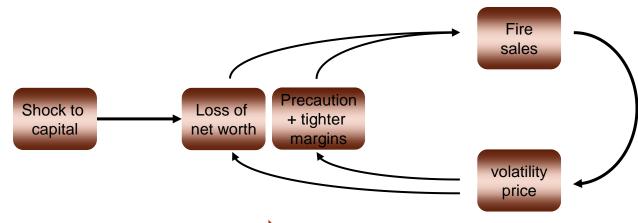
ECO 554 INTERNATIONAL MONETARY THEORY - LECTURE 2 -MARKUS BRUNNERMEIER ANR YULIY SANNIKAY


Princeton University

Motivation

- Aim: Bridge the gap between
 - Macro/monetary research
 - Finance research
- Financial sector helps to
 - overcome financing frictions and
 - channels resources
 - creates money
 - ... but
 - Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics
- New insights to monetary and international economics

Systemic risk – a broad definition

- Systemic risk build-up during (credit) bubble
 ... and materializes in a crisis
 - "Volatility Paradox" -> contemp. measures inappropriate
- Spillovers/contagion externalities
 - Direct contractual: domino effect (interconnectedness)
 - Indirect: price effect (fire-sale externalities) credit crunch, liquidity spirals

Adverse GE response

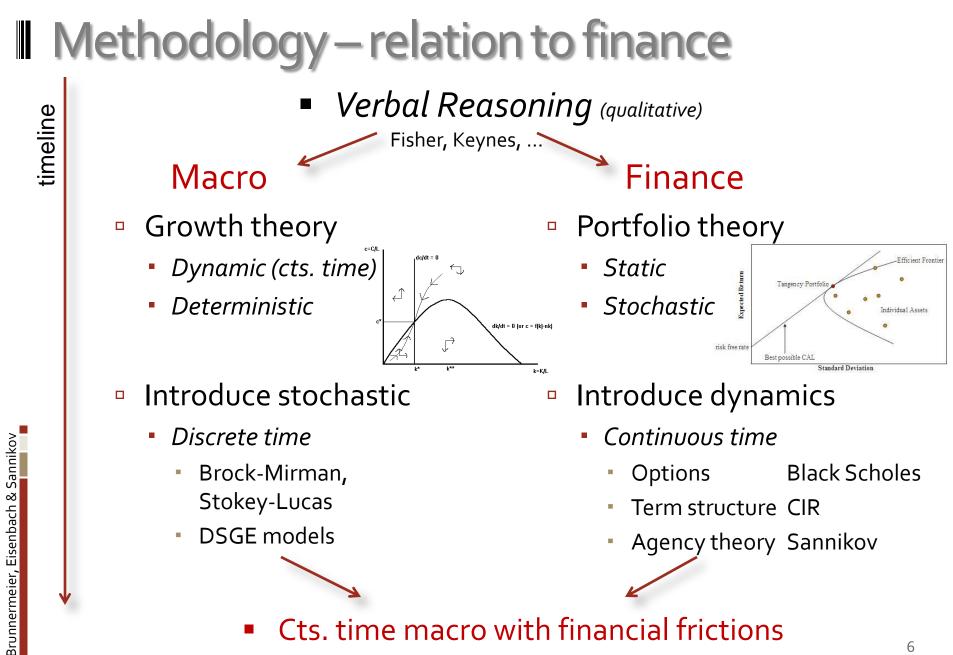
Brunnermeier, Eisenbach & Sannikov

amplification, persistence

3

Minsky moment – Wile E. Coyote Effect

Instruments


Output (gap)

interactior

- Price stability
 Monetary policy
 - Short-term interest
 - Policy rule (terms structure)

 Financial stability Macroprudential policy

- Reserve requirements
- Capital/liquidity requiremts.
- Collateral policy Margins/haircuts
- Capital controls

Heterogeneous agents + frictions

- Lending-borrowing/insuring since agents are different
- Poor-rich
- Productive
- Less patient
- Less risk averse
- More optimistic
- Limited direct lending due to frictions
- Rich-poor
- Less productive
- More patient
- More risk averse
- More pessimistic

- Friction → p_sMRS_s different even after transactions
- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil

LIQUIDITY – PERSISTENCE & AMPLIFICATION MARKUS BRUNNERMEIER AND YULIY SANNIKOY

Princeton University

Liquidity Concepts

Financial instability arises from the fragility of liquidity
 <u>A</u>

Technological liquidity

Reversibility of investment

Market liquidity

 Specificity of capital Price impact of capital sale

Funding liquidity

- Maturity structure of debt
 - Can't roll over short term debt
- Sensitivity of margins
 - Margin-funding is recalled

Liquidity mismatch determines severity of amplification

aturity mismatch

Types of Funding Constraints

- Equity constraint
 - "Skin in the game constraint"
- + Debt constraints
 - None

BruSan, He-Krishnamurthy

CF, BGG

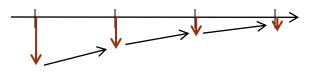
KM, BP, G

- Costly state verification a la Townsend
 - Borrowing cost increase as net worth drops
- Collateral/leverage/margin constraints
 - Quantity constraint on borrowing
 - Incomplete contracts a la Hart-Moore
 - Commitment problem
 - Credit rationing a la Stiglitz-Weiss

Brunnermeier, Eisenbach & Sannikov

Macro-literature on Frictions

1. Net worth effects:


- a. Persistence:
- b. Amplification:
- c. Instability:

Carlstrom & Fuerst

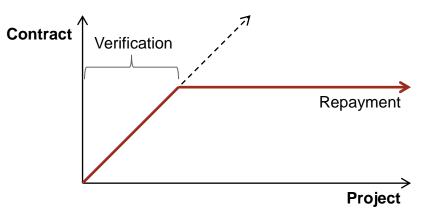
- Bernanke, Gertler & Gilchrist
- Brunnermeier & Sannikov
- 2. Volatility effects: impact credit quantity constraints
 - a. Margin spirals : Brunnermeier & Pederson
 - b. Endogenous constraints: Geanakoplos
- 3. Demand for liquid assets & Bubbles "self insurance"
 a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
 4. Financial intermediaries & Theory of Money

Amplification & Instability - Overview

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period

Amplification & Instability - Overview

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- Kiyotaki & Moore (1997), BGG (1999)

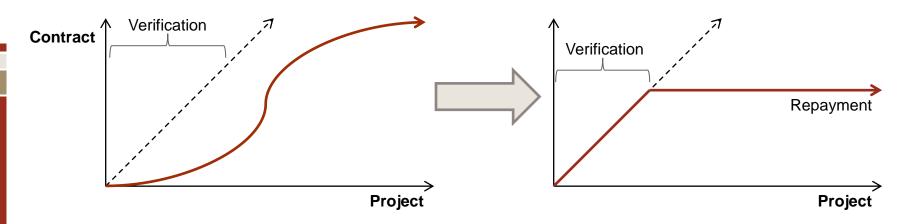

- Technological/market illiquidity
- KM: Leverage bounded by margins; BGG: Verification cost (CSV)
- Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)
- Brunnermeier & Sannikov (2010)
 - Instability and volatility dynamics, volatility paradox
- Brunnermeier & Pedersen (2009), Geanakoplos
 - Volatility interaction with margins/haircuts (leverage)

Persistence

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects
- Due to feedback effects, persistence is much stronger in models with *financial frictions*
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods

Costly State Verification

- Key friction in previous models is <u>costly state</u> <u>verification</u>, i.e. CSV, a la Townsend (1979)
- Borrowers are subject to an idiosyncratic shock
 Unobservable to lenders, but can be verified at a cost
- Optimal solution is given by a contract that resembles standard debt



CSV: Contracting

- Competitive market for capital
 - Lender's expected profit is equal to zero
 - Borrower's optimization is equivalent to minimizing expected verification cost
- Financial contract specifies:
 - Debt repayment for each reported outcome
 - Reported outcomes that should be verified

CSV: Optimal Contract

- Incentive compatibility implies that
 - Repayment outside of VR is constant
 - Repayment outside of VR is weakly greater than inside
- Maximizing repayment in VR reduces the size and thus the expected verification cost

Carlstrom & Fuerst

- Output is produced according to $Y_t = A_t f(K_t)$
- Fraction η of entrepreneurs and 1η of households
 - Only entrepreneurs can create new capital from consumption goods
- Individual investment yields ωi_t of capital
 - Shock is given by $\omega \sim G$ with $E[\omega] = 1$
 - This implies consumption goods are converted to capital one-to-one in the *aggregate*
 - No technological illiquidity!

CF: Costly State Verification

- Households can verify ω at cost μi_t
 - Optimal contract is debt with audit threshold $\overline{\omega}$
 - Entrepreneur with net worth n_t borrows $i_t n_t$ and repays $\min\{\omega_t, \overline{\omega}\} \times i_t$
- Auditing threshold is set by HH breakeven condition

$$\Box \left[\int_0^{\overline{\omega}} (\omega - \mu) dg(\omega) + \left(1 - G(\overline{\omega})\right) \overline{\omega}\right] i_t q_t = i_t - n_t$$

- Here, q_t is the price of capital
- No positive interest (within period borrowing) and no risk premium (no aggregate investment risk)

CF: Supply of Capital

Entrepreneur's optimization:

$$\max_{i_t} \int_{\overline{\omega}_t}^{\infty} (\omega - \overline{\omega}_t) dG(\omega) i_t q_t$$

- Subject to HH breakeven constraint
- Linear investment rule $i_t = \psi(q_t)n_t$
 - Leverage $\psi(q_t)$ is increasing in q_t
- Aggregate supply of capital is increasing in
 - Price of capital q_t
 - Aggregate net worth N_t

CF: Demand for Capital

Return to holding capital:

•
$$R_{t+1}^k = \frac{A_{t+1}f'(K_{t+1}) + (1-\delta)q_{t+1}}{q_t}$$

- Risk averse HH have discount factor β
 - Standard utility maximization
 - Budget constraint:
 - $c_t \le A_t f'(K_t) k_t + q_t [(1 \delta)k_t k_{t+1}]$
 - Euler equation: $u'(c_t) = \underline{\beta} E_t [R_{t+1}^k u'(c_{t+1})]$

CF: Demand for Capital

- Risk-neutral entrepreneurs are less patient, $\beta < \beta$
 - Euler equation: $1 = \beta E_t [R_{t+1}^k \rho(q_t)]$
 - Return on internal funds: $\rho(q_t) \equiv \int_{\overline{\omega}_t}^{\infty} (\omega - \overline{\omega}_t) dG(\omega) \psi(q_t) q_t$
- Aggregate demand for capital is decreasing in q_t

CF: Persistence & Dampening

- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t
- Decrease in capital supply leads to
 - Lower capital: K_{t+1}
 - Lower output: Y_{t+1}
 - Lower net worth: N_{t+1}
 - Feedback effects in future periods t + 2, ...
- Decrease in capital supply also leads to
 - Increased price of capital q_t
 - Dampening effect on propagation of net worth shock

Dynamic Amplification

- Bernanke, Gertler and Gilchrist (1999) introduce technological illiquidity in the form of nonlinear adjustment costs to capital
- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t
- In contrast to the dampening mechanism present in CF, decrease in capital supply leads to
 - Decreased price of capital due to adjustment costs
 - Amplification effect on propagation of net worth shock

Bernanke, Gertler & Gilchrist

- BGG assume separate investment sector
 - This separates entrepreneurs' capital decisions from adjustment costs
- $\Phi(\cdot)$ represents *technological illiquidity*
 - Increasing and concave with $\Phi(0) = 0$

•
$$K_{t+1} = \Phi\left(\frac{I_t}{K_t}\right)K_t + (1-\delta)K_t$$

FOC of investment sector

$$\max_{I_t} \{q_t K_{t+1} - I_t\} \Rightarrow q_t = \Phi' \left(\frac{I_t}{K_t}\right)^{-1}$$

BGG: Entrepreneurs

- Entrepreneurs alone can hold capital used in production
- At time t, entrepreneurs purchase capital for t + 1
 To purchase k_{t+1}, an entrepreneur borrows q_tk_{t+1} n_t
 Here, n_t represents entrepreneur net worth
- Assume gross return to capital is given by ωR_{t+1}^k
 - Here $\omega \sim G$ with $E[\omega] = 1$ and ω i.i.d.
 - R_{t+1}^k is the endogenous aggregate equilibrium return

BGG: Costly State Verification

- Entrepreneurs borrow from HH in a CSV framework
- If R_{t+1}^k is deterministic, then threshold satisfies:
 - $\begin{bmatrix} (1-\mu) \int_0^{\overline{\omega}} \omega dG(\omega) + (1-G(\overline{\omega}))\overline{\omega} \end{bmatrix} R_{t+1}^k q_t k_{t+1} = R_{t+1}(q_t k_{t+1} n_t)$
 - Here, R_{t+1} is the risk-free rate and $\mu\omega$ the verification cost
- If there is aggregate risk in R^k_{t+1} then BGG argue that entrepreneurs will insure HH against risk
 - This amounts to setting $\overline{\omega}$ as a function of R_{t+1}^k
 - As in CF, HH perfectly diversify against entrepreneur idiosyncratic risk

BGG: Supply of Capital

- Entrepreneurs solve the following problem:
 - $\max_{k_{t+1}} E\left[\int_{\overline{\omega}}^{\infty} (\omega \overline{\omega}) dG(\omega) R_{t+1}^{k} q_{t} k_{t+1}\right]$
 - Subject to HH breakeven condition (state-by-state)
- Optimal leverage is again given by a linear rule

$$q_t k_{t+1} = \psi\left(\frac{E[R_{t+1}^k]}{R_{t+1}}\right) n_t$$

- In a log-linearized solution, the remaining moments are insignificant
- Aggregate capital supply is increasing in E[R^k_{t+1}] and aggregate net worth N_t

BGG: Demand for Capital

- Return on capital is determined in a general equilibrium framework
 - Gross return to holding a unit of capital

•
$$E[R_{t+1}^k] = E\left[\frac{A_{t+1}f'(K_{t+1}) + q_{t+1}(1-\delta) + q_{t+1}\Phi\left(\frac{I_{t+1}}{K_{t+1}}\right) - \frac{I_{t+1}}{K_{t+1}}}{q_t}\right]$$

Capital demand is decreasing in expected return
 E[R^k_{t+1}]

BGG: Persistence & Amplification

- Shocks to net worth N_t are persistent
 - They affect capital holdings, and thus N_{t+1}, ...
- Technological illiquidity introduces amplification effect
 - Decrease in capital leads to reduced price of capital from $q_t = \Phi' \left(\frac{I_t}{K_t}\right)^{-1}$
 - Lower price of capital further decreases net worth

Kiyotaki & Moore 97

- Kiyotaki, Moore (1997) adopt a
 - collateral constraint instead of CSV
 - market illiquidity second best use of capital
- Output is produced in two sectors, differ in productivity
- Aggregate capital is fixed, resulting in extreme technological illiquidity
 - Investment is completely irreversible
- Durable asset has two roles:
 - Collateral for borrowing
 - Input for production

KM: Amplification

- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices

KM: Agents

- Two types of infinitely-lived risk neutral agents
- Mass η of productive agents
 - Constant-returns-to-scale production technology yielding $y_{t+1} = ak_t$
 - Discount factor $\beta < 1$
- Mass 1η of less productive agents
 - Decreasing-returns-to-scale production $y_{t+1} = F(k_t)$
 - Discount factor $\underline{\beta} \in (\beta, 1)$

KM: Frictions

- Since productive agents are less patient, they will want to borrow b_t from less productive agents
 - However, friction arises in that each productive agent's technology requires *his* individual human capital
 - Productive agents cannot pre-commit human capital
- This results in a collateral constraint

 $Rb_t \le q_{t+1}k_t$

 Productive agent will never repay more than the value of his asset holdings, i.e. collateral

KM: Demand for Assets

- Since there is no uncertainty, a productive agent will borrow the maximum quantity and will not consume any of the output
 - Budget constraint: $q_t k_t b_t \le (a + q_t)k_{t-1} Rb_{t-1}$

Demand for assets:
$$k_t = \frac{1}{q_t - \frac{q_{t+1}}{R}} [(a + q_t)k_{t-1} - Rb_{t-1}]$$

- Unproductive agents are not borrowing constrained
 - $R = \beta^{-1}$ and asset demand is set by equating margins
 - Demand for assets: $R = \frac{F'(\underline{k}_t) + q_{t+1}}{q_t}$ Rewritten to $\frac{1}{R}F'(\underline{k}_t) = q_t - \frac{1}{R}q_{t+1}$

KM: Equilibrium

- With fixed supply of capital, market clearing requires $\eta K_t + (1 \eta) \underline{K_t} = \overline{K}$
 - This implies $M(K_t) \equiv \frac{1}{R} F'\left(\frac{\overline{K} \eta K_t}{1 \eta}\right) = q_t \frac{1}{R} q_{t+1}$
 - Note that $M(\cdot)$ is increasing
- Iterating forward, we obtain: $q_t = \sum_{s=0}^{\infty} \frac{1}{R^s} M(K_{t+s})$

KM: Steady State

- In steady state, productive agents use tradable output *a* to pay interest on borrowing:
- This implies that steady state price q* must satisfy:

$$q^* - \frac{1}{R}q^* = a$$

Further, steady state capital K* must satisfy:

$$\frac{1}{R}F'\left(\frac{\overline{K}-\eta K^*}{1-\eta}\right) = a$$

 This reflects inefficiency since marginal products correspond only to *tradable* output

KM: Productivity Shock

- Log-linearized deviations around steady state:
 - Unexpected one-time shock that reduces production of all agents by factor $1-\Delta$
- %-change in assets for given change in asset price:

$$\widehat{K}_{t} = -\frac{\xi}{1+\xi} \left(\Delta + \frac{R}{R-1} \widehat{q}_{t} \right), \ \widehat{K}_{t+s} = \frac{\xi}{1+\xi} \widehat{K}_{t+s-1}$$

$$\frac{1}{\xi} = \frac{d \log M(K)}{d \log K} |_{K=K^*} \text{ (elasticity)}$$

- Reduction in assets comes from two shocks:
 - Lost output Δ
 - Capital losses on previous assets $\frac{R}{R-1}\hat{q}_t$, amplified by leverage
 - $\frac{\xi}{1+\xi}$ terms dampens effect since asset can reallocated

KM: Productivity Shock

• Change in price for given change in assets:

• Log-linearize the equation $q_t = \sum_{s=0}^{\infty} \frac{1}{R^s} M(K_{t+s})$

• This provides:
$$\hat{q}_t = \frac{1}{\xi} \frac{R-1}{R} \sum_{s=0}^{\infty} \frac{1}{R^s} \widehat{K}_{t+s}$$

Combining equations:

Multiplier	static	dynamic
$\widehat{K}_t =$	$-\Delta$	$-\frac{1}{(\xi+1)(R-1)}\Delta$
$\hat{q}_t =$	$-rac{(R-1)}{R}rac{1}{\xi}\Delta$	$-rac{1}{R}rac{1}{\xi}\Delta$

Static effect results from assuming $q_{t+1} = q^*$

BruSan10: Instability & Non-Linear Effects

- Previous papers only considered log-linearized solutions around steady state
- Brunnermeier & Sannikov (2010) build a continuous time model to study full dynamics
 - Show that financial system exhibits inherent instability due to highly non-linear effects
 - These effects are asymmetric and only arise in the downturn
- Agents choose a *capital cushion*
 - Mitigates moderate shocks near steady state
 - High volatility away from steady state

Macro-literature on Frictions

1. Net worth effects:

- a. Persistence:
- b. Amplification:
- c. Instability:

Carlstrom & Fuerst

- Bernanke, Gertler & Gilchrist
- Brunnermeier & Sannikov
- 2. Volatility effects: impact credit quantity constraints
 - a. Margin spirals : Brunnermeier & Pederson
 - b. Endogenous constraints: Geanakoplos
- 3. Demand for liquid assets & Bubbles "self insurance"
 a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
 4. Financial intermediaries & Theory of Money

Credit Rationing – Quantity Rationing

- Credit rationing refers to a failure of market clearing in credit
 - In particular, an excess demand for credit that fails to increase market interest rate
 - Pool of loan applicants worsens
 - Stiglitz & Weiss (1981) show how asymmetric information on risk can lead to credit rationing

Stiglitz, Weiss

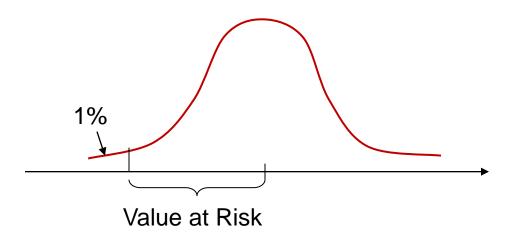
- Entrepreneurs borrow from competitive lenders at interest rate r
 - Risky investment projects with $R \sim G(\cdot | \sigma_i)$
 - Mean preserving spreads, so heterogeneity is only in risk
- Assume entrepreneur borrows B
- Entrepreneur's payoff is convex in R
 - $\pi_e(R,r) = \max\{R (1+r)B, 0\}$
- Lender's payoff is concave in R
 - $\pi_l(R,r) = \min\{R, (1+r)B\}$

SW: Adverse Selection

- Due to convexity, entrepreneur's expected payoff is increasing in riskiness σ_i
 - Only entrepreneurs with sufficiently risky projects will apply for loans, i.e. $\sigma_i \geq \sigma^*$
- Zero-profit condition: $\int \pi_e(R, r) dG(R|\sigma^*) = 0$
 - This determines cutoff σ^*
 - Note that σ^* is increasing in r
- Lender's payoff is not monotonic in r
 - Ex-post payoff is increasing in r
 - Higher cutoff σ^* leads to riskier selection of borrowers

SW: Credit Rationing

- Lenders will only lend at the profit maximizing interest rate r
- Excess demand for funds from borrowers will not increase the market rate
 - There exist entrepreneurs who would like to borrow, willing to pay a rate higher than the prevailing one
- Adverse selection leads to failure of credit markets


Brunnermeier-Pedersen: Margin Spiral

- For collateralized lending, debt constraints are directly linked to the volatility of collateral
 - Constraints are more binding in volatile environments
 Feedback effect between volatility and constraints
- These <u>margin spirals</u> force agents to delever in times of crisis
 - Collateral runs counterp
 - counterparty bank run

Multiple equilibria

BP: Margins – Value at Risk (VaR)

■ How are margins set by brokers/exchanges? ■ Value at Risk: $Pr(-(p_{t+1} - p_t) \ge m) = 1\% = \pi$

BP: Leverage and Margins

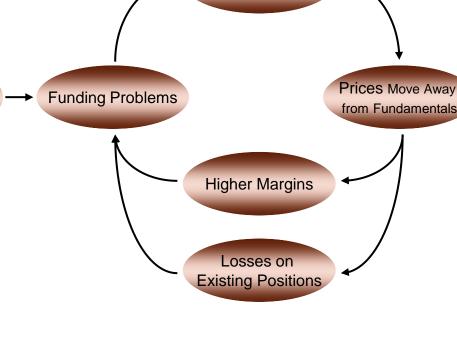
- Financing a *long position* of x^{j+}_t>o shares at price p^j_t=100:
 - Borrow \$90\$ dollar per share;
 - Margin/haircut: m^{j+}t=100-90=10
 - Capital use: \$10 x^{j+}t
- Financing a short position of x^{j-}t > o shares:
 - Borrow securities, and lend collateral of 110 dollar per share
 - Short-sell securities at price of 100
 - Margin/haircut: m^{j-}t=110-100=10
 - Capital use: \$10 x^j,
- Positions frequently marked to market
 - payment of x^j_t(p^j_t-p^j_{t-1}) plus interest
 - margins potentially adjusted more later on this
- Margins/haircuts must be financed with capital:

 $\sum_{j} (x_{t}^{j+} m_{t}^{j+} + x_{t}^{j-} m_{t}^{j-}) \leq W_{t}$, where $x_{t}^{j} = x_{t}^{j+} - x_{t}^{j-}$

with perfect cross-margining: $M_t (x_t^1, ..., x_t^J) \leq W_t$

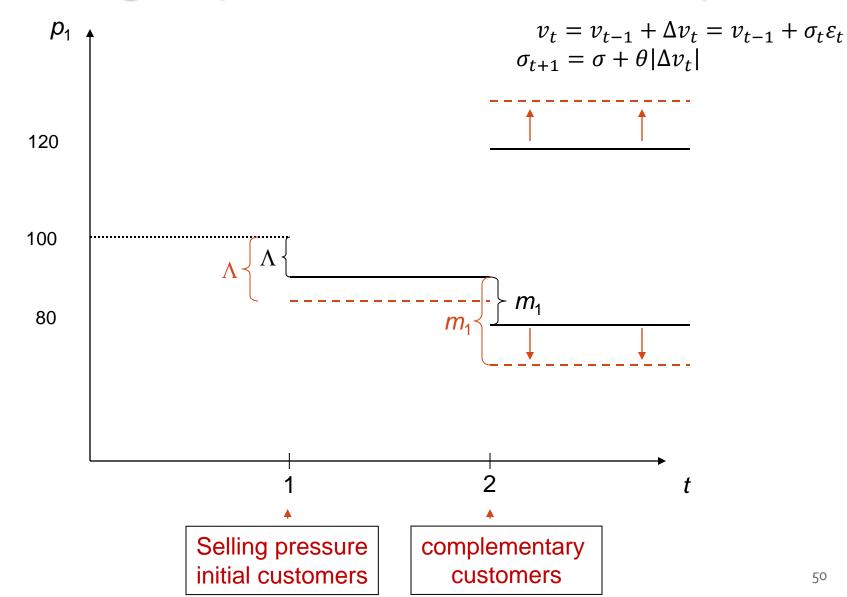
BP: Liquidity Spirals

Borrowers' balance sheet


- Loss spiral net worth drops
 - Net wealth > α x for asym. info reasons
 - constant or increasing leverage ratio

e.g. credit

- Margin/haircut spiral
 - Higher margins/haircuts Initial Losses
 - No rollover
 - redemptions
 - forces to delever



- worsens loss spiral
- improves margin spiral
- Both spirals reinforce each other

Reduced Positions

BP: Margin Spiral – Increased Volatility

BP: Margin Spirals - Intuition

- 1. Volatility of collateral increases
 - Permanent price shock is accompanied by higher future volatility (e.g. ARCH)
 - Realization how difficult it is to value structured products
 - Value-at-Risk shoots up
 - Margins/haircuts increase = collateral value declines
 - Funding liquidity dries up
 - Note: all "expert buyers" are hit at the same time, SV 92
- 2. Adverse selection of collateral
 - As margins/ABCP rate increase, selection of collateral worsens
 - SIVs sell-off high quality assets first (empirical evidence)
 - Remaining collateral is of worse quality

BP: Model Setup

- Time: t=0,1,2
- Asset with final asset payoff v follows ARCH process

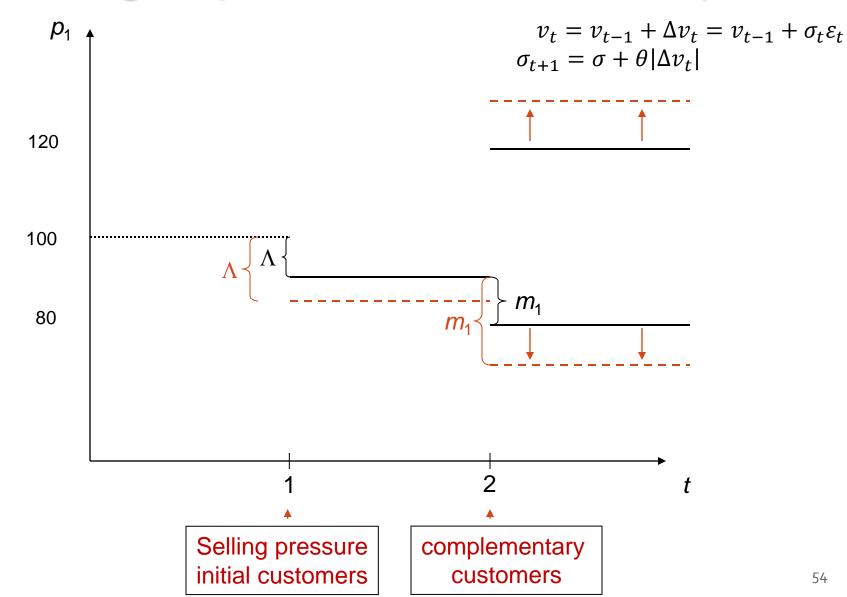
•
$$v_t = v_{t-1} + \Delta v_t = v_{t-1} + \sigma_t \varepsilon_t$$
, where $v_t \coloneqq E_t[v]$

Market illiquidity measure:

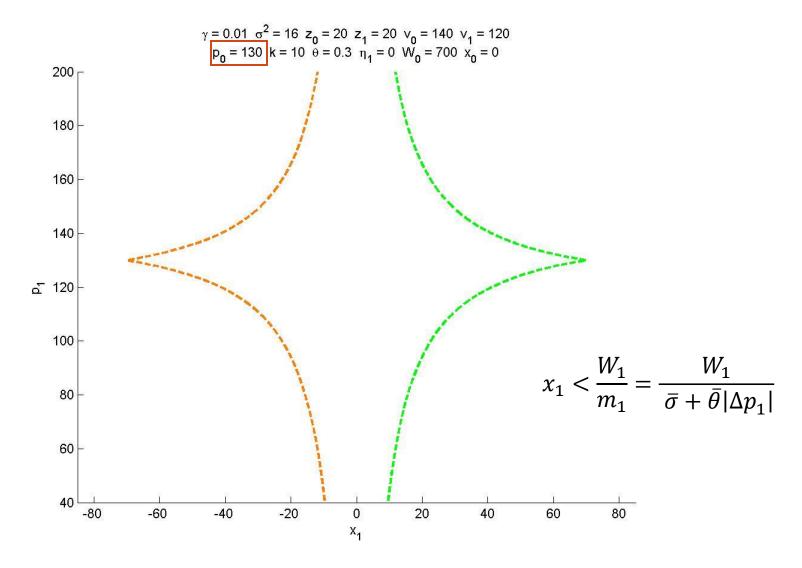
 $\Lambda_t = |v_t - p_t|$

cash "price" of stock holding

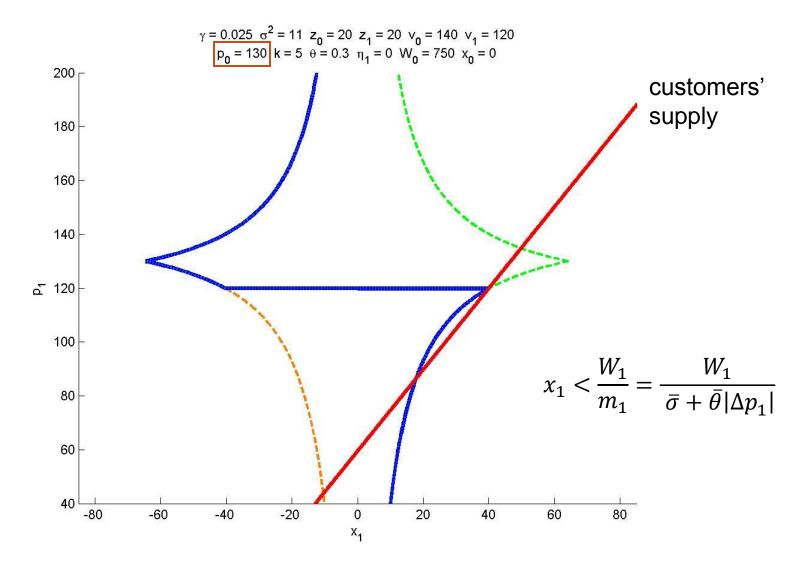
- Agents:
 - Initial customers with supply $S(z, v_t p_t)$ at t=1,2
 - Complementary customers' demand $D(z, v_2 p_2)$ at t=2
 - Risk-neutral *dealers* provide *immediacy* and
 - face capital constraint:

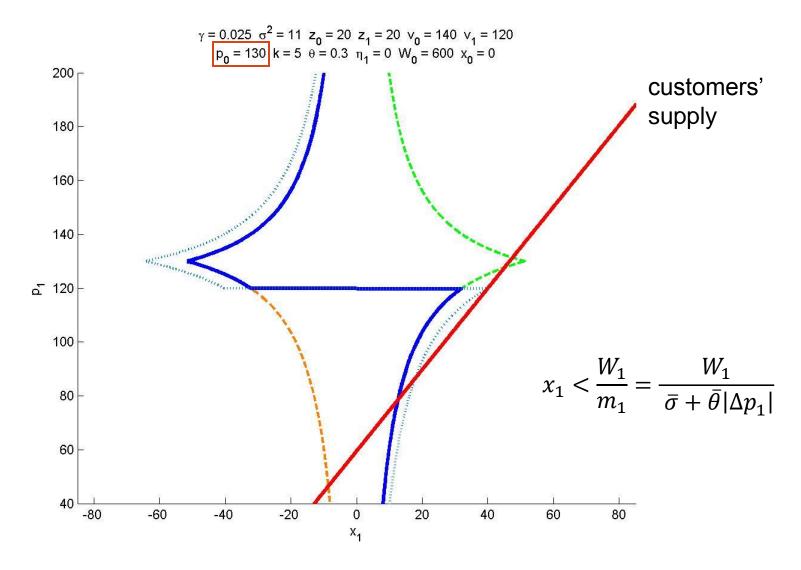

 $xm(\sigma,\Lambda) \le W(\Lambda) \coloneqq \max\{0, B + x_0(E[v_1] - \Lambda)\}$

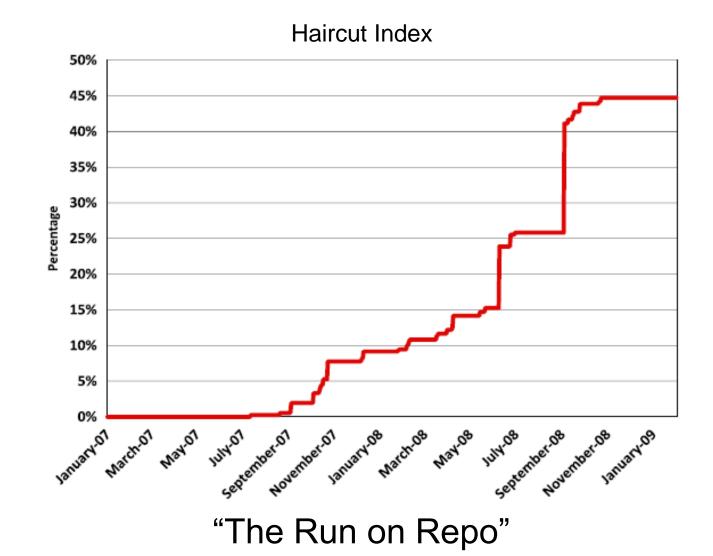
Financiers set margins


BP: Financiers' Margin Setting

- Margins are set based on Value-at-Risk
- *Financiers* do not know whether price move is due to
 - Likely, movement in fundamental (based on ARCH process)
 - Rare, Selling/buying pressure by customers who suffered asynchronous endowment shocks.


BP: Margin Spiral – Increased Volatility


1. Margin Spiral – Increased Volatility


1. Margin Spiral – Increased Volatility

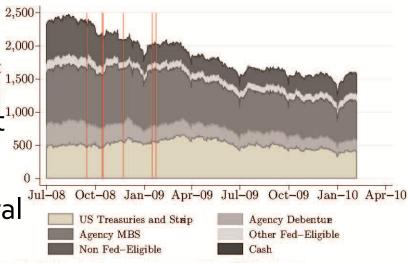
1. Margin Spiral – Increased Volatility

Data Gorton and Metrick (2011)

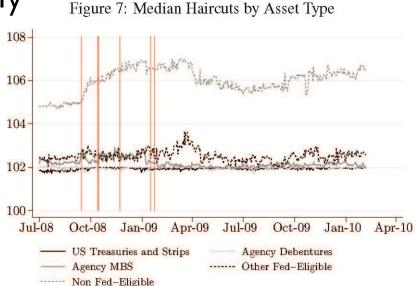
Copeland, Martin, Walker (2011)

Margins **stable** in tri-party repo market^{1,000}

- contrasts Gorton and Metrick
- no general run on certain collateral

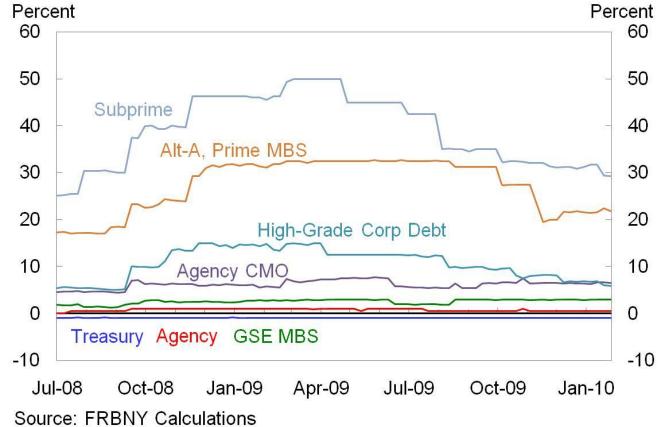

Run (non-renewed financing) only on select **counterparties**

- Bear Stearns (anecdotally)
- Lehman (in the data)


Like 100% haircut...

(counterparty specific!)

Note: Red lines correspond to important market events. From left to right: 9/15/08 (Lehman), 10/14/08 (9 banks receive aid), 10/16/08 (UBS), 11/23/08 (Citi), 1/16/09 (B of A), 1/24/09 (Citi).



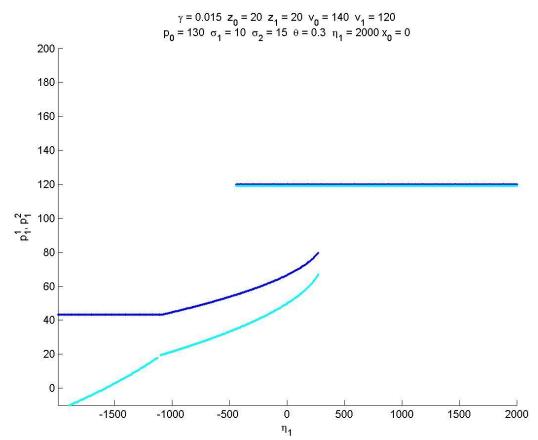
Note: July 17, 2008 excluded because no data was available for BNYM on that date. Red lines correspond to important market events. From left to right: 9/15/08 (Lehman), 10/14/08 (9 banks receive aid), 10/16/08 (UBS), 11/23/08 (Citi), 1/16/09 (B of A), 1/24/09 (Citi).

Bilateral and Tri-party Haircuts?

Differences in Median Haircuts

BP: Multiple Assets

- Dealer maximizes expected profit per capital use
 - Expected profit $E_1[v^j] p^j = \Lambda^j$
 - Capital use
- Dealers
 - Invest only in securities with highest ratio Λ^j/m^j
- Hence, illiquidity/margin ratio Λ^j/m^j is constant


BP: Commonality & Flight to Quality

- Commonality
 - Since funding liquidity is driving common factor
- Flight to Quality
 - Quality=Liquidity
 Assets with lower fund vol. have better liquidity
 - Flight

liquidity differential widens when funding liquidity becomes tight

BP: Flight to Quality

 m^2 =Volatility of Security2 = 2 > 1 = Volatility of Security1= m^1

Overview

- 1. Net worth effects:
 - Persistence: a.
 - Amplification: b.
 - Instability: С.

Carlstrom & Fuerst

- Bernanke, Gertler & Gilchrist
- **Brunnermeier & Sannikov**
- 2. Volatility effects: Credit quantity constraints
 - **Brunnermeier & Pederson** Margin spirals : a.
 - Endogenous constraints: Geanakoplos b.
- Demand for liquid assets & Bubbles "self insurance" 3. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom Tirole,... a. Financial intermediaries & Theory of Money