
Safe Assets
ONLINE APPENDIX

Markus K. Brunnermeier

Princeton University

Sebastian Merkel

University of Exeter

Yuliy Sannikov

Stanford University

December 20, 2023

B Further Derivations, Proofs, and Model Extensions

B.1 Uniqueness of Stationary Monetary Equilibria

BSDE (10) is a fixed-point condition for the key equilibrium process ϑ. In this ap-
pendix, we show that the BSDE is well-behaved on the domain (0, 1) and represents
a contraction in a suitable sense to be made precise. The contraction property implies
that the equation has at most one nondegenerate stationary solution on this domain.

Let us first consider the finite-horizon version of the BSDE (10) for a fixed terminal
condition ϑT. In integral form, this BSDE can be written as

∀t ∈ [0, T] : ϑt = Et

[
ϑT +

∫ T

t

(
(1− ϑs)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ϑsds

]
. (38)

Standard results from BSDE theory imply that, under suitable conditions on µ̆B and
σ̃ (boundedness is sufficient), there is a unique solution to the BSDE for any bounded
terminal condition (see, e.g., Pham (2009, Theorem 6.2.2)).
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The following auxiliary lemma shows that solutions to the finite-horizon BSDE sat-
isfy a type of monotonicity property with respect to the terminal condition. It also
implies that, if the terminal condition is in (0, 1], then so is the full solution.

Lemma 2. Let ϑt solve the BSDE (38) with terminal condition ϑT taking values in (0, 1]. If
ϑ′t is another solution with terminal condition ϑ′T < ϑT, then ϑ′t < ϑt for all t ∈ [0, T]. If
ρ + µ̆Bt > 0 for all t ∈ [0, T], then ϑt ∈ (0, 1) for all t < T.

Proof. First, observe that whenever ϑT ≥ ϑ′T, the comparison principle for BSDEs im-
plies that ϑt ≥ ϑ′t (see, for example, Pham (2009, Theorem 6.2.2)). Furthermore, ϑt > ϑ′t
if ϑT > ϑ′T with positive probability.

Second, let us compare the solution ϑt of BSDE (38), which we write in integrated
form as

−dϑt =
(
(1− ϑt)

2χ̄2σ̃2
t − ρ− µ̆Bt

)
ϑt︸ ︷︷ ︸

= f 1
t (ϑt)

dt− νtdZt

with the solution ϑ̄t = 1 of BSDE

−dϑ̄t = 0︸︷︷︸
= f 2

t (ϑ̄t)

dt− νtdZt

with terminal condition ϑ̄T = 1.

Since terminal conditions satisfy ϑ̄T ≥ ϑT, and generators satisfy

0 = f 2
t (ϑ̄t) > f 1

t (ϑ̄t) = −
(

ρ + µ̆Bt

)
,

the comparison principle implies that ϑt < ϑ̄t = 1 for all t ∈ [0, T).

One could now attempt to solve the infinite-horizon BSDE (10) by starting at some
terminal guess ϑT of the finite-horizon BSDE and considering longer and longer time
horizons (T → ∞). It is, however, a priori unclear whether this procedure converges
and, if so, whether the limit is independent of the assumed terminal guess.

The following technical lemma is key in establishing that this strategy succeeds (un-
der certain conditions).

Lemma 3. Suppose µ̆Bt + ρ > 0 for all t. Then the finite-horizon BSDE (38) is a contraction
on logarithmic scale:
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Consider any two distinct terminal conditions ϑT and ϑ′T with values in (0, 1). Let ϑt and ϑ′t be
the corresponding solutions. Then for all t < T, ϑt and ϑ′t have values in (0, 1) and satisfy1

log ϑt − log ϑ′t ∈
(

ess inf
(
log ϑT − log ϑ′T

)
, ess sup

(
log ϑT − log ϑ′T

))
. (39)

Proof. The statement of the lemma is equivalent to

ϑt

ϑ′t
∈
(

ess inf
ϑT

ϑ′T
, ess inf

ϑT

ϑ′T

)
.

Let us prove that
ϑt

ϑ′t
> x := ess inf

ϑT

ϑ′T

as the other bound is symmetric. Without loss of generality, let us assume that ϑT ≤ ϑ′T,
because replacing ϑT with min(ϑT, ϑ′T) only weakly lowers ϑt by Lemma 2 and makes
the bound harder to prove.

Equation (38) implies that ϑt satisfies

ϑt = Et

exp

(∫ T

t

(
(1− ϑs)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ds

)
ϑT

 (40)

and an analogous expression holds for ϑ′t. Since ϑs ≤ ϑ′s < 1 for all s ∈ [t, T] we have
(1− ϑs)2 ≤ (1− ϑ′s)

2 and so

ϑt ≥ Et

exp

(∫ T

t

(
(1− ϑ′s)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ds

)
ϑT


≥ Et

exp

(∫ T

t

(
(1− ϑ′s)

2χ̄2σ̃2
s − ρ− µ̆Bs

)
ds

)
xϑ′T

 = xϑ′t,

Hence, ϑt/ϑ′t ≥ x. If ϑT and ϑ′T are distinct, then the inequality must be strict.

Lemma 3 has important implications for the infinite-horizon BSDE (10) if the econ-
omy is stationary (compare Definition 2).

1Here ess inf and ess sup denote the essential infimum and essential supremum, respectively, and are
taken over all outcomes of the underlying probability space.

3



Proposition 8. Suppose the exogenous processes are stationary and ρ + µ̆B(X) > 0 for all
X ∈ X. Then, equation (10) has at most one stationary nondegenerate (i.e. not identically 0)
solution.

If this solution exists, ϑt = ϑ∗(Xt), then

• for all X ∈ X, ϑ∗(X) > 0;

• for any function ϑ′ : X → (0, 1), the solution to the finite-horizon equation (38) with
terminal condition ϑT = ϑ′(XT) converges to ϑt = ϑ∗(Xt) as T → ∞.

If equation (10) has no stationary nondegenerate solution, then for any terminal condition ϑT =

ϑ′(XT), the solution to the finite-horizon equation converges to ϑt = 0 as T → ∞.

We note that Proposition 8 encompasses all statements in Proposition 2 stated in the
main text. Proving the former therefore also implies the latter. Before we present the
proof, we first establish another small technical lemma.

Lemma 4. Suppose that economy is stationary and let ϑt = ϑ(t, Xt) solve (38) with terminal
condition ϑT = ϑ(T, XT), with values in (0, 1]. If ϑ(t, X) > ϑ(T, X) for all X and t < T, then
ϑ(t, X) increases as t declines. If ϑ(t, X) < ϑ(T, X), then ϑ(t, X) declines as t declines.

Proof. The two statements are symmetric, so let us prove the first one. We would like
to show that ϑ(t− s, X) > ϑ(t, X). These are solutions to (38) with time horizon T − t
and terminal conditions ϑ(T − s, X) > ϑ(T, X). By Lemma 2, ϑ(t− s, X) > ϑ(t, X).

Proof of Proposition 8. First, let us show that any stationary nondegenerate solution ϑ(X)

must be strictly positive. If ϑ(X′) = 0 for some X′ ∈ X, then ϑt = 0 when Xt = X, hence
equation (40) can hold only if ϑT = 0 almost surely for all future T. Since state process
Xt is ergodic, it follows that ϑ(X) = 0 almost surely, but then (40) implies that ϑ(X) = 0
for all X. Therefore, ϑ cannot degenerate to 0 at any single point.

Let us prove that there is at most one stationary nondegenerate solution. Suppose
ϑ1(X) and ϑ2(X) are two distinct solutions, with ϑ1(X) < ϑ2(X) for some X ∈ X.
Then x := infX∈X

ϑ1(X)
ϑ2(X)

< 1, and by the compactness of the domain X, the infimum is
attained at some point X (as ϑ1, ϑ2 are assumed to be continuous).

Now, suppose Xt = X and consider solutions ϑ and ϑ′ of equation (38) with terminal
conditions ϑT = ϑ1(XT) and ϑ′T = ϑ2(XT). Then, by uniqueness of solutions to the

4



BSDE (38), we have ϑt = ϑ1(X) and ϑ′t = ϑ2(X). But then

ϑt

ϑ′t
=

ϑ1(X)

ϑ2(X)
≤ inf

ϑT

ϑ′T
,

a contradiction to Lemma 3.

Now, suppose (10) has no stationary nondegenerate solution. Consider the solution
to equation (38) with terminal condition ϑT = 1. Then by Lemma 2, ϑT−s < 1 for all
s > 0, and by Lemma 4, ϑt declines for each X as the horizon T increases. Hence, ϑt

must converge to some function ϑ∗(X). By continuity ϑ∗(X) is a solution to (10), and
because there are no stationary nondegenerate solutions, the limit must be ϑ∗(X) = 0.
Now, if ϑ′t a solution with a different terminal condition ϑ′T < 1, then ϑ′t < ϑt by the
comparison principle (Lemma 2), hence ϑ′t must also converge to 0.

Finally, suppose (10) does have a stationary nondegenerate solution. Then the so-
lution ϑ from the terminal condition ϑT = 1 is likewise declining as we go backwards
in time and converges to a solution. Since ϑ stays above the stationary nondegenerate
solution ϑ∗ by Lemma 2, it must converge to ϑ∗. Likewise, the solution ϑ′ from the
terminal condition ϑ′T = εϑ̂ increases as we go backwards in time (by Lemmas 4 and
3), and converges to ϑ∗. By the comparison principle, any other solution ϑ′′t with termi-
nal condition ϑ′′T(X) ∈ [εϑ̂(X), 1] will also be squeezed between ϑ′t and ϑt, hence will
converge to ϑ̂.

Proposition 8 implies that to solve (10), we do not need a good guess of the terminal
condition. Any nonzero guess will converge to a stationary solution and, if it exists, the
nondegenerate one.

We remark that when the standard solution is nondegenerate, then equation (10)
does have many other nonstationary solutions (i.e. the uniqueness result applies only
to the stationary solution). However, Proposition 8 implies that all nonstationary solu-
tions converge to 0 in the distant future.
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B.2 Proof of Proposition 3

Note that, in general, because ξ i
t = e−ρt/(ρni

t) and drn,i
t has the same risk loadings

as dni
t/ni

t (compare equation (4)),

Covt

(
dξ i

t

ξ i
t

, drn,i
t

)
= Covt

(
d(1/ni

t)

1/ni
t

,
dni

t

ni
t

)
= −

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)

Under the assumptions of the proposition, ϑt and thus prices qK
t , qB

t do not load
on the aggregate shock dZt, σϑ

t = σ
q,B
t = σ

q,K
t = 0. In particular, σn,i

t = 0 (compare
equation (30) and recall that prices of risk and net worth loadings coincide). Thus

Covt

(
dξ i

t

ξ i
t

, drn,i
t

)
= Covt

(
d(1/ni

t)

1/ni
t

,
dni

t

ni
t

)
= −

(
σ̃n,i

t

)2
= −(1− ϑ)2χ̄2σ̃2 < 0,

where the last equation follows from equation (30) and market clearing for θK,i
t .

In contrast, σ
q,B
t = 0 implies that drBt is locally deterministic (does not load on Brow-

nian shocks), so that

Covt

(
dξ i

t

ξ i
t

, drBt

)
= 0.

Comparing the two covariances reveals that the former is always strictly smaller.
Thus the bond is a safe asset for agent i at all times t.

B.3 Representative Agent Formulation

In this appendix we present additional details on the representative agent formu-
lation summarized in Section 3. In Part B.3.1, we outline the setup of the hypothetical
representative agent tree economy that generates the same asset prices and allocations
as our incomplete markets economy and discuss substantive economic takeaways. Ad-
ditional technical derivation details, including the omitted steps in the arguments that
lead to Proposition 6 in the main text, can be found in Part B.3.2.
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B.3.1 The Representative Agent Economy

We present a Lucas (1978)-type asset pricing economy that generates the same al-
location as in the competitive equilibrium of our incomplete markets economy. In this
economy, we interpret aggregate capital and aggregate bonds as two “trees” and we
show that equation (13) is precisely the valuation equation for the “bond tree” from the
perspective of the representative agent. The dynamic trading perspective is therefore
equivalent to the perspective of a hypothetical representative agent.

As stated in the main text, we consider a representative agent whose preferences are
represented by a weighted welfare functionW0 =

∫
λiVi

0di. We denote by ηi
t := ci

t/Ct

the consumption share of agent i and assume that dηi
t = σ̃

η
t dZ̃i

t with volatility process
σ̃

η
t specified below in equation (42). As shown in the main text, utility W0 satisfies

equation (17), which expresses utility in terms of aggregate consumption Ct and con-
sumption shares ηi

t. We show below (Part B.3.2) that utility can also be represented in
the form (this is equation (18) in the main text)

W0 = w0 + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt

 (41)

with some constant w0. This equation eliminates the direct dependence on i and gives
us the alternative interpretation that two “goods” enter the representative agent’s util-
ity function, the aggregate consumption good and a “volatility good” (which generates
disutility).2

We assume that the representative agent has access to two assets, capital Kt, which
produces a certain bundle of the aggregate consumption good and volatility σ̃

η
t , and

“derivatives” Xt, which mimic the cash flows to individuals i generated by bond trades
in our incomplete markets model and thereby reduce volatility. Capital grows at rate
gt := Φ(ιt)− δ over time and generates consumption goods at rate

(
(1− τt)at − ιt

)
Ktdt.

For the purpose of this representative agent economy, gt, τt, at, ιt are exogenous pro-
cesses. But, of course, we choose for them the stochastic processes implied by the
competitive equilibrium of our incomplete markets model.3 The same remark holds

2The representative agent’s objective is akin to a money in utility (MIU) model. Holding the derivative
asset introduced below reduces volatility σ̃

η
t in a similar way as holding money in a MIU model generates

utility services.
3We could also endogenize the real investment decision by letting the representative agent choose ιt.
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for other lower-case variables qB
t , qK

t , µ̆Bt used below. The face value Xt of derivatives
evolves according to

dXt/Xt =
(

gt + µ
q,B
t

)
dt + σ

q,B
t dZt,

where µ
q,B
t , σ

q,B
t are the drift and volatility processes of qB

t implied by the competitive
equilibrium of the incomplete markets model. Derivatives generate a cash flow −µ̆Bt Xt

and reduce fluctuations in consumption shares ηi
t. Specifically, the volatility loading σ̃

η
t

satisfies the equation (
qK

t Kt + Xt

)
σ̃

η
t = qK

t Ktχ̄σ̃t, (42)

where qK
t is the capital price process from the incomplete markets economy. We can

interpret the product Xtσ̃
η
t as a measure of the aggregate gross trading cash flows from

bond trades in response to idiosyncratic shocks in the incomplete markets economy.4

Let QK
t be the capital price that the representative agent faces, PX

t the price per unit
(face value) of derivatives, and let Nt := QK

t Kt + PX
t Xt be the representative agent’s

total net worth. The budget constraint of the representative agent is

dNt = −Ctdt + QK
t KtdrK

t + PX
t XtdrX

t (43)

with return processes

drK
t =

(
(1− τt)at − ιt

QK
t

+ µQ,K
t + gt

)
dt + σQ,K

t dZt,

drX
t =

(
µP,X

t + gt − µ̆Bt + σ
q,B
t σP,X

t

)
dt +

(
σ

q,B
t + σP,X

t

)
dZt.

The representative agent chooses Ct, σ̃
η
t , Kt, Xt to maximize utility W0 subject to the

budget constraint (43) and the risk constraint (42) taking the prices QK
t , PX

t and the re-
turn processes as given. The representative agent model is closed by time-zero supplies
of capital (K0) and derivatives (X0). We impose the additional relationship X0 = qB

0 K0,
where qB

0 is the initial value of qB
t in the incomplete markets model. While this sup-

ply restriction for X0 may appear ad hoc, it can be micro-founded in an environment
with information frictions in which idiosyncratic shocks are private information and

The representative agent would choose precisely the rate ιt we are taking here as exogenous.
4qK

t ki
tχ̄σ̃t is sensitivity of an agent i’s capital wealth to shocks dZ̃i

t before portfolio rebalancing and

qK
t ki

tσ̃
η
t is the shock sensitivity after rebalancing. The difference, qK

t ki
t

(
χ̄σ̃t − σ̃

η
t

)
measures trading cash

flows per unit of dZ̃i
t and aggregating over all agents yields Xtσ̃

η
t .
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agents have access to hidden trade and savings.5 In such an environment, incentive
compatibility requires that any insurance transfer to an agent must be precisely offset
by a reduction in the present value of that agent’s future consumption. Otherwise, the
agent would have incentives to misreport the size of the shock and secretly trade cap-
ital. Incentive compatibility thus limits the amount of insurance that can be provided,
i.e. the quantity X of derivatives.

We show below that the competitive equilibrium of this representative agent econ-
omy features prices QK

t = qK
t and PX

t = 1 (and thus PX
t Xt = qB

t Kt), so that asset prices
are the same as in the incomplete markets economy.6 Also, as we have already stated
in the main text, the representative agent’s SDF process satisfies Ξt = ξ∗∗t (compare
Proposition 6).

The valuation equation for derivatives from the perspective of the representative
agent is

PX
0 X0 = E

[∫ ∞

0
Ξt ·

(
−µ̆Bt Xt

)
dt
]
+ E

[∫ ∞

0
Ξt · (1− ϑt)

2 χ̄2σ̃2
t Xtdt

]
. (44)

Here, the first term represents the discounted present value of cash flows −µ̆Bt Xt and
the second term represents the discounted volatility reduction service flows that deriva-
tives provide by lowering σ̃η in the utility function (18). As derivatives in the represen-
tative agent economy play the same role as bonds in the incomplete markets economy,
we can make the identification Xt = qB

t Kt and −µ̆Bt Xt = stKt. With these replacements
(and PX

0 = 1), equation (44) becomes equation (13), the debt valuation equation from
the dynamic trading perspective.

B.3.2 Additional Derivation Details and Proofs

Missing Step in Proof of Proposition 6: Ξ is Independent of Welfare Weights. For
CRRA utility with parameter γ, we have

Ξt = e−ρt
∫

λiηi
tu
′(ηi

tCt)di∫
λiηi

0u′(ηi
0C0)di

= e−ρt
∫

λi(ηi
0)

1−γ(ηi
t/ηi

0)
1−γdi∫

λi(ηi
0)

1−γdi
C−γ

t

C−γ
0

.

5Details on this micro-foundation can be found in Brunnermeier et al. (2020). This information envi-
ronment has also been employed by Di Tella (2020) in a closely related model.

6Also aggregate consumption Ct and the consumption shares ηi
t are as in the incomplete markets

economy. The representative agent economy therefore leads to the same allocation.
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Furthermore, ηi
t/ηi

0 is given by

(ηi
t/ηi

0)
1−γ = exp

(
(1− γ)

∫ t

0
σ̃

η
τ dZ̃i

τ −
1− γ

2

∫
(σ̃

η
τ )

2dτ

)
and the distribution of this object conditional on aggregate information (i.e. informa-
tion in Z) does not depend on i. In particular, there is a random variable Xt such that

Xt = E[(ηi
t/ηi

0)
1−γ | Zτ : τ ≤ t]

for all i. Because Ξt is adapted to the filtration generated by the aggregate Brownian
motion Z,

Ξt = E[Ξt | Zτ : τ ≤ t] = e−ρt E[
∫

λi(ηi
0)

1−γ(ηi
t/ηi

0)
1−γdi | Zτ : τ ≤ t]∫

λi(ηi
0)

1−γdi
C−γ

t

C−γ
0

= e−ρt
∫

λi(ηi
0)

1−γE[(ηi
t/ηi

0)
1−γ | Zτ : τ ≤ t]di∫

λi(ηi
0)

1−γdi
C−γ

t

C−γ
0

= e−ρt
∫

λi(ηi
0)

1−γdi∫
λi(ηi

0)
1−γdi︸ ︷︷ ︸

=1

Xt
C−γ

t

C−γ
0

.

Hence, Ξt does not depend on the choice of the weights λi.

Derivation of Utility Representation (18). By Ito’s formula,

log ηi
t = log ηi

0 −
1
2

∫ t

0

(
σ̃

η
s

)2
ds +

∫ t

0
σ̃

η
s dZ̃i

s

and thus∫ ∞

0
e−ρt

∫
λiE

[
log ηi

t

]
didt =

∫ ∞

0
e−ρt

∫
λi log ηi

0didt− 1
2

∫ ∞

0
e−ρt

∫
λi
∫ t

0

(
σ̃

η
s

)2
dsdidt

=
1
ρ

∫
λi log ηi

0di− 1
2

∫
λidi

∫ ∞

0
e−ρt

∫ t

0

(
σ̃

η
s

)2
dsdt

=
1
ρ

∫
λi log ηi

0di− 1
2ρ

∫ ∞

0
e−ρt

(
σ̃

η
t

)2
dt,
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where the last line uses that
∫

λidi = 1. Substituting this into equation (17) (with
interchanged order of integration where necessary) implies

W0 =
1
ρ

∫
λi log ηi

0di + E

∫ ∞

0
e−ρt

(
log Ct −

1
2ρ

(
σ̃

η
t

)2
)

dt


With the definition w0 := 1

ρ

∫
λi log ηi

0di, this is precisely equation (18).

Competitive Equilibrium in Representative Agent Economy. As this is a representa-
tive agent economy, we can fully characterize the allocation by determining goods and
asset supplies. The problem of the representative agent only needs to be considered to
determine asset prices.

The assumed growth rate process for capital Kt is the same as in the equilibrium of
the incomplete markets model, so that Kt must follow precisely the same process as in
that equilibrium if we start from the same initial K0 (which we can assume w.l.o.g. as
this only scales the overall size of the economy). Because dXt/Xt = d(qB

t Kt)/(qB
t Kt)

and X0 = qB
0 X0 by the condition on initial supply, we then also have Xt = qB

t Kt for all
t. Total consumption goods produced by the two “trees” in period t are

Ct =
(
(1− τt) at − ιt

)
Kt − µ̆Bt Xt

=
(

at − ιt + τtat − µ̆Bt qB
t

)
Kt

= (at − g− ιt)Kt,

where the last line follows from the government budget constraint (2) (in the incom-
plete markets model). The aggregate consumption goods supply is thus the same as
the (endogenous) aggregate consumption process in the incomplete markets economy.

We now turn to the remaining “good”, volatility reduction. Total volatility “supply”
is determined by equation (42),

σ̃
η
t =

qK
t Kt

qK
t Kt + Xt

χ̄σ̃t =
qK

t Kt

qK
t Kt + qB

t Kt
χ̄σ̃t = (1− ϑt) χ̄σ̃t.

This is also the same as the (endogenous) volatility of consumption shares ηi
t in the

incomplete markets economy. The representative agent economy therefore generates
the same allocation as the equilibrium in our incomplete markets model.
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We now turn to asset prices. As this is the decision problem of a consumer with
logarithmic utility, the optimal consumption rule is Ct = ρNt, exactly as for the agents
in our incomplete markets economy.7 This fact can be derived using the stochastic
maximum principle in precisely the same way as in Appendix A.1, so that we skip
the details here. Using the definition Nt = QK

t Kt + PX
t Xt and the supplies Xt = qB

t Kt,
Ct = (qB

t + qK
t )Kt derived previously, we obtain

(qB
t + qK

t )Kt =
Ct

ρ
= QK

t Kt + PX
t Xt = (QK

t + PX
t qB

t )Kt.

Therefore, if we can show PX
t = 1, QK

t = qK
t is automatically implied. PX

t = 1, in turn,
follows from equation (44) and the remarks following it in the main text. Consequently,
we only need to derive equation (44) to complete the equilibrium characterization.

Valuation Formula (44) for “Derivatives”. We can use standard asset pricing logic.
From the perspective of the representative agent, this is an entirely standard complete
markets economy with two consumption goods. The price of a single unit of an as-
set measured in time-zero consumption units must thus equal the sum of the present
discounted value of its future marginal consumption flow dividends and the present
discounted future consumption value of its marginal volatility flow dividends, both
discounted with the SDF Ξt, the marginal rate of substitution between consumption at
time t and consumption at time 0.

The consumption flow term is straightforward. One unit of derivatives at time 0
turns into Xt/X0 units of derivatives at time t and each of them produces a consump-
tion flow −µ̆Bt dt. The present discounted value of these future consumption flows is
therefore

E

[∫ ∞

0
Ξt

(
−µ̆Bt

Xt

X0

)
dt

]
.

For the volatility flow term, note that the “marginal volatility product of deriva-
tives” at time t is

∂σ̃
η
t

∂Xt
= − qK

t Kt(
qK

t Kt + Xt

)2 χ̄σ̃t = −
σ̃

η
t(

qK
t + qB

t

)
Kt

= − σ̃
η
t

Nt

7In the utility function here, there is also a second term (σ̃η
t ). But because it is additively separated, it

does not affect the optimal consumption rule.
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and the marginal rate of substitution between time-t consumption and time-t volatility
is

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂σ̃
η
t

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂Ct

=
−σ̃

η
t /ρ

1/Ct
= −Ct

ρ
σ̃

η
t .

The consumption value of the marginal volatility reduction of Xt/X0 derivatives at
time t is therefore

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂σ̃
η
t

∂

(
log Ct − 1

2ρ

(
σ̃

η
t

)2
)

/∂Ct

· ∂σ̃
η
t

∂Xt
· Xt

X0
=

Ct

ρNt

(
σ̃

η
t

)2 Xt

X0
=
(

σ̃
η
t

)2 Xt

X0
,

here the last equation follows from Ct = ρNt. Consequently, the discounted value of
volatility flows generates by one unit of derivatives is

E

[∫ ∞

0
Ξt

(
σ̃

η
t

)2 Xt

X0
ds
]

.

Combining the two present values and using σ̃
η
t = (1− ϑt)χ̄σ̃t (derived previously)

yields

PX
0 = E

[∫ ∞

0
Ξt

(
−µ̆Bt

Xt

X0

)
dt

]
+ E

[∫ ∞

0
Ξt (1− ϑt)

2 χ̄2σ̃2
t

Xt

X0
ds
]

.

After multiplying both sides by X0, we obtain equation (44).

B.4 Model Solution with Stochastic Differential Utility

The model setup is identical to the one described in Section 2, except that logarith-
mic preferences are replaced with the utility recursion

Vi
t = Et

[∫ ∞

t
f (ci

s, Vi
s )ds

]
,

where the aggregator f is defined by

f (c, V) = (1− γ)ρV
(

log(c)− 1
1− γ

log
(
(1− γ)V

))

13



We can solve this augmented model as we have solved the baseline model in Sec-
tion 2.2 (compare also Appendix A.1). The Hamiltonian of the household problem is
precisely as stated in Appendix A.1, except that the very first term e−ρt log ci

t must be
replaced with f (ci, Vt(ni)).8

We use again a standard guess for the value function to eliminate the costate vari-
able from the Hamiltonian. The guess here is Vt(ni) = vt

(ni)1−γ

1−γ , where vt is, again, a
variable that does not depend on individual net worth. The relationship between the
value function and the costate requires ξ i

t = V′t (n
i
t) = vt(ni

t)
−γ.9 We write µv

t and σv
t

for the (geometric) drift and aggregate volatility of vt. Note that vt does not load on the
idiosyncratic Brownian because it merely depends on aggregate conditions.

The model solution procedure follows the same steps as for the baseline model.
Here, we merely highlight the differences that occur on the way.

The first difference is that the first-order condition for optimal consumption is not
immediately equation (23), but instead of the more complicated form

vt(ni
t)
−γ = ∂c f (ct, Vt) = (1− γ)ρ

Vt

ct
.

However, once the value function Vt = vt
(ni

t)
1−γ

1−γ is plugged in, the condition reduces
again to the familiar form of equation (23).

The second difference is in the characterization of the costate volatility loadings ςi
t

and ς̃i
t. Because the costate is now ξ i

t = vt(ni
t)
−γ, Ito’s lemma implies

ςi
t = γσn,i

t − σv
t , ς̃i

t = γσ̃n,i
t . (45)

The net worth volatilities σn,i
t and σ̃n,i

t take the same form as before such that we simply
need to replace the final equation (30) with the slightly more complicated form

ςi
t = γ

(
σ

q,B
t − θK,i

t
σϑ

t
1− ϑt

)
− σv

t , ς̃i
t = γθK,i

t χ̄σ̃t.

8On a small technical note, the resulting Hamiltonian here is a “current value Hamiltonian” whereas
the one used in Appendix A.1 is a “present value Hamiltonian”. The costate must thus be discounted
differently here. Otherwise, this does not affect the solution procedure.

9It is here that the difference between “present value” and “current value” matters. For this reason,
there is no time discounting term (such as e−ρt) in this equation, unlike in Appendix A.1.
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The third difference is that the modified expressions for ςi
t and ς̃i

t affect the deriva-
tion and final result of equation (10). Following the same steps as in Appendix A.1, we
obtain the slightly modified equation

Et [dϑt] =

(
ρ + µ̆Bt −

(
σv

t − (γ− 1) σ
q̄
t

)
σϑ

t − γ (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt,

where σ
q̄
t is the volatility of q̄t := qB

t + qK
t .

The fourth and final difference is that we now also have to characterize the pro-
cess vt as it affects the BSDE for ϑt through the term σv

t .10 To characterize vt, we start
from the costate equation (a necessary optimality condition by the stochastic maximum
principle), which is here given by

Et[dξ i
t] = −

(
∂V f (ci

t, Vi
t )ξ

i
t +

∂Hi
t

∂ni
t

)
dt

= −
(
(1− γ)ρ log(ci

t/ni
t)− ρ log vt − ρ + µn,i

t +
ci

t

ni
t
− ςi

tσ
n,i
t − ς̃i

tσ̃
n,i
t

)
ξ i

tdt

= −
(
(1− γ)ρ log ρ− ρ log vt + µn,i

t −
(

γσn,i
t − σv

t

)
σn,i

t − γ
(

σ̃n,i
t

)2
)

ξ i
tdt,

(46)

where the last line uses ci
t/ni

t = ρ and the price of risk formulas (45). We also know
ξ i

t = vt(ni
t)
−γ and applying Ito’s lemma to this equation yields for the drift term

Et[dξ i
t] =

(
µv

t − γµn,i
t +

γ (γ + 1)
2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
− γσv

t σn,i
t

)
ξ i

tdt (47)

Combining equations (46) and (47) and solving for µv
t yields

µv
t = γµn,i

t −
γ (γ + 1)

2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
+ γσv

t σn,i
t

−
(
(1− γ)ρ log ρ− ρ log vi

t + µn,i
t −

(
γσn,i

t − σv
t

)
σn,i

t − γ
(

σ̃n,i
t

)2
)

= ρ log vt + (γ− 1)

(
ρ log ρ + µn,i

t −
γ

2

((
σn,i

t

)2
+
(

σ̃n,i
t

)2
)
+ σv

t σn,i
t

)
10There is no need to solve for vt in the baseline model because there it enters the value function

additively and thus only impacts total utility but not optimal choices.
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= ρ log vt + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ− γ

2

((
σ

q̄
t

)2
+ (1− ϑ)2 χ̄2σ̃2

t

)
+ σv

t σ
q̄
t

)
,

where in the last line we use that individual net worth has the same drift and aggre-
gate volatility as aggregate net worth q̄tKt, while its idiosyncratic volatility is σ̃n,i

t , as
determined previously. The previous equation for µv

t leads to a second BSDE

Et[dvt] = µv
t vtdt

that has to be solved numerically jointly with the BSDE for ϑt stated previously.

Numerical Model Solution. We solve the model numerically using a finite difference
method. This is a standard approach employed in the literature to solve models of this
type. Here, we only briefly outline the procedure. A more comprehensive description
of the method can be found, e.g., in Brunnermeier et al. (2020), Chapter 3 (specifically
Sections 3.2.6 and 3.2.7).

For our numerical solution, we impose the functional relationships ϑt = ϑ(t, σ̃t),
vt = v(t, σ̃t) and use the known forward equation for the state variable σ̃t to transform
the two BSDEs into partial differential equations in time t and the state σ̃t. We choose
suitable terminal guesses for the functions ϑ and v11 at a finite terminal time T and
solve the two PDEs backward in time using a finite difference method. We choose
T sufficiently large such that an increase in T no longer changes the solutions at t =

0, ϑ(0, ·) and v(0, ·), noticeably. These solution functions ϑ(0, ·) and v(0, ·) represent
our numerical approximation to the stationary (Markov) equilibrium functions σ̃ 7→
ϑ(σ̃), v(σ̃).12

B.5 Model Extension with Privately Issued Safe Assets

In this appendix, we present the formal details for the model extension with pri-
vately issued safe assets. We restrict attention to the baseline model from Section 2
with logarithmic preferences.

11Specifically, we use the functions implied by the steady state equilibrium with σ̃t = σ̃0 forever.
12Note that our results in Appendix B.1 imply that this solution procedure always selects the unique

nondegenerate stationary solution the BSDE for ϑ.
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Setup and Model Solution. Each agent i issues nominally risk-free bonds (“i-bonds”)
of total real value Bt(i) ≥ 0 and holds a real quantity bi

t(j) ≥ 0 of j-bonds issued by
other agents j 6= i. The clearing conditions at all times t and for all varieties j are

Bt(j) =
∫

bi
t(j)di.

We denote by ip
t the nominal interest a household has to pay in equilibrium on its pri-

vately issued debt13 and by Bp
t :=

∫
Bt(j)dj the aggregate quantity of privately issued

bonds outstanding. Because privately issued debt is nominally risk-free, its return is

drb
t =

(
ip
t − it

)
dt + drBt ,

where, as before, drBt is the return on government bonds (compare equation (6)). By
no arbitrage, in equilibrium ip

t = it. Thus, the yields on privately issued bonds and
government bonds are identical.

We can solve household i’s problem as in the baseline model. Denote by θB,i
t :=

−Bt(i)/ni
t ≤ 0 the negative of bond issuance as a share of net worth and by θb,i

t (j) :=
bi

t(j)/ni
t ≥ 0 holdings of j-bonds as a fraction of net worth. Relative to the baseline

model, the household has the additional choice variables θB,i
t and (θb,i

t (j))j∈[0,1] subject
to the nonnegativity constraints. However, the Hamiltonian of the household’s prob-
lem does not change relative to Appendix A.1: due to drb

t = drBt , choices of θB,i
t and

(θb,i
t (j))j∈[0,1] do not affect either the expected return or the risk characteristics of the

household’s portfolio, such that the additional terms in the Hamiltonian cancel out.

We can draw two immediate conclusions from the previous observation. First, be-
cause the Hamiltonian remains unaffected, the model solution steps outlined in Ap-
pendix A.1 remain valid in this extended model. Consequently, all equilibria with pri-
vate bond issuance must feature the same real allocation and the same prices of gov-
ernment bond (qB

t ) and capital (qK
t ) as in the baseline model. Second, all households are

indifferent between any choice of private bond issuance and holdings of bonds issued
by other agents as long as these holdings do not interfere with the optimal plans for
capital holdings (θK,i

t ), outside equity issuance (θE,i
t ), and diversified equity holdings

(θĒ,i
t ).

13Theoretically, ip
t could depend on the issuing household j. However, as all privately issued bonds

are required to be nominally risk-free, it is obvious that they all have to pay the same nominal rate in
equilibrium.
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There are thus many different equilibria that all feature the same consumption allo-
cation and valuation of government bonds, equity, and capital, but differ with regard
to the quantities Bt(j) of private bonds in circulation.

A Simple Example. To illustrate how privately issued bonds can serve as safe assets
in precisely the same way as government bonds, we consider an example in which all
agents trade private and government bonds in equal proportions.14 Specifically, we
make the following choices: (a) the aggregate real value of privately issued bonds is
proportional to the value of government bonds, Bp

t ∝ qB
t Kt, (b) the total bonds issued

by each agent j is proportional to the agent’s net worth share, Bt(j) = η
j
tB

p
t , and (c) all

agents hold a portfolio of j-bonds for j 6= i and government bonds according to market
capitalization weights.

We now discuss the debt valuation equations verbally referenced in the main text.
We defer a derivation of the following equations to the end of this appendix.

For each agent i, the value of the long position bi
t(j) in j-bonds must equal the

present value of future cash inflows from the portfolio of j-bonds, either due to pay-
ments made by agent j or due to trading of j-bonds. This insight leads to an equation
in full analogy to equations (14) and (16) for government bonds that we have derived
in the context of the dynamic trading perspective:

bi
0(j) = E

[∫ ∞

0
ξ i

txtbi
t(j)dt

]
+ E

[∫ ∞

0
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t bi
t(j)dt

]
. (48)

Here, xt denotes the expected net payouts made by agent j to all holders of j-bonds
per real unit of j-bonds outstanding. Total expected net payouts xtBt(j) made by agent
j are the private debt counterparts of primary surpluses stKt, which represent the net
payouts made by the government to public debt holders.

Equation (48) emphasizes that the valuation of j-bonds for agent i depends on a cash
flow component resulting from payouts made by agent j and a service flow component
resulting from the fact that i trades j-bonds with agents other than j. When aggregating
these equations for all i 6= j, we obtain a debt valuation equation from the dynamic

14While valuation equations for individual bond types depend on what we assume about trading of
individual bonds (which is indeterminate due to indifference), none of the economic conclusions from
the example crucially depend on this choice.
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trading perspective for the aggregate long position in j-bonds:15

B0(j) = E

[∫ ∞

0
ξ∗∗t xtBt(j)dt

]
+ E

[∫ ∞

0
ξ∗∗t (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
. (49)

The key takeaway is that this equation looks precisely like equation (13) for government
bonds. In particular, the service flow component is identical.

Equation (49) emphasizes the similarity between government bonds and privately
issued bonds for their holders. However, private bond issuance also comes with a short
position in the bond for the issuer j. In the same spirit as before, we can value that short
position by determining the present value of all net payouts that j makes to holders of
j-bonds,

−B0(j) = E

[∫ ∞

0
ξ

j
t (−xt) Bt(j)dt

]
+ E

[∫ ∞

0
ξ

j
t

(
− (1− ϑt)

2 χ̄2σ̃2
t

)
Bt(j)dt

]
. (50)

This equation illustrates that issuing bonds according to the specified issuance strat-
egy effectively exposes the agent to negative service flows. Because Bt(j) = η

j
tB

p
t is

proportional to η
j
t , cash flows from debt issuance and repayments are systematically

correlated with marginal utility in a way that increases the riskiness of j’s portfolio.

Once we integrate equations (49) and (50) over all bond types j, the integrated ser-
vice flow terms on the right-hand side become identical in absolute value but have
opposite sign. In other words, in the aggregate the positive service flows derived from
privately issued bonds by their holders exactly cancel with the negative service flows
generated for their issuers. Private safe asset creation does not generate additional net
service flows for the economy.

Derivation of Equations (48), (49), and (50). In precisely the same way as in Ap-
pendix A.3, we can derive equations in analogy to equation (14) for the portfolios of
j-bonds held by agents i and j:

bi
0(j) = −E0

∫ ∞

0
ξ i

tb
i
t(j)

(
µ∆,i

t (j)− ςtσ
∆,i
t (j)− ς̃tσ̃

∆,i,i
t (j)

) , (51)

15Relative to equation (48), the following equation also interchanges integrals and uses bi
t(j) = ηi

tBt(j).
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−Bj
0 = −E0

∫ ∞

0
ξ i

t(−Bj
t)

(
µ

∆,j
t (j)− ςtσ

∆,j
t (j)− ς̃tσ̃

∆,j
t (j)

) . (52)

Here, d∆b,i(j)t and d∆B,j
t are the trading processes for j-bonds of agents i and j, respec-

tively:

d∆b,i
t (j) = µ∆,i

t (j)dt + σ∆,i
t (j)dZt + σ̃∆,i,i

t (j)dZ̃i
t + σ̃

∆,i,j
t (j)dZ̃j

t,

d∆B,j
t = µ

∆,j
t (j)dt + σ

∆,j
t (j)dZt + σ̃

∆,j
t (j)dZ̃i

t.

As in Section 3 and Appendix A.3, bi
t(j)d∆b,i(j)t represents the real value of new j-bonds

purchased by agent i at time t (net of payouts made by agent j on existing bonds).
Similarly, but with opposite sign due to the short position, −Bj

td∆B,j
t represents the real

value of new j-bonds (re-)purchased by agent j. In other words, −d∆B,j
t corresponds to

the payouts that the issuer j makes to bond holders.

To derive equations (48) and (50), we have to characterize the trading processes. In
full analogy to Appendix A.3, these processes must satisfy

d∆b,i
t (j) =

dbi
t(j)

bi
t(j)
− drb

t , (53)

d∆B,j
t =

dBj
t

Bj
t

− drb
t . (54)

We first characterize the second process. By definition, µ
∆,j
t (j) = −xt corresponds to

the negative of the expected net payouts made by agent j to holders of j-bonds per real
unit of bonds outstanding. To determine the volatility loadings of the trading process,
we use Bj

t = η
j
tB

p
t ∝ η

j
tq

B
t Kt, so that

dBj
t

Bj
t

=
dη

j
t

η
j
t

+
d(qB

t Kt)

qB
t Kt

.

The volatility loadings of drb
t = drBt coincide with the ones of d(qB

t Kt)/(qB
t Kt), compare

equation (6). Thus,
d∆B,j

t = drift terms + σ̃
η
t dZ̃j

t.

20



In total, we get
µ

∆,j
t (j) = −xt, σ

∆,j
t (j) = 0, σ̃

∆,j
t (j) = σ̃

η
t .

Substituting this into equation (52) and using ς̃t = σ̃
η
t = χ̄(1 − ϑt)σ̃t implies equa-

tion (50).

The previous discussion also implies (using equation (54))

drb
t =

dBt(j)
Bt(j)

− d∆B,j
t = xtdt +

d
(

qB
t Kt

)
qB

t Kt

and substituting this into equation (53) and using bi
t(j) = ηi

tB
j
t = ηi

tη
j
tB

p
t implies

d∆b,i
t (j) =

dηi
t

ηi
t
+

dη
j
t

η
j
t

+
dBp

t

Bp
t
−

xtdt +
d
(

qB
t Kt

)
qB

t Kt


= σ̃

η
t dZ̃i

t + σ̃
η
t dZ̃j

t +
d
(

qB
t Kt

)
qB

t Kt
− xtdt−

d
(

qB
t Kt

)
qB

t Kt

= −xtdt + σ̃
η
t dZ̃i

t + σ̃
η
t dZ̃j

t.

In other words,

µ∆,i
t (j) = −xt, σ∆,i

t (j) = 0, σ̃∆,i,i
t (j) = σ̃

∆,i,j
t (j) = σ̃

η
t .

Substituting these equations into equation (51) implies equation (48).

It is left to derive equation (49). This equation easily follows from the previously
derived equation (48) by integrating over all holders i:

B0(j) =
∫

bi
t(j)di

=
∫ (

E

[∫ ∞

0
ξ i

txtbi
t(j)dt

]
+ E

[∫ ∞

0
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t bi
t(j)dt

])
di

= E

[∫ ∞

0

∫
ξ i

txtη
i
tBt(j)didt

]
+ E

[∫ ∞

0

∫
ξ i

t (1− ϑt)
2 χ̄2σ̃2

t ηi
tBt(j)didt

]
= E

[∫ ∞

0

∫
ξ i

tη
i
tdi · xtBt(j)dt

]
+ E

[∫ ∞

0

∫
ξ i

tη
i
tdi · (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
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= E

[∫ ∞

0
ξ∗∗t xtBt(j)dt

]
+ E

[∫ ∞

0
ξ∗∗t (1− ϑt)

2 χ̄2σ̃2
t Bt(j)dt

]
.

B.6 Model Extension with Convenience Yields

.In this appendix, we present the model extension with bonds in the utility function
to generate a convenience yield and derive the two debt valuation equations stated in
Section 6

Setup and Equilibrium Characterization. To keep equations as simple as possible,
we only consider the case of logarithmic consumption preferences and introduce sepa-
rable logarithmic bond utility as in Di Tella (2020). Each agent i maximizes

E

[∫ ∞

0
e−ρt

(
(1− υ) log ci

t + υ log bi
t

)
dt
]

,

where
bi

t = (1− θK,i
t − θE,i

t − θĒ,i
t )ni

t

are real government bond holdings of the agent as in Section 3. υ measures the utility
share derived from bond holdings. For υ = 0, the model collapses to the baseline
model. As in the main text, but unlike in Appendix B.5, we assume here that the gross
holdings or privately issued nominal debt are zero, so that all bonds are government
bonds. So long as privately issued bonds do not provide utility, this assumption is
without loss of generality.

However, as in Appendix B.5, we use the notation ip
t to denote the (shadow) nom-

inal short rate on such privately issued bonds. As these bonds do not enter utility, the
spread ∆it := ip

t − it can be positive in this augmented model. It captures the conve-
nience yield on government bonds.

The augmented model has almost the same equilibrium solution as our baseline
model. ι, qB, and qK are given by the equations

ιt =
(1− ϑt) (at − g)− (1− υ) ρ

1− ϑt + φ (1− υ) ρ
, (55)

qB
t = ϑt

1 + φ (at − g)

1− ϑt + φ (1− υ) ρ
, (56)
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qK
t = (1− ϑt)

1 + φ (at − g)

1− ϑt + φ (1− υ) ρ
(57)

as a function of the bond wealth share ϑt. The latter is determined by the dynamic
equation

Et [dϑt] =
(

ρ + µ̆Bt − ∆it − (1− ϑt)
2 χ̄2σ̃2

t

)
ϑtdt, (58)

where ∆it = υρ/ϑt is the equilibrium convenience yield on government bonds. This
equation differs from equation (10) only by the presence of the convenience yield term
∆it, which raises the equilibrium level of ϑt.

We present a proof of equations (55)–(57) and (58) at the end of this appendix.

Debt Valuation Equations (Proposition 7). We next sketch the derivations of the two
debt valuation equations stated in the main text. The derivation steps are in complete
analogy to the ones presented in Section 3 for the baseline model.

The valuation from the buy and hold perspective starts again from the government
flow budget constraint (2) and follows precisely the same steps as in Section 3 up to the
derivation of equation (31) stated in the main text and restated here for convenience:

ξ i
0
B0

P0
= E

[∫ T

0
ξ i

tstKtdt

]
−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
+ E

[
ξ i

T
BT

PT

]
.

From here on, the derivation departs slightly. Because the nominal SDF ξ i
t/Pt in this

model does not price nominal government debt but nominal private debt, it decays on
average at rate ip

t = it + ∆it, and the second term does not vanish. Instead, we obtain

−E

[∫ T

0
Bt

(
d
(

ξ i
t/Pt

)
+ itξ

i
t/Ptdt

)]
= E

[∫ T

0
ξ i

t∆it
Bt

Pt
dt

]
,

which is the present value of convenience yield service flows derived from government
debt between t = 0 and t = T. From here on, the derivation is again analogous to the
one in Section 3. Once we replace ξ i

t with ξ̄t and take the limit T → ∞, we arrive at the
equation stated in Section 6.

The valuation from the dynamic trading perspective proceeds precisely as in Sec-
tion 3. The only difference is that the derivation no longer results in the intermediate
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equation (14) but in the slightly modified version

bi
0 = −E

[∫ ∞

0
ξ i

tb
i
t

(
−∆it + µ∆,i

t − ςtσ
∆,i
t − ς̃i

tσ̃
∆,i
t

)
dt
]

,

where the term −∆it is new. After replacing equation (14) with this variant and other-
wise following the steps outlined in Section 3, we obtain the valuation equation from
the dynamic trading perspective stated in Section 6.

To understand where the additional term−∆it comes from, note that also the deriva-
tion steps for equation (14) in Appendix A.3 remain unchanged except for one detail:
in that appendix, we have used in equation (33) that

µrB
t − r f

t − ςtσ
rB
t = 0

by standard asset pricing logic. That argument is valid if the SDF ξ i
t prices the gov-

ernment bond, so that the expected return µrB
t equals the risk-adjusted required return

r f
t + ςtσ

rB
t . Due to the presence of utility services from government bonds, this is not

true anymore in the augmented model. The expected return on a privately issued bond
µrB

t + ∆it still equals the required return, but the expected return on the government
bond is lower by ∆it. Consequently, we must use the modified relationship

µrB
t − r f

t − ςtσ
rB
t = −∆it

in equation (33). This explains the additional term −∆it above.

Model Solution Details. The model solution follows the same steps as in Appendix A.1.
The difference here is that the term log ci

t in the Hamiltonian must be replaced with

(1− υ) log ci
t + υ log

(
1− θK,i

t − θE,i
t − θĒ,i

t

)
+ υ log ni

t.

We only discuss how this affects the solution without repeating all steps from Ap-
pendix A.1 explicitly.

With the same conjecture for the value function (and thus for ξ i
t) as in Appendix A.1,

the first-order condition for optimal consumption becomes

ci
t = (1− υ) ρni

t
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while the first-order condition for the optimal investment choice remains unaffected.
Following the aggregation steps in Appendix A.1, we obtain again equations (7), (8),
and (9) for ιt, qB

t , and qK
t from the maintext with the difference that ρ in these equations,

which represents the consumption-wealth ratio, must be replaced with (1− υ) ρ. With
this replacement, these equations take the form equations (55), (56), and (57).

The first-order conditions for the portfolio shares θK,i
t , θE,i

t , and θĒ,i
t are the same as

in Appendix A.1 except that there is an additional term16

ρυ

1− θK,i
t − θE,i

t − θĒ,i
t

= ρυ
ni

t

bi
t
= ∆it

on the right-hand side of all three conditions that is due to the marginal utility of bond
holdings:

Et

[
drK,i

t (ιit)
]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tσ̃t − λi

t (1− χ̄) + ∆it,

Et

[
drE,i

t

]
dt − Et[drBt ]

dt = −ςi
t

σϑ
t

1− ϑt
+ ς̃i

tσ̃t − λi
t + ∆it,

Et[dr̄E
t ]

dt − Et[drBt ]
dt = −ςi

t
σϑ

t
1− ϑt

+ ∆it.

From here, we can follow the same steps as in Appendix A.1, which yield again equa-
tion (28), but a modified version of equation (29):

at − g− ιt

qK
t

− µϑ
t − µ̆Bt
1− ϑt

−

(
σ

q,B
t − σϑ

t

)
σϑ

t

1− ϑt
= −ςi

t
σϑ

t
1− ϑt

+ ς̃i
tχ̄σ̃t + ∆it.

Replacing equation (29) with the previous one but following otherwise the steps in
Appendix A.1 yields for µϑ

t

µϑ
t = (1− υ)ρ + µ̆Bt − (1− ϑt)

2χ̄2σ̃2
t − (1− ϑt)∆it.

16The last equality follows from the fact that a hypothetical zero net supply nominal bond not entering
the utility function but with otherwise identical risk profile would only have this term in the first-order
condition for its excess return.
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To bring this into the form (58), note that ∆it = ρυ
ni

t
bi

t
= ρυ

ϑt
in equilibrium and hence

(1− ϑt)∆it + υρ =
ρυ

ϑt
− ρυ + υρ =

υρ

ϑt
= ∆it.

The previous equation therefore simplifies to

µϑ
t = ρ + µ̆Bt − (1− ϑ)2χ̄2σ̃2

t − ∆it.

Multiplying both sides by ϑt yields equation (58).

B.7 A Model with Two Types

In this appendix we present a model variant with two types of agents that have
heterogeneous access to the different asset markets in our economy and therefore het-
erogeneous idiosyncratic and possibly aggregate risk exposures. We derive theoretical
results that link the predictions of the two-type model to the predictions of the one-type
model presented in the main text.

Setup. The model is the same as the baseline model in the main text, except for the
following modification. At each time, each agent i is either an expert (“e”) or a house-
hold (“h”). Experts can manage capital directly and therefore face precisely the same
portfolio (and real investment) choice as all agents in our baseline model. Households,
in turn, are restricted to only hold financial assets (equity and bonds). All agents have
identical preferences regardless of type. We allow for both logarithmic preferences as
in Section 2 (γ = 1) and more general stochastic differential utility preferences with
risk aversion γ > 0 as considered in Section 4.

Agents receive idiosyncratic (Poisson) type switching shocks. Experts become house-
holds with arrival rate λe > 0 and households become experts with arrival rate λh >

0.17

Let ei
t be an indicator that is 1 if agent i is an expert at time t and zero otherwise. In

17Without type switching experts would eventually dominate the economy because they earn higher
expected returns on average. In the stationary distribution, the model would then reduce to the one-type
model studied in the main text.
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what follows, we define the shares

ηe
t :=

∫
ηi

te
i
tdi, ηh

t :=
∫

ηi
t(1− ei

t)di

of total wealth that is owned by experts (ηe
t ) and households (ηh

t ), respectively. One of
these variables is a sufficient summary of the cross-sectional wealth distribution for the
purposes of solving for the aggregate dynamics and asset prices in this model (the other
variable can be backed out form ηe

t + ηh
t = 1). When solving the model, we therefore

include ηe
t as an additional state variable.

Sketch of the Model Solution. The model can be solved along the same lines as our
baseline model. We briefly sketch the solution procedure here and provide more details
on the steps that are new relative to the baseline model.

First, everything that is said in Section 2.2 before Lemma 1 as well as that lemma
itself remains valid in the two-type model without any modification. As a consequence,
the dynamics of asset prices, aggregate consumption, and aggregate investment are
fully determined by the dynamics of the endogenous process ϑt and the exogenous
process at.

Second, the optimal portfolio choice conditions (25), (26), and (27) remain unchanged
for those agents i that are experts at time t. For households, instead, the first two con-
ditions do not apply, as households do not hold capital and issue outside equity. Nev-
ertheless, equation (27) remains valid also for households. Therefore, for experts the
exact same steps as in Appendix A.1 lead once again to equation (29) stated there. This
equation depends on the agent index i only through the prices of risk ςi

t and ς̃i
t. We

argue next that these prices of risk are actually not i-dependent. Specifically, because
equation (27) holds for all agents regardless of type, ςi

t = ςt is the same for all i.18

Furthermore, using ςi
t = ςt and λi

t = ς̃i
tσ̃t (compare Appendix A.1) in equation (25)

for any agent i that is an expert implies that ς̃i
t is identical for all experts. We call this

common value ς̃e
t from now on. Consequently, the combined portfolio choice condition

18This conclusion rests on the implicit assumption σϑ
t 6= 0. However, it is easy to verify ex post

that σϑ
t = 0 if and only if there is no consumption-relevant aggregate risk. But in this case, trivially

ςi
t = 0 =: ςt for all agents.
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equation (29) can be written here as

at − gt − ιt

qK
t

− µϑ
t − µ̆Bt
1− ϑt

−

(
σ

q,B
t − σϑ

t

)
σϑ

t

1− ϑt
= −ςt

σϑ
t

1− ϑt
+ ς̃e

tχ̄σ̃t. (59)

Third, the factor vt in the costate ξ i
t for agent i now becomes type-specific, ve

t if ei
t = 1

and vh
t if ei

t = 0. Hence, equations (45) for the prices of risk remain valid. However,
in the first equation, σv

t has to be interpreted as σv,e
t for experts and and as σv,h

t for
households. In this model, it makes sense to determine the aggregate net worth risk
loadings σn,i

t slightly differently to before. Specifically, ηi
t = ni

t/Nt implies that (by Ito’s
lemma) σn,i

t = σN
t + σ

η,i
t . Using Nt = qB

t /ϑtKt, we have furthermore σN
t = σ

q,B
t − σϑ

t .
We can therefore write for the price of aggregate risk

ςt = γ
(

σ
q,B
t − σϑ

t

)
+ γσ

η,e
t − σv,e

t = γ
(

σ
q,B
t − σϑ

t

)
+ γσ

η,h
t − σv,h

t .

The price of idiosyncratic risk is type-specific and given by

ς̃e
t = γ

1− ϑt

ηe
t

χ̄σ̃t, ς̃h
t = 0.

Fourth, while the steps in Appendix A.1 that lead to Proposition 1 remain exactly
the same, the ultimate dynamic equation for ϑt is different from equation (10) because
the prices of risk are different. Plugging the prices of risk for experts into the com-
bined portfolio choice equation (59) and otherwise following the same steps as in Ap-
pendix A.1 yields the equation

Et [dϑt] =

(
ρ + µ̆Bt −

(
ηe

t σv,e
t + ηh

t σv,h
t − (γ− 1) σ

q̄
t

)
σϑ

t − γ
(1− ϑt)

2 χ̄2σ̃2
t

ηe
t

)
ϑtdt, (60)

where, as in Appendix B.4, σ
q̄
t denotes the volatility of q̄t := qB

t + qK
t .

Fifth, an additional law of motion for the endogenous state variable ηe
t needs to be

determined. This is relatively straightforward for the volatility σ
η,e
t . Using the two

expressions for ςt, from experts’ and households’ perspective, and the fact that ηe
t σ

η,e
t +
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ηh
t σ

η,h
t = 0 (by construction), we obtain

σ
η,e
t =

(1− ηe
t )(σ

v,e
t − σv,h

t )

γ
.

In particular, in the special case of log utility, σv,e
t = σv,h

t = 0 and, hence, also σ
η,e
t = 0,

so that the wealth share ηe
t evolves locally deterministically.

The drift of ηe
t can be computed using some straightforward but tedious algebra

that is omitted here in the interest of space.19 The final result is

µ
η,e
t =

(
−σv,e

t + γσ
η,e
t + (γ− 1) σ

q̄
t

)
σ

η,e
t +

1− ηe
t

ηe
t

γ
χ̄2 (1− ϑt)

2

ηe
t

σ̃2
t +

λh (1− ηe
t
)
− λeηe

t
ηe

t
.

(61)

Sixth and finally, there are now two BSDEs for the value function factors Et[dve
t ] and

Et[dvh
t ]. These can be derived in precisely the same way as in Appendix B.4, except that

we have to account for type switching. The two counterparts of the costate equation,
equation (46), are entirely analogous:

Et[dξe,i
t ] = −

(
(1− γ)ρ log ρ− ρ log ve

t + µn,e,i
t −

(
γσn,e,i

t − σv,e
t

)
σn,e,i

t − γ
(

σ̃n,e,i
t

)2
)

ξe,i
t dt,

Et[dξh,i
t ] = −

(
(1− γ)ρ log ρ− ρ log vh

t + µn,h,i
t −

(
γσn,h,i

t − σv,h
t

)
σn,h,i

t

)
ξh,i

t dt.

The counterparts of equation (47) change slightly because, when applying Ito’s lemma
to ξe

t = ve
t(n

i
t)
−γ and ξh

t = vh
t (n

i
t)
−γ, additional jump terms appear:

Et[dξe,i
t ] =

(
µv,e

t − γµn,e,i
t +

γ (γ + 1)
2

((
σn,e,i

t

)2
+
(

σ̃n,e,i
t

)2
)
− γσv,e

t σn,e,i
t + λe ξh,i

t − ξe,i
t

ξe,i
t

)
ξe,i

t dt,

Et[dξh,i
t ] =

(
µv,h

t − γµn,h,i
t +

γ (γ + 1)
2

(
σn,h,i

t

)2
− γσv,h

t σn,h,i
t + λh ξe,i

t − ξh,i
t

ξh,i
t

)
ξh,i

t dt.

Combining the two sets of equations and solving for µv,e
t and µv,h

t , respectively, yields

µv,e
t = ρ log ve

t + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ + µ

η,e
t +

λeηe
t − λhηh

t
ηe

t

)
19Essentially, one applies Ito’s lemma to ηe

t = Ne
t /Nt, where Ne

t :=
∫

ni
te

i
tdi and its evolution as an Ito

process can be determined from the evolution of ni
t for all i that are experts.
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+ (γ− 1)

−γ

2

((
σ

q̄
t + σ

η,e
t

)2
+

(1− ϑ)2 χ̄2

(ηe
t )

2 σ̃2
t

)
+ σv,e

t

(
σ

q̄
t + σ

η,e
t

)+ λe vh
t − ve

t
ve

t
,

µv,h
t = ρ log vh

t + (γ− 1)

(
ρ log ρ + µ

q̄
t + Φ(ιt)− δ + µ

η,h
t +

λhηh
t − λeηe

t

ηh
t

)

+ (γ− 1)
(
−γ

2

(
σ

q̄
t + σ

η,h
t

)2
+ σv,h

t

(
σ

q̄
t + σ

η,h
t

))
+ λh ve

t − vh
t

vh
t

.

Relationship with Baseline Model. We next provide two theoretical results that high-
light relationships between the dynamics of the two-type model and the dynamics of
our baseline model with just one type. These results emphasize that the statistic of the
cross-sectional distribution of idiosyncratic risk exposures that matters most for our
model’s predictions is

∫
ηi

t(σ̃
n,i
t )2di, i.e. the wealth-weighted cross-sectional mean of

the idiosyncratic net worth variance. We conjecture that a similar conclusion would
also hold in more general n-type models. To improve the reading flow, we first sum-
marize here the results and present the proofs at the end of this appendix.

In what follows, we always make the following assumptions and use the following
notation:

Let K0 be an initial condition for the capital stock and at, µ̆Bt , σ̃1
t , σ̃2

t be exogenous processes,
such that both (at, µ̆Bt , σ̃1

t ) and (at, µ̆Bt , σ̃2
t ) are functions of some finite-dimensional Markov

process. Suppose that stationary monetary equilibria exist both for the one-type model with ex-
ogenous processes (at, µ̆Bt , σ̃1

t ) and for the two-type model with exogenous processes (at, µ̆Bt , σ̃2
t )

based on the same parameters for ρ, g, and φ (but not necessarily for other model parameters).20

For any model variable x, denote by xj
t the stochastic process for x in the equilibrium for the

j-type model (j ∈ {1, 2}).

Before establishing the main results, we remark that most interesting predictions of
the two models only depend on the stochastic processes for the exogenous variables at

and µ̆Bt and the endogenous variable ϑt in equilibrium.

Lemma 5. If ϑ1
t = ϑ2

t for all t (almost surely), then also the following equations hold for all t

20By Proposition 1 and the results in Appendix B.1, these equilibria are then also unique. These results
hold analogously also for the two-type model.
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(almost surely):21

K1
t = K2

t , qB,1
t = qB,2

t , qK,1
t = qK,2

t , ι1t = ι2t ,

C1
t = C2

t , τ1
t = τ2

t , Et[drB,1
t ] = Et[drB,2

t ], Et[drK,1
t ] = Et[drK,2

t ]

The previous lemma establishes that if two equilibria feature the same endogenous
process ϑt, then they make exactly the same predictions for a large range of variables.
We next provide sufficient conditions for ϑ1

t = ϑ2
t .

We start with the special case of log utility (γ = 1) as then several equations simplify.
First, note that for log utility ve

t = vh
t = 1, so that the decision-relevant portion of

agents’ value functions is independent of the agent type. As a consequence, we also
obtain σ

η,e
t = 0, agents find it optimal to fully share aggregate risk. Equation (60) then

simplifies to

Et [dϑt] =

(
ρ + µ̆Bt −

(1− ϑt)
2 χ̄2σ̃2

t
ηe

t

)
ϑtdt

=

(
ρ + µ̆Bt −

(
ηe

t
(
σ̃n,e

t
)2

+ ηh
t

(
σ̃n,h

t

)2
))

ϑtdt, (62)

where it has been used that σ̃n,e
t = 1−ϑt

ηt
χ̄σ̃t and σ̃n,h

t = 0. Similarly, the corresponding
equation in the baseline model with just one type is22

Et [dϑt] =
(

ρ + µ̆Bt −
(
σ̃n

t
)2
)

ϑtdt. (63)

Note that, beyond the log utility case, equations (62) (for the two-type model) and
(63) (for the one-type model) continue to hold more generally if we shut down aggre-
gate shocks (by setting the dZt-loading of the exogenous processes to zero).

In either case, log utility or no aggregate shocks, equations (62) and (63) are identical

if (and only if) the stochastic process for ηe
t
(
σ̃n,e

t
)2

+ ηh
t

(
σ̃n,h

t

)2
in the two-type model

is the same as the stochastic process for
(
σ̃n

t
)2 in the one-type model. If this is the case,

21For the last equality, note that in both models, drK,i
t does not depend on i except for the identity of

the idiosyncratic shock dZ̃i
t which plays no role for the expectation (and it only makes sense if i is an

expert in the two-type model). Therefore, the equation is written without i-superscripts
22Compare equation (10) in Proposition 1. Alternatively, simply set ηe

t = 1, ηh
t = 0 in the previous

equation – the two-type model effectively collapses to the baseline model if ηe
t is held fixed at 1.
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then the two models imply the same dynamics for ϑt and, hence, the same dynamics
for aggregates and asset prices. This reasoning leads to the following proposition.

Proposition 9. Let either γ = 1 (log utility) or assume that there are no aggregate shocks.
Suppose that the following condition hold (for all t almost surely)(

σ̃n,1
t

)2
= ηe

t

(
σ̃n,e,2

t

)2
+ ηh

t

(
σ̃n,h,2

t

)2
. (64)

Then the equilibrium dynamics for all macro aggregates and the expectations and aggregate
volatility loadings of all asset returns are identical in both equilibria.

We now turn to the general case that there are aggregate shocks and, potentially,
γ 6= 1. In this case, similar derivations as before show that equation (62) for the two-
type model takes the form

Et [dϑt] =

(
ρ + µ̆Bt −

(
ηe

t σv,e
t + ηh

t σv,h
t − (γ− 1) σ

q̄
t

)
σϑ

t − γ

(
ηe

t
(
σ̃n,e

t
)2

+ ηh
t

(
σ̃n,h

t

)2
))

ϑtdt

(65)
and equation (63) for the one-type model takesthe form

Et [dϑt] =

(
ρ + µ̆Bt −

(
σv

t − (γ− 1) σ
q̄
t

)
σϑ

t − γ
(
σ̃n

t
)2
)

ϑtdt. (66)

In this general case, condition (64) is no longer sufficient to make the two equations
identical. In addition, we would need the extra condition σv

t = ηe
t σv,e

t + ηh
t σv,h

t , which
is unlikely to be satisfied in general as an inspection of the BSDEs for vt in the one-type
model and for ve

t , vh
t in the two-type model reveals. This is because, for γ 6= 1 and

aggregate shocks, hedging demands induce different types to take on heterogeneous
aggregate risk exposures, which generates additional dynamics that are absent from the
more stylized one-type model. However, these additional dynamics disappear in the
limit case that type switching is infinitely fast as then the value functions of households
and experts align. Then, condition (64) is again sufficient for the two models to generate
identical predictions:

Proposition 10. The conclusion of Proposition 9 remains valid even for γ 6= 1 and with aggre-
gate shocks, if the equilibrium in the two-type model is understood to be the limit as λe, λh → ∞
with the ratio λh/λe ∈ (0, ∞) held constant.
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Proofs.

Proof of Lemma 5. Lemma 1 holds for both models. We observe immediately from that
lemma that if ϑt and at are the same in two equilibria, then so are qB

t , qK
t , and ιt, provided

the equilibria correspond to models with identical parameters ρ, g, and φ, as we have
assumed here. If ιt is the same across the two equilibria, then so is dKt/Kt by the law of
motion of aggregate capital (compare Definition 1 and note that an identical equation
also holds in the two-type model). This completes the proof of the first four equations.
We now discuss the remaining four equations.

For equality of aggregate consumption Ct, note that a1
t = a2

t , K1
t = K2

t , and ι1t = ι2t
imply together with goods market clearing (equation (3))

C1
t = (a1

t − g− ι1t )K
1
t = (a2

t − g− ι2t )K
2
t = C2

t .

For equality of taxes, we use similarly the government budget constraint and a1
t =

a2
t , µ̆B,1

t = µ̆B,2
t , and qB,1

t = qB,2
t :

τ1
t =

g− µ̆B,1
t qB,1

t
a1

t
=

g− µ̆B,2
t qB,2

t
a2

t
= τ2

t .

For equality of the expected return on bonds consider the equation for the return
drBt stated in the first part of Appendix A.1. This equations holds for both the one-type
and the two-type model. Observe that the drift of drBt only depends on ιt, µ

q,B
t , and µ̆Bt ,

which are identical for j = 1 and j = 2. Hence, Et[drB,1
t ] = Et[drB,2

t ].

An analogous argument holds for the last equality. Also the final expression for
drK,i

t (ιit) in Appendix A.1 holds for both models. This expression depends on at, ιt, qB
t ,

qK
t , µ

q,K
t , all of which have been shown to be identical in both equilibria.

Proof of Proposition 9. Comparing equations (62) and (63), it is apparent that if ϑ1
t = ϑ2

t

and condition (64) holds, then the right-hand sides of both equations are identical state
by state. Uniqueness of the solution (compare Appendix B.1) then implies that, indeed,
ϑ1

t = ϑ2
t is the only possibility.

From Lemma 5 we can then immediately conclude that Kt, qB
t , qK

t , ιt, Ct, τt, Et[drBt ],
and Et[drK

t ] must be identical across the two models. All macro aggregates can be
written as functions of the first six variables (and possibly the exogenous processes at
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and µ̆Bt , which are the same for both models), so that, indeed, the dynamics of all macro
aggregates must be identical in both equilibria.

In addition, if qB
t and qK

t are identical, then so are σ
q,B
t and σ

q,K
t by Ito’s lemma.

Hence, the aggregate volatility loadings on all returns drBt , drK
t , drE

t , dr̄E
t must be iden-

tical.

Because Lemma 5 already implies that the expected returns on capital and bonds
are identical across the two equilibria, it is only left to show that also Et[drE

t ] = Et[dr̄E
t ]

is the same in both equilibria. Because of equation (27), which holds in both models,
and ϑ1

t = ϑ2
t ⇒ σϑ,1

t = σϑ,2
t , the desired equality holds if and only if ς1

t = ς2
t . This is

trivially satisfied if there are no aggregate shocks so that we can from now on assume
that γ = 1. Then, ς1

t = ς2
t follows from the following considerations:

• In the one-type model, the aggregate price of risk is given by (compare Appendix A.1)

ς1
t = σn

t = σ
q̄
t .

• In the two-type model, the aggregate price of risk is given by

ς2
t = σ

q̄
t + σ

η,e
t = σ

q̄
t ,

because σ
η,e
t = 0 in the log utility case.

Proof of Proposition 10. We first establish some properties of the limit economy in the
two-type model. Let η∗ := λh/λe

1+λh/λe . By the assumptions that λh/λe ∈ (0, ∞) is held

constant, we know that η∗ ∈ (0, 1) is constant along any limit sequence. Also λe

1−η∗ =
λh

η∗

by definition of η∗.

Consider now the last term in the drift of ηt, equation (61):

λh (1− ηe
t
)
− λeηe

t
ηe

t
=

1
ηe

t

(
λh

η∗
η∗
(
1− ηe

t
)
− λe

1− η∗
(
1− η∗

)
ηe

t

)

=
λh

η∗
1
ηe

t

(
η∗ − ηe

t
)

.
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This term is positive for ηe
t < η∗ and negative for ηe

t > η∗ and as λh → ∞, it becomes
arbitrarily large in absolute value. In contrast, all other terms in equation (61) remain
bounded for ηt in a (sufficiently small) neighborhood of η∗. Hence, the last term domi-
nates in the limit and ensures that ηt = η∗ at all times.

Next, consider the equations for µv,e
t and µv,h

t for the two-type model stated above.
We only discuss the equation for µv,e

t but note that everything said here applies sym-
metrically to µv,h

t . The type switching intensities λe and λh appear in two places. First,
in the first line, there is a term

λeηe
t − λhηh

t
ηe

t
=

λh

η∗
ηe

t − η∗

ηe
t

,

which is, up to the sign, exactly the same term as the last term in the drift of ηt. Because
the drift is finite (in fact, zero) in the limit equilibrium, this term must also vanish in the
limit λh → ∞. Second, the last term in the expression for µv,e

t also depends on switching
intensities,

λe vh
t − ve

t
ve

t
,

and, in the limit λe → ∞, this term becomes arbitrarily large unless ve
t = vh

t . Because the
term is positive if vh

t > ve
t , negative if vh

t < ve
t , and this equation describes a backward

equation for ve
t , it must indeed be the case that ve

t = vh
t in the limit.

Furthermore, once we impose ve
t = vh

t =: vt and ηt = η∗, use that either of these
two equations implies σ

η,e
t = 0, and plugs these equations into the equation for either

µv,h
t or µv,e

t (in the limit as λe, λh → ∞), we obtain an equation that is identical to the
equation for µv

t in the one-type model stated at the end of Appendix B.4.

We use the previous considerations to conclude that if condition (64) is satisfied,
then v1

t = v2
t and ϑ1

t = ϑ2
t (where, v2

t is the common value for vh
t = ve

t in the two-type
model in the limit economy). First, if the condition is satisfied and these two equations
hold, then equations (65) and (66) have identical right-hand sides state by state, so
indeed the ϑ-solutions must satisfy ϑ1

t = ϑ2
t . Similarly, as just observed, then µv,1

t and
µv,2

t must be identical state by state, such that the value function solutions must satisfy
v1

t = v2
t . While this logical appears somewhat circular, the previous observations are

indeed sufficient to establish that under condition (64), there is a solution such that
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v1
t = v2

t and ϑ1
t = ϑ2

t .23 Uniqueness of the non-degenerate stationary solution then also
implies that this is the only possibility.

Having established that ϑ1
t = ϑ2

t , arguments in full analogy to the proofs of Lemma 5
and Proposition 9 show that the conclusion of Proposition 9 remains valid.

C Calibration and Robustness

C.1 Calibration Details

C.1.1 Data Sources and Definitions

The data series for the CIV factor (Herskovic et al., 2016) have been retrieved from
Bernard Herskovic’s website (https://bernardherskovic.com/data/). That series (col-
umn “CIV”) represents an annualized return variance measure of the common idiosyn-
cratic volatility in stock returns.

All other data used in this paper have been retrieved from the FRED database main-
tained by the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/). We
briefly describe next how we map model quantities into FRED data series.

For the macro aggregates Y, C, I, and G, we use quarterly data from 1970Q1 to
2019Q4. Output is defined as Y = C + I + G (in particular, exclusive of net exports)
while we define the three series C, I, and G as follows:

• In line with the business cycle literature, we exclude consumption of durable
goods from our consumption measure. To compute C, we start from real personal
consumption expenditures (FRED code PCECC96) and subtract real expenditures
for durable goods. We identify the latter by multiplying total real consumption
expenditures by the ratio of nominal expenditures for durable goods (PCDG) and
nominal total consumption expenditures (PCEC).

23Simply take the solution for j = 1 as given and conjecture that processes defined by ϑ2
t := ϑ1

t , v2
t := v1

t
represent a valid solution to the equations in the two-type model. The previous logic verifies that this is
indeed the case.
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• We define investment I as the sum of two components: (1) real gross private do-
mestic investment (GPDIC1) net of the change in private inventories (CBIC1) and
(2) real consumption expenditures for durable goods (measured as described pre-
viously). We include durables in investment as we have removed them from con-
sumption but they nevertheless represent an important part of overall private
expenditures.24

• We government spending G as real government consumption expenditures and
gross investment (GCEC1).

The ratios of primary surpluses and government debt to GDP, S/Y and qBK/Y,
respectively, are measured from nominal data. We use again quarterly data series
from 1970Q1 to 2019Q4. We define the nominal primary surplus as current receipts
(FGRECPT) minus current expenditures (FGEXPND) but add back current interest ex-
penditures (A091RC1Q027SBEA) of the federal government. We define nominal debt as
the market value of marketable treasury debt (MVMTD027MNFRBDAL). We compute
the ratios S/Y and qBK/Y by dividing both nominal primary surpluses and nominal
debt by nominal GDP (GDP).25

Data on the capital stock to compute the capital-output ratio is based on the Penn
World Tables (Feenstra et al., 2015) and only available annually. We again choose the
time period from 1970 to 2019. The capital-output ratio qKK/Y is defined as capital
stock at constant national prices (RKNANPUSA666NRUG) divided by real GDP at con-
stant national prices (RGDPNAUSA666NRUG), both for the US.

For returns on bonds and equity, we use monthly data from February 1971 to De-
cember 2019.26 We first construct monthly log returns from these data sources as fol-
lows:27

• We measure the return on government debt using data on the market yield on
treasury securities at 5-year constant maturity (DGS5). We chose the 5-year ma-

24Excluding durables altogether from our measures of economic activity does not substantially change
our computed data moments: it lowers the volatility of output somewhat but otherwise only marginally
affects results.

25Unlike for our time series of macro aggregates, we do not correct the GDP measure for components
not in the model. Doing so would have only a minor impact on the resulting numbers. Not doing so is
also consistent with how we compute the capital-output ratio below.

26February 1971 is the first month at which all of the required series are available on FRED.
27To be precise, the following definitions are for nominal returns while the returns in the model are

real. However, for the purpose of computing return differentials, as we do, this distinction is irrelevant.
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turity as this approximately reflects the average duration of federal debt. We con-
vert the yield data into (holding period) returns using the well-known formula

rT
t+1 = TyT

t − (T − 1)yT−1
t+1

that relates the log holding period return rT
t+1 over the period from t to t + 1

of a bond with time to maturity of T at date t to the log yield yT
t of a T-period

bond at t and the log yT−1
t+1 of a T − 1-period bond at t + 1. To operationalize this

formula, we approximate the unknown 59-month yield yT−1
t+1 with the observed

60-month yield yT
t+1. This procedure generates a series r̂Bt of monthly log returns

for government bonds.

• As a proxy for the total equity market, we take the Wilshire 5000 index. We com-
pute monthly log returns by dividing successive end-of-month values of the to-
tal market index (Wilshire 5000 Total Market Index, FRED series WILL5000IND),
which includes dividend reinvestments, and then taking natural logarithms. As
market returns are based on leveraged equity returns, this procedure yields a se-
ries r̂E,leverage

t of leveraged monthly log returns for equity.

Based on these data series, we construct the sample estimates for E
[
dr̄E − drB

]
and

σ
(

dr̄E − drB
)

reported in Table 2 as follows. We first define for leveraged returns:

E
[
dr̄E,leverage

]
= 12 · sample mean

(
r̂E,leverage

)
+

12
2
· sample var

(
r̂E,leverage

)
,

E
[
drB
]
= 12 · sample mean

(
r̂B
)
+

12
2
· sample var

(
r̂B
)

,

σ2
(

dr̄E,leverage − drB
)
= 12 · sample var

(
r̂E,leverage − r̂B

)
.

However, the model counterpart dr̄E of the market equity return is closer to a delevered
equity return. The theoretical relationship between the delevered equity return dr̄E and
the leveraged return dr̄E,leverage is

dr̄E = drB +
1
`

(
dr̄E,leverage − drB

)
,

where ` ≥ 1 is financial leverage as measured by the ratio of total assets to equity. We
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therefore define:

E
[
dr̄E − drB

]
=

1
`

(
E
[
dr̄E,leverage

]
−E

[
drB
])

,

σ
(

dr̄E − drB
)
=

1
`

σ
(

dr̄E,leverage − drB
)

.

We use ` = 1.5 to compute delevered equity returns.

For the real risk-free rate we also use monthly data from February 1971 to Decem-
ber 2019. We approximate the nominal risk-free rate by the (annualized) 3-month Trea-
sury Bill secondary market rate (DTB3). We convert nominal rates to real rates using
realized inflation based on the consumer price index for all urban consumers (CPI-
AUCSL_PC1).28 We compute E[r f ] and σ(r f ) based on sample means and variance
of the logged risk-free rate series in the same way as for other financial returns (but
without the factor 12 given that the returns are already annualized).

C.1.2 Calibration of the Exogenous σ̃t Process

We estimate the coefficients σ̃0, ψ, and σ of the idiosyncratic risk process (19) such
that it matches the observed CIV series. Here, we first describe the details of the esti-
mation procedure and then explain why CIV is a suitable data counterpart for idiosyn-
cratic risk σ̃2

t in the model.

Parameters Estimation. We use a maximum likelihood estimation (MLE) to deter-
mine σ̃0, ψ, and σ based on a monthly CIV sample from January 1946 to December
2019. MLE is straightforward here because the conditional density of the CIR process
σ̃2

t has a known closed-form expression (e.g. Aït-Sahalia (1999), equation (20)).

While not directly targeted by MLE, the estimated process generates first and sec-
ond ergodic moments of σ̃t, 0.5078 and 0.1701, respectively, that closely match their
empirical counterparts (based on square roots of the CIV sample), 0.4950 and 0.1817,
respectively.

CIV as a Model-consistent Measure of σ̃2
t . We briefly outline why CIV indeed mea-

sures σ̃2
t . Herskovic et al. (2016) construct CIV as the cross-sectional mean of the id-

28Specifically, we first compute realized nominal yearly (gross) returns by chaining 3-month yields and
then divide by the realized (gross) inflation over the year. Alternative methods of converting nominal to
real rates result in very similar real rate moments.
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iosyncratic return variance of individual stocks in their sample. The idiosyncratic re-
turn variance of an individual stock, in turn, is defined as the variance of the residual
of a factor regression on the market factor.

In our model, this procedure broadly amounts to a (population) regression of the
type

drE,i
t − r f

t dt = αi
t + βi

t

(
dr̄E

t − r f
t dt
)
+ εi

t

for stocks issued by all agents i. Comparing the return expressions for drE,i
t and dr̄E

t

stated in Section 2.2, it is clear that this regression yields αi
t = 0, βi

t = 1 and εi
t = σ̃tdZ̃i

t.
The variance of each individual residual εi

t therefore exactly equals σ̃2
t , and so does the

cross-sectional mean over all residual variances. In other words, if the real-world data
was generated by the model, measured CIV at time t would exactly correspond to σ̃2

t .

C.1.3 Calibration of Remaining Model Parameters

The calibration choices for χ and δ are explained in the main text. The remaining
nine parameters, γ, ρ, a0, g, µ̆B,0, αa, αB, φ, ι0, are chosen to match twelve moments as
described in the main text. We briefly explain here (heuristically) how these moments
identify the model parameters.

First, given the estimated σ̃t process, the capital productivity process

at = a(σ̃t) = a0 − αa(σ̃t − σ̃0)

is exogenous and fully determined by the two parameters a0 and αa. While output
Yt = atKt still contains an endogenous term Kt, the capital stock is slow-moving such
that most of the variation in HP-filtered output is due to variation in at. Therefore, the
parameter αa is effectively determined by the target moment σ(Y).

Second, because g is constant, the variability of output left for private uses, Y − G,
is also determined by the parameter αa. By the aggregate resource constraint Y − G =

C + I, so that the choice of αa also constrains the variation of the sum of consumption
and investment. The parameter φ effectively controls how much of that variation is
absorbed by the individual components of that sum. While in principle the full details
of the model matter for the dynamics of investment opportunities, φ controls to which
extent changes in investment opportunities change actual physical investment as op-

40



posed to simply driving up or down capital valuations. For φ → 0, investment reacts
a lot while for φ → ∞, investment is fixed and only prices react. Therefore, the two
relative volatilities σ(C)/σ(Y) and σ(I)/σ(Y) effectively determine φ.29

Third, the ratio of primary surpluses to output is given by

St/Yt = −µ̆Bt
qB

t
at

= −
(

µ̆B,0 + αB(σ̃t − σ̃0)
) qB

t
at

.

While the dynamics of this variable depend on the endogenous price qB
t , the parameter

αB is nevertheless able to control the overall volatility of St/Yt.30 The parameter αB is
therefore determined by the moment σ(S/Y).

Fourth, the six average ratio targets in the calibration effectively determine the five
parameters ρ, a0, g, µ̆B,0, and ι0. To see this, we explain how, in the stochastic steady
state of the model, the five parameters map directly into functions of target ratios and
how this mapping can be inverted to obtain the parameters. While we do not target
the stochastic steady state but the ergodic mean when matching moments, the two are
quantitatively very close.

The identity C + I + G = Y and the level targets for C/Y and G/Y imply I/Y =

1− C/Y − G/Y. We can thus write for capital productivity a0 in the stochastic steady
state

a0 =
Y
K

=
I/K
I/Y

=
I/K

1− C/Y− G/Y
.

This determines a0 as a function of targets. Due to G = gK, we obtain immediately also

g = G/Y · a0.

Because G/Y is a target and a0 has already been determined, this equation determines
g.

Next, ρ represents the ratio of consumption to total wealth in the model, that is

ρ =
C

(qB + qK)K
=

C/Y
qBK/Y + qKK/Y

29This does not imply that we are always able to pick φ in a way that matches both relative volatilities
precisely. It just means that if model dynamics are such that they can be matched at all, then this works
only for one value of φ.

30This is not a rigorous theoretical statement but an empirical one based on observed numerical model
solutions.
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and the right-hand expression is a function of targeted ratios. Hence, the targets also
determine ρ.

By the government budget constraint, the policy variable µ̆B in the stochastic steady
state must satisfy

µ̆B,0 = − s
qB = − S/Y

qBK/Y

and, again, the right-hand expression is a function of targeted ratios.

Finally, the capital price in the stochastic steady state can be related to the capital-
output ratio by the equation qK,0 = qKK/Y · a0. Because a0 is a function of targeted
ratios, so is qK,0. It is easy to show that the investment rate is I/K = ι0 + qK,0−1

φ . This
expression only depends on qK,0 and the parameters ι0 and φ. For any given parameter
φ, ι0 is therefore determined by targets through the equation

ι0 = I/K− qK,0 − 1
φ

.

We remark that the six average ratios do not only identify the five parameters ρ,
a0, g, µ̆B,0, and ι0 (in the stochastic steady state) but also the average value ϑ0 of the
endogenous variable ϑt, namely

ϑ0 =
qB

qB + qK =
qBK/Y

qBK/Y + qKK/Y
.

This generates an implicit target that must be somehow matched by varying parameters
other than ρ, a0, g, µ̆B,0, and ι0 in order to match all six average ratios.

Fifth, because ρ, χ̄, and the dynamics of µ̆B and σ̃t are already determined by exter-
nal calibration choices or the targeted average ratios, the counterpart of equation (10)
in Appendix B.4 implies that this implicit target ϑ0 for the average value of ϑt must be
matched by a sufficient size of the risk premium terms in that equation. The only “free”
variables in these terms are σv

t and γ and the former is effectively also determined by γ

(once ρ, χ̄, and the dynamics of σ̃t are fixed). In fact, the risk premium terms are strictly
increasing in γ given the remaining parameter choices. Therefore, the implicit target ϑ0

is only achieved for a specific value of γ. At the same time, γ affects also the average eq-
uity premium E[dr̄E− drB] and the equity sharpe ratio E[dr̄E− drB]/σ(dr̄E− drB). The
parameter γ is thus certainly identified by the set of target moments, but it is generally
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not possible to match all of them.

C.1.4 Calculation of Wealth-weighted Risk Exposures Discussed in the Main Text

In this appendix we explain how we compute empirical counterparts for the wealth-
weighted total and idiosyncratic risk exposures discussed in Section 7.

Our data for risk exposures by wealth group are from Bach et al. (2020). These
authors report the standard deviation of the excess return on gross wealth (Table I,
column (2)) and net wealth (Table II, column (3)) for 16 wealth groups categorized by
their relative position in the wealth distribution. For the gross wealth data, the authors
also report the fraction that is due to idiosyncratic risk (Table I, column (3)) relative to
a factor asset pricing model. In lack of other data, we assume that the same fractions
also apply to the net wealth figures. We use these observations to compute for each
group both the total and the idiosyncratic variance of the excess return on wealth, both
for gross wealth and net wealth. As the observations are based on Swedish adminis-
trative data, our implicit assumption is that the mapping from wealth groups to these
variances is similar for the the US, where no such data are observable.

To match these variances with wealth shares for the US, we take estimates from
Smith et al. (2023) who calculate wealth shares using different methodologies for the
following five wealth groups (see their Table I): “Full population”, “Top 10%”, “Top
1%”, “Top 0.1%”, “Top 0.01%”.31 We use both their “baseline” and their “equal returns”
estimate for wealth shares.

Unfortunately, the wealth groups formed by Smith et al. (2023) are coarser than the
ones reported in Bach et al. (2020). Where the Smith et al. (2023) estimates only tell us
the combined wealth share of several groups based on the Bach et al. (2020) split, we
allocate the wealth equally across the groups formed in the latter paper.

Table 3 reports the square roots of the resulting wealth-weighted cross-sectional av-
erages for the variances, both for idiosyncratic and total risk exposures. For each type
of estimate, we report four values, depending on which wealth share estimate we use
and whether we take gross wealth or net wealth figures for risk exposures.

31They also have a sixth group “Top 0.001%”. However, the Bach et al. (2020) is not sufficiently fine-
grained at the very top of the wealth distribution, so that we ignore this additional group throughout.
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Table 3: Wealth-weighted risk exposures

wealth shares “baseline” “equal returns”
gross/net wealth gross net gross net

idiosyncratic risk 0.09 0.09 0.1 0.1
total risk 0.16 0.18 0.17 0.19

C.2 Alternative Calibration Choices and Robustness

In this appendix we report results for three alternative calibration choices and show
that our main conclusions are robust to them.

First, one concern with our calibration may be that it overstates the real effects of
variation in idiosyncratic risk σ̃t. This concern arises because we impose a perfectly
linear relationship between this variable and productivity at and choose the sensitivity
αa of productivity to variation in σ̃t to match total output volatility. However, empiri-
cally, the correlation between measures of (total factor) productivity and volatility are
not nearly as strong as imposed in our model, so that some of the empirically observed
output volatility is likely due to factors unrelated to variation in (idiosyncratic) risk.

Here, we show that this is not an issue. Theoretically, the dynamics of the endoge-
nous variable ϑt matter most for the predictions of our model (see Proposition 1), but,
at least in the log utility case, at-dynamics do not affect the determination of ϑt at all
(compare equation (10)). While the same is no longer exactly true for the preferences
we use in our calibrated model, we can verify numerically that the parameter αa is not
particularly important for any of our results. We do so by showing that lowering αa

to half its value in the baseline calibration lowers output volatility (by construction)
but otherwise has only marginal effects on model predictions. We report the parame-
ters and model moments for this alternative specification in the column “lower αa” of
Tables 4 and 5, respectively.

We remark that we still need αa > 0 to be sufficiently large such that aggregate
consumption falls in times of high idiosyncratic risk. Otherwise, our model fails to
match the correct sign of all aggregate risk premia.32

32If, for example, at was constant, then consumption would rise in times of high idiosyncratic risk, so
that equity and capital would command a negative aggregate risk premium and government bonds a
positive one.
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Table 4: Alternative Parameter Specifications: Parameters

parameter baseline lower αa lower debt/GDP target matching cov(S/Y, Y)

σ̃0 0.54 0.54 0.54 0.54
ψ 0.67 0.67 0.67 0.67
σ 0.4 0.4 0.4 0.4
χ̄ 0.3 0.3 0.3 0.3
γ 6 6 5.4 5.9
ρ 0.138 0.138 0.138 0.138
a0 0.63 0.63 0.62 0.63
g 0.138 0.138 0.136 0.138

µ̆B,0 0.0026 0.0026 0.0042 0.0017
αa 0.071 0.036 0.071 0.072
αB 0.12 0.12 0.19 0.07
φ 8.1 8.1 6.2 8.6
ι0 -0.022 -0.022 -0.0877 -0.0131
δ 0.055 0.055 0.028 0.057

Table 5: Alternative Parameter Specifications: Moments

moment baseline lower αa lower debt/GDP target matching cov(S/Y, Y)

σ(Y) 1.3% 0.7% 1.3% 1.3%
σ(C)/σ(Y) 0.61 0.35 0.60 0.61
σ(I)/σ(Y) 3.35 4.44 3.32 3.37

σ(S/Y) 1.1% 1.0% 1.1% 0.6%
E[C/Y] 0.58 0.58 0.58 0.58
E[G/Y] 0.22 0.22 0.22 0.22
E[S/Y] -0.0005 -0.0005 -0.0005 -0.0005
E[I/K] 0.12 0.12 0.12 0.12

E[qKK/Y] 3.48 3.49 3.72 3.48
E[qBK/Y] 0.74 0.71 0.48 0.74

E[dr̄E − drB ] 3.59% 3.26% 2.83% 3.78%
E[drE−drB ]
σ(drE−drB)

0.31 0.28 0.29 0.29

ρ(Y, C) 0.98 0.67 0.99 0.98
ρ(Y, I) 0.99 0.97 0.99 0.99

ρ(Y, S/Y) 0.98 0.97 0.98 0.98
σ(qBK/Y) 4.8% 4.7% 2.9% 5.29%

E[r f ] 5.18% 5.41% 4.74% 5.50%
σ(r f ) 5.47% 5.97% 5.95% 5.31%

Notes: All variables are defined in precisely the same way as in Table 2 in the main text.
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A second concern is that our calibration target for the debt-output ratio is too large,
not only because we take the average over the last decade (for the reason explained in
the main text) but also because we do not account for the fact that a substantial fraction
of US government debt is held abroad and that share has risen over our sample period.

We have chosen not to exclude foreign held debt in our baseline calibration be-
cause it is not at all clear that this portion should indeed be excluded. This portion
of debt is also relevant for the government budget and for pricing total debt. The im-
plicit assumption in our calibration is, however, that foreign holders of US debt have a
qualitatively and quantitatively comparable safe asset demand for this debt as domes-
tic holders (so that one should think of them as also being agents in our model). It is
unclear whether this is really the case.

For this reason, we report in Tables 4 and 5 in the column “lower debt/GDP target”
an alternative calibration that reduces the target for the debt-output ratio by a third,
which is approximately the fraction of US federal debt held abroad over the last decade.
The new target is therefore 0.47 instead of 0.71 in the baseline calibration. We follow
otherwise precisely the same procedure as outlined in the maintext to choose our pa-
rameters33 We find that this modification affects the ability of our model to match the
moments only marginally. Specifically, holding the dynamics of idiosyncratic risk con-
stant due to our calibration choices, we need to lower risk aversion γ to reduce safe
asset demand for bonds to match the lower debt-output ratio. This leads to a slight
reduction in the equity premium and Sharpe ratio relative to the baseline specification.
All other moments can still be matched equally well.

A third concern is that our calibration overstates the procyclicality of primary sur-
pluses and therefore underestimates the value of the cash flow component in Figure 2.
This concern arises because we target both the volatilities of output and the surplus-
output ratio, but operate within a model environment that presumes a next to perfect
correlation between the two variables while the empirical correlation is much weaker,
0.60. An alternative choice would be to ignore the empirical volatility of S/Y and in-
stead target the covariance with output as the covariance is more directly related to
pricing. This is equivalent to targeting a volatility σ(S/Y) that is lowered by the factor
0.60/0.98, the ratio between the empirical and the model-implied correlation between
the two variables.

33We choose δ, which does not affect anything of interest, to keep the average growth rate in the model
the same as in the baseline calibration.
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We provide results for this alternative calibration choice in the column “matching
cov(S/Y, Y)” of Tables 4 and 5. The resulting moments are largely identical to the ones
for the baseline specification.

Beyond the effects on model moments, we also plot the counterparts of our key
Figure 2 that decomposes the value of government debt into a cash flow and a service
flow component for the alternative calibration choices. Figure 4 depicts the results
for the two calibration choices “lower debt/GDP target” (left panel) and “matching
cov(S/Y, Y)” (right panel).34 The qualitative and quantitative takeaways remain the
same as in Section 4.3.

Figure 5 depicts the Debt Laffer Curves for the dynamic models arising from the
four alternative specifications. It shows that only lowering the target for the debt-
output ratio considerably affects the size of the sustainable permanent deficit. The ra-
tionale for reducing the target was that a substantial fraction of US debt is held abroad.
One way to interpret the difference between the orange line and the blue line in Figure 5
is therefore that the latter depicts the Laffer curve trade-off if non-domestic demand
for US debt as a safe asset continues to absorb a significant fraction of debt issuance
whereas the former depicts a Laffer curve that the US would face if US treasury debt
lost its status as a global safe asset.

Not shown in Figure 5 as the comparison Laffer curves for the steady state mod-
els arising under the alternative specifications. However, the main conclusion from
Figure 3 that the negative-β property is quantitatively important for the Laffer curve
arise here analogously. In fact, for all but one specification the steady-state Laffer curve
is almost identical with the one shown in Figure 3. The exception is the specification
“lower debt/GDP target”. In this case, there is no public debt bubble in the steady state
model such that the maximum sustainable deficit is zero. Clearly, the conclusion that
the negative-β property matters holds in this case as well.

34In the interest of space, the specification “lower αa” is omitted. It looks almost identical to Figure 2.
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Figure 4: Decomposition of the value of government debt for alternative calibration choices.
The description of Figure 2 applies analogously.

Figure 5: Debt Laffer curves for the alternative parameter specifications. The description of
Figure 3 applies analogously to all four lines (for line “dynamic model” in that figure).
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