Modern Macro, Money, and International Finance

Eco529
Lecture 05: Endogenous Risk Dynamics in Real Macro Model with Heterogenous Agents

Markus K. Brunnermeier
Princeton University
Course Overview

Real Macro-Finance Models with Heterogeneous Agents
1. A Simple Real Macro-finance Model
2. Endogenous (Price of) Risk Dynamics
3. A Model with Jumps due to Sudden Stops/Runs

Money Models
1. A Simple Money Model
2. Cashless vs. Cash Economy and “The I Theory of Money”
3. Welfare Analysis & Optimal Policy
 1. Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models
1. International Financial Architecture

Digital Money
Risk premia, price of risk

- Risk premia = price of risk * (endogenous + exogenous risk)

- Exogenous risk – shock from outside
- Endogenous risk
 - Amplification: adverse feedback loops
 - Multiple equilibria: Run, Sudden Stops

- Non-linearities are key for financial stability
 - Around vs. away from steady state
Desired Model Properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Endogenous risk and price of risk
 - Fire-sales, liquidity spirals, fat tails
 - Spillovers across assets and agents
 - Market and funding liquidity connection
 - SDF vs. cash-flow news
- Volatility paradox
- (Financial innovation less stable economy)
- (“Net worth trap” double-humped stationary distribution)
Persistence Leads to Dynamic Amplification

- **Static** amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital

- **Dynamic** amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward grow net worth
 - Backward asset pricing
“Single Shock Critique”

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
 - In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis

- Impulse response vs. volatility dynamics
Endogenous Volatility & Volatility Paradox

- **Endogenous Risk/Volatility Dynamics in BruSan**
 - Beyond Impulse responses
 - Input: constant volatility
 - Output: endogenous risk time-varying volatility

⇒ Precautionary savings
 - Role for money/safe asset
 - Later: in Money lecture

⇒ Nonlinearities in crisis ⇒ endogenous fat tails, skewness

- **Volatility Paradox**
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minsky)
Toolboxes: Technical Innovations

- Occasionally binding equity issuance constraint (in addition to natural borrowing limit due to risk aversion)

- Price setting social planner to find capital and risk allocation

- Change of numeraire
 - Easily incorporate aggregate fluctuations
 - To use martingale methods more broadly

- Newton Method to solve log-utility numerical example
Two Type/Sector Model with Outside Equity

- Expert sector

Skin in the Game Constraint:
Experts must hold fraction $\chi_t^e = \frac{\sigma N_t^e}{\sigma qK_t} \geq \alpha \kappa_t^e$ of aggregate capital risk with $\alpha \in (0,1)$ ($\chi_t^e > \kappa_t^e$ never happens in equilibrium)

- Household sector

Return on inside equity N_t can differ from outside equity
- Issue outside equity at required return from HH
- In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return
Financial Frictions and Distortions UPDATE!

- Skin in the game constraint
 - Retain certain fraction of risk

- Incomplete markets
 - “natural” leverage constraint *(BruSan)*
 - Costly state verification *(BGG)*

- + Leverage constraints
 (no “liquidity creation”)
 - Exogenous limit *(Bewley/Ayagari)*

- Collateral constraints
 - Next period’s price *(KM)*
 \[Rb_t \leq q_{t+1}k_t \]
 - Next periods volatility *(VaR, JG)*
 - Current price
Two Type Model Setup

Expert sector

- Output: \(y_t^e = a^e k_t^e \) \(a^e \geq a^h \)

Household sector

- Output: \(y_t^h = a^h k_t^h \)

\[A(\kappa) = \kappa^e a^e + (1 - \kappa^e) a^h \]

Poll 11: Why is it important that households can hold capital?

a) to capture fire-sales
b) for households to speculate
c) to obtain stationary distribution
Two Type Model Setup

Expert sector

- Output: \(y_t^e = a^e k_t^e \) \(a^e \geq a^h \)
- Consumption rate: \(c_t^e \)
- Investment rate: \(i_t^e \)

\[
\frac{d k_t^{i,e}}{k_t^{i,e}} = \left(\Phi \left(i_t^{i,e} \right) - \delta \right) dt + \sigma dZ_t + d\Delta_t^{k,e}
\]

Household sector

- Output: \(y_t^h = a^h k_t^h \)
- Consumption rate: \(c_t^h \)
- Investment rate: \(i_t^h \)

\[
\frac{d k_t^{i,h}}{k_t^{i,h}} = \left(\Phi \left(i_t^{i,h} \right) - \delta \right) dt + \sigma dZ_t + d\Delta_t^{k,h}
\]

Physical capital evolution absent market transactions/fire-sales
Two Type Model Setup

Expert sector
- Output: \(y_t^e = a^e k_t^e \quad a^e \geq a^h \)
- Consumption rate: \(c_t^e \)
- Investment rate: \(l_t^e \)

\[
\frac{dk_t^{i,e}}{k_t^{i,e}} = (\Phi (l_t^{i,e}) - \delta) dt + \sigma dZ_t + d\Delta_t^{k,e}
\]

Household sector
- Output: \(y_t^h = a^h k_t^h \)
- Consumption rate: \(c_t^h \)
- Investment rate: \(l_t^h \)

\[
\frac{dk_t^{i,h}}{k_t^{i,h}} = (\Phi (l_t^{i,h}) - \delta) dt + \sigma dZ_t + d\Delta_t^{k,h}
\]

Poll 13: What are the modeling tricks to obtain stationary distribution?
- a) switching types
- b) agents die, OLG/perpetual youth models (without bequest motive)
- c) different preference discount rates
Two Type Model Setup

Expert sector

- Output: \[y_t^e = a^e k_t^e \quad a^e \geq a^h \]
- Consumption rate: \[c_t^e \]
- Investment rate: \[i_t^e \]

\[
\frac{dk_t^{i,e}}{k_t^{i,e}} = \left(\Phi \left(i_t^{i,e} \right) - \delta \right) dt + \sigma dZ_t + d\Delta_{k}^{k,e}
\]

\[
E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{c_t^{e}}{1-\gamma} dt \right] \quad \rho^e \geq \rho^h
\]

Household sector

- Output: \[y_t^h = a^h k_t^h \]
- Consumption rate: \[c_t^h \]
- Investment rate: \[i_t^h \]

\[
\frac{dk_t^{i,h}}{k_t^{i,h}} = \left(\Phi \left(i_t^{i,h} \right) - \delta \right) dt + \sigma dZ_t + d\Delta_{k}^{k,h}
\]

\[
E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{c_t^{h}}{1-\gamma} dt \right]
\]
Two Type Model Setup

Expert sector

- Output: \(y_t^e = a^e k_t^e \) \(a^e \geq a^h \)
- Consumption rate: \(c_t^e \)
- Investment rate: \(\dot{i}_t^e \)

\[
\frac{dk_t^{i,e}}{k_t^{i,e}} = \left(\Phi \left(i_t^{i,e} \right) - \delta \right) dt + \sigma dZ_t + d\Delta_{t}^{k,e}
\]

\[
E_0 \left[\int_0^\infty e^{-\rho_e t} \frac{c_t^e(1-\gamma)}{1-\gamma} dt \right] \rho^e \geq \rho^h
\]

Household sector

- Output: \(y_t^h = a^h k_t^h \)
- Consumption rate: \(c_t^h \)
- Investment rate: \(\dot{i}_t^h \)

\[
\frac{dk_t^{i,h}}{k_t^{i,h}} = \left(\Phi \left(i_t^{i,h} \right) - \delta \right) dt + \sigma dZ_t + d\Delta_{t}^{k,h}
\]

\[
E_0 \left[\int_0^\infty e^{-\rho_h t} \frac{c_t^h(1-\gamma)}{1-\gamma} dt \right]
\]

Friction: Can only issue

- Risk-free debt
- Equity, but must hold \(\chi_t^e \geq \alpha \kappa_t \), i.e. \(\theta_t^{e,K} + \theta_t^{e,OE} \geq \alpha \theta_t^{e,K} \)
Recall Previous Lecture: HH can’t hold capital or equity

\[a = 0.11, \rho = 5\%, \sigma = 0.1, \Phi(i) = \frac{\log(\phi i + 1)}{\phi}, \phi = 10 \]

Basak-Cuco
Preview of new, extended model

- Price of capital

- Amplification

Parameters: \(\rho^e = 0.06, \rho^h = 0.05, a^e = 0.11, a^h = 0.03, \delta = 0.05, \sigma = 0.1, \alpha = 0.50, \gamma = 2, \phi = 10 \)
Drift and Volatility of η^e

"Steady state" η^*,

$\eta^e = \alpha \kappa^e$
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ϖ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
0. Postulate Aggregates and Processes

- Individual capital evolution:

\[
\frac{dk_{t}^{i,i}}{k_{t}^{i,i}} = (\Phi(t^{i,i}) - \delta)dt + \sigma dZ_{t} + d\Delta_{t}^{k,i,i}
\]

- Where \(\Delta_{t}^{k,i,i} \) is the individual cumulative capital purchase process

\((c\ is\ numeraire)\)
0. Postulate Aggregates and Processes

- Individual capital evolution:
 \[
 \frac{dk_{t,i}^i}{k_{t,i}^i} = (\Phi(t_{t,i}^i) - \delta)dt + \sigma dZ_t + d\Delta_{t,k,i}^i
 \]
 - Where \(\Delta_{t,k,i}^i \) is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector \(i \):
 \[K_t^i \equiv \int k_{t,i}^i d\bar{i} \]
 - Across sectors:
 \[K_t \equiv \sum_i K_t^i \]
 - Capital share:
 \[k_t^i \equiv K_t^i / K_t \]

- Net worth aggregation:
 - Within sector \(i \):
 \[N_t^i \equiv \int n_{t,i}^i d\bar{i} \]
 - Across sectors:
 \[N_t \equiv \sum_i N_t^i \]
 - Wealth share:
 \[\eta_t^i \equiv N_t^i / N_t \]

- Value of capital stock:
 \[q_t K_t \]

- Postulate
 \[
 \frac{dq_t}{q_t} = \mu_t q_{t-d} + \sigma_t q_{t-Z_t}
 \]

- Postulated SDF-process:
 \[
 \frac{d\kappa_t}{\kappa_t} = \mu_{t,i} \kappa_t \equiv -(\delta_{t,i} + \kappa_t)
 \]
 \[d\kappa_t = \kappa_t d\bar{Z}_t \] (\(c \) is numeraire)
0. Postulate Aggregates and Processes

- Individual capital evolution:
 \[\frac{dk_{i,i}}{k_{i,i}} = (\Phi(i_{i,i}) - \delta)dt + \sigma dZ_t + d\Delta_{t}^{k,i,i} \]
 - Where \(\Delta_{t}^{k,i,i} \) is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector \(i \):
 \[K_t^i \equiv \int k_{t,i}^i d\bar{i} \]
 - Across sectors:
 \[K_t \equiv \sum_i K_t^i \]
 - Capital share:
 \[\kappa_t^i \equiv \frac{K_t^i}{K_t} \]
 \[\frac{dK_t}{K_t} = (\Phi(i_t^i) - \delta)dt + \sigma dZ_t \]

- Net worth aggregation:
 - Within sector \(i \):
 \[N_t^i \equiv \int n_{t,i}^i d\bar{i} \]
 - Across sectors:
 \[N_t \equiv \sum_i N_t^i \]
 - Wealth share:
 \[\eta_t^i \equiv \frac{N_t^i}{N_t} \]

(c is numeraire)
0. Postulate Aggregates and Processes

- Individual capital evolution:
 \[
 \frac{dk_{t,i}^i}{k_{t,i}^i} = \left(\Phi(t_i^i) - \delta \right) dt + \sigma dZ_t + d\Delta_t^{k_{t,i}^i, i}
 \]
 Where \(\Delta_t^{k_{t,i}^i, i}\) is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector \(i\):
 \[K_t^i \equiv \int k_{t,i}^i d\bar{i}\]
 - Across sectors:
 \[K_t \equiv \sum_i K_t^i\]
 - Capital share:
 \[\kappa_t^i \equiv K_t^i / K_t\]
 \[
 \frac{dK_t}{K_t} = \left(\Phi(t_t^i) - \delta \right) dt + \sigma dZ_t
 \]
 - Net worth aggregation:
 - Within sector \(i\):
 \[N_t^i \equiv \int n_{t,i}^i d\bar{i}\]
 - Across sectors:
 \[N_t \equiv \sum_i N_t^i\]
 - Wealth share:
 \[\eta_t^i \equiv N_t^i / N_t\]

- Value of capital stock:
 \[q_t K_t\]
 Postulate \[dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t\]
 \((c \text{ is numeraire})\)
0. Postulate Aggregates and Processes

- Individual capital evolution:
 \[
 \frac{dk_{t}^{i,i}}{k_{t}^{i,i}} = \left(\Phi(\bar{\lambda}_{t}^{i,i}) - \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,i,i}
 \]
 - Where \(\Delta_{t}^{k,i,i}\) is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector \(i\):
 \[K_{t}^{i} \equiv \int k_{t}^{i,i} d\bar{\lambda}\]
 - Across sectors:
 \[K_{t} \equiv \sum_{i} K_{t}^{i}\]
 - Capital share:
 \[\kappa_{t}^{i} \equiv \frac{K_{t}^{i}}{K_{t}}\]

- Net worth aggregation:
 - Within sector \(i\):
 \[N_{t}^{i} \equiv \int n_{t}^{i,i} d\bar{\lambda}\]
 - Across sectors:
 \[N_{t} \equiv \sum_{i} N_{t}^{i}\]
 - Wealth share:
 \[\eta_{t}^{i} \equiv \frac{N_{t}^{i}}{N_{t}}\]

- Value of capital stock:
 \[q_{t}K_{t}\]
 - Postulate
 \[dq_{t}/q_{t} = \mu_{t}^{q} dt + \sigma_{t}^{q} dZ_{t}\]
 (\(c\) is numeraire)
0. Postulate Aggregates and Processes

- Individual capital evolution:
 \[
 \frac{dk_t^{i,i}}{k_t^{i,i}} = (\Phi(\lambda_t^i) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,i,i}
 \]
 - Where \(\Delta_t^{k,i,i} \) is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector \(i \):
 \[K_t^i \equiv \int k_t^{i,i} d\lambda_t^i \]
 - Across sectors:
 \[K_t \equiv \sum_i K_t^i \]
 - Capital share:
 \[k_t^i \equiv K_t^i / K_t \]

\[
\frac{dK_t}{K_t} = (\Phi(\lambda_t^i) - \delta)dt + \sigma dZ_t
\]

- Net worth aggregation:
 - Within sector \(i \):
 \[N_t^i \equiv \int n_t^{i,i} d\lambda_t^i \]
 - Across sectors:
 \[N_t \equiv \sum_i N_t^i \]
 - Wealth share:
 \[\eta_t^i \equiv N_t^i / N_t \]

- Value of capital stock:
 \[q_t K_t \]

\[dq_t / q_t = \mu_t^q dt + \sigma_t^q dZ_t \]

- Postulated SDF-process:
 \[
 \frac{d\xi_t^i}{\xi_t^i} = \mu_t^\xi dt + \sigma_t^\xi dZ_t
 \]
 \[\equiv -r_t \]
 \[\equiv -\xi_t^i \] (c is numeraire)
0. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
 - Use Ito product rule to obtain (in absence of purchases/sales)
 - Define \bar{k}_t^i: $\frac{d\bar{k}_t^i}{\bar{k}_t^i} = \left(\Phi \left(l_t^i \right) - \delta \right) dt + \sigma dZ_t + \frac{d\Delta_t}{t}$ without purchases/sales

 \[
 dr_t^k \left(l_t^i \right) = \left(\frac{a_t^i - l_t^i}{q} + \Phi \left(l_t^i \right) - \delta + \mu_t^q + \sigma \sigma_t^q \right) dt + (\sigma + \sigma_t^q) dZ_t
 \]

- Postulate SDF-process: (Example: $\xi_t^i = e^{-\rho t} V'(n_t)$.)

 \[
 \frac{d\xi_t^i}{\xi_t^i} = -r_t dt - \xi_t^i dZ_t
 \]

 Poll 26: Why does drift of SDF equal risk-free rate
 - a) no idio risk
 - b) $e^{-r_F} = E[SDF]$ *1
 - c) no jump in consumption

Recall discrete time $e^{-r_F} = E[SDF]$.

For aggregate capital return, replace a_t^i with $A(\kappa)$.
The Big Picture

- Output $A(\kappa)$
- Consumption + investment
- Physical assets
- Capital growth $\Phi(\ell) - \delta$
- Net worth distribution η
- Value function
- Precautionary saving
- Drift
- Volatility
- Debt accumulation
- Outside equity
- Allocation of physical assets
- Risk amplification
- Price of risk ζ
- Backward equation with expectations
- Forward equation with expectations

Mathematical formulas:

\[\chi \geq \chi \]

\[A(A(\kappa)) \]

\[\Phi(\ell) - \delta \]

\[\eta \]

\[\text{Drift} \]

\[\text{Volatility} \]
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i, **finance block**
 a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1*: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2*: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ϑ
 - *Toolbox 3*: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) **forward equation**

3. Value functions **backward equation**
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta) w(K) (n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
1a. Individual Agent Choice of ℓ

- Choice of ℓ is static problem (and separable) for each t
- \[
\max_{\ell_t^i} dr_t^k(\ell_t^i) = \max_{\ell_t^i} \left(\frac{a^i - \ell_t^i}{q_t} + \Phi(\ell_t^i) - \delta + \mu^q + \sigma \sigma^q \right)
\]
 For aggregate capital return,
 Replace a^i with $A(\kappa)$

- FOC: \[\frac{1}{q_t} = \Phi'(\ell_t^i)\] Tobin’s q
 - All agents $\ell_t^i = \ell_t \Rightarrow \frac{dK_t}{K_t} = (\Phi(\ell_t) - \delta) \, dt + \sigma dZ_t$
 - Special functional form:
 - $\Phi(\ell) = \frac{1}{\phi} \log(\phi \ell + 1) \Rightarrow \phi \ell = q - 1$
 - Goods market clearing: \[(A(\kappa) - \ell_t)K_t = \sum_i C_t^i.\]
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i **finance block**
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ψ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) **forward equation**

3. Value functions **backward equation**
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v_i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
1b. Individual Agent Choice of $\theta \Rightarrow$ asset/risk allocation

- **Approach 1**: Portfolio optimization
 - Step 1: Optimization e.g. via Martingale Approach – recall: $\mu_t^A = r_t^i + \zeta_t^i \sigma_t^A$
 - Of experts with outside equity issuance (after plugging in households’ outside equity choice)
 $$\frac{a^e_t - r_t}{q_t^e} + \Phi(u_t) - \delta + \mu_t^q + \sigma_t^q = r_t + [\zeta_t^e \chi_t^e / \kappa_t^e + \zeta_t^h (1 - \chi_t^e / \kappa_t^e)] (\sigma + \sigma^q)$$
 - Of households’ capital choice
 $$\frac{a^h_t - r_t}{q_t^h} + \Phi(u_t) - \delta + \mu_t^q + \sigma_t^q \leq r_t + \zeta_t^h (\sigma + \sigma^q)$$
 with equality if $\kappa_t^e < 1$
 - Step 2: Capital market clearing to obtain asset/risk allocation κ_t^e, χ_t^e from portfolio weights θ's

- **Approach 2**: Price-taking Social Planner Approach
1b. **Toolbox: Price Taking Social Planner ⇒ Asset/Risk Allocation**

- **Price-Taking Planner’s Theorem:**
 A social planner that takes prices as given chooses a physical asset allocation, κ_t, and risk allocation, χ_t, that coincides with the choices implied by all individuals’ portfolio choices.

- **Planner’s problem**

 \[
 \max_{\{\kappa_t, \chi_t\}} E_t \left[\frac{d r_t}{dt} (\kappa_t) \right] / dt - \varsigma_t \sigma(\chi_t) \]

 subject to friction: $F(\kappa_t, \chi_t) \leq 0$

- **Example:**
 1. $\chi_t = \kappa_t$ (if one holds capital, one has to hold risk)
 2. $\chi_t \geq \alpha \kappa_t$ (skin in the game constraint, outside equity up to a limit)
1b. Toolbox: Price Taking Social Planner ⇒ Asset/Risk Allocation

- **Sketch of Proof of Theorem**

1. **Fisher Separation Theorem:** (delegated portfolio choice by firm)
 - FOC yield the martingale approach solution
 - Each individual agent \((i, \tilde{i})\) portfolio maximization is equivalent to the maximization problem of a firm
 \[
 \max_{\{\theta^{j,i}\}} E_t \left[dr^{n(i,\tilde{i})} \right] / dt - \zeta \sigma^n
 \]
 \[
 dr^{n(i,\tilde{i})} = \sum_j \theta^{j,i} dr^j = \sum_j \theta^{j,i} E[dr^j] + \sum_j \theta^{j,i} \sigma^j dZ_t
 \]
 is linear in \(\theta\)s
 - Either bang-bang solution for \(\theta\)s s.t. portfolio constraints bind
 - Or prices/returns/risk premia are s.t. that firm is indifferent

2. **Aggregate**
 - Taking \(\eta\)-weighted sum to obtain return on aggregate wealth

3. **Use market clearing to relate \(\theta\)s to \(\kappa\)s & \(\chi\)s (incl. \(\theta\)-constraint)**
1b. **Toolbox**: Price Taking Social Planner \Rightarrow Asset/Risk Allocation

- **Expert**: $\theta^e = (\theta^{e,K}, \theta^{e,OE}, \theta^{e,D})$ for capital, outside equity, debt

- **Restrictions**:
 - $\theta^{e,K} \geq 0$
 - $\theta^{e,OE} \leq 0$
 - $\theta^{e,OE} \geq -(1 - \alpha)\theta^{e,K}$

 only issue outside equity

- **Household**: $\theta^h = (\theta^{h,K}, \theta^{h,OE}, \theta^{h,D})$

 maximize

 \[
 \theta^{e,K}_t E[dr^{e,K}_t]/dt + \theta^{e,OE}_t E[dr^{OE}_t]/dt + \theta^{e,D}_t r_t - \varsigma^e_t (\theta^{e,K}_t + \theta^{e,OE}_t)\sigma^{r,e,K}_t
 \]

 \[
 \theta^{h,K}_t \geq 0
 \]

 $\theta^{h,OE} \geq 0$

 $\theta^{h,OE} \geq 0$

 maximize

 \[
 \theta^{h,K}_t E[dr^{h,K}_t]/dt + \theta^{h,OE}_t E[dr^{OE}_t]/dt + \theta^{h,D}_t r_t - \varsigma^e_t (\theta^{h,K}_t + \theta^{h,OE}_t)\sigma^{r,h,K}_t
 \]
1b. **Toolbox:** Price Taking Social Planner ⇒ Asset/Risk Allocation

- **Aggregate** η-weighted sum of expert + HH max problem
 \[\eta^e \{...\} + \eta^h \{...\} \]

- \[\kappa_t^e := \left(\eta^e_t \theta_t^{e,K} + \eta^h_t \theta_t^{h,K,OE} \right) E \left[dr_t^{e,K} \right] / dt + \eta^h_t \theta_t^{h,K} E \left[dr_t^{h,K} \right] / dt + \]

 \[\kappa_t^h := \left(\eta^e_t \theta_t^{e,OE} + \eta^h_t \theta_t^{h,OE} \right) E \left[dr_t^{O} \right] / dt + \left(\eta^e_t \theta_t^{e,D} + \eta^h_t \theta_t^{h,D} \right) r_t \]

- \[-\zeta_t^e \eta_t^e \left(\theta_t^{e,K} + \theta_t^{e,OE} \right) \sigma_t^{r,K} - \zeta_t^h \eta_t^h \left(\theta_t^{h,K} + \theta_t^{h,OE} \right) \sigma_t^{r,K} \]

- \[=: \chi_t^e \]

- \[=: \chi_t^h \]
1b. **Toolbox: Price Taking Social Planner ⇒ Asset/Risk Allocation**

- Aggregate η-weighted sum of expert + HH max problem
 \[\eta^e \{ \ldots \} + \eta^h \{ \ldots \} \]

\[\eta^e_t \theta^e_t \kappa^e_t := \eta^e \{ \ldots \} + \eta^h \{ \ldots \} \]

\[\eta^h_t \theta^h_t \kappa^h_t := \left(\eta^e \theta^e + \eta^h \theta^h \right) \]

\[E \left[dr_t^e \right] / dt + \eta^h_t \theta^h \kappa^h_t \left[dr_t^h \right] / dt + \]

\[-\zeta^e_t \eta^e_t \left(\theta^e_t + \theta^e_k \right) \sigma_t^K + \zeta^h_t \eta^h_t \left(\theta^h_t + \theta^h_k \right) \sigma_t^K \]

\[\chi^e_t = 0 \]

\[\chi^h_t = 0 \]

Poll 36: Why = 0?

a) because marginal benefits = marginal costs at optimum
b) due to martingale behavior
c) because outside equity and debt are in zero net supply
1b. **Toolbox:** Price Taking Social Planner ⇒ Asset/Risk Allocation

- Translate constraints:
 1. \(\chi_t^e \leq \kappa_t^e \) experts cannot buy outside equity of others

 - only important for the case with idio risk
 2. \(\chi_t^e = \eta_t^e \theta_{t,K}^e + \eta_t^e \theta_{t,OE}^e \geq \alpha \kappa_t^e \)

- Price-taking social planers problem

\[
\max_{\{\kappa_t^e, \kappa_t^h = 1-\kappa_t^e, \chi_t^e \in [\alpha \kappa_t^e, \kappa_t^e], \chi_t^h = 1-\chi_t^e\}} \left[\frac{\kappa_t^e a_t^e + \kappa_t^h a_t^h - \mu_t}{q_t} + \Phi(\mu_t) - \delta \right] - (\zeta_t^e \chi_t^e + \zeta_t^h \chi_t^h) \sigma_t^{r,K}
\]

End of Proof. Q.E.D.

- Linear objective (if frictions take form of constraints)
 1. Price of risk adjust such that objective becomes flat or
 2. Bang-bang solution hitting constraints
1b. **Toolbox:** Price Taking Social Planner ⇒ Asset/Risk Allocation

- **Example 1:** 2 Types + **no** outside equity ($\alpha = 1$)

$$\max_{\{\kappa^e_t, \chi^e_t\}} \left[\frac{\kappa^e_t a^e + (1 - \kappa^e_t) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta \right] - (\chi^e_t \zeta^e_t + (1 - \chi^e_t) \zeta^h_t)(\sigma + \sigma^q_t)$$

s.t. friction $\chi^e_t = \kappa^e_t$ if no outside equity can be issued

- **FOC** χ: $\frac{a^e - a^h}{q_t} = (\zeta^e_t - \zeta^h_t)(\sigma + \sigma^q_t)$

- May hold only with inequality (\geq), if at constraint $\kappa^e_t = 1$
1b. Price Taking Social Planner ⇒ Asset/Risk Allocation

Example 2: 2 Types + with outside equity

\[
\max_{\{\kappa^e_t, \chi^e_t\}} \left[\frac{\kappa^e_t a^e + (1 - \kappa^e_t) a^h - l_t}{q_t} \right] + \Phi(\iota_t) - \delta - (\chi^e_t \xi^e_t + (1 - \chi^e_t) \xi^h_t)(\sigma + \sigma^q_t) - \chi^e_t \xi^e_t + (1 - \chi^e_t) \xi^h_t \xi^e_t + (1 - \chi^e_t) \xi^h_t \xi^h_t + (1 - \chi^e_t) \xi^h_t \xi^q_t
\]

FOC χ: Case 1: $\zeta^e_t (\sigma + \sigma^q_t) > \zeta^h_t (\sigma + \sigma^q_t) \Rightarrow \chi^e_t = \alpha \kappa^e_t$

Case 2: $\chi^e_t > \alpha \kappa^e_t$

Case 1: plug $\chi^e_t = \alpha \kappa^e_t$ in objective

\[a. \quad \text{FOC}_{\kappa}: \frac{a^e - a^h}{q_t} > \alpha (\zeta^e_t - \zeta^h_t)(\sigma + \sigma^q_t) \Rightarrow \kappa^e_t < 1 \]

\[b. \quad \Rightarrow \kappa^e_t = 1 \]

Case 2:

\[a. \quad \text{FOC}_{\kappa}: \frac{a^e - a^h}{q_t} > 0 \Rightarrow \kappa^e_t = 1 \]

\[b. \quad = 0 \Rightarrow \kappa^e_t < 1 \text{ impossible} \]
1b. Price Taking Social Planner ⇒ Asset/Risk Allocation

- Summarizing previous slide (2 types with outside equity)

<table>
<thead>
<tr>
<th>Cases</th>
<th>$\chi_t^e \geq \alpha \kappa_t^e$</th>
<th>$\kappa_t^e \leq 1$</th>
<th>$\frac{(a^e - a^h)}{q_t} \geq \alpha (\zeta_t^e - \zeta_t^h)(\sigma + \sigma_t^q)$</th>
<th>$(\zeta_t^e - \zeta_t^h)(\sigma + \sigma_t^q) \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>$=$</td>
<td>$<$</td>
<td>$=$</td>
<td>$>$</td>
</tr>
<tr>
<td>1b</td>
<td>$=$</td>
<td>$=$</td>
<td>$>$</td>
<td>$>$</td>
</tr>
<tr>
<td>2a</td>
<td>$>$</td>
<td>$=$</td>
<td>$>$</td>
<td>$=$</td>
</tr>
<tr>
<td></td>
<td>impossible</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 Types

- **HHs’ short-sale constraint of capital binds, $\kappa_t^e = 1$**
- **Experts’ skin in the game constraint binds, $\chi_t^e = \alpha \kappa_t^e$**
- **Occasionally binding constraint (skin in the game constraint)**

Experts’ skin in the game

η

HHs’ short-sale constraint

η
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ϖ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in $\$.
- Y_t price of € in $\$$(exchange rate)
\[
\frac{dY_t}{Y_t} = \mu^Y_t dt + \sigma^Y_t dZ_t
\]

- x_t^A/Y_t value of the self-financing strategy/asset in €
\[
e^{-\rho_t u'(c_t)} Y_t \frac{x_t^A}{Y_t} = \xi_t
\]

Recall
\[
\mu^A_t - \mu^B_t = (-\sigma^\xi_t)(\sigma^A - \sigma^B_t) = \zeta_t
\]

\[
\mu^{A/Y}_t - \mu^{B/Y}_t = (-\sigma^\xi_t - \sigma^Y_t)(\sigma^A - \sigma^B_t + \sigma^Y_t)
\]

- Price of risk $\zeta^\xi € = \zeta^\$ − \sigma^Y$
Toolbox 3: Change of Numeraire

- x^A_t is a value of a self-financing strategy/asset in $\$
- Y_t price of € in $\$$(exchange rate)

\[
dY_t = \mu^Y_t dt + \sigma^Y_t dZ_t
\]

- x^A_t/Y_t value of the self-financing strategy/asset in €

\[
e^{-\rho t} u'(c_t) \frac{x^A_t}{Y_t} \text{ follows a martingale}
\]

Recall $\mu^A_t - \mu^B_t = (-\sigma^A_t) (\sigma^A - \sigma^B_t)$

\[
\mu^A/Y_t - \mu^B/Y_t = (-\sigma^X_t - \sigma^Y_t) (\sigma^A - \sigma^Y_t - \sigma^B_t + \sigma^Y_t)
\]

- Price of risk $\xi^\mathcal{E} = \xi^\mathcal{\$} - \sigma^Y$

Poll 44: Why does the price of risk change, though real risk remains the same

a) because risk-free rate might not stay risk-free
b) because covariance structure changes
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each finance block
 a. Real investment ι + Goods market clearing (static)
 • Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 • Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ϕ
 • Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 • Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
2. GE: Markov States and Equilibria

- Equilibrium is a map

 Histories of shocks \(\{Z_s, s \in [0, t]\} \) → prices \(q_t, \xi^i_t, \iota^i_t, \theta^i_t \)

 net worth distribution
 \[
 \eta^e_t = \frac{N^e_t}{q_tK_t} \in (0,1)
 \]

 net worth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology

- All markets clear
 - Consumption, capital, money, outside equity
2. Law of Motion of Wealth Share η_t

Method 1: Using Ito’s quotation rule $\eta^i_t = N^i_t / (q_t K_t)$

- Recall
 \[
 \frac{dN^i_t}{N^i_t} = r_t dt + \frac{\chi^i_t}{\eta^i_t} \sigma^i_t dt + \frac{\chi^i_t}{\eta^i_t} (\sigma + \sigma^q_t) dZ_t - \frac{C^i_t}{N^i_t} dt
 \]

- \[
 \frac{d\eta^i_t}{\eta^i_t} = \ldots \text{(lots of algebra)}
 \]

Method 2: Change of numeraire + Martingale Approach

- New numeraire: Total wealth in the economy, N_t
- Apply Martingale Approach for value of i’s portfolio
 - Simple algebra to obtain drift of η^i_t: $\mu^\eta^i_t$
 - Note that change of numeraire does not affect ratio η^i!
2. μ^η Drift of Wealth Share: Many Types

- **New Numeraire**
 - “Total net worth” in the economy, N_t (without superscript)
 - Type i’s portfolio net worth = net worth share

- **Martingale Approach with new numeraire**
 - Asset $A = i$’s portfolio return in terms of total wealth,
 \[
 \left(\frac{C_t^i}{N_t^i} + \mu_t^\eta_i \right) dt + \sigma_t^\eta_i dZ_t + \tilde{\sigma}_t^\eta_i d\tilde{Z}_t
 \]
 Dividend yield E[capital gains] rate
 - Asset B (benchmark asset that everyone can hold, e.g. risk-free asset or money (in terms of total economy wide wealth as numeraire))
 \[
 r_t^m dt + \sigma_t^m dZ_t
 \]
 - Poll 48: Is risk-free asset, risk free in the new numeraire?
 - a) Yes
 - b) No

- Apply our martingale asset pricing formula
 \[
 \mu_t^A - \mu_t^B = \zeta_t^i (\sigma_t^A - \sigma_t^B)
 \]
2. μ^η Drift of Wealth Share: Many Types

- Asset pricing formula (relative to benchmark asset)
 \[\mu^\eta_t + \frac{C^i_t}{N^i_t} - r_t^m = (\zeta^i_t - \sigma^N_t) \left(\sigma^\eta_t - \sigma^m_t \right) \]

- Add up across types (weighted),
 (capital letters without superscripts are aggregates for total economy)
 \[\sum_{i'} \eta^i' \mu^i_t + \frac{C_t}{N_t} - r_t^m = \sum_{i'} \eta^i' \left(\zeta^i' - \sigma^N_t \right) \left(\sigma^\eta_t - \sigma^m_t \right) \]

- Poll 49: Why $= 0$?
 a) Because we have stationary distribution
 b) Because ηs sum up to 1
 c) Because ηs follow martingale

Benchmark asset everyone can trade
$\sigma^m_t = -\sigma^N_t$
2. μ^η Drift of Wealth Share: 2 Types

- Asset pricing formula (relative to benchmark asset)
 \[\mu_t^\eta i + \frac{C_t^i}{N_t^i} - r_t^m = (\zeta_t^i - \sigma_t^N) \left(\sigma_t^\eta i - \sigma_t^m \right) \]

- Add up across types (weighted),
 \[(\sigma_t^\eta e - \sigma_t^N) \left(\sigma_t^\eta e - \sigma_t^m \right) + \eta_t^h \left(\zeta_t^h - \sigma_t^N \right) \left(\sigma_t^\eta h - \sigma_t^m \right)\]

- Subtract from each other yield net worth share dynamics
 \[\mu_t^\eta e = (1 - \eta_t^e) \left(\zeta_t^e - \sigma_t^N \right) \left(\sigma_t^\eta e - \sigma_t^m \right) - (1 - \eta_t^e) \left(\zeta_t^h - \sigma_t^N \right) \left(\sigma_t^\eta h - \sigma_t^m \right) \]

For benchmark asset: risk-free debt
\[\sigma_t^m = -\sigma_t^N \]
2. σ^η Volatility of Wealth Share

- Recall Ito ratio rule (only volatility term)

- Since $\eta_t^e = N_t^e / N_t$,

 $$\sigma_t^{\eta^e} = \sigma_t^{N^e} - \sigma_t^N = \sigma_t^{N^i} - \sum_{i'} \eta_{t}^{i'} \sigma_t^{N^{i'}} = (1 - \eta_{t}^{i})\sigma_t^{N^i} - \sum_{i' \neq i} \eta_{t}^{i-} \sigma_t^{N^{i-}}$$

- Note for

 $$\sigma_t^{\eta^e} = (1 - \eta_{t}^{e})(\sigma_t^{n^e} - \sigma_t^{n^h})$$

 $$\sigma_t^{n^e} = \frac{\chi_t^e/\eta_t^e}{\theta^e, K + \theta^e, O_E} (\sigma + \sigma_t^q)$$

 $$\sigma_t^{n^h} = \frac{\chi_t^h}{\eta_t^h} (\sigma + \sigma_t^q) = \frac{1 - \chi_t^e}{1 - \eta_t^e} (\sigma + \sigma_t^q)$$

 Hence,

 $$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$$

- Note also, $\eta_t^e \sigma_t^{\eta^e} + \eta_t^h \sigma_t^{\eta^h} = 0 \Rightarrow \sigma_t^{\eta^h} = -\frac{\eta_t^e}{\eta_t^h} \sigma_t^{\eta^e} = -\frac{\eta_t^e}{1 - \eta_t^e} \sigma_t^{\eta^e}$

Change in notation in 2 type setting
Type-net worth is $n^i = N_t^i$
2. Amplification Formula: Loss Spiral

- Recall
 \[\sigma_t \eta^e = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \left(\sigma + \sigma^q_t \right) \]

- By Ito’s Lemma on \(q(\eta^e) \)
 \[\sigma^q_t = \frac{q'(\eta_t^e)}{q(\eta_t^e)} \eta_t^e \sigma_t \eta^e \]

- Total volatility
 \[\sigma + \sigma^q_t = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e \eta_t^e}} \]

- Loss spiral
 - Market illiquidity (price impact elasticity)
2. Amplification Formula: Loss Spiral

- Recall
 \[\sigma_t \eta^e = \frac{x_t^e - \eta_t^e}{\eta_t^e} \left(\sigma + \sigma_t^q \right) \]
 (leverage)

- By Ito’s Lemma on \(q(\eta^e) \)
 \[\sigma_t^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} \eta_t^e \sigma_t^e \]

- Total volatility
 \[\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{x_t^e - \eta_t^e}{\eta_t^e}} \]

Poll 53: Where is the spiral?
- a) Sum of infinite geometric series (denominator)
- b) in \(q' \), since with constant price, no spiral

- Loss spiral
 - Market illiquidity (price impact elasticity)
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” γ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
The Big Picture

allocation of physical assets

output $A(\kappa)$

consumption + investment

value function

precautionary

capital growth K

price of risk ζ

net worth distribution η

volatility

drift

Backward equation with expectations

Forward equation

κ

accumulation Debt

Outside equity

$\chi \geq \chi$

$\Phi(\iota) - \delta$

δ

κ

η

Φ

σ

κ

δ

Φ

σ
3a. CRRA Value Function

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)

\[V^i(n^i_t; \eta_t, K_t) \] for individuals \(i \)

- For CRRA/power utility \(u(c^i_t) = \frac{(c^i_t)^{1-\gamma} - 1}{1-\gamma} \)

\(\Rightarrow \) increase net worth by factor, optimal \(c^i \) for all future states increases
by this factor \(\Rightarrow \left(\frac{c^i_t}{n^i_t} \right) \)-ratio is invariant in \(n^i_t \)

\(\Rightarrow \) value function can be written as
\[V^i(n^i_t; \eta_t, K_t) = \frac{u(\omega^i(\eta_t,K_t)n^i_t)}{\rho^i} \]

- \(\omega_t^i \) Investment opportunity/ “net worth multiplier”
 - \(\omega^i(\eta_t,K_t) \)-function turns out to be independent of \(K_t \)
 - Change notation from \(\omega^i(\eta_t,K_t) \)-function to \(\omega_t^i \)-process
3a. CRRA Value Function: relate to ω

- Value function can be written as $\frac{u(\omega_t n_t^i)}{\rho}$, that is

$$\frac{1}{\rho^i} \frac{(\omega_t n_t^i)^{1-\gamma}}{1-\gamma} - 1 = \frac{1}{\rho^i} \frac{(\omega_t)^{1-\gamma} (n_t^i)^{1-\gamma}}{1-\gamma}$$

- $\frac{\partial V}{\partial n_t^i} = u'(c_t^i)$ by optimal consumption (if no corner solution)

$$\frac{(\omega_t)^{1-\gamma} (n_t^i)^{-\gamma}}{\rho^i} = (c_t^i)^{-\gamma} \iff \frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t)^{1-1/\gamma}$$

- For log utility $\gamma = 1$
 - Consumption choice: $c_t^i = \rho^i n_t^i$
 - ω_t does not matter \Rightarrow income and substitution effect cancel out

- Portfolio choice: myopic (no Mertonian hedging demand)
 - Volatility of investment of opportunity/net worth multiplier does not matter \Rightarrow Myopic price of risk $\zeta_t^i = \sigma_t^i = \sigma_{c_t}^i$
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 ▪ Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 ▪ Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ϑ
 ▪ Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)
 ▪ forward equation

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 ▪ Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
4a. Replacing l_t

- Recall from optimal re-investment $\Phi'(l_t) = 1/q_t$
- For $\Phi(i) = \frac{1}{\phi} \log(\phi i + 1) \Rightarrow \phi i = q - 1$
4a. Replacing χ, obtain κ for good mkt clearing

- Recall from planner’s problem (Step 1b)

| Cases | $\chi^e_t \geq \alpha \kappa^e_t$ | $\kappa^e_t \leq 1$ | \(\frac{(a^e - a^h)}{q_t} \geq \alpha (\zeta^e_t - \zeta^h_t)(\sigma + \sigma^q_t)\) | \((\zeta^e_t - \zeta^h_t)(\sigma + \sigma^q_t) \geq 0\) |
|-------|-------------------------------|------------------------|--------------------------------|
| 1a | 1 | < | = | > |
| 1b | 1 | = | > | > |
| 2a | > | = | > | = |

impossible

- HHs’ short-sale constraint of capital binds, $\kappa^e_t = 1$
- Experts’ skin in the game constraint binds, $\chi^e_t = \alpha \kappa^e_t$
- Occasionally binding constraint (skin in the game constraint)
4a. Replacing χ, obtain κ for good mkt clearing

- **Determination of κ_t**
 - Based on difference in risk premia $(\zeta_t^e - \zeta_t^h)(\sigma + \sigma_t^q)$
 - For log utility:
 \[
 (\sigma_t^{n^e} - \sigma_t^{n^h}) (\sigma + \sigma_t^q) = \frac{\chi_t^e - \eta_t^e}{(1 - \eta_t^e) \eta_t^e} (\sigma + \sigma_t^q)
 \]
 - $= \text{since } \sigma_t^{n^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$, $\sigma_t^{n^h} = -\frac{\eta_t^e}{1 - \eta_t^e} \sigma_t^{n^e}$ and $\sigma_t^{n^e} - \sigma_t^{n^h} = \sigma_t^{n^e} - \sigma_t^{n^h}$
 - Hence,
 \[
 (a^e - a^h)/q_t \geq \alpha \frac{\chi_t^e - \eta_t^e}{(1 - \eta_t^e) \eta_t^e} (\sigma + \sigma_t^q)^2
 \]
 with equality if $\kappa_t^e < 1$

- **Determination of χ_t^e**
 \[
 \chi_t^e = \max\{\alpha \kappa_t^e, \eta_t^e\}
 \]
4a. Replacing \(\chi \), obtain \(\kappa \) for good mkt clearing

- Need to determine diff in risk premia \((\zeta_t^e - \zeta_t^h)(\sigma + \sigma_t^q) \):

- Recall

 \[
 \sigma_t^n = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q) = \sigma_t^e - \sigma_t^h
 \]

 \[
 \sigma_t^h = -\frac{\eta_t^e}{1 - \eta_t^e} \sigma_t^e
 \]

 Hence,

 \[
 \sigma_t^n - \sigma_t^h = \frac{1}{1 - \eta_t^e} \sigma_t^e
 \]

 \[
 \Rightarrow (\zeta_t^e - \zeta_t^h)(\sigma + \sigma_t^q) = \left(-\frac{\partial \eta v_t^e}{v_t^e} + \frac{\partial \eta v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e} \right) \eta_t^e \sigma_t^e (\sigma + \sigma_t^q)
 \]

 \[
 = \left(-\frac{\partial \eta v_t^e}{v_t^e} + \frac{\partial \eta v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e} \right) (\chi_t^e - \eta_t^e)(\sigma + \sigma_t^q)^2
 \]

 Note, since \(-\frac{\partial \eta v_t^e}{v_t^e} + \frac{\partial \eta v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e} > 0\),

 \[
 \chi_t^e > \eta_t^e \iff \alpha \kappa_t^e > \eta_t^e
 \]
4a. Market Clearing

- Output good market

\[(\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t)K_t = C_t\]

... jointly restricts \(\kappa_t\) and \(q_t\)

\[
\kappa_t a^e + (1 - \kappa_t)a^h - \iota(q_t) = q_t[\eta_t^e \rho^e + (1 - \eta_t)\rho^h]
\]

\[
= \left(\frac{\eta_t^e q_t}{v_t^e}\right)^{1/\gamma} + \left(\frac{(1 - \eta_t^e)q_t}{v_t^h}\right)^{1/\gamma}
\]

\[
= \left(\frac{\eta_t^e q_t}{c_t^e/K_t}\right)^{1/\gamma} + \left(\frac{(1 - \eta_t^e)q_t}{c_t^h/K_t}\right)^{1/\gamma}
\]
4a. Market Clearing

- **Output good market**
 \[
 (\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t)K_t = C_t, \\
 \kappa_t a^e + (1 - \kappa_t)a^h - \iota(q_t) = q_t [\eta_t \rho^e + (1 - \eta_t)\rho^h]
 \]

 ... jointly restricts \(\kappa_t \) and \(q_t \)

- **Capital market** is taken care off by price taking social planner approach

 \[\theta_{t}^{e,K} = \frac{\kappa_t^e q_t K_t}{\eta_t^e q_t K_t} \]

- **Risk-free debt market** also taken care off by price taking social planner approach

 (would be cleared by Walras Law anyways)
4a. $\sigma^q(q, q')$

- Recall from “amplification slide” – Step 2

\[
\sigma + \sigma^q_t = \frac{\sigma}{1 - \frac{q'(\eta^e_t) \chi^e_t - \eta^e_t}{q/\eta^e_t \eta^e_t}}
\]

\[
\sigma^q = \frac{q'(\eta^e_t)}{q(\eta^e_t)} (\chi^e_t - \eta^e_t) (\sigma + \sigma^q_t)
\]

- Now all red terms are replaced, and we can solve ...
4b. Algorithm – Static Step

- Suppose we know functions \(v^e(\eta^e) \), \(v^h(\eta) \), have five static conditions:

1. \(\phi_t = q_t - 1 \)
2. Planner condition for \(\kappa^e_t: \frac{(a^e - a^h)/q_t}{\alpha^e} \geq \frac{\chi^e_t - \eta^e_t}{(1-\eta^e_t)\eta^e_t} (\sigma + \sigma^q_t)^2 \) \(\Rightarrow \) Get \(q(\eta^e), \kappa^e(\eta^e) \), \(\sigma^q(\eta^e) \)
3. Planner condition for \(\chi^e_t = \max\{\alpha \kappa^e_t, \eta^e_t\} \)
4. \(\kappa^e_t a^e + (1 - \kappa^e_t)a^h - \iota(q_t) = q_t [\eta_t \rho^e + (1 - \eta_t)\rho^h] \)
5. \(\sigma^q = \frac{q'(\eta^e_t)}{q(\eta^e)} (\chi^e_t - \eta^e_t)(\sigma + \sigma^q_t) \)

- Start at \(q(0) \), solve to the right, use different procedure for two \(\eta \) regions depending on \(\kappa^e \):

1. While \(\kappa^e < 1 \), solve ODE for \(q(\eta^e) \):
 - For given \(q(\eta) \), plug optimal investment (1) into (4)
 - Plug planner condition (3) into (2) and (5)
 - Solve ODE using three equilibrium condition (2),(4) and (5) via Newton’s method (see next slide)
2. When \(\kappa = 1 \), (2) is no longer informative, since \(\kappa^e = 1 \), solve (1) and (4) for \(q(\eta) \)
4b. Aside: Newton’s Method

- Find the root of equation system \(F(z_n) = 0 \) via iterative method
 \[z_{n+1} = z_n - J_n^{-1}F(z_n) \]

 Where \(J_n \) is the Jacobian matrix, i.e., \(J_{ij} = \frac{\partial f_i(z)}{\partial z_j} \).

- Newton’s method does not guarantee global convergence.
- Commonly takes several-step iteration.
4b. Aside: Newton’s Method

\[z_n = \begin{bmatrix} q_t \\ \kappa_t^e \\ \sigma + \sigma_t^q \end{bmatrix}, \]

\[F(z_n) = \begin{bmatrix} \kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota(q_t) - q_t[\eta_t\rho^e + (1 - \eta_t)\rho^h] \\ q'(\eta_t^e)(\chi_t^e - \eta_t^e)(\sigma + \sigma_t^q) - \sigma^q q(\eta_t^e) \\ (\alpha^e - \alpha^h) - \alpha q_t \frac{\chi_t^e - \eta_t^e}{(1 - \eta_t^e)\eta_t^e} (\sigma + \sigma_t^q)^2 \end{bmatrix} \]

Plug in blue terms from optimal investment and Planner condition for \(\chi_t^e \)
Solution

- Price of capital

- Amplification

Parameters: $\rho^e = .06, \rho^h = .05, a^e = .11, a^h = .03, \delta = .05, \sigma = .1, \alpha = .50, \gamma = 2, \phi = 10$
Volatility Paradox

- Comparative Static w.r.t. $\sigma = .01, .05, .1$
Risk Sharing via Outside Equity

- Comparative Static w.r.t. Risk sharing $\alpha = 0.1, 0.2, 0.5$ (skin the game constraint)
Market Liquidity

- Comparative static w.r.t. $a^h = .03, -.03, -.09$
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given \(C/N \)-ratio and SDF processes for each \(i \) finance block
 a. Real investment \(\iota \) + Goods market clearing (static)
 ▪ Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice \(\theta \) + Asset market clearing or Asset allocation \(\kappa \) & risk allocation \(\chi \)
 ▪ Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” \(\vartheta \)
 ▪ Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable \(\eta \) (and \(K \))

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities \(\omega \)
 ▪ Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. \(V^i(n^i; \eta, K) \) into \(v^i(\eta)u(K)(n^i/n^i)^{1-\gamma} \)
 c. Derive \(C/N \)-ratio and \(\zeta \) price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. \(v^i(\eta) \) into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
From $\mu^\eta (\eta^e)$ & $\sigma^\eta (\eta^e)$ to Stationary Distribution

- Drift and Volatility of η^e

\[\eta^e = \alpha \kappa^e \]

"Steady state" η^*, HHs' short-sale constraint of capital binds, $\kappa^e = 1$

Experts' skin in the game constraint binds, $\chi_t^e = \alpha \kappa^e$
5. Kolmogorov Forward Equation

- Given an initial distribution $f(\eta, 0) = f_0(\eta)$, the density diffusion follows PDE
 \[
 \frac{\partial f(\eta, t)}{\partial t} = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}
 \]

- “Kolmogorov Forward Equation” is in physics referred to as “Fokker-Planck Equation”

- Corollary: if stationary distribution $f(\eta)$ exists, it satisfies the ODE
 \[
 0 = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}
 \]
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing \textit{(static)}
 • \textit{Toolbox 1}: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 • \textit{Toolbox 2}: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” φ
 • \textit{Toolbox 3}: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) \textit{forward equation}

3. Value functions \textit{backward equation}
 a. Value fcn. as fcn. of individual investment opportunities ω
 • \textit{Special cases: log-utility, constant investment opportunities}
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. \textit{KFE}: Stationary distribution, Fan charts
5. Stationary Distribution

- Stationary distribution of η^e

\[\eta^e = \alpha \kappa^e \]

Poll 78: Is the constraint always (not just occasionally) binding

a) yes

b) no, only for some parameters $\rho^e > \rho^h$
5. Stationary Distribution

- Stationary distribution of η^e

\[\eta^e = \alpha \kappa^e \]

Experts' skin in the game constraint binds $\chi^e_t = \alpha \kappa^e_t$

Perfect risk-sharing region (infeasible)

Poll 79: What happens for $\rho^e = \rho^h$

a) experts take over the economy, $\eta \rightarrow 1$
b) there is a steady state at $\eta = \alpha$
5. Fan chart and distributional impulse response

- ... the theory to Bank of England’s empirical fan charts
- Starts at η_0, the median of stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 \, dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution
5. Fan chart and distributional impulse response

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 \, dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution
5. Density Diffusion

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock \(dZ_t = -2.32 \, dt\) for a period of \(\Delta t = 1\).
- Converges back to stationary distribution
5. Density Diffusion Movies
5. Distributional Impulse Response

- Difference between path with and without shock
- Difference converges to zero in the long-run

\[\sigma = 0.15 \]