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Abstract

We study the optimal joint interest rate and central bank balance sheet policies in

a macro model with financial sector, sticky prices, aggregate and idiosyncratic risk.

Minimizing the output gap requires the central bank to condition its interest rate

policy on past QE. Previous central bank balance sheet expansions require more

aggressive interest rate policy going forward. Risk and consumption allocation effi-

ciency calls for a preparatory balance sheet policy that mediates the redistributive

role of subsequent interest rate moves. These two objectives jointly pin down opti-

mal interest rate and balance sheet policies.
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1 Introduction

Central banking has undergone significant transformations in the aftermath of the Global

Financial Crisis (GFC). The crisis prompted central banks to adopt new experimental

policies and expand their toolbox beyond traditional instruments. These developments

have reshaped the approach to monetary policy, incorporating multiple policy instruments

to achieve macroeconomic stability.

Modern central banking now relies on a combination of interest rate policies and

central bank balance sheet policies. Interest rate policies involve setting rates on both

required and excess reserves. Simultaneously, balance sheet policies include active usage

of quantitative easing (QE) and quantitative tightening (QT) in which central banks

purchase or sell long-term government bonds in exchange for reserves.

The necessity to study all these policies jointly is motivated by the apparent interplay

and interdependence of these policies observed in the data. Figure 1 shows the dynamics

of the volume of reserves issued by the Federal Reserve (top panel) an the interest rate

promised on these reserves (bottom panel). In the wake of the GFC, the Fed started

Figure 1: Reserves and Interest Rates
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to actively expand its balance sheet by issuing reserves and purchasing various assets

from private agents, with long-term government bonds among them (QE). This lead to

a large build-up of (excess) reserves and private banks’ deposits. At the same time,

the Fed introduced an interest rate on reserves to help steer the interbank rate, which

was near the zero lower bound at the time and therefore was inconsequential for central

bank expenses. Recent interest rate hikes together with previous central bank balance

sheet expansions created a new liability for the central bank in the form of enormous
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interest rate payments. This led to concerns for the conduct of conventional interest rate

policy and raised tensions with the Treasury. Such interaction between conventional and

unconventional policies generates new challenges for central banking, and hence we need

a new framework which includes the study of the optimal size and composition of the

central bank’s balance sheet. To design effective policies, it is essential to understand the

distinct role each monetary policy instrument plays, how they interact, and how they can

be coordinated to maximize social welfare.

To analyze the interaction of interest rate and balance sheet policies, the following

ingredients are at the center stage. First, there needs to be a financial sector which holds,

among other assets, central bank reserves and issues deposits to households. Second,

risk considerations and portfolio choice are essential because QE policies redistribute risk.

This includes the endogenous distribution of long-term bond holdings across different

agents. Third, we include price rigidities to have the output-gap-management role of

interest rate policy as in the mainstream monetary policy framework. Fourth, we allow

monetary policy to conduct QE directly in response to aggregate shocks, whereas the fiscal

authority can only issue bonds and raise taxes gradually over time. This captures the real-

world institutional constraints that make monetary policy more responsive to aggregate

shocks, compared to fiscal policy which acts with a delay. Finally, unlike in most other

QE-papers (Gertler and Karadi (2011), Karadi and Nakov (2021), Eren, Jackson, and

Lombardo (2024)), we do not impose that QE relaxes intermediaries’ constraints. In

addition, in our framework QE is fully anticipated, as in Haddad, Moreira, and Muir

(2024). Altogether, this uncovers the risk exposure management role of QE.

We combine these features in a macro model with a financial sector, sticky prices, id-

iosyncratic and aggregate risk, building on the framework developed in Brunnermeier and

Sannikov (2016), Merkel (2020) and Li and Merkel (2025). We characterize analytically

the (constrained) efficient allocation in this model, as well as the optimal conventional

and unconventional monetary policy mix implementing it. The key monetary instruments

are two interest rates: one on required and one on excess reserves, together with central

bank balance sheet management.

The two main inefficiencies that a social planner tries to correct stem from: (i) sticky

prices leading to output gaps, (ii) pecuniary externalities leading to consumption and risk

allocation inefficiencies. Addressing both of these inefficiencies requires a coordinated

conduct of interest rate and balance sheet policies.

We show that interest rate and QE policies have unique roles, yet have to be consid-

ered jointly as balance sheet policy mediates the effects of the former. More specifically,

the role of interest rate policy is to generate fluctuations in the price of long-term bonds.

This in turn allows the central bank to steer aggregate consumption and net worth, as

well as its distribution across agents, with an appropriate balance sheet policy. The role

of QE is therefore to ensure that the economy is exposed to the efficient amount of risk
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generated by future interest rate movements. In this sense QE/QT plays a preparatory

role.

When addressing either one of the above mentioned inefficiencies, the size of the

necessary interest rate movements depends on prior QE/QT policies. After a central

bank balance sheet expansion via QE, duration risk is taken off the private agents’ balance

sheets, requiring an aggressive interest rate move in response to a subsequent shock. In

that case, there exists a significant substitutability between balance sheet and interest rate

policies. Generous balance sheet policies have to be followed by aggressive interest rate

responses to shocks. However, when addressing the two inefficiencies simultaneously, both

balance sheet and interest rate policies are pinned down. We highlight that central bank’s

ability to set interest rates on required and excess reserves independently is important.

The interest rate on excess reserves together with balance sheet management help to

control immediate impact responses of both the output gap and net worth distribution

across agents to an aggregate shock. The interest rate on required reserves is then used

to manage the output gap along the subsequent transition path following the shock.

We note that the redistributive role of interest rate policy does not hinge on a par-

ticular distribution of long-term bond holdings across agents. The reason is that besides

the direct channel, through which interest rate cuts redistribute wealth towards long-term

bond holders, another indirect channel is operative. An appreciation of long-term bonds

increases total nominal wealth in the economy. Under sticky prices, this leads to a real

wealth appreciation, pushing the price of all real assets up. Therefore, it additionally

redistributes wealth towards agents that are levered in real assets, independently of the

distribution of long-term bond holdings across agents.

Section 2 sets up the model, section 3 introduces the equilibrium, section 4 defines

the welfare maximizing allocation, section 5 describes welfare maximizing policies.

2 Model Setup

2.1 General remarks

The model features households who hold capital and own monopolistic (price-setting)

firms. Households face idiosyncratic risk in their capital holdings and can issue outside

equity to intermediaries, who can diversify part of the idiosyncratic risk away. Idiosyn-

cratic risk varies over time due to aggregate Brownian shocks. Intermediaries can lever up

their position by issuing nominal debt to households in the form of deposits. Households

need deposits for transactions involving their capital, and increasing deposits’ velocity is

costly. The treasury levies taxes and issues long-term bonds, whereas the central bank

sets interest rates on required and excess reserves and engages in balance sheet policies

(trades reserves for long-term bonds). Intermediaries are forced to hold reserves issued by
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the government, whereas long-term bonds can be held by both households and interme-

diaries, as well as traded between the two types of agents. Monopolistically competitive

firms face price-setting frictions á la Rotemberg (1982), purchase a common good pro-

duced by households and add variety to it, with final consumption good being a CES

aggregator over all the varieties. Households and intermediaries switch types stochasti-

cally to prevent degenerate distributions of wealth shares in equilibrium.

2.2 Capital

Households hold capital and use it to produce a common input good. Capital accumu-

lation is subject to idiosyncratic shocks dZ̃t with volatility loading σ̃t. Individual capital

holding follows:
dkt
kt

=

(
1

ϕ
log(1 + ϕιt)− δ

)
︸ ︷︷ ︸

g(ιt)≡gt

dt+ σ̃tdZ̃t (1)

where ιt is the investment rate and gt is the growth rate of capital. Idiosyncratic volatility

σ̃t is a mean-reverting stochastic process:

dσ̃2
t = −bσ̃(σ̃2

t − σ̃2
ss)dt+ σσ̃tdZt, bσ̃ > 0 (2)

with dZt denoting aggregate Brownian shocks to idiosyncratic volatility. Aggregate capital

evolves as: dKt

Kt
=

(
1

ϕ
log(1 + ϕιt)− δ

)
︸ ︷︷ ︸

gt

dt.1 Capital price in consumption numeraire is

denoted by qKt and is driven by aggregate shocks:

dqKt
qKt

= µqK

t dt+ σqK

t dZt

Return on capital is given by:

drKt =

[
ptaυt − ιt − τKt + dt

qKt
− tt(νt)

]
dt+

d
(
qKt kt

)
qKt kt

=

[
ptaυt − ιt − τKt + dt

qKt
− tt(νt) + µqK

t + g(ιt)

]
dt+ σqK

t dZt + σ̃tdZ̃t

where a is capital productivity, υt is capital utilization rate, pt is the price of a common

input good, τKt is the capital tax, dt is the transfer from monopolistic firms,2 νt is the

1In our framework all households choose the same investment rate despite heterogeneity in net worth
levels, because of CRRA utility. This greatly simplifies aggregation.

2We assume all physical production activity is associated with capital holding. In equilibrium capital
return is not disturbed by the presence of monopolistic producers.
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velocity of deposits, and tt(νt) is an increasing and convex transaction cost function.3

2.3 Outside Equity and Risk Diversification

Risk-averse households are subject to uninsurable idiosyncratic risk stemming from their

capital holdings (1). They can offload risk by issuing claims on their capital returns

(outside equity) to intermediaries. The latter possess a risk-diversification technology,

allowing them to diversify a fraction 1− φ of idiosyncratic risk away, as in Brunnermeier

and Sannikov (2016). Formally, the return on issued outside equity for a household inherits

both the aggregate and idiosyncratic risk of their capital:

drx,Ht = rxt dt+ σqK

t dZt + σ̃tdZ̃t

whereas intermediary’s return on such a claim is subject to a fraction φ ∈ (0, 1) of

idiosyncratic risk:4

drx,It = (rxt + τxt ) dt+ σqK

t dZt + φσ̃tdZ̃t

Note that (i) aggregate risk is non-diversifiable, (ii) expected return on outside equity

paid by households rxt is endogenously determied in equilibrium, and (iii) intermediaries

can enjoy an intermediation subsidy τxt provided by the government.

2.4 Firms

The firm setup is standard and follows Li and Merkel (2025). Final goods firms have

no market power and aggregate varieties into final consumption good using CES tech-

nology: Yt =

(∫ 1

0

(
Y j
t

) ε−1
ε dj

) ε
ε−1

with elasticity of substitution ε > 1. Their demand

for intermediate good j is given by Y j
t =

(
P j
t

Pt

)−ε

Yt, with P j
t denoting j’s price and

Pt =
(∫ 1

0

(
P j
t

)1−ε
) 1

1−ε
.

Monopolistic firms purchase the common input good from households and produce a

differentiated variety with linear technology Y j
t = yjt . These firms sell their output to the

final good producers at price P j
t , which they can only adjust smoothly (dP j

t = πj
tP

j
t dt)

and at a flow cost κ
2

(
πj
t

)2
Ytdt, á la Rotemberg (1982). Real flow profits (net of adjustment

3Which is relative to the average equilibrium velocity of deposits. Since all households choose the
same velocity, in equilibrium tt(νt) = 0, meaning that transaction costs do not generate wasteful losses
and do not affect goods market clearing.

4Note that intermediaries do not fully diversify idiosyncratic risk away (φ ̸= 0). This would happen in
a setting with each intermediary holding allocating fraction 1−φ of their total outside equity holdings to
a fully diversified portfolio containing outside equity claims issued by all households, and the remaining
fraction φ – to a particular individual household, thus inheriting idiosyncratic risk of that household in
full.
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costs) are given by:
P j
t Y

j
t

Pt

− pt(1− τt)y
j
t

where τt is a rental subsidy that is financed by a lump-sum tax Tt.
5 They take final good

producers’ demand as given and use households’ discount factor to maximize the present

value of profits:

∫ ∞

0

ΞH
t

(P j
t

Pt

)1−ε

− pt(1− τt)

(
P j
t

Pt

)−ε

− κ

2

(
πj
t

)2 − Tt

Ytdt
with ΞH

t = e−ρt 1
CH

t
such that dΞH

t = −rf,Ht Ξtdt − ςC,H
t ΞH

t dZt. Appendix A.1 derives the

standard New Keynesian Phillips Curve:

E [dπt]

dt
=

(
rf,Ht − E [dYt]

Ytdt
+ ςC,H

t σY
t

)
πt −

ε

κ

(
pt(1− τt)−

ε− 1

ε

)
(3)

where Yt = aυtKt. Rewriting the NKPC in integral form:

πt =
ε

κYt
Et

∫ ∞

t

e−
∫ s
t rfτ dτYs

(
ms −mf

)
ds

where rft = rf,Ht + ςC,H
t σY

t , ms = ps(1 − τs) is the marginal cost and mf = ε−1
ε

is the

flex-price marginal cost. The usual interpretation is that firms raise prices (πt > 0)

whenever their future expected marginal costs ms are above flex-price marginal costs

mf , or alternatively – whenever future expected markups 1/ms are below the flex-price

markup ε/(ε− 1).6

Note that in the symmetric equilibrium, firms profits are
(
1− pt − κ

2
π2
t

)
Yt. Firms

transfer these profits to households, together with adjustment costs that they have paid,

such that dt = aυt − aptυt.

2.5 Government

The fiscal side of the government (treasury) issues long-term bonds LT
t at rate µL,T

t and sets

a fixed interest rate on bonds iL. The government also imposes a capital tax τKt , wealth

taxes/subsidies for intermediaries and households τ It and τHt , intermediation subsidy τxt ,

and the subsidy for monopolistic firms τt, as well as their lump-sum tax Tt. Treasury’s

5This type of subsidy is the standard way of correcting monopolistic power of firms.
6See also equation (21) in Kaplan, Moll, and Violante (2018). The main difference to our setting is

the absence of covariance between SDF and aggregate output (ςC,H
t σY

t ) due to the absence of aggregate
risk in their setting.
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budget constraint is as follows:

PL
t dL

T
t + Ptτ

K
t Ktdt+ TCB

t dt = iLLT
t dt,

where PL
t is the nominal price of bonds (dPL

t = µPL

t PL
t dt + σPL

t PL
t dZt), Pt is the price

level (dPt = πtPtdt) and T
CB
t is the transfer from the central bank. The remaining taxes

are self-financed.7

The monetary side of the government (central bank) issues reserves Rt (dRt =

µR
t Rtdt+ σR

t RtdZt), chooses a floating interest rate it on required reserves Rt, a floating

rate it on excess reserves Rt − Rt, reserve requirements θRt , and in addition holds long-

term bonds LCB
t , which evolve according to dLCB

t = µL,CB
t LCB

t dt + σL,CB
t LCB

t dZt. Its

budget constraint is as follows:

dRt + iLLCB
t dt = itRtdt+ it (Rt −Rt) dt+ PL

t dL
CB
t + TCB

t dt+ σPL

t σL,CB
t PL

t L
CB
t dt

The last term is due to expected losses/gains from stochastic bond purchases.8 The role

of the interest on excess reserves is to control the marginal and the average interest rate

on reserves separately. This gives the central bank the ability to set the marginal interest

rate in the economy without having to finance the change in interest rate payments and

without imposing any fiscal consequences. Effectively, it reproduces the freedom enjoyed

by the central bank in a standard New Keynesian model with reserves in zero net supply.

The consolidated government budget becomes:

dRt + PL
t

(
dLT

t − dLCB
t

)
+ Ptτ

K
t Ktdt = itRtdt+ it (Rt −Rt) dt

+ iL
(
LT
t − LCB

t

)
dt+ σPL

t σL,CB
t PL

t L
CB
t dt

or, separating the drift and volatility components:

µR
t Rt + PL

t

(
µL,T
t LT

t − µL,CB
t LCB

t

)
+ Ptτ

K
t Kt = itRt + it (Rt −Rt)

+ iL
(
LT
t − LCB

t

)
+ σPL

t σL,CB
t PL

t L
CB
t

σR
t Rt − PL

t σ
L,CB
t LCB

t = 0

Denote by Lt ≡ LT
t − LCB

t the outstanding stock of long-term bonds held by private

agents (dLt = µL
t Ltdt+ σL

t LtZt), by Bt ≡ Rt + PL
t Lt the total nominal wealth of private

agents, by ϑL
t ≡ PL

t Lt/Bt the share of long-term bonds in total nominal wealth, by ϑER
t =

(Rt−Rt)/Rt the fraction of excess reserves in total reserves, and by st ≡ Ptτ
K
t Kt/Bt the

7Formally, ηt(θ
x,I
t τxt +τ It )+(1−ηt)τ

H
t = 0 and ptτt = Tt, where ηt is the wealth share of intermediaries

and θx,It is their portfolio share in outside equity.
8If the central bank purchases long-term bonds whenever their price goes up and sells them whenever

their price goes down (σPL

t and σL,CB
t are of the same sign), then in expectation it is going to make a

loss, reflected in the drift component. See Appendix E for more details.
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surplus-to-debt ratio. Then, dividing the previous budget constraints by Bt:

µR
t

(
1− ϑL

t

)
+ µL

t ϑ
L
t + st =

(
1− ϑL

t

) (
it + (it − it)ϑ

ER
t

)
+

iL

PL
t

ϑL
t − σPL

t σL
t ϑ

L
t

σR
t (1− ϑL

t ) + σL
t ϑ

L
t = 0

The last equation states that whenever the central bank engages in QE/QT in response

to shocks, any long-term bond purchases or sales are directly financed by issuance or

contraction of reserve balances. In other words, the central bank can not rely on the fiscal

side of the government to finance its long-term bond purchases in response to shocks.

Total nominal wealth Bt follows:

dBt

Bt

=
[
(1− ϑL

t )µ
R
t + ϑL

t

(
µL
t + µPL

t + σPL

t σL
t

)]
dt+

[
σR
t (1− ϑL

t ) + ϑL
t

(
σL
t + σPL

t

)]
dZt

=

[(
1− ϑL

t

) (
it + (it − it)ϑ

ER
t

)
− st + ϑL

t

(
iL

PL
t

+ µPL

t

)]
︸ ︷︷ ︸

µB
t

dt+ ϑL
t σ

PL

t︸ ︷︷ ︸
σB
t

dZt (4)

Response Rates Assumption. A key (formal) assumption in our model is the ability

of the central bank to load on Brownian dZt innovations when conducting QE, and the

inability of the fiscal authority to load tax revenues or bond issuance on these shocks.

This assumption is motivated by the factual differences in institutional constraints on the

Federal Reserve and the Treasury. Whereas the Treasury can only issue bonds at auction

dates set in advance and has little flexibility in adjusting the volume of issuance, the Fed

can engage in asset purchases or sales on a daily basis and with greater flexibility. The

model captures this difference in policy ‘response rates’ between the Fed and the Treasury

by allowing the former to conduct QE directly in response to stochastic innovations,

and by restricting the corresponding ability of the latter to raise taxes or issue bonds

instantaneously upon the shock arrival.

2.6 Returns on Nominal Assets

Real returns on reserves and long-term bonds are given by:

drRt = i(θRt )dt+
d(1/Pt)

1/Pt

=

[
θRt it + (θRt − θRt )it

θRt
− πt

]
dt

drLt =
iL

PL
t

dt+
d(PL

t /Pt)

PL
t /Pt

=

[
iL

PL
t

+ µPL

t − πt

]
dt+ σPL

t dZt

where θRt is the intermediaries’ portfolio share of reserves, θRt is the reserve requirement

set by the government, and θRt ≥ θRt .

Intermediaries issue nominal deposits that have a safe real return because of price
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stickiness:9

drDt = iDt dt+
d(1/Pt)

1/Pt

=
[
iDt − πt

]
dt

2.7 Households’ and Intermediaries’ Problems

Households invest in capital, deposits and long-term bonds, and issue outside equity. They

need liquid deposits to ensure smooth maintenance of capital, and the amount of deposits

required depends on their velocity νt: νtD
H
t = qKt kt, whereD

H
t is the real value of deposits.

In addition, they face disutility of capital utilization, denoted by an increasing and convex

function b(υt). With intensity λH a household becomes an intermediary, keeping their net

worth. Denote by θD,H
t , θL,Ht , θKt , θ

x,H
t households’ portfolio weights on deposits, long-term

bonds, capital and outside equity, respectively. They solve the following problem:

V H
0 = max

cHt ,υt,ιt,νt,θ
D,H
t ,θL,H

t ,θKt ,θx,Ht

E
[∫ T

0

e−ρt
(
log(cHt )− b(υt)

)
dt + e−ρTV I

T

]
s.t.

dnH
t

nH
t

= − cHt
nH
t

dt+ θD,H
t drDt + θL,Ht drLt + θKt dr

K
t (υt, ιt, νt) + θx,Ht drx,Ht + τHt dt

1 = θD,H
t + θL,Ht + θKt + θx,Ht

νtθ
D,H
t = θKt ,

where T is the random type switching time. Denoting by χt the share of risk that

households offload to intermediaries and substituting θx,Ht = −χtθ
K
t , θKt = νtθ

D,H
t , and

θL,Ht = 1− θD,H
t − θKt (1− χt) one can rewrite the problem as:

V H
0 = max

cHt ,υt,ιt,νt,θ
D,H
t ,χt

E
[∫ T

0

e−ρt
(
log(cHt )− b(υt)

)
dt + e−ρTV I

T

]
s.t.

dnH
t

nH
t

= − cHt
nH
t

dt+ drLt + θD,H
t

(
drDt − drLt + νt(dr

K
t (υt, ιt, νt)− drLt − χt(dr

x,H
t − drLt ))

)
+ τHt dt.

Intermediaries invest in outside equity, reserves and long-term bonds, and issue deposits.

They face the required reserves constraint and become households with intensity λI . The

objective of intermediaries is as follows:

V I
0 = max

cIt ,θ
D,I
t ,θx,It ,θRt

E
[∫ T

0

e−ρt log(cIt )dt + e−ρTV H
T

]
s.t.

dnI
t

nI
t

= − cIt
nI
t

dt+ drLt + θD,I
t (drDt − drLt ) + θx,It (drx,It − drLt ) + θRt (dr

R
t (θ

R
t )− drLt ) + τ It

θRt ≥ θRt

9We fix the deposit nominal price at 1 (so that they have the same price as reserves and pay interest
in same units), and allow the interest rate iDt to clear the market. We fix the interest rate for long-term
bonds (in terms of reserves/deposits) iL, and allow the nominal price PL

t to clear the market.
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where we have used 1 = θD,I
t + θL,It + θRt + θx,It .

Transaction Costs. Transaction costs (or any other form of convenience premium) are

crucial. Absent transaction costs, intermediaries and households could perfectly share the

aggregate risk. Due to these costs, households tilt their portfolios towards deposits and

away from long-term bonds exposing both groups to aggregate risk.10

3 Equilibrium

Denote by NH
t and N I

t total net worths of households and intermediaries, respectively.

The total net worth in the economy is then Nt = NH
t +N I

t when aggregating across agent

types, and Nt = qKt Kt +
Rt+PL

t Lt

Pt
when aggregating across assets. Denote by ηt =

NI
t

Nt
the

wealth share of intermediaries, and by ϑt =
Rt+PL

t Lt

PtNt
the share of total net worth allocated

in nominal assets. These two net worth distribution – across agents (ηt) and across assets

(ϑt) are one of the key equilibrium variables.

The Markovian equilibrium in our framework consists of state variables S ≡ {σ̃, η, υ}
with corresponding laws of motion, policy variables i(S), i(S), ϑL(S), θR(S), τ I(S),

τx(S), τK(S), and mappings ϑ(S), PL(S), π(S) satisfying agents’ optimality conditions

and market clearing.

The state space includes one exogenous state variable (idiosyncratic risk σ̃t) and two

endogenous ones – net worth share of intermediaries ηt and utilization rate υt.

3.1 Market Clearing

Denote by αt =
θL,I
t NI

t

PL
t Lt/Pt

the share of outstanding long-term bonds held by intermediaries,

market clearing conditions become:

Capital market:

θKt N
H
t = qKt Kt =⇒ θKt =

1− ϑt

1− ηt

Outside equity market:

θx,It N I
t = −θx,Ht NH

t = χtθ
K
t N

H
t =⇒ θx,It = χt

1− ϑt

ηt

Reserves market:

θRt N
I
t =

Rt

Pt

=⇒ θRt = (1− ϑL
t )
ϑt

ηt

10While most of our qualitative results only require an increasing and convex transaction cost function,
the quantitative policy recommendations can be sensitive to the exact specification.
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Long-term bonds market:

θL,It N I
t + θL,Ht NH

t =
PL
t Lt

Pt

=⇒ θL,It = αtϑ
L
t

ϑt

ηt
, θL,Ht = (1− αt)ϑ

L
t

ϑt

1− ηt

Goods market

Ct = ρNt = ρ(qKt + qBt )Kt = ρ
qBt
ϑt

Kt = (aυt − ιt)Kt

3.2 Optimality Conditions and Laws of Motion

Because of log-utility, agents consume a constant fraction ρ of their net worth: cHt =

ρnH
t , c

I
t = ρnI

t . Households’ optimal investment rate is given by Tobin’s q: ιt =
qKt −1

ϕ
.

Optimal utilization choice of households: ρb′(υt) = a (1−ϑt)pt
(1−ηt)qKt

.

For convenience, we derive first-order conditions in total net-worth numeraire and

present asset returns in this numeraire in Appendix A.2. Martingale pricing for house-

holds’ and intermediaries’ outside equity implies:

ση
t

1− ηt

(
(ϑL

t − 1)σPL

t − σϑ
t

1− ϑt

)
+ (1− ϑt)

χt(φ
2(1− ηt) + ηt)− ηt
ηt(1− ηt)

σ̃2
t = τxt

Martingale pricing of reserves:

µPL

t =

marginal rate imt︷ ︸︸ ︷
it + λRt − iL

PL
t

+ σPL

t

(
ση
t − σϑ

t + σB
t

)
(5)

where λRt is the Lagrange multiplier on intermediaries’ reserve requirement and we denote

the marginal interest rate in this economy by imt . Combining martingale pricing of deposits

with the optimal velocity choice:

ση
t

1− ηt
σPL

t = ν2t t
′(νt)

Note that the derivative t′(νt) does not have a time index. Net-worth allocation across

nominal and safe assets:

µϑ
t = ρ− st − (1− ϑt)

(
1− ϑL

t

) marginal rate - average rate︷ ︸︸ ︷(
1− ϑER

t

)
(it + λRt − it)+χt(1− ϑt)τ

x
t

+ ση
t

(
σB
t − σPL

t

)
− ηt

[
(ση

t )
2 + (σ̃η

t )
2
]
− (1− ηt)

[(
σ1−η
t

)2
+
(
σ̃1−η
t

)2]

11



where the average rate is given by iat = (1− ϑER
t )it + ϑER

t it and:

σ̃η
t = (1− ϑt)

χt

ηt
φσ̃

σ̃1−η
t = (1− ϑt)

1− χt

1− ηt
σ̃

ηtσ
η
t = (ηt − χt)σ

ϑ
t + (χt − ηt + ϑt(αt − χt))ϑ

L
t σ

PL

t

σ1−η
t = − ηtσ

η
t

1− ηt

The drift of η becomes:

µη
t = (1− ηt)

(ση
t )

2 + (σ̃η
t )

2 −
(
σ1−η
t

)2 − (σ̃1−η
t

)2 − (1− ϑL
t

) marginal rate - average rate︷ ︸︸ ︷(
1− ϑER

t

)
(it + λRt − it)

ϑt

ηt


− ση

t

(
σPL

t + σϑ
t − σB

t

)
+ τ It + χt(1− ϑt)τ

x
t − λI + λH

1− ηt
ηt

The NKPC can now be written as:

µπ,t =
(
rf,Ht − µυ

t − gt + σN,H
t συ

t

)
πt + σπ,t

(
σN,H
t − συ

t

)
− ε

κ

(
pt(1− τt)−

ε− 1

ε

)
The law of motion for utilization is derived from the goods market clearing condition and

satisfies:

υtµ
υ
t =

qBt
aϕϑt

[
(1− ϑt + ρϕ)

(
µB
t − πt − gt

)
+ (1 + ρϕ)

(
σϑ
t

(
σϑ
t − σB

t

)
− µϑ

t

)]
υtσ

υ
t =

qBt
aϕϑt

[
(1− ϑt + ρϕ)σB

t − (1 + ρϕ)σϑ
t

]
Finally, the deposit constraint can be written as:

νt
[
χt − ηt + ϑt(1− χt)− (1− αt)ϑ

L
t ϑt

]
= 1− ϑt

Note that the interest rates relevant for equilibrium dynamics are the marginal rate imt =

it + λRt and the average rate iat = (1 − ϑER
t )it + ϑER

t it. From now on, we will use these

two rates as policy variables directly.

4 Constrained Efficiency

The utilitarian planner maximizes welfare of all agents, attaching equal Pareto weights

to all individuals. The constrained planner takes investment choice of agents (Tobin’s

q) as given. The planner can freely allocate consumption across sectors, but not within

12



sectors, meaning that individual consumption is still subject to idiosyncratic risk, as in

the competitive equilibrium. Relative to the competitive equilibrium, the planner is not

subject to sticky prices and internalizes the effect that individual demand for capital and

risk sharing has on aggregate welfare. Denote each agent by ĩ ∈ [0, 1] and each agent’s

type at time t by it(̃i) ∈ {I,H}. Then consumption (or equivalently wealth) share of agent

ĩ’s sector is η
it (̃i)
t = N

it (̃i)
t /Nt, whereas agent’s share within the sector is η̃ĩt = nĩ

t/N
it (̃i)
t .

Then planner’s objective is:

W0 = max
{ιt,υt,ϑt,ηt,χt}∞t=0

∫ 1

0

[
E
∫ ∞

0

e−ρt
(
log(η

it (̃i)
t η̃ĩtctKt)− b(υt)1it (̃i)=H

)
dt

]
d̃i s.t.

ct = aυt − ιt = ρ
qKt

1− ϑt

, qKt = (1 + ϕιt)

dη̃ĩt

η̃ĩt
=


(
λI − λH 1−ηt

ηt

)
dt+ (1− ϑt)

χt

ηt
φσ̃tdZ̃t +

(
ηt

1−ηt
− 1
)
dJ̃ I

t , if it(̃i) = I(
λH − λI ηt

1−ηt

)
dt+ (1− ϑt)

1−χt

1−ηt
σ̃tdZ̃t +

(
1−ηt
ηt

− 1
)
dJ̃H

t , if it(̃i) = H

where dJ̃ I
t and dJ̃H

t are Poisson innovations with type-switching intensities λI and λH

respectively. Net worth shares of individual agents within their sectors have a drift com-

ponent because sector-level wealth is growing at a different rate than individual-level

wealth due to a constant flow of agents switching their types and either leaving or enter-

ing the sector. It has a Brownian component because of idiosyncratic risk which averages

out at the sector level, and a jump component because individual net worth share changes

discontinuously at the time of a type switch, since the sector-level wealth relative to which

it is computed changes discontinuously (from N I
t to NH

t or vice versa). As we show in

Appendix B, the planner effectively attaches Pareto weight λ = λH

λI+λH to intermediaries

and 1−λ to households, with λ being the physical share of intermediaries. We also show

that the solution to the dynamic problem from above is equivalent to the solution of a

static problem, in which the planner chooses allocation {ιt, υt, ϑt, ηt, χt} period-by-period,

given the current realization of σ̃t:

max
{ιt,υt,ϑt,ηt,χt}

log (aυt − ιt)− (1− λ)b(υt) +
1

ρ

(
1

ϕ
log(1 + ϕιt)− δ

)
+ λ log (ηt) + (1− λ) log (1− ηt)−

(1− ϑt)
2 σ̃2

t

2ρ

[
λ
χ2
t

η2t
φ2 + (1− λ)

(1− χt)
2

(1− ηt)2

]
+

1

ρ

[
λ

(
λI − λH

1− ηt
ηt

)
+ (1− λ)

(
λH − λI

ηt
1− ηt

)]
The reason for the equivalence is that log-utility allows splitting different components

of individual consumption into a sum, and the fact that the planner is not bound by

equilibrium laws of motion and can freely pick consumption share ηt and utilization υt,

period-by-period. The first line of the planner’s objective contains terms affecting produc-
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tion and capital accumulation, which jointly determine the path of aggregate output.11

The second and third lines capture the welfare effects of consumption and risk alloca-

tion. The first two terms in the second line reflect the direct welfare effect of allocating

consumption in proportions ηt and 1 − ηt across the two sectors. The third term is the

total welfare loss of exposure to idiosyncratic risk, weighted across households and inter-

mediaries. The third line captures welfare losses that are due to changes in individual

consumption growth rates over the lifetime of an individual that occur because of type

switching. Consumption smoothing motive calls for setting ηt = λ which ensures that

within-sector shares η̃ĩt have no drift and maximizes the term in the third line. In the

following we discuss the main properties of the planner’s allocation.

Proposition 1. Let φ ∈ (0, 1), λ ∈ (0, 1) and satisfy assumption (A1), λI > 0 and

λH > 0 sufficiently small. Then there exists a unique solution to the planner’s problem

for η > λ and the constrained efficient allocation {υ∗(σ̃t), ι∗(σ̃t), ϑ∗(σ̃t), η
∗(σ̃t), χ

∗(σ̃t)} has

the following properties:

• Intermediaries are disproportionately exposed to risk: χ∗(σ̃t) > η∗(σ̃t)

• Capital utilization υ∗(σ̃t) is constant in σ̃
2
t .

• Intermediaries’ wealth and risk shares η∗(σ̃t) and χ
∗(σ̃t) are increasing in σ̃2

t .

• Nominal wealth share ϑ∗(σ̃t) is increasing and investment rate ι∗(σ̃t) is decreasing

in σ̃2
t .

Assumption (A1) requires:

6λ(1− λ)(1− φ2)(1− λ+ λφ2)− (1− 2λ)φ2 ≥ 0 (A1)

and restricts the admissible parameter space as depicted on Figure 2. Yellow region

corresponds to λ and φ combinations satisfying (A1), blue region – to those combinations

for which (A1) does not hold. The assumption is satisfied if λ > 0.5, or if λ < 0.5

and intermediaries are sufficiently efficient at risk diversification (φ is sufficiently low).

Note that the assumption is a sufficient but not a necessary condition, meaning that

Proposition 1 may hold even if (A1) is not satisfied. Furthermore, assumption A1 can be

further relaxed by a numerical application of Sturm’s theorem (see Appendix B for more

details).

In general, the planner allocates a higher risk share to intermediaries, relative to

their net worth share, as these agents are able to diversify part of the idiosyncratic risk

11Note that in our framework the output gap consists of two parts – an ‘instantaneous’ and a ‘dynamic’
gap. The ‘instantaneous’ gap refers to suboptimal utilization rate, given a certain stock of capital. The
‘dynamic’ gap refers to suboptimal capital accumulation. Achieving an efficient path of output requires
closing both of these two gaps simultaneously.
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Figure 2: Assumption A1

away. Following an increase in idiosyncratic risk, the planner pushes more of this risk

towards intermediaries (χ∗ goes up) but compensates them for it by increasing their

wealth share η∗. At the same time, planner uses the alternative tool to diminish the

amount of idiosyncratic risk – reallocates wealth towards safe but unproductive assets

(ϑ∗ goes up). Finally, since idiosyncratic risk comes from capital, planner scales down on

investment but keeps utilization constant as it does not interact with risk.

5 Optimal Policy

We now turn to optimal policy characterization. As noted above, total welfare consists

of two parts – the first part reflecting production and investment efficiency (real sector

or output path efficiency), and the second part reflecting risk and consumption allocation

efficiency. We will discuss implementation of these two types of efficiencies separately

before considering the joint problem.

In the following, we label the choice of ϑL
t as balance sheet or QE policy. More formally, the

central bank can directly control the quantity share of long-term bonds in total nominal

net worth held by private agents: ψt ≡ Lt/ (Rt + Lt), whereas ϑ
L
t = PL

t Lt/
(
Rt + PL

t Lt

)
is the endogenous value share or long-term bonds in total nominal wealth. However, for a

given long-term bond price process PL
t , there is a one-to-one mapping between ψt and ϑ

L
t .

Since the former is the one relevant for the equilibrium, we let the central bank directly
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choose ϑL
t , which of course requires an appropriate choice of ψt in the background.

5.1 Real Sector Efficiency

We first characterize policies that achieve the optimal path of output, implying efficient

production and capital accumulation. These policies implement the ‘first line’ of welfare

as given by the planner, by ensuring that υt and ιt follow the efficient paths of υ∗t and ι
∗
t in

competitive equilibrium. Note that goods market clearing implies that ϑt (and q
B
t ≡ Bt

PtKt

and qKt ) also follow the efficient path, and it is therefore equivalent to focus on imple-

menting efficient υt and ϑt, achieving efficient ιt as a by-product. Since nominal wealth

share ϑt is a mapping in our equilibrium formulation and a forward-looking variable, it

suffices to ensure that the expected drift of ϑt along the equilibrium path is efficient:

µϑ
t = µϑ,∗

t = ρ− st − (1− ϑ∗
t )(1− ϑL

t )(i
m
t − iat ) + ση

t

(
σB
t − σPL

t

)
+ χt(1− ϑ∗

t )τ
x
t

− ηt

[
(ση

t )
2 + (σ̃η

t )
2
]
− (1− ηt)

[(
σ1−η
t

)2
+
(
σ̃1−η
t

)2]
(6)

Note that here only the path of ϑt is efficient, but not necessarily that of ηt as we are

not targeting efficient consumption allocation. Utilization, in turn, is a state variable and

therefore efficiency requires that υt follows the efficient law of motion:

υ∗tµ
υ,∗
t =

qB,∗t

aϕϑ∗
t

[
(1− ϑ∗

t + ρϕ)
(
µB
t − πt − g∗t

)
+ (1 + ρϕ)

(
σϑ,∗
t

(
σϑ,∗
t − σB

t

)
− µϑ,∗

t

)]
= 0

υ∗t σ
υ,∗
t =

qB,∗t

aϕϑ∗
t

[
(1− ϑ∗

t + ρϕ)σB
t − (1 + ρϕ)σϑ,∗

t

]
= 0

Plugging in for µB
t , this implies:

(
1− ϑL

t

)
iat + ϑL

t i
m
t − st + σB

t

(
ση
t − σϑ,∗

t + σB
t

)
− πt =

= g∗t +
1 + ρϕ

1− ϑ∗
t + ρϕ

(
µϑ,∗
t − σϑ,∗

t

(
σϑ,∗
t − σB

t

))
(7)

ϑL
t σ

PL

t = σB
t =

(1 + ρϕ)

(1− ϑ∗
t + ρϕ)

σϑ,∗
t (8)

As long as (6), (7) and (8) hold along the equilibrium path, competitive equilibrium

features real sector efficiency. The government has five instruments (iat , i
m
t , ϑ

L
t , st, τ

x
t ) to

achieve three targets. As the purpose of intermediation tax τxt is steering risk allocation

(see next section), we let the fiscal authority set it to ensure efficient risk allocation in the

stochastic steady state, but not dynamically (τxt = τx). However, we allow the central

bank to charge the two interest rates independently. This leads to the following result:

Proposition 2.

Real sector efficiency requires conduct of coordinated conventional (imt ) and unconven-
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tional (ϑL
t ) monetary policies. Optimal interest rate policy introduces sufficient comove-

ment between bond price PL
t and idiosyncratic risk σ̃2

t :

σPL

t ≥ (1 + ρϕ)

(1− ϑ∗
t + ρϕ)

σϑ,∗
t > 0

and a corresponding optimal QE policies ensures:

ϑL
t σ

PL

t =
(1 + ρϕ)

(1− ϑ∗
t + ρϕ)

σϑ,∗
t

The proposition follows directly from (8) and the fact that σϑ,∗
t > 0, as discussed

in the previous section. In particular, it is the marginal interest rate that introduces

movements in bond price in response to aggregate shocks, as highlighted in (5). The

necessity of monetary intervention comes from the (assumed) inability of the government

to expand nominal wealth in response to uncertainty shocks. An increase in idiosyncratic

risk leads to portfolio rebalancing towards safe nominal assets. Under sticky prices and

absent an appropriate interest rate policy, nominal wealth Bt/Pt can not expand, meaning

that capital price qKt must drop to satisfy portfolio rebalancing. As a consequence, this

leads to a drop in total wealth and consumption demand on impact and generates a

recession. By cutting the marginal interest rate imt and boosting the price of long-term

bonds, the central bank can compensate for the stickiness of the nominal price level and

stabilize wealth and consumption.12

A direct corollary of Proposition 2 is that there is a large degree of substitutability

between conventional and unconventional policies.

Corollary 1.

• For any interest policy imt inducing sufficient bond price fluctuations in the sense of

Proposition 2, there exists a corresponding QE policy ϑL
t ensuring (8).

• For and QE policy ϑL
t ∈ (0, 1] there exists a corresponding interest rate policy imt

ensuring (8).

• Past QE (a decrease in ϑL
t ) requires higher bond price volatility going forward.

Following a period of central bank balance sheet expansion, the monetary authority

has to engage in more aggressive interest rate policy. Balance sheet expansions reduce

the sensitivity of the economy to subsequent interest rate movements, which needs to

be compensated by a larger magnitude of these movements. We highlight that substi-

tutability between interest rate and QE policies requires the central bank’s ability to set

the marginal and average interest rates independently. If we restrict imt = iat , then the

12A similar outcome can be achieved with tradable lump-sum taxes, as discussed in Li and Merkel
(2025).
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optimal path of the single interest rate as implied by (7) would pin down bonds price

volatility σPL

t , which may or may not be sufficient to ensure the efficient response of out-

put on impact.

To achieve efficient portfolio choice ϑ∗
t and efficient drift of utilization, the government

jointly sets the surplus-to-debt ratio st and the average rate iat to satisfy (6) and (7). For

a fixed marginal rate and st, the average rate directly affects the rate of nominal wealth

growth Bt (see (4)). This in turn determines the dynamics of utilization, as can be seen

from the rewritten goods market clearing condition:

aυt =
Bt

ϑ∗
tPtKt

((1− ϑ∗
t + ρϕ)− 1

ϕ

With sticky prices, changes in nominal wealth translate to changes in real wealth and the

demand for consumption goods, which helps boost the supply following a negative shock.

We refer the reader to Li and Merkel (2025) for a detailed discussion in the context of a

one-sector model.

5.2 Consumption and Risk Allocation Efficiency

We now consider policies that implement consumption and risk allocation efficiency by

targeting the second and third lines of the planner’s objective. These policies aim to

achieve efficient paths of ηt, ϑt and χt. As before, the fiscal authority can induce efficient

portfolio allocation ϑ∗
t by setting an appropriate surplus-to-debt ratio:

µϑ
t = µϑ,∗

t = ρ− st − (1− ϑ∗
t )(1− ϑL

t )(i
m
t − iat ) + ση,∗

t

(
σB
t − σPL

t

)
+ χ∗

t (1− ϑ∗
t )τ

x
t

− η∗t

[
(ση,∗

t )
2
+ (σ̃η,∗

t )
2
]
− (1− η∗t )

[(
σ1−η,∗
t

)2
+
(
σ̃1−η,∗
t

)2]
(9)

Risk allocation χt can be corrected by a corresponding subsidy:

ση,∗
t

1− η∗t

(
(ϑL

t − 1)σPL

t − σϑ,∗
t

1− ϑ∗
t

)
+ (1− ϑ∗

t )
χ∗
t (φ

2(1− η∗t ) + η∗t )− η∗t
η∗t (1− η∗t )

σ̃2
t = τxt (10)

Net worth share of intermediaries ηt is a state variable and therefore must follow the

efficient law of motion in the competitive equilibrium:

µη,∗
t = (1− η∗t )

[
(ση,∗

t )
2
+ (σ̃η,∗

t )
2 −

(
σ1−η,∗
t

)2 − (σ̃1−η,∗
t

)2 − (1− ϑL
t )(i

m
t − iat )

ϑ∗
t

η∗t

]
− ση,∗

t

(
σPL

t + σϑ,∗
t − σB

t

)
+ τ It + χ∗

t (1− ϑ∗
t )τ

x
t − λI + λH

1− η∗t
η∗t

(11)

η∗t σ
η,∗
t = (η∗t − χ∗

t )σ
ϑ,∗
t + (χ∗

t − η∗t + ϑ∗
t (αt − χ∗

t ))σ
B
t (12)
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Note that the drift of wealth share ηt can be targeted with a wealth tax τ It . For illustrative

purposes, we assume that the central bank sets the average rate iat to a constant, ensuring

efficient utilization in the steady state. As before, the central bank is then left with

two instruments – QE policy ϑL
t and marginal interest rate policy imt to implement the

efficient response of wealth share ηt to aggregate shocks – ση,∗
t . Again, we first establish

the necessity of an appropriate joint conventional and unconventional monetary policy

intervention:

Proposition 3.

Consumption and risk allocation efficiency requires conduct of coordinated conventional

(imt ) and unconventional (ϑL
t ) monetary policies.

To see why this is the case, suppose that interest rate policy (suboptimally) induces

zero bond price volatility σPL

t = 0. In that case (12) reduces to:

η∗t σ
η,∗
t︸︷︷︸
>0

= (η∗t − χ∗
t )︸ ︷︷ ︸

<0

σϑ,∗
t︸︷︷︸
>0

(13)

which clearly leads to a contradiction since, following an increase in idiosyncratic risk,

efficient allocation requires wealth reallocation towards intermediaries (ση,∗
t > 0) and

nominal assets (σϑ,∗
t > 0), with intermediaries being disproportionately exposed to risk

(χ∗
t > η∗t ). Note that the above constraint applies only to the competitive equilibrium, in

which the distribution of wealth across assets (ϑt) is linked to the distribution of wealth

across agents (ηt), whereas the planner is not bound by such a constraint and is free to re-

distribute wealth across these two margins independently. In this suboptimal competitive

equilibrium, portfolio rebalancing towards nominal assets inevitably redistributes wealth

away from intermediaries, as they are the ones levered in real capital and short in nominal

claims. Therefore, the role of monetary policy is to counteract this force and redistribute

wealth towards intermediaries despite portfolio rebalancing that affects them adversely.

This can be achieved via an appreciation of long-term bonds (σPL

t > 0), together with an

appropritae QE policy ϑL
t .

The challenge in this case is endogeneity of long-term bond holdings distribution αt

– the share of long-term bonds held by the intermediaries. The central bank needs to

account for the fact that by increasing bond price volatility σPL

t , it subjects long-term

bond holders to larger duration risk and stimulates portfolio reallocation. Since in the

efficient allocation long-term bonds are an anti-hedge for the intermediaries (ση,∗
t and

σPL

t are of the same sign), higher σPL

t would lead to a smaller share of long-term bonds

held by intermediaries and therefore require a larger total nominal wealth volatility σB
t

to ensure efficient redistribution. For a fixed ϑL
t , we represent this trade-off graphically

in Figure 3. On the x-axis we show long-term bond price volatility σPL

t , determined by

the marginal interest rate policy imt . On the y-axis we put intermediaries’ share in total

19



Figure 3: Allocation Efficiency
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long-term bond holdings αt. The red line is intermediaries’ portfolio choice – as long-

term bonds become riskier, intermediaries scale down on their holdings. The blue line

represents intermediaries’ long-term bonds exposure, required for the efficient reallocation

according to (12) – larger σPL

t implies larger nominal wealth volatility σB
t and allows for

smaller intermediaries’ share in long-term bond holdings αt. In this example, there are

two optimal interest rate policies imt for a fixed QE policy ϑL
t , corresponding to the

two intersections. A moderate interest rate policy generates low bond price volatility

and incentivizes intermediaries to hold large amounts of long-term bonds. An aggressive

interest rate policy leads to high bond price volatility and therefore small long-term bond

holdings for the intermediaries. Note that such multiplicity does not apply for any QE

policy ϑL
t , and in fact there could be no solutions for some of these policies. However, the

next proposition establishes that there always exists a combination of interest rate and

QE policies that delivers the efficient consumption and risk allocation:

Proposition 4. There exists a joint QE and marginal interest rate policy such that (12)

is satisfied in the competitive equilibrium.

We relegate the proof to Appendix C. We highlight that our result does not require

long-term bond market segmentation and goes through even if intermediaries are not

holding any long-term bonds. Indeed, suppose that αt = 0. In that case countercyclical

interest rate policy can still implement the efficient allocation by ensuring:

η∗t σ
η,∗
t = (η∗t − χ∗

t )σ
ϑ,∗
t + (χ∗

t − η∗t − ϑ∗
tχ

∗
t ))ϑ

L
t σ

PL

t (14)

as long as

χ∗
t − η∗t − χ∗

tϑ
∗
t > 0
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In a competitive equilibrium with αt = 0, the above condition implies that intermediaries

issue more deposits than the amount of reserves they hold, which should hold for any

reasonable calibration. Despite the fact that households hold all long-term bonds, long-

term bond appreciation can still lead to a wealth transfer towards intermediaries. This

is because long-term bonds affect the wealth share in two ways: a direct and an indirect

way. Rewrite the volatility of η as follows:

ηtσ
η
t = (ηt − χt)σ

ϑ
t + (χt − ηt − ϑtχt)︸ ︷︷ ︸

(θx,It −1)ηt

ϑL
t σ

PL

t︸ ︷︷ ︸
σB
t

+αtϑtϑ
L
t︸ ︷︷ ︸

θL,I
t ηt

σPL

t (15)

The last term on the RHS is the direct effect of bond revaluations – intermediaries are

exposed to bond price changes proportionately to their holdings. The second term on

the RHS is the indirect effect, which is independent of intermediaries’ long-term bond

holdings. The key to understanding this effect are the real wealth effects of nominal

wealth changes under sticky prices. Using the definition of ϑt, we can write:

qKt =
Rt + PL

t Lt

PtKt

1− ϑt

ϑt

For a given ϑt, an appreciation of long-term bond price PL
t leads to an increase in total

nominal wealth Bt = Rt+P
L
t Lt and, with a sticky price level Pt, to an appreciation in total

real wealth and hence the capital price qKt . Note that the second term on the RHS of (15)

can be written as (θx,It −1)ηtσ
B
t , where θ

x,I
t is the intermediaries’ portfolio share of outside

equity. In a typical equilibrium θx,It > 1, meaning that intermediaries hold a levered

position in outside equity and are therefore more exposed to capital price fluctuations than

households. As a result, an appreciation of capital price qKt redistributes wealth towards

intermediaries, independently of the distribution of long-term bond holdings across the

two agent types. We note that this indirect effect is equally operative under flexible

prices. The only difference is that under flexible prices nominal wealth appreciation leads

to a jump in the price level Pt, which devalues intermediaries’ deposit liabilities and

redistributes wealth towards them, again precisely because of θx,It > 1.

5.3 Full Efficiency

Full efficiency require achieving real sector efficiency and consumption and risk allocation

efficiency simultaneously. The former pins down the required nominal wealth volatility

σB
t given by (8). This serves as an additional constraint for interest rate and QE policy

that deliver allocation efficiency. Graphically, it adds a vertical line to Figure 3, requiring

the intersection of all three: As before, the lines are depicted for a fixed QE policy ϑL
t

and achieving full efficiency requires an active management of ϑL
t . Whether the solution

exists (or is unique) depends on parameter values. Suppose that a solution exists, then
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Figure 4: Full Efficiency
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one can construct the bond price PL
t as function of σ̃2

t , e.g. by normalizing the value at the

stochastic steady state to one and given the optimal σPL

t . Given the bond price function

PL(σ̃2
t ), one can compute the required marginal interest rate policy imt that would ensure

the required PL
t along the equilibrium path from:

µPL

t = imt − iL

PL
t

+ σPL

t

(
ση,∗
t − σϑ,∗

t + σB
t

)
The remaining steps require setting intermediation subsidy τxt , average interest rate iat ,

surplus-to-debt ratio st and wealth tax τ It to ensure that (6), (7), (10) and (11) hold along

the efficient equilibrium path.

If, however, there is no optimal solution, then efficient allocation is not compatible

with competitive equilibrium and the government faces a trade-off between real sector

and allocation efficiency.

Discussion: Ramsey optimal policies. While our approach does not follow the tradi-

tion of Ramsey optimal taxation, our optimal policies solve the Ramsey optimal problem,

whenever a solution to our approach exists. In other words, if there exists a policy mix

ensuring constrained efficiency of the competitive equilibrium, then this policy mix is the

solution to a corresponding Ramsey problem. To see this, note that the problem of the

planner in our framework is a relaxed version of a Ramsey problem, in which we relax

many of the equilibrium constraints and allow the planner to choose allocations directly

instead of choosing policy instruments. Therefore, if we can find a policy mix that im-

plements the constrained efficient allocation, then this policy mix also solves the Ramsey

problem in which the planner has access to the same set of policy instruments. This
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follows because (i) the resulting allocation is feasible under the Ramsey problem and (ii)

it is optimal since it is optimal for a relaxed problem.

5.4 Varying Aggregate Risk σ

We now perform a comparative statics exercise with respect to aggregate risk σ. Recall

that:

dσ̃2
t = −bσ̃(σ̃2

t − σ̃2
ss)dt+ σσ̃tdZt

Proposition 5. Suppose that for some σ > 0 the constrained efficient allocation can be

implemented in the competitive equilibrium. Denote by
∂ log ϑL

t

∂ log σ
and

∂ log σPL

t

∂ log σ
the elasticities

of the optimal QE policy and bond volatility, respectively, with respect to aggregate risk σ.

Then: 
∂ log ϑL

t

∂ log σ
= 2,

∂ log σPL

t

∂ log σ
= −1 if αt = 1

∂ log ϑL
t

∂ log σ
> 2,

∂ log σPL

t

∂ log σ
< −1 if αt > 1

∂ log ϑL
t

∂ log σ
< 2,

∂ log σPL

t

∂ log σ
> −1 if αt < 1

where αt is the share of long-term bonds held by the intermediaries, as implied by the

optimal policy.

The proposition states that as long as optimal bond distribution αt is close to one,

the central bank needs to conduct QT in response to an increase in aggregate risk, ac-

companied by a milder interest rate policy, ensuring lower bond price volatility. The

intuition is that intermediaries choose lower long-term bond holdings as aggregate risk

goes up, decreasing their exposure to long-term bond price risk and preventing efficient

redistribution. As a countermeasure, the central bank moderates its interest risk policy

and decreases the risk carried by long-term bonds. However, this calls for a larger amount

of long-term bonds held by private agents to ensure efficient redistribution, which requires

quantitative tightening.

Interestingly, optimal central bank balance sheet policy in response to risk shocks may

be of opposite sign for aggregate and idiosyncratic risk. Figure 5 shows optimal policy as

a function of idiosyncratic risk σ̃2 for two economies – with low and high aggregate risk

σ. In line with proposition 5, the economy with larger aggregate risk features a smaller

central bank balance sheet (larger ϑL
t ) and a more moderate marginal interest rate policy.

However, in each of these economies, the central bank optimally responds to increases in

idiosyncratic risk by expanding its balance sheet.
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Figure 5: Optimal Policy
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A Model Solution

A.1 Monopolistic firms

Hamiltonian for these firms is given by:

HF
t = ΞH

t

(P j
t

Pt

)1−ε

− pt(1− τt)

(
P j
t

Pt

)−ε

− κ

2

(
πj
t

)2 − Tt

Yt + λFt π
j
tP

j
t

Optimality requires πj
t =

λF
t Pt

κΞH
t Yt

. In a symmetric equilibrium, co-state evolves as follows:

dλFt = −
[
ΞH
t

εYt

Pt

(
pt(1− τt)− ε−1

ε

)
+ λFt πt

]
dt + σλF

t λFt dZt. Using dΞH
t = −rf,Ht Ξtdt −

ςC,H
t ΞH

t dZt, we obtain the New Keynesian Phillips Curve from Ito’s Lemma:

E [dπt]

dt
= −

E
[
d
(
ΞH
t Yt
)]

(ΞH
t Yt) dt

πt −
ε

κ

(
pt(1− τt)−

ε− 1

ε

)
=

(
rf,Ht − E [dYt]

Ytdt
+ ςC,H

t σY
t

)
πt −

ε

κ

(
pt(1− τt)−

ε− 1

ε

)
where Yt = aυtKt.

A.2 Net Worth Numeraire

Aggregate net worth Nt evolves as dNt

Nt
= µN

t dt + σN
t dZt. Let ϑt = Bt

PtNt
be the share

of wealth allocated to nominal assets, with dϑt

ϑt
= µϑ

t dt + σϑ
t dZt. Note that qKt /Nt =

(1− ϑt)/Kt and denote by qBt = Bt

PtKt
the real value of nominal wealth, normalized by the
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stock of capital. Then returns in Nt-numeraire are:

dr̂Kt =

[
ptaυt − ιt − τKt + dt

qKt
− t(νt)

]
dt+

d ((1− ϑt)kt/Kt)

(1− ϑt)kt/Kt

=

[
ptaυt − ιt − τKt + dt

qKt
− t(νt) + µ1−ϑ

t

]
dt+ σ1−ϑ

t dZt + σ̃tdZ̃t

dr̂x,Ht = r̂xt dt+ σ1−ϑ
t dZt + σ̃tdZ̃t

dr̂x,It = (r̂xt + τxt ) dt+ σ1−ϑ
t dZt + φσ̃tdZ̃t

dr̂Rt = i(θRt )dt+
d(ϑt/Bt)

ϑt/Bt

=

[
θRt it + (θRt − θRt )it

θRt
+ µϑ

t − µB
t + σB

t

(
σB
t − σϑ

t

)]
dt+

(
σϑ
t − σB

t

)
dZt

dr̂Dt = iDt dt+
d(ϑt/Bt)

ϑt/Bt

=
[
iDt + µϑ

t − µB
t + σB

t

(
σB
t − σϑ

t

)]
dt+

(
σϑ
t − σB

t

)
dZt

dr̂Lt =
iL

PL
t

dt+
d(PL

t ϑt/Bt)

PL
t ϑt/Bt

=

[
iL

PL
t

+ µPL

t + µϑ
t + σPL

t σϑ
t − µB

t + σB
t

(
σB
t − σPL

t − σϑ
t

)]
dt+

(
σPL

t + σϑ
t − σB

t

)
dZt

A.3 Households’ and Intermediaries’ Problems

Hamiltonian for households takes the form:

HH
t = e−ρt

(
log(cHt )− b(υt)

)
− ξHt c

H
t

+ ξHt n
H
t

[
rLt + θD,H

t

(
rDt − rLt + νt(r

K
t (υt, ιt, νt)− rLt − χt(r

x
t − rLt ))

)
+ τHt

]
− ξHt n

H
t ς

H
t

[
σr,L
t + θD,H

t

(
σr,D
t − σr,L

t + νt(1− χt)(σ
r,K
t − σr,L

t )
)]

− ξHt n
H
t ς̃

H
t νtθ

D,H
t (1− χt) σ̃t

with ξHt being the co-state and stochastic discount factor. Hamiltonian for interme-

diaries is given by:

HI
t = e−ρt log cIt − ξIt c

I
t

+ ξIt n
I
t

[
rLt + θD,I

t (rDt − rLt ) + θx,It (rxt + τxt − rLt ) + θRt (r
R
t (θ

R
t )− rLt ) + τ It

]
− ξIt n

I
t ς

I
t

[
σr,L
t + θD,I

t

(
σr,D
t − σr,L

t

)
+ θx,It

(
σr,K
t − σr,L

t

)
+ θRt

(
σr,R
t − σr,L

t

)]
− ξIt n

I
t ς̃

I
t θ

x,I
t φσ̃t + λRt ξ

I
t n

I
t (θ

R
t − θRt )

As we show in F, type switching does not distort the optimal consumption-to-net worth

ratio (cIt/n
I
t = cHt /n

H
t = ρ), and only affects the drifts of sector-level net worth N I

t and
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NH
t .

A.4 Optimality Conditions

Net worth shares’ drifts:

µη
t = −ρ+ r̂Lt + ση

t

(
ση
t − σ̂r,L

t

)
+ (σ̃η

t )
2 − θRt (it − it)− θRt λ

R
t + τ It − λI + λH

1− ηt
ηt

µ1−η
t = −ρ+ r̂Lt + σ1−η

t

(
σ1−η
t − σ̂r,L

t

)
+ (σ̃1−η

t )2 + τHt − λH + λI
ηt

1− ηt

Rewrite µB
t and r̂Lt as:

µB
t =

(
1− ϑL

t

) average rate︷ ︸︸ ︷(
it + ϑER

t (it − it)
)
+ϑL

t

marginal rate︷ ︸︸ ︷(
it + λRt

)
−st + σB

t

(
σB
t − σϑ

t + ση
t

)
r̂Lt =

(
1− ϑL

t

) (
1− ϑER

t

)
(it + λRt − it)︸ ︷︷ ︸

marginal rate - average rate

+µϑ
t − st + ση

t

(
σPL

t − σB
t

)

and combine net worth drifts:

µϑ
t = ρ− st − (1− ϑt)

(
1− ϑL

t

) marginal rate - average rate︷ ︸︸ ︷(
1− ϑER

t

)
(it + λRt − it)+χt(1− ϑt)τ

x
t

+ ση
t

(
σB
t − σPL

t

)
− ηt

[
(ση

t )
2 + (σ̃η

t )
2
]
− (1− ηt)

[(
σ1−η
t

)2
+
(
σ̃1−η
t

)2]

B Constrained Efficiency

B.1 Static representation with physical Pareto weights

Recall the planner’s objective:

W0 = max
{ιt,υt,ϑt,ηt,χt}∞t=0

∫ 1

0

[
E
∫ ∞

0

e−ρt
(
log(η

it (̃i)
t η̃ĩtctKt)− b(υt)1it (̃i)=H

)
dt

]
d̃i s.t.

ct = aυt − ιt = ρ
qKt

1− ϑt

, qKt = (1 + ϕιt)

dη̃ĩt

η̃ĩt
=


(
λI − λH 1−ηt

ηt

)
dt+ (1− ϑt)

χt

ηt
φσ̃tdZ̃t +

(
ηt

1−ηt
− 1
)
dJ̃ I

t , if it(̃i) = I(
λH − λI ηt

1−ηt

)
dt+ (1− ϑt)

1−χt

1−ηt
σ̃tdZ̃t +

(
1−ηt
ηt

− 1
)
dJ̃H

t , if it(̃i) = H
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Denote by W ĩ
0 = E

∫∞
0
e−ρt

(
log(η

it (̃i)
t η̃ĩtctKt)− b(υt)1it (̃i)=H

)
dt the welfare of individual

agent. Using the fact that for dXt = µX
t Xtdt+ σX

t XtdZt + jXt XtdJt:

E
∫ ∞

0

e−ρt log(Xt)dt =
1

ρ
log(X0) +

1

ρ
E
∫ ∞

0

e−ρtd log(Xt)

=
1

ρ
log(X0) +

1

ρ
E
∫ ∞

0

e−ρt

(
µX
t −

(
σX
t

)2
2

+ λJ log
(
1 + jXt

))
dt

where λJ is the intensity of Poisson process Jt, we can rewrite W ĩ
0 as:

W ĩ
0 = E

∫ ∞

0

e−ρt log (aυt − ιt) dt− E
∫ ∞

0

e−ρtb(υt)1it (̃i)=Hdt

+
1

ρ
log(K0) +

1

ρ
E
∫ ∞

0

e−ρt

(
1

ϕ
log(1 + ϕιt)− δ

)
dt

+ E
∫ ∞

0

e−ρt log
(
η
it (̃i)
t

)
dt+

1

ρ
log(η̃ĩ0)−

1

2ρ
E
∫ ∞

0

e−ρt
(
σ̃
it (̃i)
t

)2
dt

+
1

ρ
E
∫ ∞

0

e−ρt
(
µ̃
it (̃i)
t + λit (̃i) log

(
1 + j

it (̃i)
t

))
dt

where µ̃
it (̃i)
t , σ̃

it (̃i)
t and j

it (̃i)
t correspond to the drift, idiosyncratic risk and jump risk load-

ings of η̃
it (̃i)
t as outlined above. Note that expectations in the previous expression are with

respect to three stochastic processes – the aggregate shocks driving aggregate variables

(dZt driving σ̃t), idiosyncratic shocks driving agent ĩ’s type (dJ
it (̃i)
t ), and idiosyncratic

shocks affecting agent ĩ’s consumption share within a sector (dZ̃t). All of these processes

are independent from each other. We can now integrate across individual agents, and will

do it line-by-line, starting from the first one:∫ 1

0

[
E
∫ ∞

0

e−ρt log (aυt − ιt) dt

]
d̃i−

∫ 1

0

[
E
∫ ∞

0

e−ρtb(υt)1it (̃i)=Hdt

]
d̃i

= E
∫ ∞

0

e−ρt log (aυt − ιt) dt− (1− λ)E
∫ ∞

0

e−ρtb(υt)dt

where the first term does not depend on ĩ and we have used that aggregate and idiosyn-

cratic shocks are independent, with
∫ 1

0
1it (̃i)=H d̃i = (1 − λ) being the physical mass of

households at any given time. The second line is independent of ĩ as well, and averaging
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across agents does not affect it either. The third line becomes:

1

ρ

∫ 1

0

log(η̃ĩ0)d̃i+

∫ 1

0

[
E
∫ ∞

0

e−ρt log
(
η
it (̃i)
t

)
dt

]
d̃i− 1

2ρ

∫ 1

0

[
E
∫ ∞

0

e−ρt
(
σ̃
it (̃i)
t

)2
dt

]
d̃i

=
1

ρ

∫ 1

0

log(η̃ĩ0)d̃i+

∫ 1

0

[
E
∫ ∞

0

e−ρt
(
log (ηt)1it (̃i)=I + log (1− ηt)1it (̃i)=H

)
dt

]
d̃i

− 1

2ρ

∫ 1

0

[
E
∫ ∞

0

e−ρt
((
σ̃I
t

)2
1it (̃i)=I +

(
σ̃H
t

)2
1it (̃i)=H

)
dt

]
d̃i

=
1

ρ

∫ 1

0

log(η̃ĩ0)d̃i+ λE
∫ ∞

0

e−ρt log (ηt) dt+ (1− λ)E
∫ ∞

0

e−ρt log (1− ηt) dt

− 1

2ρ

[
λE
∫ ∞

0

e−ρt
(
σ̃I
t

)2
dt+ (1− λ)E

∫ ∞

0

e−ρt
(
σ̃H
t

)2
dt

]
where we have again used independence of shocks. Similarly, the last line becomes:

1

ρ

∫ 1

0

[
E
∫ ∞

0

e−ρt
(
µ̃
it (̃i)
t + λit (̃i) log

(
1 + j

it (̃i)
t

))
dt

]
d̃i

=
1

ρ

∫ 1

0

[
E
∫ ∞

0

e−ρt
((
µ̃I
t + λI log

(
1 + jIt

))
1it (̃i)=I +

(
µ̃H
t + λH log

(
1 + jHt

))
1it (̃i)=H

)
dt

]
d̃i

=
1

ρ

[
E
∫ ∞

0

e−ρt

(
λ

(
µ̃I
t + λI log

(
ηt

1− ηt

))
+ (1− λ)

(
µ̃H
t + λH log

(
1− ηt
ηt

)))
dt

]
=
1

ρ

[
E
∫ ∞

0

e−ρt
(
λµ̃I

t + (1− λ)µ̃H
t

)
dt

]
since λλI = (1− λ)λH . Putting the terms together:

W0 = max
{ιt,υt,ϑt,ηt,χt}∞t=0

[
E
∫ ∞

0

e−ρt log (aυt − ιt) dt− (1− λ)E
∫ ∞

0

e−ρtb(υt)dt

+
1

ρ
E
∫ ∞

0

e−ρt

(
1

ϕ
log(1 + ϕιt)− δ

)
dt+ λE

∫ ∞

0

e−ρt log (ηt) dt+ (1− λ)E
∫ ∞

0

e−ρt log (1− ηt) dt

− 1

2ρ

[
λE
∫ ∞

0

e−ρt
(
σ̃I
t

)2
dt+ (1− λ)E

∫ ∞

0

e−ρt
(
σ̃H
t

)2
dt

]
+

1

ρ

[
E
∫ ∞

0

e−ρt
(
λµ̃I

t + (1− λ)µ̃H
t

)
dt

]]
+

1

ρ
log(K0) +

1

ρ

∫ 1

0

log(η̃ĩ0)d̃i

where we have taken the initial conditions out of the maximization problem. Finally, note

that maximizing the above objective is equivalent to static maximization for every t since

planner is not bound by any additional intertemporal constraints. Therefore, solution to
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the above problem satisfies:

max
{ιt,υt,ϑt,ηt,χt}

log (aυt − ιt)− (1− λ)b(υt) +
1

ρ

(
1

ϕ
log(1 + ϕιt)− δ

)
+ λ log (ηt) + (1− λ) log (1− ηt)−

(1− ϑt)
2 σ̃2

t

2ρ

[
λ
χ2
t

η2t
φ2 + (1− λ)

(1− χt)
2

(1− ηt)2

]
+

1

ρ

[
λ

(
λI − λH

1− ηt
ηt

)
+ (1− λ)

(
λH − λI

ηt
1− ηt

)]
This recovers the static objective from the main text.

B.2 Existence and uniqueness

We now proceed with establishing existence and uniqueness conditions for solutions to

the above problem. First, rewrite the planner’s objective in the following way:

max
ϑt,υt,ηt,χt

log(ρ)− δ

ρ
+

1 + ρϕ

ρϕ
log(1 + aϕυt)− (1− λ)b(υt)

+
1

ρϕ
(log(1− ϑt)− (1 + ρϕ log(1− ϑt + ρϕ))

+ λ log(ηt) + (1−λ) log(1− ηt)−
(1− ϑt)

2 σ̃2
t

2ρ

[
λ
χ2
t

η2t
φ2 + (1− λ)

(1− χt)
2

(1− ηt)2

]
− 1

ρ

[
λλH

1− ηt
ηt

+ (1− λ)λI
ηt

1− ηt

]
where we used aυt− ιt = ρ1+ϕιt

1−ϑt
to substitute ιt. Note that the first line is only a function

of υt, which neither interacts with σ̃t nor appears in the next three lines, implying that

optimal utilization is independent of σ̃t and can be solved for independently from other

variables. Furthermore, convexity of b(υt) guarantees that the FOC with respect to υt

provides the unique global maximum of planner’s objective with respect to υt. Next, note

that χt only appears in the bracket in the third line, and the last term of that line is

concave in χt. Therefore, FOC with respect to χt provides the unique global maximum

of planner’s objective with respect to χt, given ηt:

χt =
(1− λ)η2t

(1− λ)η2t + λφ2(1− ηt)2
∈ [0, 1]

We can now plug the above expression into Planner’s objective and analyze the terms

containing the two remaining variables (ϑt and ηt). To ease notation, we drop the t
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subscript:

max
ϑ,η

W (ϑ, η) =max
ϑ,η

1

ρϕ
(log(1− ϑ)− (1 + ρϕ) log(1− ϑ+ ρϕ))

+ λ log(η) + (1−λ) log(1− η)− (1− ϑ)2 σ̃2

2ρ

λ(1− λ)φ2

(1− λ)η2 + λφ2(1− η)2

− 1

ρ

[
λλH

1− η

η
+ (1− λ)λI

η

1− η

]
Note that ϑ ∈ [0, 1], η ∈ [0, 1] and W (ϑ, η) is defined on [0, 1) × (0, 1). Furthermore,

limη→1W (ϑ, η) = limη→0W (ϑ, η) = −∞ for all ϑ ∈ [0, 1). Note also that limϑ→1W (ϑ, η) =

−∞ for any η ∈ (0, 1). In addition:

∂W (ϑ, η)

∂ϑ
=

1

ρϕ

(
− 1

1− ϑ
+

1 + ρϕ

1− ϑ+ ρϕ

)
+

(1− ϑ) σ̃2

ρ

λ(1− λ)φ2

(1− λ)η2 + λφ2(1− η)2
(16)

such that limϑ→0
∂W (ϑ,η)

∂ϑ
> 0 for any η ∈ (0, 1). Altogether, this implies that the maximum

of W (ϑ, η) always exists and is achieved in the interior for some ϑ ∈ (0, 1), η ∈ (0, 1).

Rearrange (16) and set to zero:

λ(1− λ)φ2σ̃2

(1− λ)η2 + λφ2(1− η)2
(1−ϑ)3+ ρϕλ(1− λ)φ2σ̃2

(1− λ)η2 + λφ2(1− η)2
(1−ϑ)2+ρ(1−ϑ)−ρ = 0 (17)

Note that for any given η ∈ (0, 1), the above expression is strictly positive for ϑ = 0

and strictly negative for ϑ = 1. Furthermore, the derivative of the above expression with

respect to ϑ is strictly negative for all ϑ ∈ [0, 1), meaning that there is exactly one root on

the (0, 1) interval, which defines a function ϑ(η). Since the second derivative of W (ϑ, η)

with respect to ϑ is always negative:

∂2W (ϑ, η)

∂ϑ2
=

1

ρϕ

(
− 1

(1− ϑ)2
+

1 + ρϕ

(1− ϑ+ ρϕ)2

)
︸ ︷︷ ︸

<0

− σ̃2

ρ

λ(1− λ)φ2

(1− λ)η2 + λφ2(1− η)2︸ ︷︷ ︸
>0

< 0

the above ϑ(η) indeed delivers the maximum ofW (ϑ, η) given η. Define W̃ (η) = W (ϑ(η), η),

which is the maximum welfare attainable for a given η (ignoring constants and terms com-

ing from utilization). By definition of ϑ(η), ∂W̃ (η)
∂η

= ∂W (ϑ,η)
∂η

and it is straightforward to

show that ∂W̃ (η)
∂η

∣∣∣
η=λ

> 0 and limη→1
∂W̃ (η)
∂η

= −∞. From continuity of ∂W̃ (η)
∂η

it then follows

that there always exists a (local) maximum point at some η ∈ (λ, 1).

From now on, we focus on local maxima s.t. η > λ. There might exist local maxima

for η < λ, but we do not consider them because these maxima (i) do not always exist and

(ii) never happen to be global in our numerical simulations, even though we can not show

this analytically. To see why there might not be a local maximum to the left of λ, consider

the limit as idiosyncratic risk vanishes. It is straightforward to see that limσ̃→0 γ = 0 and
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therefore limσ̃→0 η = λ for the optimal η. More importantly, optimal η approaches λ

from the right – in the vicinity of σ̃ = 0, γ is slightly positive, meaning that η − λ and

(1−λ)η−λφ2(1− η) must be of the same sign (follows from (19). This is only possible if

η approaches λ from the right, since otherwise η < λ implies η < λφ2/(1−λ+λφ2) which

bounds η away from λ and prevents convergence. It follows that for sufficiently small

values of σ̃ all critical points are such that η > λ and the global maximum is achieved in

the same region.

In the following, we show that there is a unique maximum with η > λ under a certain

assumption on {λ, φ, λI , λH}. The maximum has to satisfy the following FOCs:

ϑ− γ(1− ϑ+ ρϕ) = 0 (18)

λ

η
− 1− λ

1− η
+ γ

(1− λ)η − λφ2(1− η)

(1− λ)η2 + λφ2(1− η)2
+
λλH

ρη2
− (1− λ)λI

ρ(1− η)2
= 0 (19)

γ =
1

ρ

λ(1− λ)φ2(1− ϑ)2

(1− λ)η2 + λφ2(1− η)2
σ̃2 (20)

where γ is an auxiliary variable. Express γ as a function of η from (19):13

γ(η) =

(
1− λ

1− η
− λ

η
+

(1− λ)λI

ρ(1− η)2
− λλH

ρη2

)
(1− λ)η2 + λφ2(1− η)2

(1− λ)η − λφ2(1− η)

Plugging γ(η) and (18) into (20) gives that the maximum must satisfy the following

condition:

d(η) ≡ γ(η)− 1

ρ

λ(1− λ)φ2σ̃2

(1− λ)η2 + λφ2(1− η)2
(1− ρϕγ(η))2

(1 + γ(η))2
= 0

Note that γ(λ) = 0, and therefore d(λ) < 0. Furthermore, γ(η) is continuous on [λ, 1)

with limη→1 γ(η) = ∞ and also limη→1 d(η) > 0. To establish uniqueness, it suffices to

show that d(η) is strictly increasing in η on the interval η ∈ (λ, 1), as that would imply

d(η) crosses zero exactly once. This is clearly a sufficient but not a necessary condition

for the uniqueness of the maximum. First, differentiate d(η):

∂d(η)

∂η
=
∂γ(η)

∂η
+

>0︷ ︸︸ ︷
2

ρ

λ(1− λ)φ2σ̃2

(1− λ)η2 + λφ2(1− η)2

>0︷ ︸︸ ︷
(1− ρϕγ(η))(2 + (1− ρϕ)γ(η))

(1 + γ(η))3
∂γ(η)

∂η

+
2

ρ

λ(1− λ)φ2σ̃2

((1− λ)η2 + λφ2(1− η)2)2
(1− ρϕγ(η))2

(1 + γ(η))2︸ ︷︷ ︸
>0

(
(1− λ)η − λφ2(1− η)

)︸ ︷︷ ︸
>0

where the second term in front of ∂γ(η)
∂η

is positive because otherwise ϑ in (18) is larger

than one,14 and the last term in the second line is positive since we consider η > λ.

13We can divide by (1− λ)η − λφ2(1− η) since this term is always positive for η ∈ [λ, 1).
14In fact, since γ(λ) = 0 and limη→1 γ(η) = ∞, there exists η′ ∈ (λ, 1) such that for any η > η′:

γ(η) > 1/ρϕ and from (18) ϑ > 1, meaning that the optimal η is bounded away from 1 by η′.
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Therefore, if ∂γ(η)
∂η

> 0, then ∂d(η)
∂η

> 0. Consider (19) and take the total derivative:

[
λ

η2
+

1−λ
(1−η)2

+
2λλH

ρη3
+

2(1− λ)λI

ρ(1− η)3
+ γ

((1− λ)η − λφ2(1− η))
2 − λ(1− λ)φ2

((1− λ)η2 + λφ2(1− η)2)2

]
dη

=
(1− λ)η − λφ2(1− η)

(1− λ)η2 + λφ2(1− η)2︸ ︷︷ ︸
>0

dγ

Therefore, as long as the bracket in front of dη is positive, so is the derivative ∂γ(η)
∂η

. Plug

in for γ and split the bracket into two parts:

λ

η2
+

1−λ
(1−η)2

+

(
1− λ

1− η
− λ

η

)
((1− λ)η − λφ2(1− η))

2 − λ(1− λ)φ2

((1− λ)η − λφ2(1− η)) ((1− λ)η2 + λφ2(1− η)2)

+
λH+λI

ρ

[
2λ2

η3
+

2(1− λ)2

(1− η)3
+

(
(1− λ)2

(1− η)2
− λ2

η2

)
((1− λ)η − λφ2(1− η))

2 − λ(1− λ)φ2

((1− λ)η − λφ2(1− η)) ((1− λ)η2 + λφ2(1− η)2)

]
(21)

Rewrite the first line as:

C(η)

η2(1− η)2 ((1− λ)η − λφ2(1− η)) ((1− λ)η2 + λφ2(1− η)2)

with

C(η) =
(
(1− λ)η2 + λ(1− η)2

) (
(1− λ)η − λφ2(1− η)

)
((1− λ)η2 + λφ2(1− η)2)

+ η(1− η)(η − λ)
((

(1− λ)η − λφ2(1− η)
)2 − λ(1− λ)φ2

)
The denominator is positive, and in the following we show that the numerator C(η) is

positive as well, under some assumptions. Since C(η) is a polynomial in η, we can rewrite

it as an exact Taylor expansion:

C(η) = λ3(1− λ)3(1− φ2)(λ+ (1− λ)φ2) + 4λ3(1− λ)3(1− φ2)2(η − λ)

+ λ(1− λ)(6λ(1− λ)(1− φ2)(1− λ+ λφ2)− (1− 2λ)φ2)(η − λ)2

+ 4λ(1− λ)(1− λ+ λφ2)2(η − λ)3

+ (1− λ+ λφ2)(1− 2λ+ λ2(1− φ2))(η − λ)4

It is easy to verify that C(λ) > 0 and C(1) > 0. Furthermore, the first-order term and

the third-order terms have positive coefficients. If

6λ(1− λ)(1− φ2)(1− λ+ λφ2)− (1− 2λ)φ2 ≥ 0

then the coefficient in front of the second-order term is non-negative. The sign of the
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fourth-order term is irrelevant, since the non-negative signs of the first three terms, to-

gether with C(1) > 0 implies C(η) > 0 for all η ∈ (λ, 1).15 Since the first line in (21) is

bounded away from zero, the entire term is strictly positive for sufficiently small switching

intensities λH and λI .16 Therefore, both ∂γ(η)
∂η

and ∂d(η)
∂η

are strictly positive in η ∈ (λ, 1)

and there exists a unique maximum in that region.

B.3 Properties

Finally, we show properties of optimal allocations η∗, χ∗, ϑ∗, ι∗, υ∗ as functions of σ̃. As

already noted before, utilization υ∗ is independent of σ̃. Differentiating (18), (19), and

(20):

(1 + γ∗)dϑ∗ = (1− ϑ∗ + ρϕ)dγ∗ (22)[
λ

(η∗)2
+

1−λ
(1−η∗)2

+
2λλH

ρ(η∗)3
+

2(1− λ)λI

ρ(1− η∗)3
+ γ∗

((1− λ)η∗ − λφ2(1− η∗))
2 − λ(1− λ)φ2

((1− λ)(η∗)2 + λφ2(1− η∗)2)2

]
dη∗

=
(1− λ)η∗ − λφ2(1− η∗)

(1− λ)(η∗)2 + λφ2(1− η∗)2
dγ∗ (23)

dγ∗ = γ∗
[
dσ̃2

σ̃2
− 2

dϑ∗

1− ϑ∗ − 2
(1− λ)η∗ − λφ2(1− η∗)

(1− λ)η2 + λφ2(1− η∗)2
dη∗
]

(24)

To simplify notation, rewrite these conditions as:

dϑ∗ =

>0︷ ︸︸ ︷
f(σ̃2) dγ∗, dη∗ = g(σ̃2)dγ∗

dγ∗ = γ∗

dσ̃2

σ̃2
− 2

dϑ∗

1− ϑ∗ − 2h(σ̃2)︸ ︷︷ ︸
>0

dη∗


where f(σ̃2) is positive since γ∗ > 0 and ϑ∗ ∈ (0, 1), and h(σ̃2) is positive since we consider

η∗ > λ. Under assumption (A1), g(σ̃2) > 0 and we can solve for:

∂γ∗

∂σ̃2
=
γ∗

σ̃2

[
1 + 2γ∗

f(σ̃2)

1− ϑ∗ + 2γ∗h(σ̃2)g(σ̃2)

]−1

> 0

It follows that dϑ∗

dσ̃2 > 0 and dη∗

dσ̃2 > 0. Since ι∗ is a strictly decreasing function of ϑ∗ and χ∗

is a strictly increasing function of η∗, it follows that dι∗

dσ̃2 < 0 and dχ∗

dσ̃2 > 0.

15Even if the coefficient in front of the fourth-order term is negative, C(ηt) = 0 for some η ∈ (λ, 1)
would require a positive fifth-order term to ensure C(1) > 0. Since there is no fifth-order term, this is
ruled out.

16One can show non-negativity of the bracket by applying the Sturm’s theorem and imposing much
weaker restrictions on λ and φ that would rule out any roots on the (λ, 1) interval. This however can
only be done numerically.
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C Proof of Proposition 4

Consider the limit as ϑL
t → 1. Optimality requires:

η∗t σ
η,∗
t = (η∗t − χ∗

t )σ
ϑ,∗
t + (χ∗

t − η∗t + ϑ∗
t (αt − χ∗

t ))σ
PL

t (25)

ση,∗
t

1− η∗t
σPL

t = ν2t t
′(νt) (26)

νt [χ
∗
t − η∗t + ϑ∗

t (1− χ∗
t )− (1− αt)ϑ

∗
t ] = 1− ϑ∗

t (27)

where the first line is (12), the second line is bond-deposit pricing condition (3.2) and

the third line is the transaction cost constraint of the households. Note that η∗t , σ
η,∗
t ,

ϑ∗
t and χ∗

t are given by the planner’s allocation and are considered exogenous from the

government’s perspective. We can express the required αt as a function of velocity νt from

the third line:

αt =
1− ϑ∗

t − νt (χ
∗
t − η∗t − ϑ∗

tχ
∗
t ))

νtϑ∗
t

and the required σPL

t as a function of αt (and therefore νt) from the first line:

σPL

t =
η∗t σ

η,∗
t − (η∗t − χ∗

t )σ
ϑ,∗
t

χ∗
t − η∗t − ϑ∗

tχ
∗
t + αtϑ∗

t

=

(
η∗t σ

η,∗
t − (η∗t − χ∗

t )σ
ϑ,∗
t

)
νt

1− ϑ∗
t

Plugging this in the second line gives:

d(νt) ≡ νtt
′(νt)−

ση,∗
t

1− η∗t

(
η∗t σ

η,∗
t − (η∗t − χ∗

t )σ
ϑ,∗
t

)
1− ϑ∗

t︸ ︷︷ ︸
>0

= 0

where the second term is positive because ση,∗
t > 0, σϑ,∗

t > 0 and χ∗
t > η∗t , as established

in 1. It follows that d(νt) < 0 for a sufficiently small νt. Since tt(νt) is a continuous

increasing convex function, there exists νt such that d(νt) = 0. The required bond price

volatility σPL

t and intermediaries’ bond share αt can be computed form the equations

above.

D Proof of Proposition 5

Note that the planner’s solution is unaffected by changes in aggregate risk since the

planner chooses allocations state-by-state – all ϑ∗(σ̃), η∗(σ̃), etc, remain the same (as

functions of σ̃). However, stochastic processes ϑ∗
t , η

∗
t , etc, are now different, in particular

their volatility loadings are homogeneous of degree one in σ. For convenience, let us
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introduce σ explicitly as an argument of any function of interest:

ϑ∗(σ̃t;σ) = ϑ∗(σ̃t)

σϑ,∗
t (σ) = σϑ,∗(σ̃t;σ) =

∂ϑ∗(σ̃2
t )

∂σ̃2
t

σ̃t
ϑ∗(σ̃2

t )︸ ︷︷ ︸
independent of σ

σ = σσϑ,∗
t (1)

The same property then applies to the efficient volatility of nominal wealth:

σB
t (σ) =

(1 + ρϕ)

(1− ϑ∗
t + ρϕ)

σϑ,∗
t (σ) = σσB

t (1)

implying that the optimal distribution of long-term bonds αt is unaffected by σ:

η∗t σ
η,∗
t (σ) = (η∗t − χ∗

t )σ
ϑ,∗
t (σ) + (χ∗

t − η∗t + ϑ∗
t (αt(σ)− χ∗

t ))σ
B
t (σ) (28)

η∗t σ
η,∗
t (1) = (η∗t − χ∗

t )σ
ϑ,∗
t (1) + (χ∗

t − η∗t + ϑ∗
t (αt(σ)− χ∗

t ))σ
B
t (1) =⇒ (29)

αt(σ) = αt (30)

The optimal balance sheet composition ϑL
t (σ), volatility of bond price σPL

t (σ) and velocity

ν(σ) can then be solved from:

ϑL
t (σ)σ

PL

t (σ) = σσB
t (1)

σση,∗
t (1)

1− η∗t
σPL

t (σ) = νt(σ)
2t′(νt(σ))

νt(σ)
[
χ∗
t − η∗t + ϑ∗

t (1− χ∗
t )− (1− αt)ϑ

L
t (σ)ϑ

∗
t

]
= 1− ϑ∗

t

Plugging the first condition into the second and applying the Implicit Function Theorem:

∂ log ϑL
t

∂ log σ
+
∂ log σPL

t

∂ log σ
= 1[

2 + ν(σ)
t′′(ν(σ))

t′(ν(σ))

]
∂ log νt
∂ log σ

+
∂ log ϑL

t

∂ log σ
= 2

∂ log νt
∂ log σ

(1− ϑ∗
t ) = (1− αt)νt(σ)ϑ

L
t (σ)ϑ

∗
t

∂ log ϑL
t

∂ log σ

Since t(ν) is convex and increasing, the bracket in the second line is positive. The result

then follows immediately. Note that even if αt = 0, then still
∂ log ϑL

t

∂ log σ
> 0, and as long as

αt > αt for some αt < 1,
∂ log ϑL

t

∂ log σ
> 0 and

∂ log σPL

t

∂ log σ
< 0. We stress that the value of αt can

be inferred from the planner’s allocation, given a fixed set of parameter values.
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E Expected Gains/Losses from QE

To derive the extra drift term in the central bank’s budget constraint, stemming from

the covariance between long-term bond price movements and bond purchases, write the

bond-purchase term in discrete time first:

PL
t+∆t(Lt+∆t − Lt)

which highlights that bonds issued within period ∆t are sold at the end of this period.

Now take the expectation of the above term, divide by ∆t and take the limit as ∆t→ 0:

lim
∆t→0

E
[
PL
t+∆t(Lt+∆t − Lt)

]
∆t

= lim
∆t→0

E
[
(PL

t + (PL
t+∆t − PL

t ))(Lt+∆t − Lt)
]

∆t

= lim
∆t→0

PL
t E [Lt+∆t − Lt] + E

[
(PL

t+∆t − PL
t )(Lt+∆t − Lt)

]
∆t

= PL
t

E [dLt]

dt
+

E
[
dPL

t Lt

]
dt

= PL
t µ

L
t Lt + PL

t Lt

E
[
(µPL

t dt+ σPL

t dZt)(µ
L
t dt+ σL

t dZt)
]

dt

= PL
t µ

L
t Lt + PL

t Lt

E
[
µPL

t µL
t (dt)

2 + (µL
t σ

PL

t + µPL
t σL

t )dtdZt + σPL

t σL
t (dZt)

2)
]

dt

= PL
t µ

L
t Lt + PL

t Ltσ
PL

t σL
t

since E[dZt] = 0 and E[(dZt)
2] = dt.

F C/N with Type-switching

For simplicity, suppose that returns on net worth are given by drIt = rIt dt+σ
I
t dZt+ σ̃

I
t dZ̃t

for Intermediaries and by drHt = rHt dt + σH
t dZt + σ̃H

t dZ̃t for Households. Intermediaries

have a switching intensity λI and discount rate ρI , and Households – λH and ρH . Their

objectives are given by:

V I
t = max

{cIs}∞t
E
[∫ τ

t

e−ρI(s−t) log(cIs) + e−ρτV H
τ

]
dnI

s = −cIs + nI
sdr

I
s

V H
t = max

{cHs }∞t
E
[∫ τ

0

e−ρH(s−t) log(cHs ) + e−ρτV I
τ

]
dnH

s = −cHs + nI
sdr

H
s
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The Hamiltonians take the form:

HI
t = e−ρI t log(cIs)− ξIt c

I
t + ξIt n

I
t r

I
t − ξIt n

I
t ς

I
t σ

I
t − ξIt n

I
t ς̃

I
t σ̃

I
t

HH
t = e−ρH t log(cHs )− ξHt c

H
t + ξHt n

H
t r

H
t − ξHt n

H
t ς

H
t σ

H
t − ξHt n

H
t ς̃

H
t σ̃

H
t

Finally, co-states follow:

dξIt
ξIt

= µξ,I
t dt− ςξ,It dZt − ς̃ξ,It dZ̃t + jξ,It

(
dJ I

t − λIdt
)

dξHt
ξHt

= µξ,H
t dt− ςξ,Ht dZt − ς̃ξ,Ht dZ̃t + jξ,Ht

(
dJH

t − λHdt
)

with jξ,It =
ξHt −ξIt

ξIt
and jξ,It =

ξIt−ξHt
ξHt

. FOC wrt cIt and cHt :

e−ρI t 1

cIt
= ξIt e−ρH t 1

cHt
= ξHt (31)

and co-state equation:

µξ,I
t ξIt = −∂H

I
t

∂nI
t

= −ξIt
(
rIt − ςIt σ

I
t − ς̃It σ̃

I
t

)
(32)

µξ,I
t ξHt = −∂H

I
t

∂nI
t

= −ξHt
(
rHt − ςHt σ

H
t − ς̃Ht σ̃

H
t

)
(33)

Now guess cIt = αInI
t and cHt = αHnH

t . Then from FOCs it follows:

µξ,I
t − λIt j

ξ,I
t = −ρI + αI − rIt +

(
σI
t

)2
+
(
σ̃I
t

)2
ςξ,It = σI

t ς̃ξ,It = σ̃I
t

µξ,H
t − λHt j

ξ,H
t = −ρH + αH − rHt +

(
σH
t

)2
+
(
σ̃H
t

)2
ςξ,Ht = σH

t ς̃ξ,Ht = σ̃H
t

and combining with co-state equation:

αI = ρI + λI
(
1− ξHt

ξIt

)
= ρI + λI

(
1− αI

αH

)
αH = ρH + λH

(
1− ξIt

ξHt

)
= ρH + λH

(
1− αH

αI

)
It is straightforward to verify that if ρI = ρH = ρ, then αI = αH = ρ. One can arrive at

a similar conclusion when considering the HJB.
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