌2,t+2

)
=
(

α

1− α

)
log

(
Rbn0
t,t+1

χ

)
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where:

ν̄2,t+2

ν̌2,t+2
=

∑
n2

(
ζ
n2
2 R

dn2
t+1,t+2

(1+µn2
t+2)εn2

t+2

)γ2
1/γ2

Rmt+1,t+2
εot+2

=
(

1 +
(
ζp2

(
Rb
t+1,t+2

Rm
t+1,t+2

)(
εot+2

1 + µt+2

))γ2)1/γ2

and

π̌
(n0,o)
1,t+1

π
(n0,o)
1,t+1

=

(
εot+1αz

(χ(1+µn0
t ))α

) 1
1−α (1−α

α

)
(

εot+1αz

((1+µn0
t )Rbn0

t,t+1)α

) 1
1−α (1−α

α

) =
(
Rbn0
t,t+1

χ

) α
1−α

So, the incentive compatibility constraint becomes:
(

1 +
((

Rb
t+1,t+2

Rm
t+1,t+2

)(
ζb2ε

m
t+2

1 + µt+2

))γ2)1/γ2

≥
(
Rbn0
t,t+1

χ

) α
1−α

Rearranging, this becomes:

ζp2 ε
o
t+2

1 + µt+2
≥
(
Rm
t+1,t+2

Rb
t+1,t+2

)(Rbn0
t,t+1

χ

) αγ2
1−α

− 1


1/γ2

which implies:

1 + µt+2 ≤ ζp2 ε
o
t+2

(
Rb
t+1,t+2

Rm
t+1,t+2

)(Rbn0
t,t+1

χ

) αγ2
1−α

− 1


−1/γ2

= ζp2 ε
o
t+2

(
Rb
t+1,t+2

Rm
t+1,t+2

)
ε

n0
t
Rbt−1,t
R
n0
t−1,t

Rb
t,t+1

χ


αγ2
1−α

− 1


−1/γ2
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So, the condition is:

1 + µt+2 ≤ ζp2 ε
o
t+2

Rb
t+1,t+2

Rm
t+1,t+2


min{εn0

t
Rbt−1,t
R
n0
t−1,t

, 1}Rb
t,t+1

χ


αγ2
1−α

− 1


−1/γ2

B.6 Platform Problem
The platform earns profit:

πst = µt

(
ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn1,t

∑
n0

ηn0
0,t−1c

(n0,n)
1,t

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

)
.

Imposing the equilibrium objects that the platform takes as given (the goods
market and the agent decisions about where to trade), the platform profit can
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be re-expressed as:

πst = µtη
p
1,t
∑
n0

ηn0
0,t−1y

(n0,p)
1,t

= µt

 1
1 +

(
1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1



×
∑
n0


1

1 +
(
ζ
n′0
ζn0

)γ0
(

(1+µ
n′0
t−1)R

bn′0
t−1,t

(1+µn0
t−1)Rbn0

t−1,t

)− αγ0
1−α

 z
(

αz

(1 + µn0
t−1)Rbn0

t−1,t

) α
1−α

= µt

 1
1 +

(
1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1

 z ( αz

Rb
t−1,t

) α
1−α

×


(
εt−1

Rbt−2,t−1
Rmt−2,t−1

)− α
1−α

1 + (ζ)γ0
(

1+µt−1
(εt−1Rbt−2,t−1)/Rmt−2,t−1

)− αγ0
1−α

+ (1 + µt−1)−
α

1−α

1 +
(

1
ζ

)γ0
(

(εt−1Rbt−2,t−1)/Rmt−2,t−1
1+µt−1

)− αγ0
1−α



=: Π(µt, εt,Rt)Γ(µt−1, εt−1,Rt)
=: πs(µt, µt−1, εt, εt−1,Rt)

and εt is given by:

εt =
ζγ1

1
ζγ2

2

(1 + µt)−γ1(1−β)+1+γ2

(Rb
t−1,t/R

m
t−1,t)1+γ2

 1− (1−β)(1−α)
1+µt

1− (1− β)(1− α)


1

α
1−α (γ1+1)+γ1β+1+γ2

=: ε(µt,Rt)

where Rt = (Rb
t−1,t, R

b
t−2,t−1, R

m
t−1,t, R

m
t−2,t−1) is the set of returns that the

platform does not internalize.
The Lagrangian for the platform is:

L =
∞∑
t=0

ξ0,tπ
s(µt, µt−1, εt, εt−1,Rt)
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So, for all t ≥ 0, the FOC for µt is given by:

0 = ξ0,t
∂πs(µt, µt−1, εt, εt−1,Rt)

∂µt
+ ξ0,t+1

∂πs(µt+1, µt, εt+1, εt,Rt+1)
∂µt

+ ξ0,t
∂πs(µt, µt−1, εt, εt−1,Rt)

∂εt

∂ε(µt,Rt)
∂µt

+ ξ0,t+1
∂πs(µt+1, µt, εt+1, εt,Rt+1)

∂εt

∂ε(µt,Rt)
∂µt

where

∂πs(µt, µt−1, εt, εt−1,Rt)
∂µt

= Γ(µt−1, εt−1,Rt)z
(

αz

Rb
t−1,t

) α
1−α

 1
1 +

(
1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1

−
µt
(

1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (β − 1)γ1(1 + µt)(β−1)γ1−1(

1 +
(

1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1

)2


= Γ(µt−1, εt−1,Rt)z

(
αz

Rb
t−1,t

) α
1−α 1

1 +
(

1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1

×

1−
µt
(

1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (β − 1)γ1(1 + µt)(β−1)γ1−1

1 +
(

1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1



70



and

∂πs(µt+1, µt, εt+1, εt,Rt+1)
∂µt

= Π(µt+1, εt+1,Rt+1)

×


(
εt
Rbt−1,t
Rmt−1,t

)−α(1−γ0)
1−α

(ζ)γ0
(
αγ0
1−α

)
(1 + µt)−

αγ0
1−α−1

(
1 + (ζ)γ0

(
1+µt

εtRbt−1,t/R
m
t−1,t

)− αγ0
1−α

)2 −

(
α

1−α

)
(1 + µt)−

α
1−α−1

(
1 +

(
1
ζ

)γ0
(
εtRbt−1,t/R

m
t−1,t

1+µt

)− αγ0
1−α

+ (1 + µt)
αγ0
1−α

γ0(εtRbt−1,t/R
m
t−1,t)−

αγ0
1−α

ζγ0

)
(

1 +
(

1
ζ

)γ0
(
εtRbt−1,t/R

m
t−1,t

1+µt

)− αγ0
1−α

)2



and

∂πs(µt, µt−1, εt, εt−1,Rt)
∂εt

= −
Γ(µt−1, εt−1,Rt)zµt

(
αz

Rbt−1,t

) α
1−α

ε−1
t(

1 + ζ−γ1ε
(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1

)
×


(

1
ζ

)γ1 ( 1
1−α + β − 1

)
γ1ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1

1 +
(

1
ζ

)γ1
ε

(1/(1−α)+β−1)γ1
t (1 + µt)(β−1)γ1


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and

∂πs(µt+1, µt, εt+1, εt,Rt+1)
∂εt

= Π(µt+1, εt+1,Rt+1)×
−
(

α
1−α

) (
1

εtRbt−1,t/R
m
t−1,t

) α
1−α 1

εt

(
1 + (1 + γ0)ζγ0

(
1+µt

εtRbt−1,t/R
m
t−1,t

)− αγ0
1−α

)
(

1 + ζγ0

(
1+µt

εtRbt−1,t/R
m
t−1,t

)− αγ0
1−α

)2

+

(
1

1+µt

) α
1−α

(
1
ζ

)γ0 ( αγ0
1−α

) (
Rbt−1,t/R

m
t−1,t

1+µt

)− αγ0
1−α

(εt)−
αγ0
1−α−1

(
1 +

(
1
ζ

)γ0
(
εtRbt−1,t/R

m
t−1,t

1+µt

)− αγ0
1−α

)2


and

∂ε(µt,Rt)
∂µt

=
ζγ1

1
ζγ2

2

(1 + µt)−γ1(1−β)+1+γ2

(Rb
t−1,t/R

m
t−1,t)1+γ2

 1− (1−β)(1−α)
1+µt

1− (1− β)(1− α)

( γ1+α
1−α +1+γ2−γ1(1−β))−1

×
(
γ1 + α

1− α + 1 + γ2 − γ1(1− β)
)−1

−γ1(1− β) + 1 + γ2

1 + µt
+ (1− β)(1− α)

(1 + µt)2

(
1− (1− β)(1− α)

1 + µt

)−1


We can now characterize steady-state equilibrium with an optimizing plat-
form.

B.7 Proofs for Platform Competition
Proof of Proposition 3. (i) The market equilibrium is the same as in subsection
3.3 except that now (1−µt) is replaced by (1−µ1

t )/(1−µ2
t ). If χ is sufficiently

large that the threat of exclusion from either platform is sufficient to incentive
financial intermediaries to repay loans on that ledger, then qEn = q̃En and there
is no need to bargain over enforcement because it doesn’t require cooperation.
If χ is sufficiently low that only exclusion from both platforms is sufficient
to incentivize repayment, then for both platforms n, we have qEn = qE and
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q̃En = 0 so outcome of the Nash Bargaining is cooperation on enforcement
without a transfer T = 0.
(ii) For ζ close to 1, when the trading advantage of platform 1 is not too large,
the possible outcomes look like those in subsection 3.3. That is, if χ is large,
then both platforms are able to enforce contract without cooperation and if χ
is small, then cooperation is required for any contract enforcement. However,
when χ and ζ are large, it is possible that, under non-cooperation, platform 1
can enforce contracts while platform 2 cannot.

Platform bargaining at t = 0 is now more complicated because the outside
option for platform 1 is more complicated. If χ and ζ are sufficiently large
that ledger 1 can incentivize contract enforcement on their ledger without
cooperation and ςε < 1, then q̃E1 > qE1 and so ledger 1 prefers the non-
cooperative outcome. This means that the transfer platform 2 would have to
pay to get enforcement leads to negatives surplus:

qE2 − q̃E2 − T = 1
2
(
qE2

0 − q̃E2
0 + qE1

0 − q̃E1
0

)
< 0

if q̃E1
0 − qE1

0 > qE2
0 − q̃E2

0 and so the bargaining breaks down.
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