THE ITHEORY OF MONEY MARKUS BRUNNERMEIER & YLILLY SANNIKON

Princeton University

Updates: http://scholar.princeton.edu/markus/files/i_theory_slides.pdf

Motivation

- Unified framework to study financial and monetary stability
- I: Intermediation (credit) Inside money
- Value of money endogenous store of value, liquidity
 - Samuelson, Bewley, Kiyotaki-Moore, ...
- In downturns, intermediaries create less inside money
 - Value of outside (base) money goes up
 - Fisher (1933) **deflationary spiral** hits borrowers on liability side
 - Endogenous money multiplier = f(health of intermediary sector)
- Monetary policy (interest rates, open market operations)
 - Fills in demand for money when money multiplier contracts
 - Redistribution from/towards intermediary sector

Some Literature

- Role of money
 - Unit of account
 - Medium of exchange
 - Store of value (Samuelson, Bewley, Scheinkman-Weiss, Kiyotaki-Moore)
- Without intermediaries
 - Inflation in downturns: less money needed since fewer transactions
- With intermediaries
 - Money view: (Friedman & Schwartz 1963)
 - "Moneyness" of bank liabilities decrease in downturns of intermediation
 - Credit view (demand/supply): (Tobin)
 BGG, KM, He & Krishnamurthy, BruSan1o, Goodfriend o5, Curdia & Woodford 10, ...
- Financial stability + monetary policy
 - Diamond & Rajan (2006), Stein (2012),

Outline of Modeling Ideas

heterogeneous agents

net worth

"Bliss Regime"

heterogeneous agents

net worth

productivity

Allocation with Extreme Financial Constraint

"Autarky Regime"

heterogeneous agents

capital

Switching Types and Money

- "(Outside) Money Regime"
- Money (gold) intrinsically worthless, but ...
- ∃ an equilibrium (coordination)
 - Agents store wealth in money while unproductive
 - Trade it for physical capital when become productive

Switching Types and Money

"(Outside) Money Regime"

- Inefficiencies
 - Allocation (money has low return)
 - Underinvestment (marginal buyer is less productive
 ⇒ price of capital is low ⇒ capital production unattractive

Two Polar Regimes

Economy	Assets	Value of money	Price of capital
Frictions (severe)	No claims	high	low
Frictionless	Issue claims • Debt • Equity	low	high

Two Polar Regimes with Intermediaries

Economy	Assets	Value of money	Price of capital	Intermediaries' capitalization
Frictions (severe)	No claims	high	low	defunct
Frictionless	Issue claims • Debt • Equity	low	high	perfect

Role of intermediaries

- Relax financing constraint by monitoring productive agents
- Have to take on productive agent's equity risk (so that they have incentive to monitor)
- Intermediation depends on their ability to absorb risk net worth of intermediaries

- Intermediation is risky depends on banks' balance sheet
- Monitoring technology
 Diamond (1984)
 Homstrom-Tirole (1997)

intermediaries

Assets	Liabilities
Risk-free piece to entreprens	deposits
Risky piece to entrepreneur	
(equity stake)	net worth

heterogeneous agents

deposits money

Intermediaries and Lending

Monitoring technology
 Diamond (1984)
 Homstrom-Tirole (1997)

intermediaries

Assets

Liabilities

Risky piece to entrepreneur (equity stake)

deposits

net worth

deposits

loans to entrepreneurs money

- Intermediation is risky depends on banks' balance sheet
- Monitoring technology
 Diamond (1984)
 Homstrom-Tirole (1997)

intermediaries

Assets	Liabilities
Risk-free piece to entreprens	deposits
Risky piece to entrepreneur	
(equity stake)	net worth

heterogeneous agents

deposits money

Negative Macro Shocks

intermediaries

deposits

money

Negative Macro Shocks

intermediaries

deposits

money

- Intermediary net worth
- Capital: fire sales, price q
- Money:
 - Lending + deposits
 - value of money p
 - Multiplier

deposits

- Allocation efficiency
- Externality among banks!

Overview

- Passive monetary policy: "Gold standard"
 - Quantity of outside money fixed
 - Interest rate zero
 - A negative macro shock hits intermediaries
 - Asset side: liquidity spiral ("skin in the game")
 - Liability side: deflationary spiral
- Active Monetary Policy
 - Introduce long-term bond
 - Short-term interest rate policy
 - Value of long-term bonds rises in downturns substitute for reduction of inside money
 - Asset purchase and OMO
 - Redistributional effects

Formal Model: Key Frictions

- HH can borrow from other HH, cannot issue equity
 - Inefficient: risky projects cannot sustain high leverage
- ... but HH can issue equity to intermediaries
- Intermediaries
 - Assets: diversified asset across households

The Model: Technology

consumption rate

Output:
$$y_t^{\omega} = a^{\omega} k_t^{\omega} = (c_t^{\omega} + i_t^{\omega}) k_t^{\omega}$$
 investment rate

Capital:
$$dk_t^{\omega} = (\Phi(i_t^{\omega}) - \delta^{\omega})k_t dt + d\varepsilon_t^{\omega}$$

$$\Phi(0) = 0, \Phi' > 0, \Phi'' < 0$$

$$Cov[\varepsilon_t^{\omega}, \varepsilon_t^{\omega'}]$$

heterogeneous agents

- Outside money (gold) is in fixed supply
- Contracting friction: contract on $q_t k_t$ but not on k_{t} 19

Agents' Portfolios

- HH type ω :
 - $lue{}$ Capital employed in technology ω
 - Money (long and short)
- Intermediaries
 - Capital diversified portfolio across different technologies ω
 - Money (short)

heterogeneous agents

deposits money

Notation: Three distributions

intermediaries

Risk-free piece deposits

Risky stake in entrepreneurs net worth

Interm's portfolic $\zeta_t(\omega)$

HH's holding

 $\xi_t(\omega)$

heterogeneous agents

deposits money

Ú

HH's net worth distribution

 $\theta(\omega)$

Scale Invariance

- Allocation of capital
 - All capital in the economy = K_t

 - Capital value (in output) = $q_t K_t$
- Outside money supply = 1
 - Value of money (in output) = $= P_t = p_t K_t$
 - Nominal risk free rate = o heterogeneous agents

deposits money intermediaries

Assets Liabilities

Risk-free piece deposits

Risky stake in entrepreneurs net worth $N_t = \eta_t K_t$

Interm's portfolic $\zeta_t(\omega)$

HH's holding

 $\xi_t(\omega)$

The Model: Preferences

All agents have logarithmic utility with discount rate

$$E\left[\int_0^\infty e^{-\rho t}\log c_t\,dt\right]$$

- Retirement: intermediary gets utility boost, when it decides to become a household forever
- Implications of log utility:
 - Consumption $= \rho \times net \ worth$
 - Required return = $Cov[asset\ risk, net\ worth\ risk]$
 - Consumption is independent of investment opportunity
 - Asset demands are myopic
 (no Mertonian hedging demand, no precautionary motive)

Equilibrium Definition

- For each history of shocks $\{\{d\varepsilon_s^{\omega}\}_{\omega}, s \in [0, t]\}$
 - HH type ω max utility
 - Consumption
 - Investment
 - Allocation between technology ω , $\xi_t(\omega)$, and money
 - Intermediaries max utility
 - Consumption
 - Portfolio across technology ω s, $\zeta_t(\omega)$, and money
 - Retirement decision
 - Market clearing
 - Capital: Supply of K_t at price q_t
 - Money: Supply of 1 at the price $P_t = p_t K_t$
 - Output: numeraire

Derivation - Roadmap

- Individual choices
 - $c_t = \rho * \text{net worth}$
 - $-i_t^{\omega}$
 - Required excess return = Cov [asset risk, net worth risk]
 - Postulate: $dq_t = \mu_t^q q_t dt + d\varepsilon^q$ and $dp_t = \mu_t^p p_t dt + d\varepsilon_t^p$
- Market clearing
 - Endogenously determines μ_t^q , $d\varepsilon_t^q$, μ_t^p , $d\varepsilon_t^p$
- Step 1: Derive equilibrium conditions (optimality + m-clearing)
- Step 2: Derive law of motion of η
 - Depends on postulated price processes q_t and p_t (fixed point)
- Step 3: μ_t^q , $d\varepsilon_t^q$, μ_t^p , $d\varepsilon_t^p$ as functions of η

Internal Investment Decision

$$dk_t^{\omega} = (\Phi(i_t^{\omega}) - \delta^{\omega})dt + d\varepsilon_t^{\omega}$$

• Given the price of capital q_t , the optimal investment solves

$$\max_{i} \Phi(i) q_t - i \Rightarrow i^*(q_t)$$

Determines for each HH ω

$$c^{\omega}(q_t) = a^{\omega} - i^*(q_t)$$

$$g^{\omega}(q_t) = \Phi(i^*(q_t)) - \delta^{\omega}$$

Return on Physical Capital

- Recall: $dk_t^{\omega}/k_t^{\omega} = (\Phi(\iota_t^{\omega}) \delta^{\omega})dt + d\varepsilon_t^{\omega}$
- Postulate: $dq_t = \mu_t^q q_t dt + q_t d\varepsilon_t^q \leftarrow$ endogenous

$$dR_t^{\omega} = \left(\frac{a^{\omega} - \iota^{\omega}}{q_t} + \Phi(\iota_t^{\omega}) - \delta^{\omega} + \mu_t^q + Cov[d\varepsilon_t^{\omega}, d\varepsilon_t^q]\right) dt + \left(d\varepsilon_t^{\omega} + d\varepsilon_t^q\right)$$

$$dividend$$

$$yield$$

$$capital gains$$

$$risk$$

$$(endogenous)$$

$$+ exogenous)$$

maximized when $\Phi'(\iota_t^{\omega})q_t = 1$. ι_t^{ω} increases in q_t , independent of ω

Return on Money

- Convenient to normalize $P_t = p_t K_t$
 - In the long-run value of money is proportional to K_t
 - In the short run it fluctuates with shocks
- Postulate: $dp_t = \mu_t^p p_t dt + p_t d\varepsilon_t^p \leftarrow$ endogenous

$$\frac{dK_t}{K_t} = \int (\zeta(\omega) + \xi(\omega))g^{\omega}(q_t)d\omega + \int \zeta(\omega) + \xi(\omega) d\varepsilon_t^{\omega}$$

$$\mu_t^K$$
 $d\varepsilon_t^K$

a dollar invested in money earns return

$$dR_t^M = (\mu_t^K + \mu_t^p + Cov[d\varepsilon_t^K, d\varepsilon_t^p])dt + \underbrace{d\varepsilon_t^K + d\varepsilon_t^p}_{d\varepsilon_t^M}$$

Intermediaries' "Risk Balance Sheet"

Assets Liabilities

$$q_{t}K_{t}\int \zeta_{t}(\omega)(d\varepsilon_{t}^{q}+d\varepsilon_{t}^{\omega})d\omega \left[\left(q_{t}K_{t}\int \zeta_{t}(\omega)d\omega-N_{t}\right)d\varepsilon_{t}^{M} \right]$$

$$N_{t}d\varepsilon_{t}^{N}$$

$$dN_{t} = -\rho N_{t} dt + N_{t} dr_{t}^{M}$$

$$+ q_{t} K_{t} \int \zeta_{t}(\omega) Cov \left[d\varepsilon_{t}^{q} + d\varepsilon_{t}^{\omega} - d\varepsilon_{t}^{M}, d\varepsilon_{t}^{N} \right] d\omega dt$$

$$+ q_{t} K_{t} \int \zeta_{t}(\omega) \left(d\varepsilon_{t}^{q} + d\varepsilon_{t}^{\omega} - d\varepsilon_{t}^{M} \right) d\omega$$

 $d\eta_t = d(N_t/K_t) = \cdots$

Equilibrium Conditions

1. Market clearing for capital goods and bonds

$$\int \zeta_t(\omega)d\omega + \int \xi_t(\omega)d\omega = 1$$

2. Market clearing for output:

$$\int (\zeta_t(\omega) + \xi(\omega))a^{\omega}(q_t)d\omega - \iota_t = \rho(q_t + p_t)$$

- 3. Valuation of capital ω -- return = Cov(risk, net worth risk)
 - Intermediaries

$$E[dR_t^{\omega} - dR_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^N] \qquad (= if \zeta_t(\omega) > 0)$$

HH ω

$$E[dR_t^{\omega} - dR_t^M] \le Cov\left[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^{N(\omega)}\right] \ (= if \ \xi_t(\omega) > 0)$$

net worth risk of HH ω , $d\varepsilon_t^{N(\omega)}$, depends on $\xi_t(\omega)$ and its net worth

Dynamics with One State Variable η

- N_t denotes aggregate net worth of intermediaries
 - Depends on portfolio $\zeta_t(\omega)$, returns and retirement
- $q_t K_t + P_t N_t$ is the aggregate net worth of HH
 - Allocation depends on returns, switching types
 - Assume HH types switch very fast, so distribution over types $\theta(\omega)$ is invariant
- + scale invariance in K_t
- Wealth distribution is characterized by a single state variable $\eta_t = N_t/K_t$

Example

• Three household types ω only

Low: very bad technology, hold money

own 65% of HH wealth

Medium: risk-free technology,

prefer to hold capital over money

own 35% of HH worth

High: risky production – low net worth

no net worth

• Intermediaries choose to invest only in high ω due to monitoring cost

Example

- Intermediary net worth
 Balance sheets
 Competition among banks
 Capital: fire sales, price q
 Money:

 Lending + deposits
 value of money p
 Multiplier
- Banks are hit on both sides of their balance sheet
- Allocation efficiency

deposits

monev

Externality among banks!

Observations

- As η goes down:
- Intermediaries take on less risk, competition decreases
- Price of capital q and investment, i(q), decrease
- Capital is allocated less efficiently
- Unproductive households hold less inside money (loans to intermediaries/entrepreneurs) and more outside fiat money
- Price of outside money goes up (deflation)
- Additional source of amplification in economy with money:
 - value of assets fall
 - value of liabilities increase (due to deflation)

Monetary Policy

- So far, Gold Standard
 - outside money fixed,
 - pays no interest
 - no central bank
 - Introduce consul (perpetual) bond
 - pays interest rate in short-term (outside) money
- Monetary Policies
 - Short-term interest rate policy
 - Central bank accepts deposits
 & pays interest rate (by printing money)
 - E.g. short-term interest rate is lowered when η becomes small
 - Budget neutral policies (at any point in time)
 - Asset purchase program
 - Bond open market operations (OMO/QE)

Money and Long-term Bond

- Policy instruments (functions of η_t)
 - Central bank pays interest $r_t \ge 0$ on money (by printing)
 - Sets total outstanding value $b_t K_t$ of perpetual bond
 - By changing interest r_t
 - Additional Quantitative Easing/Open market operations to get around ZLB
- Endogenous market reaction
 - Price of long-term bond (in money, per unit coupon rate)
 - $B_t = \mu_t^B B_t dt + B_t d\varepsilon_t^B$
 - q_t = price of capital
 - $p_t K_t$ = value of money

Extra steps

- Under Gold standard
 - Return on money: $\frac{d(p_t K_t)}{p_t K_t}$
- Now, $\frac{d(p_t K_t)}{p_t K_t}$ depends on OMO/QE also ...
- To derive return on money and bonds use trick:
 - Return on (bond money) = return on bond in money

 interest on money
 both are nominal price of bond is all what matters
 - 2. $\frac{d(p_t+b_t)K_t}{(p_t+b_t)K_t}$ = return on a portfolio of money and bonds Like before
 - system of two linear equations for returns on bonds & money

Disentangling Money and Bonds

Given

- flow of motion of η
- Endogenous $p(\eta), q(\eta), B(\eta)$ and exogenous $r(\eta), b(\eta)$ functions and
- Price of bond: $\frac{dB_t}{B_t} = \mu_t^B dt + d\varepsilon_t^B$ ($\frac{1}{B_t}$ is current yield)

Figure out return on

- money: $dr_t^M = \mu_t^M dt + d\varepsilon_t^M$
- bonds: $dr_t^B = dr_t^M r_t dt + (\frac{1}{B_t} + \mu_t^B + Cov[\varepsilon_t^B, \varepsilon_t^M])dt + d\varepsilon_t^B$
- all monetary instruments: $\frac{d(p_t + b_t)K_t}{(p_t + b_t)K_t} = dr_t^M + \frac{b_t}{p_t + b_t}(dr_t^B dr_t^M)$

$$= (\mu_t^p + \mu_t^b + \mu_t^K + Cov[\varepsilon_t^p + \varepsilon_t^b, \varepsilon_t^K])dt + d\varepsilon_t^p + d\varepsilon_t^b + d\varepsilon_t^K$$

• Collecting shocks: $d\varepsilon_t^M + \frac{b_t}{p_t + b_t} d\varepsilon_t^B = d\varepsilon_t^p + d\varepsilon_t^b + d\varepsilon_t^K$

Equilibrium Conditions

1. Market clearing for capital goods and bonds

$$\int \zeta_t(\omega)d\omega + \int \xi_t(\omega)d\omega = 1, \qquad \zeta_t^B + \int \xi_t^B(\omega)d\omega = 1$$

2. Market clearing for output:

$$\int (\zeta_t(\omega) + \xi(\omega))c^{\omega}(q_t)d\omega = \rho(q_t + p_t + b_t)$$

3. Valuation of capital ω -- return = Cov(risk, net worth risk)

$$E[dr_t^{\omega} - dr_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^N] \quad (= if \, \zeta_t(\omega) > 0)$$

$$E[dr_t^{\omega} - dr_t^M] \le Cov[d\varepsilon_t^q + d\varepsilon_t^M, d\varepsilon_t^{HH-N}] \quad (= if \, \xi_t(\omega) > 0)$$

4. Valuation of bonds

$$\begin{split} E[dr_t^B - dr_t^M] &= Cov[d\varepsilon_t^B, d\varepsilon_t^N] \qquad \text{(assuming } \zeta_t^B > 0) \\ E[dr_t^B - dr_t^M] &\leq Cov[d\varepsilon_t^B, d\varepsilon_t^{HH-N}] \qquad \text{(= if } \xi_t^B(\omega) > 0) \end{split}$$

Short-term interest rate policy

- Without long-maturity assets changes in short-term interest rate have no effect
 - Interest rate change equals instantaneous inflation change
- With bonds: of all monetary instruments, fraction $p_t/(p_t+b_t)$ is cash and $b_t/(p_t+b_t)$ are bonds
 - deflationary spiral is less pronounced because as η goes down, growing demand for money is absorbed by increase in value of longterm bonds
 - also, intermediaries hedge risks better by holding long-term bonds
 - however, intermediaries also have greater incentives to increase leverage/risk-taking ex-ante
- Effectiveness of monetary policy depend on maturity structure (duration) of government debt

Conclusion

- Unified macro model to analyze both
 - Financial stability
 - Monetary stability
 - Liquidity spirals
 - Fisher deflation spiral
- Capitalization of banking sector is key state variable
 - Price stickiness plays no role (unlike in New Keynesian models)
- Monetary policy rule
 - Affects money supply
 - Redistributional feature
 - Time inconsistency problem "Greenspan put"

V 2011	
Sanniko	
neier &	
Brunnermeier & Sannikov 2011	

	Now Koynosian	I Thoony
	New Keynesian	I-Theory
Key friction	Price stickiness & ZLB	Financial friction
Driver	Demand driven as firms are obliged to meet demand at sticky price	Misallocation of funds increases incentive problems and restrains firms/banks from exploiting their potential
Monetary policy		
First order effects	Affect HH's intertemporal trade-off Nominal interest rate impact real interest rate due	Ex-post: redistributional effects between financial and non-financial sector
	to price stickiness	Ex-ante: insurance effect leading to moral hazard in risk taking (bubbles) - Greenspan put -
Second order effects	Redistributional between firms which could (not) adjust price	
Time consistency	Wage stickiness Price stickiness + monopolistic competition	Moral hazard

Sannikov 2011	
κ	
Brunnermeier 8	

	New Keynesian	I-Theory
Risk build-up phase		Endogenous due to accommodating monetary policy
Net worth dynamics	zero profit no dynamics	dynamic
State variables	Many exogenous shocks Intermediation/friction shock	Endogenous intermediation shock
Monetary policy rule	Taylor rule (is approximately optimal only if difference in u' is well proxied by output gap) • spreads • credit aggregates (?)	Depends on signal quality and timeliness of various observables
Policy instrument	Short-term interest rate + expectations	Short-term interest rate + long-term bond + expectations
Role of money	In utility function (no deflation spiral)	Storage Precautionary savings

	Monetarism	I-Theory
Focus	Price stability	Price and Financial stability
Theory	Quantity theory of money P*Y = v*M	Distribution of wealth (liquidity, balance sheet)
	Transaction role of money	endogenous money multiplier
Monetary aggregates	Mo (Brunner, Meltzer) M1-2(Friedman, Schwartz) Inside and outside money are perfect substitutes	Outside money is only imperfect substitute for inside money (intermediation)
		Bank underwriting (<i>credit lines</i>) is substitute to bank deposits (difficult to measure M1-3 in a meaningful way)
Monetary policy	Constant growth of M2 (Friedman)	Recapitalize banks through monetary policy Switch off deflationary pressure 47

Intermediaries and lending

Monitoring technology
 Diamond (1984)
 Homstrom-Tirole (1997)

intermediaries

Assets

Liabilities

entrepreneur deposits equity net worth

heterogeneous agents

deposits

loans to entrepreneurs money