Course Overview

Real Macro-Finance Models with Heterogeneous Agents
1. A Simple Real Macro-finance Model
2. Endogenous (Price of) Risk Dynamics
3. A Model with Jumps due to Sudden Stops/Runs

Money Models
1. A Simple Money Model
2. Cashless vs. Cash Economy and “The I Theory of Money”
3. Welfare Analysis & Optimal Policy
 1. Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models
1. International Financial Architecture

Digital Money
Simple Two Sector Model: Basak Cuoco (1998)

- Expert sector

- Household sector

See Lecture Notes, Chapter 2 or Handbook of Macroeconomics 2017, Chapter 18
Financial Frictions and Distortions

- Belief distortions
 - Match “belief surveys”

- Incomplete markets
 - “natural” leverage constraint \((\text{BruSan})\)
 - Costly state verification \((\text{BGG})\)

- + Leverage constraints
 - (no “liquidity creation”)
 - Exogenous limit

- Collateral constraints
 - Next period’s price \((\text{KM})\)
 \[
 R_b t \leq q_{t+1} k_t
 \]
 - Next periods volatility
 - Current price \((\text{VaR, JG})\)

- Search Friction \((\text{DGP})\)
Two Sector Model Setup

Expert sector

▪ Output: $y_t^e = a k_t^e$
▪ Consumption rate: c_t^e
▪ Investment rate: ℓ_t^e

\[
\frac{dk_t^{e,\tilde{i}}}{k_t^{e,\tilde{i}}} = (\Phi(\ell_t^{e,\tilde{i}}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i},e}
\]

agent \tilde{i} of type i (expert, HH)

Household sector

▪ Consumption rate: c_t^h
Two Sector Model Setup

Expert sector

- Output: \(y_t^e = a k_t^e \)
- Consumption rate: \(c_t^e \)
- Investment rate: \(i_t^e \)
 \[
 \frac{dk_t^{e,i}}{k_t^{e,i}} = \left(\Phi(i_t^{e,i}) - \delta \right) dt + \sigma dZ_t + d\Delta t^{k,i,e}_t
 \]

- \(E_0 \left[\int_0^\infty e^{-\rho t (c_t^e)^{1-\gamma}} dt \right] \)

Household sector

- Consumption rate: \(c_t^h \)

- \(E_0 \left[\int_0^\infty e^{-\rho t (c_t^h)^{1-\gamma}} dt \right] \)

Log-utility in Basak Cuoco 1998
Two Sector Model Setup

Expert sector
- Output: \(y^e_t = ak^e_t \)
- Consumption rate: \(c^e_t \)
- Investment rate: \(\iota^e_t \)

\[
\frac{dk^e_{t,i}}{k^e_{t,i}} = (\Phi(\iota^e_{t,i}) - \delta) dt + \sigma dZ_t + d\Delta_{t,k^e_{t,i}}
\]

\[
E_0[\int_0^\infty e^{-\rho t}(c^e_t)^{1-\gamma} dt]
\]

Friction: Can only issue
- Risk-free debt

Household sector
- Consumption rate: \(c^h_t \)

\[
E_0[\int_0^\infty e^{-\rho t}(c^h_t)^{1-\gamma} dt]
\]
The Big Picture

Contents:
- Allocation of physical assets
- Risk amplification
- Capital output
- Net worth distribution
- Debt accumulation
- Value function

Equations:
- $\kappa = 1$
- $\chi = 1$
- $A(\kappa)$
- K growth
- $\Phi(i) - \delta$
- η
- ζ

Arrows and labels:
- Consumption + investment
- Drift
- Volatility
- Precautionary
- Backward equation
- Forward equation

With expectations
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i
 a. Real investment ι + Goods market clearing (static)
 Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing
 Asset allocation κ & risk allocation χ
 Toolbox 2: “price-taking social planner approach” Fisher separation theorem
 c. “Money evaluation equation” θ
 Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 Special cases: log-utility investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive $\check{\rho} = C/N$-ratio and ζ, ξ prices of risks

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
0. Postulate Aggregates and Processes

- **Individual capital evolution:**
 \[\frac{dk_{i,i}^t}{k_{i,i}^t} = (\Phi(l_{i,i}) - \delta)dt + \sigma dZ_t + d\Delta_{i,i}^t \]
 - Where \(\Delta_{i,i}^t \) is the individual cumulative capital purchase process

- **Capital aggregation:**
 - Within sector \(i \):
 \[K_t^i \equiv \int k_{i,i}^t d\tilde{i} \]
 - Across sectors:
 \[K_t \equiv \sum_i K_t^i \]
 - Capital share:
 \[k_t^i \equiv \frac{K_t^i}{K_t} \]
 \[\frac{dK_t}{K_t} = (\Phi(l_t^i) - \delta)dt + \sigma dZ_t \]

- **Net worth aggregation:**
 - Within sector \(i \):
 \[N_t^i \equiv \int n_{i,i}^t d\tilde{i} \]
 - Across sectors:
 \[N_t \equiv \sum_i N_t^i \]
 - Wealth share:
 \[\eta_t^i \equiv \frac{N_t^i}{N_t} \]

- **Value of capital stock:**
 \[q_t K_t \]
 - Postulate
 \[dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t \]
 - Postulated SDF-process:
 \[\frac{d\xi_t}{\xi_t} = \mu_t^{\xi} dt + \sigma_t^{\xi} dZ_t \equiv -r_t \]
 \[\equiv -\xi_t \]
 \[(c \text{ is numeraire}) \]
0. Postulate Aggregates and Processes

- Individual capital evolution:
 \[
 \frac{dk_{t}^{i,i}}{k_{t}^{i,i}} = (\Phi(i_{t}^{i}) - \delta)d\tau + \sigma dZ_t + d\Delta_{t}^{k,i,i}
 \]
 Where \(\Delta_{t}^{k,i,i}\) is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector \(i\): \(K_{t}^{i} \equiv \int k_{t}^{i,i} d\tau\)
 - Across sectors: \(K_{t} \equiv \sum K_{t}^{i}\)
 - Capital share: \(k_{t}^{i} \equiv K_{t}^{i}/K_{t}\)

- Net worth aggregation:
 - Within sector \(i\): \(N_{t}^{i} \equiv \int n_{t}^{i,i} d\tau\)
 - Across sectors: \(N_{t} \equiv \sum N_{t}^{i}\)
 - Wealth share: \(\eta_{t}^{i} \equiv N_{t}^{i}/N_{t}\)

- Value of capital stock: \(q_{t}K_{t}\)
 Postulate
 \[
 dq_{t}/q_{t} = \mu_{t}^{q} d\tau + \sigma_{t}^{q} dZ_t
 \]
 Postulated SDF-process:
 \[
 \frac{d\xi_{t}}{\xi_{t}} = \mu_{t}^{\xi} d\tau + \sigma_{t}^{\xi} dZ_t
 \]
 \(\equiv -r_{t} \equiv -\xi_{t}\) (\(c\) is numeraire)
0. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
- Use Ito product rule to obtain capital gain rate (in absence of purchases/sales)
 - Define \(\tilde{k}_t \): \(\frac{d\tilde{k}_t}{\tilde{k}_t} = \left(\Phi(l_t^i) - \delta \right) dt + \sigma dZ_t + d\Delta_{k_t} \) without purchases/sales

\[
\begin{align*}
 dr_t^k(l_t^i) &= \left(\frac{a^i - l_t^i}{q} + \Phi(l_t^i) - \delta + \mu_t + \sigma \sigma_t^q \right) dt \\
 &\quad + (\sigma + \sigma_t^q) dZ_t
\end{align*}
\]

For aggregate capital return, Replace \(a^i \) with \(A(\kappa) \)

- Postulate SDF-process: (Example: \(\xi_t^i = e^{-\rho t} V'(n_t^i) \).
 \[
 \frac{d\xi_t^i}{\xi_t^i} = -r_t^i dt - \zeta_t^i dZ_t
 \]

Recall discrete time \(e^{-r^F} = E[SDF] \)
0. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
- Use Ito product rule to obtain capital gain rate (in absence of purchases/sales)

 - Define $\tilde{\kappa}_t^i$: $\frac{d\tilde{\kappa}_t^i}{\tilde{\kappa}_t^i} = (\Phi(i_t^i) - \delta)dt + \sigma dZ_t + d\Delta_{\kappa}^i$ without purchases/sales

 Dividend yield: $d\kappa_t^i = \frac{\alpha^i - l_t^i}{q}dt + \Phi(i_t^i) - \delta + \mu^q_t + \sigma \sigma^q_t)dt$
 E[Capital gain rate] = $\frac{d(q_t \kappa_t^i)}{(q_t \kappa_t^i)}$

 For aggregate capital return, replace α^i with $A(\kappa)$

- Postulate SDF-process: (Example: $\xi_t^i = e^{-\rho t}V'(n_t^i)$.)

 $d\xi_t^i = -r_t^i dt - \varsigma_t^i dZ_t$

 Poll 14: Why does drift of SDF equal risk-free rate

 a) no idio risk
 b) $e^{-r^F} = E[SDF]*1$
 c) no jump in consumption

Recall discrete time $e^{-r^F} = E[SDF]$
The Big Picture

Allocation of physical assets

Output $A(\kappa)$

Consumption + investment

Net worth distribution η

Capital growth K $= \Phi(i) - \delta$

Price of risk ζ

Precautionary

Drift

Volatility

Backward equation

Forward equation

Drift

Volatility
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 ▪ Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 ▪ Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” θ
 ▪ Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K) forward equation

3. Value functions backward equation
 a. Value fcn. as fcn. of individual investment opportunities ω
 ▪ Special cases: log-utility investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
1a. Individual Agent Choice of ι, θ, c

- Choice of ι is static problem (and separable) for each t
- \[\max d r_t^k (i_t) \]
 \[= \max_{i_t} \left(\frac{a^i - i_t}{q_t} + \Phi(i_t) - \delta + \mu^q + \sigma \sigma^q \right) \]

- FOC: $\frac{1}{q_t} = \Phi'(i_t)$ Tobin’s q
 - All agents $i_t = \iota \Rightarrow \frac{dK_t}{K_t} = (\Phi(\iota_t) - \delta) \, dt + \sigma \, dZ_t$
 - Special functional form:
 - $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \phi \iota = q - 1$
 - Goods market clearing: $(a^e - \iota_t)K_t = C^e_t + C^h_t$. For aggregate capital return,
 Replace a^i with $A(\kappa)$

\[
\max_{\{\nu_t, \theta_t, c_t\}_{t=0}^\infty} E \left[\int_0^\infty e^{-\rho t} u(c_t) dt \right]
\]

s.t.
\[
\frac{dn_t}{nt} = -\frac{c_t}{nt} dt + \sum_j \theta^j_t dr^j_t + \text{labor income/endow/taxes}
\]
\(n_0\) given

- Portfolio Choice: Martingale Approach
 - Let \(x^A_t\) be the value of a “self-financing trading strategy” (reinvest dividends)
 - \(\xi_t x^A_t\) follows a Martingale, i.e. drift = 0.
 - Let \(\frac{dx^A_t}{x^A_t} = \mu^A_t dt + \sigma^A_t dZ_t\),
 - Recall \(\frac{d\xi^i_t x^A_t}{\xi^i_t} = -r^i_t dt - \xi^i_t dZ_t\)
 - By Ito product rule
 \[
 \frac{d(\xi^i_t x^A_t)}{\xi^i_t x^A_t} = \left(-r^i_t + \mu^A_t - \xi^i_t \sigma^A_t \right) dt + \text{volatility terms}
 \]

- Expected return: \(\mu^A_t = r^i_t + \xi^i_t \sigma^A_t\)
 - For risk-free asset, i.e. \(\sigma^A_t = 0\): \(r^f_t = r^i_t\)
 - Excess expected return to risky asset B: \(\mu^A_t - \mu^B_t = \xi^i_t (\sigma^A_t - \sigma^B_t)\)
1a. Optimal Portfolio Choice - *back to our model*

- Using $\mu_t^A - r_t^f = \zeta_t^i \sigma_t^A$ for capital return (instead of generic asset A) without equity issuance

$$\frac{a-t^e_t}{q_t} + \Phi(t^e_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t^f = \zeta_t^e (\sigma + \sigma_t^q)$$

- Recall
 - θ_t portfolio share in risk-free bond (if negative = debt/short position)
 - $(1 - \theta_t)$ portfolio share in (physical) capital k_t

- Asset markets clearing:
 - Capital market
 $$1 - \theta_t^e = \frac{q_t K_t}{N_t^e} = 1/\eta_t$$
 - Debt/bond market (by Walras Law)
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 - Real investment $\text{Real} i$ + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - Portfolio choice $\text{Portfolio} \theta$ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” Fisher separation theorem
 - “Money evaluation equation” ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)
 - forward equation

3. Value functions
 - Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility investment opportunities
 - Separating value fcn. $V_i^{\text{tn}}(n_i^t; \eta, K)$ into $v_i(\eta)u(K)(n_i^n/n_i^t)^{1-\gamma}$
 - Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 - Transform BSDE for separated value fcn. $v_i(\eta)$ into PDE
 - Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
2. GE: Markov States and Equilibria

- Equilibrium is a map

Histories of shocks \(\{Z_s, s \in [0, t]\} \) \(\rightarrow \) prices \(q_t, \zeta_t, \iota_t, \theta_t \)

- net worth distribution

\[
\eta_t^e = \frac{N_t^e}{q_tK_t} \in (0,1)
\] net worth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology

- All markets clear
 - Consumption, capital, money, outside equity
Recall: Basics of Ito Calculus

- Geometric Ito Process: \(dX_t = \mu_t X_t dt + \sigma_t X_t dZ_t \)
- Ito’s Lemma:
 \[
 df(X_t) = f'(X_t)\mu_t X_t dt + \frac{1}{2} f''(X_t)(\sigma_t X_t)^2 dt + f'(X_t)\sigma_t X_t dZ_t
 \]
- Ito product rule:
 \[
 \frac{d(X_t Y_t)}{X_t Y_t} = (\mu_t^X + \mu_t^Y + \sigma_t^X \sigma_t^Y) dt + (\sigma_t^X + \sigma_t^Y) dZ_t
 \]
- Ito ratio/quotation rule:
 \[
 \frac{d(X_t/Y_t)}{X_t/Y_t} = (\mu_t^X - \mu_t^Y + \sigma_t^Y (\sigma_t^Y - \sigma_t^X)) dt + (\sigma_t^X - \sigma_t^Y) dZ_t
 \]
2. Law of Motion of Wealth Share η_t

- **Method 1:** Using Ito’s quotation rule $\eta_t = N^e_t / (q_t K_t)$

$$\frac{d N^e_t}{N^e_t} = \frac{d n^e_t}{n^e_t} = -\frac{c^e_t}{n^e_t} dt + r_t dt + (1 - \theta^e_t)[d r^K_t - r_t dt]$$

$$\frac{d N^e_t}{N^e_t} = -\rho dt + r_t dt + (1 - \theta^e_t) \left[\left(\frac{a - \ell^e_t}{q_t} + \Phi(\ell^e_t) - \delta + \mu^q_t + \sigma \sigma^q_t - r_t \right) dt + (\sigma + \sigma^q_t) dZ_t \right]$$

$$\frac{dq_t K_t}{q_t K_t} = \left(\frac{\mu^q_t + \Phi(\ell^e_t) - \delta + \sigma \sigma^q_t}{q_t} \right) dt + (\sigma + \sigma^q_t) dZ_t$$

- Ito ratio rule:

$$\frac{d (X_t/Y_t)}{X_t/Y_t} = \left(\mu^X_t - \mu^Y_t + \sigma^Y_t (\sigma^Y_t - \sigma^X_t) \right) dt + (\sigma^X_t - \sigma^Y_t) dZ_t$$

$$\frac{d \eta_t}{\eta_t} = \left(\frac{a - \ell^e_t}{q_t} - \rho + \theta^e_t (\sigma + \sigma^q_t) - \sigma^e_t (\sigma + \sigma^q_t) \right) dt - \theta^e_t (\sigma + \sigma^q_t) dZ_t$$

- **Method 2:** Change of numeraire + Martingale (Lecture Notes)

Using portfolio choice equation
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i
 a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: “price-taking social planner approach” – Fisher separation theorem
 c. “Money evaluation equation” ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)
 - Forward equation

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 b. Separating value Log-utility η, K into $v^i(\eta) w(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
The Big Picture

- Allocation of physical assets
- Risk amplification
- Capital price of risk

Output $A(\kappa)$

Net worth distribution η

Precautionary

Drift

Volatility

Value function

Forward equation with expectations

Backward equation with expectations
3a. CRRA Value Function

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)

\[V^i(n^i_t; \eta_t, K_t) \] for individuals \(i \)

- For CRRA/power utility \(u(c_t^i) = \frac{(c_t^i)^{1-\gamma} - 1}{1-\gamma} \)

\[\Rightarrow \] increase net worth by factor, optimal \(c^i \) for all future states increases by this factor \(\Rightarrow \left(\frac{c_t^i}{n_t^i} \right) \)-ratio is invariant in \(n_t^i \)

\[\Rightarrow \] value function can be written as

\[V^i(n^i_t; \eta_t, K_t) = \frac{u(\omega_t^i(\eta_t, K_t)n_t^i)}{\rho^i} \]

- \(\omega_t^i \) Investment opportunity/ “net worth multiplier”
 - \(\omega_t^i(\eta_t, K_t) \)-function turns out to be independent of \(K_t \)
 - Change notation from \(\omega_t^i(\eta_t, K_t) \)-function to \(\omega_t^i \)-process
3a. CRRA Value Function: relate to ω

- \Rightarrow value function can be written as $u(\omega_t n_t)$, that is

$$
\frac{u(\omega_t n_t)}{\rho} = \frac{1}{\rho^i} \frac{(\omega_t n_t)^{1-\gamma} - 1}{1-\gamma} = \frac{1}{\rho^i} \frac{(\omega_t)^{1-\gamma} (n_t)^{1-\gamma} - 1}{1-\gamma}
$$

- $\frac{\partial V}{\partial n^i} = u'(c^i)$ by optimal consumption (if no corner solution)

$$
\frac{(\omega_t)^{1-\gamma} (n_t)^{-\gamma}}{\rho^i} = (c_t^i)^{-\gamma} \iff \frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^{1-1/\gamma})
$$

Next step:

a) Special simple cases
b) replace ω_t with something scale invariant
3a. CRRA Value Function: Special Case \(\log -utility \)

\[
\frac{c_t^i}{n_t^i} = (\rho_i)^{1/\gamma}(\omega_t^i)^{1-1/\gamma}
\]

- Ito for volatility term: \(\sigma_t^c = \sigma_t^n + (1 - 1/\gamma)\sigma_t^\omega \)

- For \(\log \) utility \(\gamma = 1 \):
 \[
 \xi_t^i = e^{-\rho^t_i / c_t^i} = e^{-\rho^t_i / (\rho n_t^i)} \text{ for any } \omega_t^i \Rightarrow \sigma_t^n = \sigma_t^c = \zeta_t^i
 \]
 - Expected excess return: \(\mu_t^A - r_t^F = \sigma_t^n \sigma_t^A \)
 - Recall \(\frac{dn_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 - \theta^i)dr_t^K + \theta^i dr_t \)

- Consumption choice: \(c_t^i = \rho^i n_t^i \)
 - \(\omega_t \) does not matter \(\Rightarrow \) income and substitution effect cancel out

- Portfolio choice: myopic (no Mertonian hedging demand)
 - Volatility of investment of opportunity/net worth multiplier does not matter \(\Rightarrow \) Myopic price of risk \(\zeta_t^i = \sigma_t^n = \sigma_t^c \)
Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. For given C/N-ratio and SDF processes for each i finance block
 a. Real investment ι + Goods market clearing (static)
 Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 Toolbox 2: “price-taking social planner approach” Fisher separation theorem
 c. “Money evaluation equation” ϑ
 Toolbox 3: Change in numeraire to total wealth (including SDF)

2. Evolution of state variable η (and K)

3. Value functions
 a. Value fcn. as fcn. of individual investment opportunities ω
 Special cases: log-utility, constant investment opportunities
 b. Separating value fcn. $V^i(n^i; \eta, K)$ into $v^i(\eta)u(K)(n^i/n^i)^{1-\gamma}$
 c. Derive C/N-ratio and ζ price of risk

4. Numerical model solution
 a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts
Recall: Market Clearing

- Output good market

\[C_t = (a - \iota_t^e)K_t \]
\[\rho q_t K_t = (a - \iota_t^e(q_t))K_t \implies q_t = q, \forall t \]

\[\rho q_t = (a - \iota_t^e(q_t)) \]

- Hence \(\iota_t^e = \iota^e \), \(\mu_t^q = \sigma_t^q = 0, \forall t \).

- Capital market

\[1 - \theta_t^e = \frac{q_t K_t}{N_t^e} = 1/\eta_t \]

- Debt/bond market (by Walras Law)
4b. Model Solution

- Using $\rho q_t = (a - \iota(q_t))$, $\phi t = q_t - 1$, for $\Phi(\iota) = \frac{1}{\phi} \log(\phi t + 1)$

$$q = \frac{1 + \phi a}{1 + \phi \rho}$$

- Using portfolio choice, goods & capital market clearing

$$r_t = \frac{a - \iota^e}{q_t} + \Phi(\iota^e) - \delta + \mu^q_t + \sigma^q_t - \zeta_t (\sigma + \sigma^q_t)$$

$$= \rho + \Phi(\iota^e) - \delta - (1 - \theta_t)\sigma^2$$

$$= \rho + \Phi(\iota^e) - \delta - \frac{\sigma^2}{\eta_t} \quad \text{from capital market clearing}$$

$$r_t = \rho + \frac{1}{\phi} \log\left(\frac{1 + \phi a}{1 + \phi \rho}\right) - \delta - \frac{\sigma^2}{\eta_t} \quad \text{risk-free rate}$$

- Goods & capital market clearing and η-evolution

$$\frac{d\eta_t}{\eta_t} = \frac{(1 - \eta_t)^2}{\eta_t^2} \sigma^2 dt + \frac{1 - \eta_t}{\eta_t} \sigma dZ_t$$
Numerical example

\[a = 0.11, \rho = 5\%, \sigma = 0.1, \Phi(\iota) = \frac{\log(\phi \iota + 1)}{\phi}, \phi = 10 \]
Observation of Basak-Cuoco Model

- η_t fluctuates with macro shocks, since experts are levered
- Price of risk, i.e. Sharpe ratio, is
 \[\frac{\sigma}{\eta_t} = \frac{\rho + \Phi(i) - \delta - r_t}{\sigma} \]
 - Goes to ∞ as η_t goes to zero
 - Achieved via risk-free rate
 \[r_t = \rho + \Phi(i) - \delta - \sigma^2/\eta_t \rightarrow -\infty \]
 - Rather than depressing price of risky asset, $q_t = q \forall t$
- No endogenous risk $\sigma^q = 0$
 - No amplification
 - No volatility effects
- $\mu_t^\eta = \frac{(1-\eta_t)^2}{\eta_t^2} \sigma^2 > 0 \Rightarrow$ in the long run HH-net worth share vanishes
- Way out:
 - Different discount rates ρ (KM)
 - Switching types (BGG)
 - 2 types of experts (BruSan)
Desired Model Properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock

- Endogenous risk and price of risk
 - Fire-sales, liquidity spirals, fat tails
 - Spillovers across assets and agents
 - Market and funding liquidity connection
 - SDF vs. cash-flow news

- Volatility paradox

- Financial innovation less stable economy

("Net worth trap” double-humped stationary distribution)