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Abstract

Big data and AI inverts adverse selection problems. It allows insurers to infer statistical
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derive three results: First, a novel trade-off between obfuscation and price discrimination—the
insurer tries to exploit but also protect its statistical information by offering few screening con-
tracts. Second, insuree’s ability to do perfect Bayesian inference limits the returns to inverse
selection for the insurer. Third, competition and forced transparency reduces total surplus and
insurer’s payoff while increasing insuree’s payoff.

Keywords: Insurance, Big Data, Informed Principal, Obfuscation, Price Discrimination.

JEL Classification: G22, D82, D86, C55.

*Brunnermeier: markus@princeton.edu, Princeton University; Lamba: rlamba@psu.edu, Pennsylvania State
University; Segura-Rodriguez: segurarc@bccr.fi.cr Banco Central de Costa Rica. We are indebted to Nemanja
Antić, Tommaso Denti, Goutham Gopalakrishna, Hanming Fang (discussant), Ben Handel, Emir Kamenica, Victoria
Marone, StephenMorris, Rakesh Vohra, Motohiro Yogo, and participants at various seminars and conferences for useful
comments.

1

mailto: markus@princeton.edu
mailto: rlamba@psu.edu
mailto: segurarc@bccr.fi.cr


1 Introduction

With the rise of big data, artificial intelligence (AI), and machine learning almost every action
is recorded, and correlates are constructed to better predict customers’ behavior. The insurance
industry is no exception and is undergoing a radical transformation — contract design and price
discrimination will fundamentally change.1

In most information models, customers have an informational advantage and the principal,
e.g. the insurance company, faces an adverse selection problem. It tries to mitigate this informa-
tion disadvantage by offering a menu of screening contracts to potential customers.2 Big data and
new statistical tools allow insurance companies to infer superior correlates about customer charac-
teristics – over which customers still have private information. These correlates enable the insurer
to obtain informational advantage about the ultimate risk. In other words, the principal can “in-
vert” the mapping from characteristics to risks. Thus, big data and AI transform many adverse
selection problems into what we call “inverse selection” problems.

The objective of this paper is fourfold: First, to introduce a principal-agent model that cap-
tures the aforementioned greater statistical informational advantage for the principal. Second, to
introduce related economic taxonomy that arises due to new trade-offs that emerge from inverse
selection. Third, to show under what modeling assumptions the returns to statistical informational
advantage are high for the principal; it is the principal’s ability to choose information disclosure
and contract design policies at the outset, and the agent’s limited ability to do Bayesian inference.
And, fourth, to connect the predictions of the model to market realities such as the rise of data
brokers and importance of consumer activism.

Our setting is close in spirit to the informed principal approach in mechanism design (Myerson
[1983] and Maskin and Tirole [1990, 1992]). It departs from the canonical structure in two ways:
First, while the agent has hard private information— family history, eating habits, zip code, etc;
the principal has statistical private information— how these characteristics interact and determine
the agent’s probability of, say, getting cancer. Second, there is an information design problem of
how the principal uses the statistical information layered on top of a mechanism design problem
of choosing contracts. Overall, the basic structure here is inspired from the classical insurance
model studied by Rothschild and Stiglitz [1976] with two key differences: we consider a richer
information structure, and for the most part restrict attention to a monopolistic screening setup.

Inverse selection not only differ from standard adverse selection but also from the more recent
advantageous selection literature. Advantageous selection stresses the importance of preference het-

1For instance, the International ‘Geneva’ Association for the Study of Insurance Economics states in a recent report
that “Advances in big data analytics, artificial intelligence and the Internet of Things promise to fundamentally transform
the insurance industry and the role data plays in insurance. New sources of digital data, for example in online media
and the Internet of Things, reveal information about behaviours, habits and lifestyles that allows us to assess individual
risks much better than before.”— Keller et al. [2018].

2Akerlof [1970] pioneered the study of adverse selection and screening. The core idea has found applications is variety
of settings: Rothschild and Stiglitz [1976] study the insurance problem, Mailath and Postlewaite [1990] study public
goods provision, and Biais, Martimort, and Rochet [2000] and Tirole [2012] study various aspects of financial markets,
to name a few. See Green and Laffont [1979] and Laffont and Martimort [2009] for general theoretical treatments of
the principal agent screening problem.
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erogeneity in order to overturn the standard theoretical, but empirically counterfactual, result that
the high-risk agents get full insurance whereas low-risk agents opt for partial insurance. With pref-
erence heterogeneity, highly risk-averse agents buy more insurance, despite the fact that they are
less risky, since they behave more cautiously.3 In both settings, adverse and advantageous selec-
tion, the insurance provider suffers from an informational disadvantage. This is in contrast to our
inverse selection setting in which private statistical information is held by the insurance company.

We model the inverse selection problem using a two-dimensional type space. Both dimensions
determine the riskiness of the agent: The agent perfectly knows one (type of) characteristic, the first
dimension of the type. In contrast, the principal, e.g. the insurer, privately knows the correlation
across both dimensions. The marginal distribution along both dimensions, though, is common
knowledge. At a high level, we equip the agent with greater hard or physical information and the
principal with greater soft or statistical information.4

The basic tension the principal faces is the following: She has to decide the sensitivity of the
set of offered contracts to the statistical correlation. The more responsive the contract is to the
underlying correlation, the greater price discrimination can be achieved. However, in doing so,
she has to be aware that by offering more fine-tuned screening contracts, she may partially reveal
her (statistical) informational advantage. In other words, the principal faces an obfuscation-versus-
price discrimination trade-off. By offering a richer set of contracts, the principal can screen and
discriminate more but will also end up giving up some of its statistical informational advantage,
which the agent can then use while picking the contract. Note that this trade-off is different from
rent-versus-efficiency prevalent in standard principal agent problems, where the principal worsens
efficient risk-sharing in order to minimize the information rent that the agent can extract. Of
course, the standard rent-versus-efficiency trade-off is also present in our setting with respect to the
agent’s private information.

As in the classical setup, the optimal contract separates along the insuree’s private information.
However, along the private statistical information of the insurer, the optimal contract features some
pooling (possibly complete pooling); we show that complete separation along both dimensions is
never optimal for the insurer. When the insurer pools certain correlation types, she is giving up
on price discrimination in order to maintain the statistical information advantage.

Our formal analysis builds on the information and contract design problem, wherein the prin-
cipal can fully specify at the outset the information structure that informs the agent about the
statistical correlation, and on the basis of this disclosure, an insurance contract is offered. In terms
of techniques, the information design part follows Kamenica andGentzkow [2011] and Bergemann
and Morris [2016], and the contract design problem takes this as given in solving for a standard
screening contract (as in Börgers [2015], Chapter 2).

The principal can always choose full disclosure, in which case the model collapses to the Roth-

3Einav and Finkelstein [2011] provide an overview of the key ideas. See Finkelstein and McGarry [2006] and Fang,
Keane, and Silverman [2008] for empirical evidence on adverse and advantageous selection.

4The model can be equivalently interpreted as the first dimension being the set of all characteristics and the second
dimension being the riskiness of the agent. Then the agent has private information about personal characteristics, and
the principal understands the mapping between characteristics and risks.
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schild and Stiglitz [1976] benchmark.5 This is, of course, not optimal as the principal can do
better. In fact, the optimal information disclosure strikingly assumes a bang-bang structure: two
regions, one with complete pooling and the other with full information disclosure of the princi-
pal’s information. The complete pooling regions shifts all mass to the unique correlation type,
which makes the agent’s information worthless so the principal offers full insurance and extracts
full surplus, illustrating the power of inverse selection. In the complementary region, informa-
tion is fully disclosed and the principal attains the RS profit. So overall, the principal does weakly
better, point-wise, than the benchmark RS model and strictly better in the pooling region.

Next, we explore the implications of inverse selection when the principal decides on the infor-
mation structure ex-post, and hence the model reduces to a cheap-talk like first stage (Crawford and
Sobel [1982]) followed by a contract design problem. In such a scenario, revealing small bits of in-
formation is too costly, so that the insurer prefers to offer only a finite number of contracts.6 In the
language of Myerson [1981], the optimum features ironing almost everywhere. In fact, we further
show that the number of contracts turns out to be small, highlighting that the obfuscation-price
discrimination trade-off is firmly resolved in the favor of the former. In most cases, the contract
space along the statistical information is partitioned into one or two contracts. In fact, for a large
class of parameters, when the principal offers only one contract, she prefers not to use her informa-
tion in contract design at all. Thus, when the insurer cannot commit to the information disclosure
policy, the potential gains from inverse selection can be significantly curtailed.

Importantly, we show that it is the agents’ ability to rationally infer part of the principal’s
information from her contract offering that limits the principal’s inverse selection profit. Perfect
Bayesian inference when deciphering insurance contracts is, however, a tall order (see Handel and
Kolstad [2015]). The agent may not only lack probabilistic sophistication (see Benjamin [2019]),
but also the ability to invert the mapping from principal’s contract offerings to her information
advantage. To unpack this area of behavioral inverse selection, we look at two deviations from the
standard Bayesian model.

First, we study the case in which the insuree is gullible, i.e., he believes whatever the insurer
tells him about the correlation coefficient and does not infer any statistical information from the
menu of contracts offered by the insurer. This model, although theoretically non-standard, clarifies
the direction in which the insurer would like to push the contract if she could create the maximal
obfuscation and implement the maximal price discrimination. The insurer misleads the insuree to
the maximum extent possible, so only two correlations are ever reported— the lowest and highest
possible values— and a distinct contract is chosen for each possible actual realization of the correla-

5When the statistical correlation is common knowledge, the problem collapses to the standard monopolistic Roth-
schild and Stiglitz [1976] insurance problem, but with a twist: which is the high type and which is low type in the agent’s
private information from the screening perspective depends on the realization of the statistical correlation. There is a
unique correlation which splits which is the high or low type and exactly at that correlation the agent has no informa-
tional advantage.

6Eilat, Eliaz, and Mu [2020] study a standard quasi-linear monopolistic screening where the information change of
the principal is exogenously restricted by a cap on KL-divergence between the prior and posterior. They too find that
the number of contracts offered at the optimum is finite. Their model, mechanism and the application are however
quite different than ours.
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tion. The low-risk agent is overinsured, and the high-risk agent is often excluded from the market.
The profits of the insurer are uniformly higher in comparison to the standard model.

Second, we say that the insuree is naive if he again does not infer any statistical information
from the contract, but unlike gullible, sticks to the prior. Here too, the insurer gains on average,
but ex post the ranking is not uniform: dictated by feasibility constraints, the insurer would like
the insuree to update his belief (even correctly) in certain situations. For the naive case, the differ-
ence between the insurer’s and insuree’s beliefs is exogenously fixed by the prior, and the insurer
maximizes on the price discrimination channel, given this constraint.7

Finally, we explore two extensions: First, we introduce competition into the model by allow-
ing other ‘regular’ insurers to offer contracts who do not have access to the big data technology.
They offer a single Rothschild-Stiglitz contract averaging over all possible correlations in order to
screen the insuree along the first dimension. We show that competition sucks out some of the
informational advantage of the insurer and increases the surplus of the agent. Second, the insurer
is forced to put the statistical information (its bid data advantage) in the public domain. This in-
creases consumer’s profit but lowers insurer’s profit. This increase is smaller than the decline, so
that total surplus is also reduced.

While our model is admittedly stylistic, it provides a framework for policy makers on how to
think about the role of big data and AI in the design of screening contracts in several ways. First,
the contrast between our standard model and the gullible case shows that the returns to statistical
information for the principal can be quite large, especially when the agents are not sophisticated.
This points towards a market for acquiring consumer information, which in reality has manifested
in the rise of data brokers such as Oracle, Nielsen and Salesforce.8 Second, forcing the principals to
make private statistical information public points towards the merits of a public data repository.9

In fact, consumer activism and making them aware of how data is utilized may be a more effective
way to limit exploitation through inverse selection than forcing the data to be public.10 Finally,
competition is another way to protect the consumer as it reduces the extent of price discrimination
by big data monopolies.11

In addition to the aforementioned papers, our analysis is also related to several important
strands of literature. Kamenica, Mullainathan, and Thaler [2011] explored early on the conse-
quences of a firm knowing more about consumers’ expected usage of the product for sale than the
consumers themselves. This can be seen as a predecessor to what we call inverse selection. The
informed principal problem seems to us as a likely candidate to make theoretical progress on the
topic. To that end and to our knowledge, Villeneuve [2005] is the first paper to study insurance
markets in the realm of the informed principal model. This has been followed up by Abrardi,

7In recent work, Fang and Wu [2020] also study a model of belief based behavioral biases and how these can be
exploited systematically by firms in the market for insurance contracts.

8See for example, Financial Times [2019].
9See, for example, Rajan [2019].
10The call for transparency by the Federal Trade Commission (Ramirez et al. [2014]) and the framework for a general

data protection regulation issued by the European Parliament (Council of the European Union [2016]) can be evaluated
in this light.

11See, for example, Khan [2017].
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Colombo, and Tedesch [2022], simultaneously, with our work. Both of these papers though focus
on competing principals, in contrast to our monopolistic setup. Moreover, Villeneuve [2005], and
for the most part, Abrardi et al. [2022] focus on one-dimensional private information on the side of
the principal, whereas, we look at a two-dimensional state, part of which is known to the principal
and part is known to the agent.12

In recent work, Luz, Gottardi, and Moreira [2023] and Bhaskar, McClellan, and Sadler [2023]
also look at a two-dimensional type space for insurance contracts. The former considers hetero-
geneity in preferences, specifically risk-aversion, as the second dimension and the latter assumes
that the first dimension is commonly known and can be used by a third party such as a regula-
tor to offer a large number of contracts to implement the efficient outcome. The former focuses
on foundations of advantageous selection and the latter on the regulation of insurance markets.
Strausz [2023] studies the extent of price discrimination that can be achieved by a multi-product
seller who can construct correlations in buyers’ valuations using big data. While the setups and
results of all these papers are quite different from ours, we view these papers as being complemen-
tary to our work in a push towards a deeper understanding of insurance models with the advent
of modern data technology.

2 Setup

2.1 Primitives

The concept of inverse selection can be presented with a model of the informed principal (Myer-
son [1983]) as follows: A risk-neutral principal holds some statistical private information about an
underlying state and can post a menu of insurance contracts to screen the agent. The agent is risk
averse and holds some hard private information about the risk he faces.

Preferences. A profit maximizing monopolist insurer (principal/seller) interacts with an insuree
(agent/buyer) who wants to insure himself against some damage/loss. The insurer is risk neutral
and offers a standard insurance contract

(
p, x

)
, where p represents the price (or premium), and x

represents the proportion of the insuree’s loss that is covered by the contract. So, x < 1 means
under-insurance, x = 1 means full-insurance, and x > 1 means over-insurance.

The insuree has an initial wealth w . The uncertain loss he faces is a random variable with a
well defined mean and variance. So, given a contract

(
p, x

)
and realized loss `, his final wealth is

given by z = w − p− (1− x)`. The insuree is assumed to have a standard mean-variance preference.
Thus, his utility is given by:

u (x, p) = E[z] − γ
2
V[z] = w − p − (1 − x)µ − η

2
(1 − x)2

where µ = E[`] is the expected loss, V[`] the variance of loss, γ measures the extent of risk
12Beyond insurance markets, see also Mylovanov and Tröger [2014] and Koessler and Skreta [2019] for related theo-

retical models of the informed principal.
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aversion, and η = γ × V[`] captures the level of risk faced by the insuree. This expression can be
simplified further as follows:

u (x, p) = w − µ︸︷︷︸
ϕ

+
[
xµ − η

2
(1 − x)2

]
︸                 ︷︷                 ︸

v (x)

−p

= ϕ + v (x) − p .

which lends a tractable structure to the insuree’s preferences so that his utility is linear in money
and concave in the extent of loss.13

Information. A standard approach to the insurance model would assume that the mean loss, µ,
is the agent’s private information. We depart from this crucial assumption on the “endowment”
of information as follows. A relevant two-dimensional state θ = (θ1, θ2) determines µ, where
θi ∈ {a, b } for i ∈ {1, 2}. So, given state θ, the mean loss of the agent is given by µθ . Without loss
of generality, we assume that

µbb > µb a > µaa and µbb > µab > µaa .

The joint distribution is of θ, given by q =
(
qaa, qab , qb a, qbb

)
, is depicted in Table 1. Here q1 =

θ2

a b

θ1 a qaa qab q1

b qb a qbb 1 − q1

q2 1 − q2

Table 1: Joint distribution of θ.

qaa + qab and q2 = qaa + qb a are the marginal distributions of θ1 and θ2, respectively. Let ρ be the
correlation between θ1 and θ2, and define σ =

√︁
q1(1 − q1)

√︁
q2(1 − q2). As shown in Table 2, the

distribution can then be rewritten using three parameters: ρ, q1, q2.
The insuree observes θ1 and knows the marginal distribution of θ2, and the insurer knows the

joint distribution of θ—this non-standard endowment of information in an insurance problem is
what leads to the inverse selection structure. In terms of the primitives, we assume that q1 and
q2 are common knowledge, the agent is privately informed about θ1, and the principal privately
knows ρ. Finally, to close the model, we assume that ρ is drawn from F on [ρ, ρ], where F is
differentiable, has a continuous density f , and is commonly known.14

13A standard behavioral foundation for the mean-variance preference is the CARA-Gaussian model, which has been
used in many seminal papers, including Grossman and Stiglitz [1980].

14The entire set of possible correlation is of course [-1,1]. However, once we fix the marginals to be q1 and q2,
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θ2

a b

θ1 a q1q2 + ρσ q1(1 − q2) − ρσ q1

b (1 − q1)q2 − ρσ (1 − q1) (1 − q2) + ρσ 1 − q1

q2 1 − q2

Table 2: Joint distribution of θ in terms of correlation.

The question we ask is: what is the principal optimal contract in this insurance problem?

Remarks on modeling. We intentionally model the distribution of information between the in-
surer (principal) and insuree (agent) as the former knowing ρ and latter knowing θ1 to capture the
idea that the insurer has some statistical knowledge and the insurer has some concrete knowledge
about the underlying state. After the endowment of initial information, the insurer knows more
about the general environment in the form of the correlation coefficient between the two dimen-
sions, and the insuree knows something specific about his situation in the form of θ1. Once the
insurer incentivizes the insuree to reveal θ1, the insurer can make better inference about the state
than the insuree. This “inverts” the selection problem.

2.2 The optimization problem

To write down the problem formally, we introduce the associated mechanism design lexicon in
the spirit of Myerson [1982, 1983]. A message rule r : [ρ, ρ] → Δ(M) represents how coarsely
(or finely) the insurer wants to communicate her information about the correlation coefficient to
the insuree, as part of the optimal contract. For example, if only two contracts are offered, the set
[ρ, ρ] is partitioned into two sets, hence two messages are produced, one corresponding to each
contract. So the agent knows, upon seeing one of the contracts which of the two sets the true ρ is
placed in and updates her prior accordingly. If r instead assumes only one value, no information
beyond the prior is communicated or if r assumes strictly monotone values, then information is
fully disclosed.

Further, invoking the revelation principle, we simply look at a direct mechanism where the
insurer reports her “type” ρ, the insuree reports his “type” θ1, and a contract is selected from the
menu:

C =
{
cm (a), cm (b)

}
m∈M , where cm (θ1) =

(
pm (θ1), xm (θ1)

)
for θ1 = a, b .

A direct mechanism is then completely captured by (r ,C), which is chosen by amediator with the
objective of maximizing the profit of the insurer subject to incentive compatibility and individual

it can be easily checked that the set of feasible correlations is [ρ, ρ], where ρ = min
{
q1 (1−q2)
σ ,

q2 (1−q1)
σ

}
and ρ =

max
{
− q1q2
σ ,−

(1−q1) (1−q2)
σ

}
. Thus, the support of F is restricted by the marginals q1 and q2.
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rationality for the insuree, and potentially the incentive compatibility for the insurer.
The exact timing of the (dynamic) mechanism is as follows.

Stage 1

• nature draws ρ ∼ F ∧ θ ∼ q.

• insurer learns ρ and reports it.

• r generates message m.

• insuree forms posterior Fm .

Stage 2

• menu
{
cm (a), cm (b)

}
is offered.

• insuree learns θ1 and reports it.

• contract cm (θ1) is implemented.

• payoffs π and u are realized.

The goal going forward is to characterize the optimal choice of (r ,C). To that end, we now
define the objective and constraints of the optimization problem. A conceptual (and modeling)
choice here emerges in how much commitment power the principal must have on the disclosure
of information. We will start with the canonical information design problem layered on top of
the mechanism design problem, wherein the principal chooses a messaging rule r at the outset,
before ρ is realized. Beyond its reasonableness as a theoretical benchmark, a simple motivation for
this is regulatory diktats and reputational concerns about not using private information to tailor
contracts each time, independently.15

Let π (ρ) be the (ex post) profit of the insurer if her type is ρ. Then the (ex ante) objective of
the mechanism design exercise is given by:

Π =

∫
π (ρ) f (ρ)dρ.

For a fixed menu cm , the payoff of the insuree type θ1 ∈
{
a, b

}
from reporting θ̂1 is:

um (θ̂1; θ1) = w − pm (θ̂1) −
[
1 − xm (θ̂1)

]
µm (θ1) −

η

2

[
1 − xm (θ̂1)

]2
= w − µm (θ1)︸         ︷︷         ︸

ϕm (θ1)

+
[
xm (θ̂1)µm (θ1) −

η

2

{
1 − xm (θ̂1)

}2]
︸                                           ︷︷                                           ︸

vm (θ1;θ̂1)

−pm (θ̂1)

= ϕm (θ1) + vm (θ1; θ̂1) − p (θ̂1) (1)

where µm (θ1) is the expected value of µ based on the realized value of θ1 and the insuree’s beliefs
about ρ after observing the message m. The mathematical expression for the insurer’s profit is:

π (ρ) = q1
[
pr (ρ) (a) − µρ (a)x r (ρ) (a)

]
+ (1 − q1)

[
pr (ρ) (b) − µρ (b)x r (ρ) (b)

]
(2)

where µρ (θ1) is the expected value of µ based on realized value of ρ and (truthfully) reported value
of θ1, and r (ρ) is the message m plugged in equation (1) above.

15See Best and Quigley [2023], Fréchette, Lizzeri, and Perego [2022], and Lin and Liu [2023], amongst others, for
different foundations of the commitment assumption in persuasion and information design problems.
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Two types of constraints are imposed on the optimization problem. First is the incentive con-
straint for the insuree (agent), that the insuree wants to truthfully report his type to the mediator:

ICθ1 : um (θ1; θ1) ≥ um (θ1; θ̂1) ∀ θ̂1.

As pointed out in the description of the dynamic mechanism above, insuree’s incentive constraint
incorporates themessage coming from (technically themediator through themapping r ), by condi-
tioning the (expected) utility onm, and hence the posterior Fm . Second is the individual rationality
constraint of the insuree which guarantees him a minimum expected utility:

I Rθ1 : um (θ1; θ1) ≥ u0,

where u0 is calculated by substituting x = p = 0 in Equation (1). The information plus mechanism
design problem then reads as follows:

(P) : max
r ,C

Π s.t. ICθ1, I Rθ1 .

3 Benchmark: ρ is common knowledge

3.1 Rothschild-Stiglitz benchmark with a twist

We start the analysis by looking at the benchmark model where ρ is common knowledge. So
the principal has no statistical informational advantage, and hence there is no scope for inverese
selection. The problem becomes isomorphic to themonopolistic version of the classical Rothschild
and Stiglitz [1976] problem, studied first by Stiglitz [1977]. But, there is also a twist—it depends
on ρ whether θ1 = b or θ1 = a is the "high" risk type. Let H denote the high risk type, and L the
low risk type.

When ρ is common knowledge, there is no need of communication from the insurer; hence
there is no role for r : [ρ, ρ] → ΔM. Both parties take expectations over θ2 using the prior, and
insuree is incentivized to reveal θ1 truthfully. We will refer to this as the benchmark model, and
label it RS , pointing to the classical reference. The optimal contract is as follows.

Proposition 1. The optimal coverage is 1 = xRSρ (H ) > xRSρ (L) > 0, where ∃ ρ∗ ∈ [ρ, ρ] that solves
πRS (ρ∗) = max

ρ
πRS s.t.

1. ρ > ρ∗ ⇒ H = b, L = a,

2. ρ < ρ∗ ⇒ H = a, L = b. and

3. ρ = ρ∗ ⇒ xRSρ (b) = xRSρ (a)

As in the standard monopolistic screening model, the optimal contract is always separating:
“high” risk type is offered exact coverage and “low” risk type is offered partial coverage, though
which type is high risk pivots around ρ∗. Fix ρ∗ to be the correlation where the expected value of
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(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 1: Benchmark model when ρ is common knowledge

mean loss is the same for both θ1-types: that is, ρ∗ solves µρ (b) = µρ (a). Then, for ρ > ρ∗, the
high risk type is θ1 = b and for ρ < ρ∗, the high risk type is θ1 = a (see Figure 3b). The profit
is maximized at ρ∗, because the agent’s private information of θ1 becomes statistically irrelevant:
the principal offers a pooling contract and extracts all the surplus associated with it (see Figure
3a).16 Naturally, the profit function is also single peaked at ρ∗ for in either direction, the private
information of the insurer has becomes more precise as ρ gets further away from ρ∗. The two
pieces are convex, i.e. the drop in profit happens at a decreasing rate—initially the rate of reduction
is high and it gets progressively slower.

For the case ρ > ρ∗, for an interior solution, the optimal coverages are given by:

x ρ (b) = 1 and x ρ (a) = 1 −
1 − q1
ηq1

(µρ (b) − µρ (a)) < 1 (3)

As can be seen transparently, the extent of distortion for the “low” risk type is further determined
by the primitives of the problem. In particular, the distortion is decreasing in η and q1, and in-
creasing in µρ (b) − µρ (a). Also for a large enough distortion, the "low" type is shut out of the
market, as seen in Figure 3b for high values of ρ. Analogous comparative statics emerge for the
case ρ < ρ∗.

The novel twist here is that the notion of a high or low risk type is endogenous to realization
of ρ. This already indicates what may happen when ρ is privately observed by the insurer: She
will have two motivations then. First, is to make the agent believe that the realized type is ρ∗ or at
least in its neighborhood. And the second force is that the insurer would like to mislead the agent:
when ρ is large and hence θ1 = b is the high type, the insurer would like the insuree to believe the
realization of ρ is small, so he wrongly deduces that θ1 = a is the high type, and so on. Both these
forces will in turn be tempered by the insuree’s ability to perform Bayesian inference on observing
and interpreting the set of offered contracts.

16Technically speaking, for ρ > ρ∗, ICb binds at the optimum, and for ρ < ρ∗, ICa binds at the optimum. This
determines which type is offered the efficient contract and which one is distorted.
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3.2 What happens when ρ is private information of the principal?

In all the models that follow, ρ is not common knowledge, rather it is the insurer’s private infor-
mation. This will feature an inversion of adverse selection: by designing an incentive compatible
mechanism, once the insurer learns θ1, she knows more than the agent about the probability of
the state θ.

The distinct question for contract design here is how finely should the offered contract depend
on the value of ρ? The insurer faces a new trade-off: On the one hand, the more finely the contract
depends on ρ, the greater price discrimination can be achieved. On the other hand, the more finely
the contract depends on ρ, the more information the insuree (agent) can extract about ρ. Bayesian
inference allows her to update the prior about principal’s ρ from seeing the offered contract. The
insurer wants to maintain a belief gap by obfuscating the exact value of the correlation ρ and hence
the true probability of loss. We call this trade-off the price discrimination versus obfuscation trade-
off. It exists in addition to the traditional rent versus efficiency trade-off described above.

In what follows, we first present the optimal information and contract design problem, fol-
lowed by relaxing the insurer’s decision to choose the information structure at the outset. Fol-
lowing this, we describe the necessity of exploring behavioral variations of our model, where the
insuree cannot do Bayesian inference properly. To that end, we present two such models, and
discuss the contracts that then emerge.

4 Optimal information and contract design

In this section we introduce statistical information advantage for the insurer. She learns ρ, which
captures the new asymmetry of information made possible due to modern techniques of big data
and machine learning. Once the insurer elicits the information of the insuree, inverse selection can
emerge, wherein the insurer can exploit her informational advantage.

4.1 Full commitment solution

A first step towards understanding the behavior of a rational insuree and associatedly a profit max-
imizing insurer is study the joint and information and contract design problemmarked (P) above.
Here the insurer chooses the information disclosure policy at the outset, a a function of the cor-
relation coefficient, and then offers a screening contract conditional on the information disclosed.
The insuree updates his beliefs according to Bayes’ rule and incentive and individual rationality
constraints are evaluated using this posterior.

Following the burgeoned literature on Bayesian persuasion and information design (Kamenica
and Gentzkow [2011] and Bergemann and Morris [2016]), the principal or the insurer’s problem
can be considered as choosing posterior beliefs that satisfy the martingale (or Bayes’ plausibility)
condition, and then which contract to offer at each of those posterior beliefs. Since both the insurer
and insuree’s payoffs are linear in ρ, the object of information design, it is sufficient to consider only
the expectation generated by the posterior distribution of the disclosure policy (Gentzkow and
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Kamenica [2016]). Thus, without loss of generality, we can recast the problem so thatM = [ρ, ρ],
and r : [ρ, ρ] → ΔM maps each realization of ρ to its targeted expected correlation.

Once the message is sent, the insuree (or the agent) forms a posterior with mean say ρ̂. It is
then easy to see that the contract design problem is akin to the benchmark RS problem we studied
in the previous section at the correlation ρ̂ where the insurer’s optimal profit is given by πRS ( ρ̂).
As in Figure 3a, this function is convex at both sides of ρ∗ and has a global maximum at ρ∗.

So the solution to problem (P) boils down to what set of posterior beliefs that satisfy Bayes’
rule will maximize the seller’s expected profits given that the RS-contract will be implemented at
each of those (expected) beliefs in the second, contract design, stage. The solution of this problem
is conceptually simple. The following proposition summarizes it.

Proposition 2. Suppose ρ∗ ∈ (ρ, ρ̄) and let ρe = E[ρ] be the ex-ante mean. The optimal information
structure designed by the insurer is as follows:

• If ρe = ρ∗, pool all ρ-types by sending a unique message, r (ρ) = ρ∗.

• If ρe > ρ∗, ∃ ρ∗∗ > ρ∗ such that for all ρ < ρ∗∗, pool all ρ-types by sending one message
r (ρ) = ρ∗, and for ρ > ρ∗∗, disclose all information by sending messages r (ρ) = ρ.

ρ
ρ ρρ∗ ρ∗∗ ρe

complete pooling, r (ρ) = ρ∗ full disclosure, r (ρ) = ρ

• If ρe < ρ∗, ∃ ρ∗∗ < ρ∗ such that for all ρ > ρ∗∗, pool all ρ-types by sending one message
r (ρ) = ρ∗, and for ρ < ρ∗∗, disclose all information by sending messages r (ρ) = ρ.

ρ
ρ ρρ∗∗ ρe ρ∗

full disclosure, r (ρ) = ρ complete pooling, r (ρ) = ρ∗

In plainer words, the insurer wants to push as much mass as possible to the point ρ∗, to the
extent permitted by the Bayes’ plausibility condition. This is because the insuree has the least
informational advantage, and thence the insurer has her maximum profit at ρ∗. This culminates
in pooling of types around ρ∗ in a way that the posterior mean is exactly ρ∗. If the ex ante mean is
also ρ∗, that is the best possible scenario for the insurer, so r is simply a constant map that doesn’t
disclose any information beyond the prior. In all other cases, when ρe ≠ ρ∗, the pooling region
is determined by whether the ex ante mean lies to the left or the right of ρ∗. In the non-pooling
region, forced onto the insurer to satisfy the Bayes’ plausibility condition, it is optimal to do full
information disclosure due to the convexity of the profit function.

Figure 2 provides some graphical intuition. Suppose only two types, ρ1 and ρ2, are possible.
In Figure 2a, they lie on different sides of ρ∗. It is visually easy to see that the expected profit of
offering the RS contract at each of these values individually is dominated by the RS profit at the
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(a) Posterior beliefs on both sides of ρ∗ (b) Mixing two correlations at one side of ρ∗

Figure 2: Intuition for Proposition 2

expected value of ρ from the two points ρ1 and ρ2. So, the insurer will always pool these types. In
fact the insurer wants to do more and try to choose signals so as to get the mean as close to ρ∗ as
possible. Broadly, the same intuition holds if ρ̂1 and ρ̂2 are posterior means instead of two discrete
types.

Next, consider the case when ρ1 and ρ2 are the only feasible correlations and on the same side
of ρ∗, as in Figure 2b. Since π is strictly convex in this region, a simple application of Jensen’s
inequality will tell you that the expected profit on offering a separate contract at ρ1 and ρ2 will
be higher than a single contract at ρ̂, the expected value of ρ1 and ρ2. Hence, the insurer always
offers a separating contract. Again, taking this intuition to the general continuous type space: strict
convexity of the profit function ensures that full separation improves upon any pooling of types
on one side of ρ∗.

Putting these facts together, the insurer pools the types in the neighborhood of ρ∗; in fact, pools
all types of one side of the peak, and exact location of ρe with respect to ρ∗ determines which side
is pooled, and types on the other side of ρ∗ are also pooled as much as possible, to extent permitted
by the Bayes’ plausibility condition. The posterior mean of this pooled mass must exactly equal
ρ∗. What remains of the type space has full disclosure, due to the convexity of the profit function.
Figure 3a depicts the profit function, and how a discontinuity thus arises because of the from taken
by the optimal information structure.

As a summary, the inverse selection problem has a “bang-bang" sort of solution: in one region
where the principal is expected to gain large profits by hiding the true information, she maximally
obfuscates while respecting the ability of the insuree to do Bayesian inference correctly, and in the
other region, she discloses it all to do maximal price discrimination.

Finally, for the contract design part, as already discussed, at each realized posterior ρ, the in-
surer simply offers the RS contract at the correlation. Figure 3 depicts the pointwise profit and
coverage in the optimal contract as a function of ρ. In the pooling region, for ρ < ρ∗∗, the RS con-
tract corresponding to correlation ρ∗ is offered, which is full coverage. Since the insuree’s expected
correlation is ρ∗, he has no statistical advantage whatsoever, and hence full surplus is extracted.

14



(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 3: Optimal contract and profits with full commitment

And π is a linear and decreasing function of ρ, so in the pooling region, π is decreasing and always
above the πRS . In the full disclosure region, both the profit and coverages are exactly the same as
the RS benchmark.

A natural comparative statics question to ask is how does the set of correlations for which we
see complete pooling and full disclosure change as the underlying prior distribution changes. To
that end, we invoke the notion of conditional stochastic dominance: A distribution function G
conditionally stochastically dominates F if it has less probability mass in every right truncated
left tail (see Riley [2017]). Note that when G conditionally stochastically dominates F , then
ρeG = EG [ρ] > EF [ρ] = ρeF .

Proposition 3. Suppose that the continuous distribution G conditionally stochastically dominates the
distribution F , that is, G ρ)

G ( ρ̃) ≤ F (ρ)
F ( ρ̃) for all ρ̃ ∈ [ρ, ρ̄] and ρ ≤ ρ̃.

1. If ρeF > ρ
∗, the set of correlations with complete pooling for F is larger than that for G.

ρ
ρ ρρ∗ ρ∗∗G ρeF ρ∗∗F ρeG

2. If ρeG < ρ
∗, the set of correlations with complete pooling for G is larger than that for F .

ρ
ρ ρρ∗∗G ρeF ρ∗∗F ρeG ρ∗

Conceptually, the comparative static showswhethermore or less set of types are included in the
pooling or full disclosure region. Consider the first case above when both expectations, ρeF and ρeG ,
lie to the right of ρ∗. So from Proposition 2 we know that the full disclosure region lies on the right
side of the interval and pooling towards the left, split in each case by the corresponding ρ∗∗. Since
G conditionally stochastically dominates F , the conditional expectation of the right truncated
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distribution at any correlation ρ is smaller for F than for G. As the conditional expectation
of the correlations that the insurer pools must be equal to ρ∗, a larger length of the support of
correlations needs to be included in F than is G, which delivers the comparative statics result.
Analogous arguments hold for the second case.17

4.2 Limited commitment model

We made one important assumption in Section 4.1 that runs through the information design lit-
erature: the sender or the principal (in this case the insurer) chooses the information structure or
disclosure policy r at the outset, before ρ is realized. This is, we think, both a reasonable theoret-
ical benchmark and arguably realistic when regulatory or reputational concerns prevent her from
tampering with how to tailor the information in each contract.

However, it also true that in some specific circumstances, the insurer cannot be stopped from
switching to a different strategy of how to use the information once she has learnt it. To model this
limited commitment in the information design problem, we use the standard approach of imposing
an incentive constraint for the principal:

ICρ : π (ρ; ρ) ≥ π (ρ; ρ̂) ∀ ρ̂,

where the profit function, π (ρ; ρ̂) for realized type ρ and reported type ρ̂, is given by

π (ρ; ρ̂) = q1
[
pr ( ρ̂) (a) − µρ (a)x r ( ρ̂) (a)

]
+ (1 − q1)

[
pr ( ρ̂) (b) − µρ (b)x r ( ρ̂) (b)

]
. (4)

So the limited commitment information and contract design problem reads as:

(P − LC ) : max
r ,C

Π s.t. ICρ, ICθ1, I Rθ1 .

Conceptually, this makes the information design problem more constrained, so that the ob-
fuscation versus price discrimination trade-off must shift more in favor of the obfuscation because
presumably less informationwill be revealed than in the commitmentmodel. Technically, we show
this is indeed the case, though this is a significantly harder problem for as in the classic cheap talk
model (Crawford and Sobel [1982]), we have to simultaneously determine the number of parti-
tions of the type space and the placement of these partitions. In addition, there is a contract design
problem associated with each element of such a partition.

Recollect from standard Myerson mechanism design (Myerson [1981]) that an incentive con-
straint is equivalent to an envelope theorem and a convexity (or monotonicity) constraint, and
whenever the convexity constraint is violated by the allocation satisfying only the envelope con-
dition, the allocation rule is ironed. In the appendix we show that the incentive constraint on the
side of the insurer here, ICρ , is such that the allocation rule, that is the coverage rate x , is ironed

17Note that when ρeF < ρ
∗ < ρeG , a global relationship between the pooling (or full disclosure) regions under F and

G is not possible, and it will depend on the fine details of the parameters.
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(a) optimal profit ignoring convexity (b) optimal two element partition

Figure 4: Optimal partitions

almost everywhere on the type space.
Ironing almost everywhere immediately implies that the optimal information structure, cap-

tured by the mapping r , is partitional, and only a finite number of messages are sent, and hence a
finite number of posterior beliefs are formed by the insuree. In fact, in most parametric settings,
only one or two messages are sent, hence our claim that the trade-off between belief gap and price
discrimination is now firmly resolved in favor of the belief gap.

The basic intuition from the previous section carries through to the extent that the insurer
wants to push as much mass around ρ∗ towards it, and pool all those types. But the limited com-
mitment assumption brings another key force: the insurer upon learning the actual correlation
would like to misreport it, and sell a lot of insurance to the low risk insuree and little to the high
risk insuree. Being rational, the insuree can also deduce this temptation of the insurer and work
backwards from it. This newer force therefore overturns the full disclosure part of Proposition 2,
culminating in very few contracts being offfered at the optimum.

The main theoretical result from this section are now stated, the formal proofs can be found
in the appendix.

Proposition 4. Suppose the design problem also needs to satisfy ICρ . Then the following hold:

• a finite number of contracts are offered at the optimum, hence |M| = |C| = κ < ∞.

• as the underlying risk gets arbitrarily large, only one contract is offered at the optimum.

Solved examples and numerical results further suggest that the optimal number of contracts
is not just finite but at most two, that is |M| = |C| 6 2. A brief graphical intuition for ironing
and hence the fewness of contracts is offered in Figure 4. The blue single peaked curve represents
the RS profits when ρ is common knowledge. The red line depicts the optimal profit curve. For
the chosen parameters, the optimal information structure produces a two-element partition of the
type space.

The expected correlation for each partition in Figure 4 is marked by the dotted vertical lines.
Feasibility demands that the red profit line must not be above the blue benchmark profit at each
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of those two points. This is because in the subgame in which correlation is common knowledge,
the best the insurer can do is to achieve a profit of πRS (ρ). In the two subgames, one for each of
the two partitions, it is as if the insurer is in the benchmark model with the correlation being the
expectation of correlation in those partitions.

Recollect that the profit function is linear in ρ. So, respecting feasibility, we could choose the
highest piecewise linear curve that crosses the blue curve at those expected correlations. Solving
for the optimal contract ignoring the convexity constraint would culminate in a concave kink in
the piecewise linear profit function, as shown in Figure 4a. Thus, the ignored convexity constraint
is violated, and this observation is not limited to the parameters chosen here—any two (or more)
partition contract which solves the relaxed problem will generate such a concave kink. Thus, to
make the contract incentive compatible, it must be ironed. The highest convex profit function that
the insurer can construct while satisfying incentive-feasibility is the straight red line in Figure 4b.

Unlike the full commitment model, the profit is not uniformly higher than the RS contract,
compare Figure 4b with Figure 3a. In fact, with limited commitment, ironing forces the profit
curve to be below the RS profit at the expected correlation of the second (or right) partition of
the optimal information structure. This represents the cost of the incentive constraint for the
principal’s profit and also for the total surplus.

Finally, if we increase the number of partitions from two to three, we would draw the best
piecewise linear function that is convex and weakly below the benchmark profit at each of the
three expected correlations corresponding to the three partitions. The costs of doing this outweigh
the benefits, and this intuition holds more generally: At the optimum, the principal does not
want to have numerous contracts because the costs of distortions introduced to satisfy incentive
compatibility across partitions outweigh the benefits accrued from greater price discrimination.
Thus, the number of contracts offered is not just finite, it is quite small. The fact that the insuree
can do perfect Bayesian inference washes away most of the advantage of the insurer to use the
information on ρ.18

5 Behavioral approach: incomplete inference from contracts

5.1 Basic motivation

In the last section, we solved for the optimal information structure and the associated screening
contract when the agent, that is the inusree, can do perfect Bayesian inference, and the principal,
i.e. the insurer, can pick the information disclosure policy and contract space at the outset. This
produces a stark result that the insurer does one of two things: In a substantial part of the type
space, she forgoes her informational advantage by providing a unique contract pair of premium
and coverage, and in the rest of the type space, she does full disclosure, and tailors the contract
precisely to her private information.

18In the interest of expositional simplicity, we do not discuss the exact structure of the contract here, this is presented
in the appendix.
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So, the inverse selection problem leads to one of two extreme outcomes, in one the obfuscation
versus price discrimination paradigm is resolved in favor of maintaining obfuscation and giving up
on price discrimination, and in the second it is resolved in favor of price discrimination by giving
up on obfuscation completely. Relaxing commitment to the information structure by the insurer
leads to an evenmore stringent outcome, in that the trade-off is resolvedmore firmly inmaintaining
obfuscation and not using the information on ρ to price discriminate too much.

While these are informative benchmarks, the requirement of Bayesian inference here by the
insuree is strong. There is plenty of evidence in field and laboratory settings that show humans
find it hard to fully do Bayesian updating when faced with actual economic problems; see Benjamin
[2019] for extensive overview of the literature. In the context of our model the insuree’s ability to
do Bayesian inference works at two levels. First, it is about understanding or interpreting how to
map the space of offered contracts to information revelation and second,the Bayesian updating of
probabilities itself. This extra first step has its own considerable complexity in a real marketplace.
In this spirit, Handel and Kolstad [2015] argue that standard insurance models and empirical anal-
ysis of health insurance markets based on these models miss this difficulty: “Traditional models of
insurance choice are predicated on fully informed and rational consumers protecting themselves
from exposure to financial risk. In practice, choosing an insurance plan is a complicated decision
often made without full information.”

In addition, the rise in data markets and data intermediaries in the real world, tells us that
the returns to inverse selection for the principal, i.e., a firm with access to big data technology,
are potentially large. In the context of our model, however, Bayesian inference washes away, at
least in the limited commitment version, a substantial chunk of the informational advantage that
the insurer can exploit, as is the case in standard informed principal problems.19 Presumably,
in settings with limited inference capacity of the agent, the price discrimination channel can be
exploited more without compromising too much on obfuscation.

As a motivation to address these issues, we explore two simple yet extreme behavioral models
in which the insuree cannot do Bayes inference correctly. In the first, the insuree is gullible to
the extent that he believes the correlation ρ told to him by the insurer. And, second, the insuree
simply sticks to the prior and does not update no matter what contract is offered by the insurer. In
both cases, we study the contract design under those specific information paradigms. At the end
of the section, we discuss the key forces driving these results. Note that in both discussed cases the
solution to the commitment and limited commitment problem is the same, so we don’t emphasize
the distinction.

5.2 Gullible insuree

A rather non-standard model to consider is one where, in addition to offering a contract, the
insurer tells the insurer the correlation coefficient and the insuree simply believes it. This setting

19In fact Myerson [1983] calls the inscrutability principle the idea that the principal will not use her information while
offering contracts because it will be detected in equilibrium by the agent.
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is different than the (standard) naïveté model that we discuss in the next subsection. We will refer
to such an insuree as gullible. This allows the insurer maximal freedom in shaping the insuree’s
beliefs and tailor the contract then to those beliefs. We don’t necessarily think of this as a realistic
model, but is instructive in showing the direction in which the information and contract design
will go if the insurer has sharp instruments at her disposal to shape the insuree’s beliefs that do not
have to satisfy the Bayes’ plausibility condition.

Knowing that she can basically mislead the insuree about the way in which the two dimensions
are correlated provides the insurer with great freedom in selecting contracts. She will choose r and
C in tandem to create both the maximal obfuscation and the maximal price discrimination.20

Proposition 5. If the insuree is a gullible, ∃ ρ̂ ∈ [ρ, ρ] such that:

1. binary messages sent: M =
{
m,m

}
s.t. r (ρ) = m for ρ < ρ̂ and m (ρ) = m for ρ > ρ̂,

2. insuree’s posterior is extreme: Fm = δρ and Fm = δρ where δρ is Dirac measure on ρ,

3. profits are uniformly higher than benchmark: π (ρ) > πRS (ρ) ∀ ρ almost surely,

4. coverages are generically separating and inefficient: x ρ (H ) ≠ x ρ (L) and x ρ ≠ 1 ∀ ρ a.s.

There exists a threshold value of ρ, to the right of which the insuree reports the extreme
negative correlation, ρ, and to the left of which she reports the extreme positive correlation, ρ.
Even though the cardinality of the message space is just 2, a distinct contract is offered for each
value of ρ, since the insuree does not infer anything about ρ from the menu of contracts.

When the actual correlation is high, it means that the type θ1 = b is likely to suffer a large
loss and θ1 = a is likely to suffer a small loss. In this scenario, the insurer reports a large negative
correlation, in fact the largest possible negative value, and overinsures θ1 = a and underinsures
θ1 = b . In the process, she is able to achieve dramatic price discrimination while ensuring maximal
obfuscation. The exact opposite is true for the case when the actual correlation is low: insuree
reports largest positive correlation, and overinsures θ1 = b and underinsures θ1 = a. In sum,
the insurer sells a large amount of insurance at a high price to the type who actually has a low
probability of loss, and a small amount of insurance to the type who actually has a high probability
of loss.

Figure 5 depicts the profit and coverages when the insuree is gullible. That the profits are
uniformly higher (Figure 5a) is intuitive—the model allows the insurer to input any value of the
correlation in the insuree’s incentive compatibility condition, which in turn allows her to manip-
ulate which type is perceived to be high risk type and then decide what coverages to offer each θ1
type (Figure 5b).21

20Since the Bayes’ consistency condition is not valid, technically the class of contract is given by C =
(
cm,ρ

)
because

the contract offered for the actual realization of ρ has no relation to the reported value m.
21The overinsurance offered at the extremes brings out the message starkly. One can limit the coverage exogneosuly

to be below one, that is, x ≤ 1. Whenever it is optimal to set x > 1, the bound will be hit and will get full but not over
insurance. All other results will continue to hold qualitatively.
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gutgläubig profits

(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 5: Model with gutgläubig insuree

5.3 Naive insuree

Amore standard “behavioral" way of modeling limitations on information processing is to assume
that the agent ignores the signals offered by the contract about the correlation coefficient, so that
Fm = F ∀m ∈ M. Thus, in this situation, the role of r is moot. The insurer designs the contract
as a function of ρ with the knowledge that the insuree will evaluate his payoffs using the prior F .

Proposition 6. If the insuree is naive (and thus sticks to the prior):

1. profits are higher in expectation: E(π (ρ)) > E(πRS (ρ)),

2. coverages features both pooling and separation,

3. coverages are generically inefficient: x ρ (θ1) ≠ 1 ∀ ρ a.s.,

The salient difference between the naive model and gullible case (and also the general model
discussed in Section 4) is that here the extent of obfuscation is determined exogenously by the fixed
prior and the realization of ρ, and the insurer cannot influence it. This works in the insurer’s favor
sometimes, and other times it works against her. As a consequence, when the insuree is naive, the
insurer is better off on average in comparison to the benchmark RS model, however, unlike the
gullible case, this ranking is not uniform (see Figure 6a).

Here is a simple intuition for the result: Suppose the expected correlation according to F is high
enough, so that the insuree thinks “high" risk type is θ1 = b . If the realized correlation is close to
ρ, the insurer wants to sell a lot of insurance to θ1 = b and little insurance to θ1 = a. This is because
θ1 = b is actually the “low" risk type but he believes his risk to be at a higher level, according to
F , and is happy to buy a lot of insurance (see left part of Figure 6b). On the other hand, when the
realized correlation is close to ρ, the insurer would like to sell a lot of insurance to θ1 = a, but the
extent of it is limited by the agent’s incentive constraint that demands x ρ (b) > x ρ (a). Moreover,
she cannot sell a lot of insurance to θ1 = b either because the insuree does not internalize the extent
of risk he faces. Thus, for extremely high correlations, the insurer is forced to pool the coverage.22

22If expected correlation according to F is low enough, then in a symmetric contrast to Figure 6, the profit curve
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(a) profit as a function of ρ (b) coverage as a function of ρ

Figure 6: Model with naive insuree

5.4 Dissecting the key forces

A quick summary from all the cases discussed thus far:. The coverages vary as a function of ρ,
the insurer’s private information, and θ1, the insuree’s private information. The latter due to is
the classical rent-versus-efficiency tradeoff which runs through each of the cases, since the insuree’s
incentive constrain needs to be satisfied. The former generates a distinct new tension between
obfuscation and price discrimination.

In the benchmark Rothschild-Stiglitz case, when correlation is common knowledge, the extent
of obfuscation is zero, and price discrimination is determined exogenously through the realized
value of ρ. In the gullible case, both obfuscation and price discrimination are endogenously deter-
mined. Since the insurer can choose the contract independently of the insuree’s belief, there is a
no-longer a trade-off between obfuscation and price discrimination, and both are selected to maxi-
mize the insurer’s profit. In the naïve case obfuscation exists but is determined exogenously as the
insuree sticks to the prior no matter what contract is offered. Price discrimination is endogenously
chosen to maximize the insurer’s profit given the exogenous obfuscation constraint. This hurts the
insurer in some part of the type space, but is profitable on average.

In the rational model, where the insuree can do perfect Bayesian inference, the trade-off be-
tween obfuscation and price discrimination is more stringent, and some part of the advantage
from inverse selection for the insurer is washed away by the power of Bayesian inference. Even
still, when the insurer can commit to information design, she can extract higher profits than the
RS benchmark by pooling a lot of the information around ρ∗ and maintaining obfuscation in some
part of the type space, while disclosing full information everywhere else. However, when the in-
surer cannot commit to the information structure, very few contracts are offered since the added
incentive constraint ensures the cost of segmenting the market and giving up on belief gap are too
high in comparison to the benefits from price discrimination.

would intersect benchmark profits from below, and pooling in coverages will happen for high negative correlations.
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6 Extensions

In this section, we explore two natural interventions to the information design model (studied in
Section 4.1), which can be used to regulate the market with the aim of improving the ’consumer
surplus’.23

6.1 Competition

Suppose there is an insurer who is informed about ρ, call it the big firm, and there is another
insurer in the market that does not know this value and works with the prior F . Borrowing from
the benchmark (in Section 3), the latter insurer is assumed to offer the Rothschild-Stiglitz contract
evaluated at the expected value of ρ. The idea here is to introduce competition in a tractable way
from regular firms who do not have the in-house expertise of big data.

To entice the insuree, the contract offered for each message sent by the big firm must provide
the insuree a higher expected utility than the RS-contract offered by the other firm. Technically
speaking this a strong IR requirement, and the rest of the problem remains the same as in Section
4.1.24 The problem reads as follows:

max
r ,C

Π s.t. ICθ1, I R
e
θ1

where r , C and ICθ1 are as defined before, and I Re
θ1
is modified so that the insuree’s outside option

is evaluated at the contract c e =
{
pRSe (b), xRSe (b), pRSe (a), xRSe (a)

}
. Here xRSe (b) and xRSe (a) are

defined in Proposition 1 at ρ = ρe = E[ρ], and pRSe (b) and pRSe (a) are the corresponding prices
that maximize the insurer’s expected utility. So, I Re

θ1
reads as follows:

I Re
θ1
: um (θ1; θ1) ≥ uRS

e (θ1) for θ = a, b .

where um (θ1; θ1) is defined in Equation (1) for θ̂1 = θ1 and uRS
e (θ1) is the rent of type θ1 at the

expected correlation in the RS model.
At a first pass, Figure 7 presents themechanical calculation of profits of the insurer in the bench-

mark RS problem where ρ is common knowledge, but for the lower red curve, the IR constraint
takes the stronger form described in this section. So following Section 4.1, the information design
problem now is performed the on this lower red curve as the full disclosure benchmark, instead
of the upper blue curve. The same broad principles apply, and under some reasonable sufficient
conditions a direct comparison can be made of the "producer", "consumer" and "total" surplus,
with and without competition.

The formal statements and proofs are reported in the appendix. The high level message of the
result is that introducing competition reduces total surplus and and insurer’s profit but increases the
payoff of the insuree. In fact, the decrease in total surplus is a direct consequence of the reduction

23Results for the introduction of the two interventions in the limited commitment model are also available from the
authors upon request. They point in the same direction.

24Here, we assume that if indifferent, the insuree buys from the informed (or big data) insurer.
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Figure 7: profit as a function of ρ with competition

in total information produced at the optimum due to the introduction of competition. This points
to both a conceptual and practical challenge as to how to produce the most amount of information
in the market without hurting the consumer surplus.

6.2 A regulation for transperancy

Given that the insurer wants to mislead the insuree, the government or a regulator might want
to create a policy that forces the insurer to reveal all information it has. In our environment, this
is equivalent to the insurer disclosing the correlation ρ. If the insurer is forced to reveal ρ, the
environment is akin to Rothschild-Stiglitz environment, since now only the insuree has private
information. Therefore, the insurer will implement the optimal Rothschild-Stiglittz menu. How
does this policy affect the outcomes?

As we pointed out before in Proposition 2, in the information design model, the insurer divides
the correlations in two areas: one in which there is complete pooling at the correlation ρ∗ and
another in which the insurer fully discloses its information. In the complete pooling area, the
insurer offers the RS optimal menu at the correlation ρ∗. In this contract, the insurer does not offer
any information rent to the insuree, since at that correlation, the insuree does not have any private
information. Therefore, for those correlations, the insuree benefits from any policy that forces the
insurer to reveal more information. Meanwhile, in the full revelation area, the insurer offers the
optimal RS contract, so that the insuree is not affected by the government intervention. Therefore,
the insuree is strictly better off for some correlations, and he is never worse off. Moreover, as seen
before in the case with competition, both total surplus and the insurer’s profit decrease strictly
from the intervention in comparison to the standard information design problem.

7 Final remarks

A big debate in ensuing right now on the merits of technological advancements in data documen-
tation and processing. Foregrounding these issues, in the summer of 2019, the New York Times
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carried a series of articles under the rubric of The Privacy Project.25 One of the key topics of discus-
sion therein was the impact of big data and AI on the insurance industry. This paper is an attempt
to mainstream these discussions in the modeling choices made by classical economic theory in
formalizing the key ideas in insurance markets.

Traditionally mechanism design models of insurance assume that the agent (or insuree) has
some private information about the probability of incurring a loss or meeting with an accident.
This results in the proverbial rent-versus-efficiency trade-off wherein the principal (or insurer)
gives up on efficiency and provides information rents in order to separate the high risk from the
low risk agents. We depart from this standard model in one crucial way— we make the state of
world that parametrizes the loss to be two dimensional, and allow the agent to posses information
about one of these dimensions and the principal to know the statistical correlation between the
two dimensions. This creates an informed principal problem where the principal too has private
information.

Private statistical information on the side of the insurer introduces a novel trade-off between
obfuscation and price discrimination, in addition to the usual rent versus efficiency in standard
screening contracts. The insurer wants to price discriminate using her private information dimen-
sion but is also wary that fine-tuning the contract too much to the details of the environment
will allow the insuree to infer that information. This latter desire to maintain a obfuscation pulls
against the desire to price discriminate.

In the standard framework in which the agent is Bayesian sophisticated, the information design
model produces a bang-bang solution: the principal pools all types at the best possible obfuscation
point, to the extent allowed by the Bayes plausibility condition and does full disclosure in the rest
of the type space. There are significant gains from inverse selection in this scenario. Most of these
gains are washed away if the principal cannot commit to the information structure, and typically
one or two contracts are offered at the optimum—the ability of the agent to do Bayesian inference
correctly protects it from incurring too much price discrimination.

While the results for the Bayesian sophisticated model can be considered as a theoretical bench-
mark, at the other extreme, if the agent is gullible, there are significant gains to be made from big
data by exploiting the agent’s limited inference capacities. This provides a foundation of sorts for
both the rise of data markets and the returns to consumer activism whereby implications of data
disclosure and its deployment by sellers can be better understood. Finally, putting this data in
public domain along with an understanding of how to interpret this information can benefit con-
sumers, and so will competition by endogenously limiting the extent to which the big data can be
used against the consumers.

The ideas developed here can potentially be applied to contexts other than insurance. For
example, in credit markets, owing to big data and AI, the credit issuing agency may also have
some statistical information about the credit worthiness of a client, in addition to the client know-
ing some hard information about his financial circumstances. Finally, aggregating across multiple

25See www.nytimes.com/interactive/2019/opinion/internet-privacy-project.html.
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principal-agent interactions. greater statistical information on the side of the principal may encour-
age more market concentration, of the kind we see in the tech-industry these days. Endogenizing
data collection and market size is a promising question for future work.

8 Appendix

The appendix is divided into four parts.

8.1 Proof for benchmark model in Section 3

Proof of Proposition 1. Since ρ is common knowledge, themapping r is redundant and the insurer’s
profit for a specific ρ is given by

π (ρ) = q1(pρ (a) − µρ (a)x ρ (a)) + (1 − q1) (pρ (b) − µρ (b)x ρ (b)) (5)

The insurer’s problem is to choose a contract c ρ = {pρ (θ1), x ρ (θ1)}θ1=a,b to maximize π (ρ) to
subject to incentive feasibility. Using Equation (1), the constraints can be written as:

µρ (θ1)x ρ (θ1) − η2 (1 − x ρ (θ1))2 − pρ (θ1) > µρ (θ1)x ρ (θ ′1) −
η
2 (1 − x ρ (θ ′1))

2 − pρ (θ ′) ∀θ1, θ ′1 ∈ {a, b } ICθ1−θ′1
µρ (θ1)x ρ (θ1) − η2 (1 − x ρ (θ1))2 − pρ (θ1) > − η2 ∀θ1 ∈ {a, b } I Rθ1

Let ρ∗ be the correlation forwhich µρ (b) = µρ (a). Thus, when ρ = ρ∗, there is no asymmetric
information, and the principal/insurer does not need to provide an information rent to any of the
types. She can simply maximize efficiency by offering a unique pooling contract of full insurance
x ρ∗ (b) = x ρ∗ (a) = 1 and bind the IR constraints to extract expected surplus.

Suppose that µρ (b) > µρ (a), that is, ρ > ρ∗. Then, we are in the standard Rothschild and
Stiglitz [1976] setup where θ1 = b is the "high" or H type and θ1 = a is the “low" or L type. It
is standard practice (see for example Laffont and Martimort [2009]) to show that in this case ICH

and I RL bind, and ICL and I RH are slack. Let λ be the multiplier on ICH and δ the multiplier
on I RL. Th following FOCs that characterize an interior solution:

[pρ (L)] : q1 − δ + λ = 0

[x ρ (L)] : − µρ (L)q1 + δµρ (L)q + σ (1 − x ρ (L))δ − λµρ (H ) − λη (1 − x ρ (L)) = 0

[pρ (H )] : (1 − q1) − λ = 0

[x ρ (H )] : − (1 − q1)µρ (H ) + λµρ (H ) + η (1 − x ρ (H ))λ = 0.

From the first and third conditions it can be concluded that λ = (1 − q1) and δ = 1. Using
these values it is straightforward to see that

x ρ (H ) = 1 and x ρ (L) = 1 −
1 − q1
ηq1

(µρ (H ) − µρ (L)) < 1.
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In case of a corner solution, x ρ (H ) = 1 and x ρ (L) = 0.
Here of course H = b and L = a. An analogous argument shows the result for the case in

which µρ (b) < µρ (a), that is, when ρ < ρ∗, and thus H = a and L = b . �

8.2 Proofs for the information design problem in Section 4.1.

Proof of Proposition 2. The proof is divided in to seven steps, starting with two preliminary results.
In what follows, we will abuse notation slightly and refer to f (ρ,m) as the joint distribution
generated by the information structure over primitive types and messages, and f (m |ρ) as the
corresponding conditional distribution.

Step 1. Two intermediate results are first established. First, we show that there cannot be a
non-zero mass of posteriors both to the left of ρ∗ and to the right of it. This result almost immediately
implies that the insurer wants to pool as much probability as possible in messages that generate the
posterior belief ρ∗. Second, we show that the function πRS is strictly convex whenever the solution
to the Rothschild-Stiglitz problem is interior and is constant otherwise.

Suppose, first, that the insurer sends messages that generates posterior beliefs for the insuree
with non-zero measure on both sides of ρ∗. Call these the original messages. Notice that, by
definition of ρ∗, at any of those posterior beliefs, the insurer obtains a profit that is smaller than
πRS (ρ∗). Now, it is always possible for the insurer to reassign some probability from thesemessages
to a new message m ′ such that E[ρ | m ′] = ρ∗. Moreover, since ρ∗ in between these posterior
beliefs, the reassignment can be done without changing the posterior beliefs generated from the
original messages. As a consequence, the insurer strictly prefer this new information structure.
This process can clearly be repeated as long as mass on at least one side of ρ∗ has been exhausted,
that is, as long as there is positive measure of beliefs in both sides of ρ∗. Therefore, we conclude
that posterior beliefs are located at ρ∗ and on one side of this point.

Second, suppose that µρ (b) > µρ (a), that is, ρ > ρ∗. If we plug in the solution to Rothschild-
Stiglitz problem in the insurer’s profit function, we obtain that at an interior solution the profit
function is equal to

η

2
− (1 − q1) (µρ (b) − µρ (a)) +

(1 − q1)2

2ηq1
(µρ (b) − µρ (a))2.

This function is clearly strictly convex with respect to (µρ (b) − µρ (a)) and this probability gap is
increasing in ρ. Therefore, πRS (ρ∗) is strictly convex if the solution to Rothschild-Stiglitz problem
is interior. Further, when the solution to Rothschild-Stiglitz problem is a corner solution, the
coverage that is offered to the insuree is independent of ρ and the insurer appropriates all the
surplus that is created by the mechanism, which is constant.

Step 2. Now, we prove the three cases in the statement of the proposition. Consider first the
case in which ρ∗ = E[ρ]. Since there cannot be a positive measure of posteriors on both sides of
ρ∗, Bayes’ plausibility immediately implies that the buyer’s posterior equals ρ∗ with probability
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one.

Step 3. Suppose now that E[ρ] > ρ∗. Since there can be a positive mass only at ρ∗ and on one
side of ρ∗, Bayes plausibility immediately implies that this positive mass must be towards the right
of ρ∗. So, no messages can generates posterior expectations that are smaller than ρ∗. Keeping this
in mind, we want to characterize the complete pooling and full separation regions as stated in the
proposition. Define ρ∗∗ as the value that solves ρ∗ = E[ρ | ρ ≤ ρ∗∗]. This threshold, we will
show, demarcates the two regions. In particular, we will show that there is complete pooling for
all ρ 6 ρ∗ exactly at the posterior expectation ρ∗ and full disclosure for all ρ > ρ∗∗.

First, we claim that for ρ 6 ρ∗ the insurer sends amessage that generates a posterior expectation
for the insuree that is exactly equal to ρ∗. Suppose instead that there is a set of messages M ⊂ M
such that

∫
M

∫ ρ∗
ρ

f (m | ρ ′) f (ρ ′)dρ ′dm > 0 and that for each of those messages the buyer’s
posterior is larger than ρ∗ (remember it cannot be less than ρ∗).

Notice that by definition of ρ∗, πRS (ρ) < πRS (ρ∗) for any ρ > ρ∗. And we just argued above
that there has to be a set of messages M ′ ⊂ M such that

∫
M ′

∫ ρ̄
ρ∗

f (m | ρ ′) f (ρ ′)dρ ′dm > 0 and the
posterior expectation for each of those messages from the perspective of the insuree is larger than
ρ∗. The insurer can thus be strictly better off by assigning as much probability as possible from
the set of messages M and M ′ into a new message m ′′ that generates the posterior ρ∗, giving us
a contradiction. So, it must be that with probability one, for ρ 6 ρ∗ the insurer sends a message
that generates a posterior expectation for the insuree that exactly equals ρ∗.

Step 4a. Second, we claim that for ρ∗ < ρ 6 ρ∗∗, the insurer also sends a message that generates
a posterior expectation for the insuree that is exactly equal to ρ∗. Suppose by contradiction that
exists a set of messages M such that

∫
M

∫ ρ∗∗
ρ∗

f (m | ρ) f (ρ)dρdm > 0 and that for each of those
messages the buyer’s posterior expectation is larger than ρ∗. Recollect that by definition, ρ∗∗

satisfies the identity ρ∗ = E[ρ | ρ ≤ ρ∗∗]. And all types ρ 6 ρ∗ put weight exclusively on ρ∗. So,
there must be another set of messagesM ′ such that

∫
M′

∫ ρ̄
ρ∗∗

f (m ′ | ρ ′) f (ρ ′)dρ ′dm ′ > 0 and that
for each of those messages the insuree’s posterior is equal to ρ∗. If not, then the Bayes’ plausibility
condition that rests of the aforementioned identity will be violated. Using this information, we
will create an alternate informtion structure for the insurer that does strictly better.

Step 4b . Take a message m ′ ∈ M ′. Consider moving a ε proportion of the density f (ρ ′,m ′)
for each ρ ′ ∈ [ρ∗∗, ρ̄] to some message m ∈ M and moving a δ proportion of the density f (ρ,m)
for each ρ ∈ [ρ∗, ρ∗∗] to the message m ′. When δ is chosen appropriately, we will show that the
expected correlation after observing the messagem ′ has not changed, E[ρ | m ′] = ρ∗, and that the
conditional expected correlation after observing the message m has increased.

To prove this, let δ = ε E (ρ′,m′)−ρ∗G (ρ′,m′)
E (ρ,m)−ρ∗G (ρ,m) , with E (ρ ′,m ′) =

∫ ρ̄
ρ∗∗
ρ ′ f (ρ ′,m ′)dρ ′, G (ρ ′,m ′) =∫ ρ̄

ρ∗∗
f (ρ ′,m ′)dρ ′, E (ρ,m) =

∫ ρ∗∗
ρ∗
ρ f (ρ,m)dρ and G (ρ,m) =

∫ ρ∗∗
ρ∗

f (ρ,m)dρ. Notice that the
conditional expectation E[ρ ′ | m ′] = ρ∗ can be written as

A′ + εE (ρ ′,m ′)
B ′ + εG (ρ ′,m ′)
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with A′ =
∫ ρ̄
ρ
ρ ′ f (ρ ′,m ′)dρ ′ − εE (ρ ′,m ′) and B ′ =

∫ ρ̄
ρ

f (ρ ′,m ′)dρ ′ − εG (ρ ′,m ′). Therefore,

ρ∗ =
A′ + εE (ρ ′,m ′)
B ′ + εG (ρ ′,m ′)

⇔B ′ρ∗ = A′ + εE (ρ ′,m ′) − ε ρ∗G (ρ ′,m ′)

⇔B ′ρ∗ = A′ + δ E (ρ,m) − ρ∗G (ρ,m)
E (ρ ′,m ′) − ρ∗G (ρ ′,m ′) (E (ρ

′,m ′) − ρ∗G (ρ ′,m ′))

⇔B ′ρ∗ + δ ρ∗G (ρ,m) = A′ + δE (ρ,m)

⇔ρ∗ = A′ + δE (ρ,m)
B ′ + δG (ρ,m)

Notice that, by definition, E (ρ ′,m ′) > E (ρ,m). Further, E (ρ′,m′)
G (ρ′,m′) =

∫ ρ̄
ρ∗∗
ρ ′ f (ρ ′ | m ′)dρ ′ >∫ ρ∗∗

ρ∗
ρ f (ρ | m)dρ = E (ρ,m)

G (ρ,m) . Using the definition of δ we conclude that δG (ρ,m) > εG (ρ ′,m ′),
and by using the equality above we conclude that δE (ρ,m) > εE (ρ ′,m ′). Therefore, the insurer
assigns a larger density to posterior ρ∗ after the change in the information environment

Now, let ρ̃ be the initial posterior after observing the messagem. This posterior can be written
as ρ̃ = A+δE (ρ,m)

B+δG (ρ,m) with A =
∫ ρ̄
ρ
ρ f (ρ,m)dρ − δE (ρ,m) and B =

∫ ρ̄
ρ

f (ρ,m)dρ − δG (ρ,m). We

want to show that A+εE (ρ′,m′)
B+εG (ρ′,m′) > ρ̃. Consider the functions s (ρ) = δE (ρ,m) − δ ρG (ρ,m) and

r (ρ) = εE (ρ ′,m ′) − δ ρG (ρ ′,m ′). By definition of δ, s (ρ∗) = r (ρ∗) and s ′(ρ) = −δG (ρ,m) <
−εG (ρ ′,m ′) = r ′(ρ). As ρ̃ > ρ∗, the inequality above implies that s ( ρ̃) < r ( ρ̃). Therefore,

ρ̃ =
A + δE (ρ,m)
B + δG (ρ,m)

⇔B ρ̃ = A + δE (ρ,m) − δ ρ̃G (ρ,m)

⇒B ρ̃ < A + ε (E (ρ ′,m ′) − ρ̃G (ρ ′,m ′))

⇔ ρ̃ < A + δE (ρ ′,m ′)
B + δG (ρ ′,m ′)

where in the third line, we use that s ( ρ̃) < r ( ρ̃).
If we repeat this step for eachm ′ ∈ M ′wewill end upwith an information design that generates

the insuree’s posterior ρ∗ with higher probability, and splits the posterior ρ̃ generated by a message
m ∈ M between ρ∗ and a posterior larger than ρ̃. Convexity implies that the insurer is better off
if he repeats this process until

∫
M ′

∫ ρ̄
ρ∗∗

f (m ′ | ρ ′) f (ρ ′)dρ ′dm ′ = 0. Thus, we conclude that the
insurer is going to pool all correlations lower or equal to ρ∗∗ in the posterior ρ∗.

Step 6. Finally, convexity implies that for ρ > ρ∗∗ the insurer prefers weakly to report truth-
fully the correlation. The insurer’s preference is strict if the solution to RS problem for that cor-
relation is interior.

Step 7. The case in which E[ρ] < ρ∗ is analogous, repeated steps 3 to 6 making appropriate
and symmetric changes.

�
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Proof of Proposition 3. Suppose G ρ)
G ( ρ̃) ≤ F (ρ)

F ( ρ̃) for all ρ̃ ∈ [ρ, ρ̄] and ρ ≤ ρ̃. We first show that

EG [ρ | ρ ≤ ρ ′] =
∫ ρ′
ρ
ρ

g (ρ)
G (ρ′) dρ >

∫ ρ′
ρ
ρ

f (ρ)
F (ρ′) dρ = EF [ρ | ρ ≤ ρ ′] for any ρ ′. We have that

∫ ρ′

ρ
ρ

g (ρ)
G (ρ ′) dρ = ρ

G (ρ)
G (ρ ′)

��ρ′
ρ
−
∫ ρ′

ρ

G (ρ)
G (ρ ′) dρ

= ρ ′ −
∫ ρ′

ρ

G (ρ)
G (ρ ′) dρ

≥ ρ ′ −
∫ ρ′

ρ

F (ρ)
F (ρ ′) dρ

=

∫ ρ′

ρ
ρ
f (ρ)
F (ρ ′) dρ

Consider the case in which EF [ρ] > ρ∗. The result above implies that EG [ρ] > ρ∗. Then we
are in the second case of Proposition 2. From the definition of ρ∗∗ in the proof of Proposition 2
and the result above, we conclude immediately that ρ∗∗G ≤ ρ∗∗F . Therefore, the set of correlations
for which the seller discloses information truthfully is smaller when the distribution is G rather
than F .

An analogous argument shows the result for the case in which EG [ρ] < ρ∗

�

8.3 Formal description, results and proofs for the limited commitment model in
Section 4.2

Here we presented a formal treatment of the limited commitment model outlined and discussed
intuitively in Section 4.2. Recollect that the optimization problem reads as follows:

(P − LC ) : max
r ,C

Π s.t. ICρ, ICθ1, I Rθ1 .

where the only difference from the information design problem is the addition of the incentive con-
straint on the side of the principal, ICρ . We start with the standard Myersonian characterization
of the principal’s incentive compatibility constraint.

Characterizing incentive compatibility

Lemma 1. ICρ holds if and only if π satisfies the following

1. envelope characterization of local incentives:

∂π (ρ; ρ̂)
∂ρ

����
ρ̂=ρ

= σx r (ρ) (L) · (µab − µaa) − σx r (ρ) (b) · (µbb − µb a) ≡ c (ρ), and, (6)

2. convexity: π (ρ) is convex in ρ.
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Proof. Part two is a standard property of value functions that satisfy incentive compatibility on
a continuous type space (see, for example, Börgers [2015], Chapter 3). We show here the exact
functional form of the envelope characterization stated in Equation (6). Start with Equation (4),
i.e. assuming truthteling by the insuree, the profit function from (mis)reporting ρ̂ is given by

π (ρ; ρ̂) = q1
[
pr ( ρ̂) (a) − µρ (a)x r ( ρ̂) (a)

]
+ (1 − q1)

[
pr ( ρ̂) (b) − µρ (b)x r ( ρ̂) (b)

]
where the only terms that are a function of ρ are

µρ (a) = (q2 + ρσ/q1)µaa + ((1 − q2) − ρσ/q1)µab , and

µρ (b) = (q2 − ρσ/(1 − q1))µb a + (1 − q2 + ρσ/(1 − q1))µbb

Taking a derivative with respect to ρ, then gives us:

∂π (ρ; ρ̂)
∂ρ

= −σx r ( ρ̂) (a) (µaa − µab ) − σx r ( ρ̂) (b) (−µb a + µbb )

and, substituting ρ̂ = ρ delivers Equation (6). �

By fixing r , we fix M , which partitions type space of possible correlations, [ρ, ρ]. Hence we
also fix the number of contracts offered at the optimum, |C| = |M |. Now, for a given r , Lemma 1
tells us two things. First, the slope of the profit function can be written as

c (ρ) = kaφa (ρ) − kbφb (ρ),

where ka and kb are positive constants, and φa (ρ) = x r (ρ) (a) and φb (ρ) = x r (ρ) (b) are the
coverages chosen for θ1 = a and θ1 = b , as a function of the partition of M in which ρ falls. And,
second, by convexity of π, that c (ρ) must be non-decreasing. These two together put restrictions
on what coverages/allocations are feasible, specifically they limit the extent of price discrimination
that the insurer can employ even for a fixed number of contracts.

Finiteness and then fewness of the optimal contract

The typical approach taken in mechanism design is to ignore the convexity constraints, solve the
relaxed problem using only the envelope condition, and invoke a regularity condition such as the
monotone hazard rate. But this problem is not standard in at least three ways: (i) the “policy
function" is multidimensional, there are two allocation rules in the envelope condition, viz. φa
and φb , ( ii) these functions in turn solve another downstream screening problem for the agent, and
(iii) the mechanism still has to jointly choose r and C at the optimum.

All of the aforementioned constraint the contract space in non-trivial ways, and the convexity
constraint cannot be ignored generically. We show that an optimal contract must in fact be finite:

Lemma 2. The optimal mechanism has a finite number of messages and contracts: |M| = |C| = κ for
some κ ∈ N.
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(a) case ka = kb (b) fixing ka , varying kb

Figure 8: Splitting the parameters space into two regions: |M| = |C| = 1 and |M| = |C| > 1.

To further highlight the fewness of contracts at the optimum, consider the limiting case when
effective risk in the model become large. Recollect that η = γV[l ], where γ is the risk aversion
parameter, and V[l ] is the variance of loss. Thus, η is a sufficient statistic of risk in our setup. We
have:

Lemma 3. As η → ∞, insurer finds it optimal to offer one message and contract, |M| = |C| = 1.

When the insurer sets |M| = |C| = 1, there is complete pooling across ρ. Thus, she simply does
not use her informational advantage towards price discrimination, opting rather to maintain the
ex ante belief gap. Thus, the power of Bayesian inference essentially compels the insurer to resolve
the trade-off between obfuscation and price discrimination completely in favor of the former force,
at least in the two limits specified in Lemma 3. Lemmata 2 and 3 together prove Proposition 4.

To give a richer flavor to the fewness of contracts, we also report some numerical results for
intermediate values of η . Recollect that the number of contracts offered at the optimum depends
on the slope of the profit function: c (ρ) = kaφa (ρ) − kbφb (ρ), which in turn depends on the
primitives ka and kb , and the allocations φa (ρ) and φb (ρ). The allocations are of course driven by
the extend of risk and uncertainty in the environment, viz η . Hence, to understand the structure
of optimal contracts, we split parametric space along these two dimensions.

Figure 8 documents when the optimal contract features complete pooling, |M| = |C| = 1, and
when it features some price discrimination along ρ, that is |M| = |C| > 1. In fact, in the numerical
simulation we allow the program to accept up to three partitions and it selects either one (in the
dark/purple region) or two (in the light/yellow region) but never three. This further provides
credence to the claim that the number of contracts offered at the optimum with Bayesian sophisticated
agents is small.

Optimal one and two partition contracts

If the optimal number of partitions turns out to be one, it is fairly intuitive to conclude that the
coverages offered would be same as those offered in the Rothschild and Stiglitz [1976] model at the
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(a) profit (b) coverage and its benchmark counterpart

Figure 9: Optimal contract features complete pooling

ex ante expected correlation, and the optimal profit too will be equal to the optimal profit at that
correlation. In the interest of space, we illustrate the result in a graph, the formal statement and
proof are available from authors upon request.

Figure 9 plots the optimal profit and coverages for this case. The coverages are simply straight
horizontal lines for the insurer is not using any of her private information about ρ and instead
offers a completely pooling contract along ρ. As in the benchmark model, the "high" risk insuree
(which is type θ1 = b in the figure) is given full insurance and the "low" risk insuree is given partial
insurance. The profit function is a straight downward sloping line since the allocations are fixed,
and π is linear in ρ. The dotted vertical line captures the expected correlation at which point the
red straight line and benchmark blue curve intersect.26

Next, we consider the case where the optimal number of partitions is two. In this case, the
type space of correlations is split into two intervals, say I1 and I2. The coverages in each interval
are evaluated using the expected correlation in those intervals while ensuring that the insuree’s
incentive constraint is satisfied between reporting interval I1 or I2 and within each interval, the
insurer’s incentive constraint is satisfied in reporting θ1 = b or a. Again we illustrate the main
result through graphs and formal statements and proofs are available from authors upon request.

Figure 10 plots the optimal profit and coverages when the optimal number of partitions is two.
Each partition corresponds to two coverages, one for each insuree type, which gives the profit
function its slope. The first result is that optimality forces both these slopes to be the same. This
follows from the intuition given in Section 4.2 that without imposing the convexity constraint the
optimal profit line has a concave link. So the highest profit line that satisfies convexity is then
simply the straight line which equates the slope of the profit function along the two partitions, as
shown in Figure 10a. The second result is simply that if the insuree is employing two partitions at
the optimum than the profit must be greater than expected profit in the benchmark model since
the latter can always be attained by offering a completely pooling contract.

26We plot the profit and the coverages of the benchmark model simultaneously to help motivate the impact of the
privacy of statistical information on the side of the insurer, which separates our model form (most of) the literature on
insurance markets.
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(a) profit (b) coverage and its benchmark counterpart

Figure 10: Optimal contract features two partitions

The third result documents that the left partition where θ1 = a is the "high" risk type, θ1 = b
is overinsured. But incentive constraints force the allocation to always satisfy x1(b) > x1(a). So,
in the right partition, θ1 = b , which is now the "high" risk type, is offered under insurance, and
θ1 = a is forced out of the market with no coverage. See Figure 10b.

Summary

To summarize, when the insuree is Bayesian sophisticated and the insurer lacks commitment to the
information disclosure policy, the total number of contracts offered at the optimum is small, often
at most two. This illustrates the fact the trade-off between obfuscation and price discrimination is
resolvedmostly in favor of the former. When the optimal contract features complete pooling across
ρ, the contract corresponding to the benchmark model at the expected correlation is offered and
the insurer does not use her informational advantage at all. When the optimal number of contracts
offered is two, we see both over and under insurance at the optimum—the insurer tried to mislead
the insuree to the extent possible by the Bayesian rationality.

Proofs for Lemmata 2 and 3

Proof of Lemma 2. To prove this result, we will first introduce the concept of interim profit for
the insurer, and state and prove a lemma characterizing it. Define the function π̂ (ρ, c) to be the
maximum profit that an insurer can obtain in the subgame in which both parties believe that the
correlation is ρ, and the slope of the profit function as defined by Equation (6) is equal to c , that
is c (ρ) = c .

The analysis here is stated for the case when ρ is common knowledge in the subgame, that is,
r is the identity mapping, r (ρ) = ρ ∀ ρ. Since profits (π ) and utility (u ) are both linear in ρ, we
will later replace ρ with the expectation of the partition in which it lies, and all results stated here
would carry through.

The following lemma establishes that the interim profit function, π̂ (ρ, c) is (i) single peaked
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with respect to ρ, with a peak at ρ∗, ( ii) it is convex with respect to ρ both to the right and the
left of ρ∗; and (iii) it is strictly concave with respect to c . The next result states some other key
properties of the interim profit function.

Lemma 4. Let ρ∗ solve µρ (b) = µρ (a) and fix ρ ≥ ρ∗. Then:

1. ∃ ρ1 and ρ2 with ρ̄ ≥ ρ2 ≥ ρ1 ≥ ρ∗ such that

(a) for ρ ∈ [ρ∗, ρ1], π̂ (·, c) is linear and strictly decreasing in ρ;

(b) for ρ ∈ [ρ1, ρ2], π̂ (·, c) is strictly convex and strictly decreasing in ρ;

(c) for ρ > ρ2, π̂ (·, c) is constant in ρ.

2. The function π̂ (ρ, ·) is strictly concave in c .

Analogous characterization holds for ρ < ρ∗.

Proof. We prove the result in 5 steps.

Step 1. Fix ρ ≥ ρ∗, so that µρ (b) > µρ (a). To simplify notation, let µa = µρ (a), µb = µρ (b),
x a = x ρ (a), xb = x ρ (b), pa = pρ (a) and pb = pρ (b). As in the main text, let ka = σ (µab − µaa)
and kb = σ (µbb − µb a). We prove part 1 first.

Step 2. In an interior solution, we obtain that:

x a = 1 − 1−q1
ηq1 (µb − µa) +

β
ηq1 ka

xb = 1 − β
η (1−q1) kb

where β = ηq1 (1−q1) (c−ka+kb )+(1−q1)
2 (µb−µa )ka

(1−q1)k2a+q1k2b
is the Lagrangemultiplier for the convexity constraint.

Further, substituting for x a and xb , the optimal profit is

π̂ =
η

2
− (1 − q1) (µb − µa) +

(1 − q1)2

2ηq1
(µb − µa)2 −

(1 − q1)k2a + q1k2b
2ηq1(1 − q1)

β2.

Since β depends on ρ only through µb − µa , π is quadratic in ρ. Its first derivative with respect to
ρ is

(1 − q)
(
∂(µb − µa)
∂ρ

) (
−1 +

1 − q1
ηq1

(µb − µa) −
βka
ηq1

)
< 0,

since the partial derivative is positive and the last term has to be negative to guarantee that x a is
positive. Its second derivative with respect to ρ is given by,

(1 − q1)2k2b
η ((1 − q1)k2a + q1k2b )

(
∂(µb − µa)
∂ρ

)2
> 0.

Therefore, π (ρ, c) is strictly decreasing and strictly convex with respect to ρ when the solution is
interior. Next we will construct the bounds for interiority: ρ1 and ρ2.
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Step 3. A corner solution in which the insurer sells only to θ1 = b insuree occurs when x a
is negative, that is, when

η (q1k2b+(1−q1) (c+kb )ka )
(1−q1)k2b

< µb − µa . Since µb − µa is increasing in ρ, this
condition may hold only for large correlations. Let ρ2 to be equal to the correlation that makes
this condition to hold with equality if it is smaller than ρ̄ and equal to ρ̄, otherwise.

In such a corner it has to be that xb = max{−ckb , 0}. Using the constraint I Rb , we obtain that

(1 − q1) (pb − µb xb ) = (1 − q1)max{−ηc2kb

(
2 + c

kb

)
, 0}, so that the profit function is constant in ρ.

Step 4. Finally, to satisfy both IC constraints of the isnuree it has to be that xb > x a , but this
might not be the case in the interior solution we characterized above. In particular for ρ < ρ2 the
constraint xb > x a is not satisfied if

µb − µa <
η (c−ka+kb ) ( (1−q1)ka+q1kb )

−(1−q1)kb (−kb+ka )
if − kb + ka > 0

µb − µa >
η (c−ka+kb ) ( (1−q1)ka+q1kb )

−(1−q1)kb (−kb+ka )
if − kb + ka < 0.

Notice that in the first case the inequality is never true if c−ka+kb < 0 and in the second case it
is never true if c − ka + kb > 0. In the domain in which the inequalities can be true, the correlation
that makes the first inequality to hold with equality is smaller than ρ2, and the correlation that
makes the second inequality to hold with equality is larger than ρ2. Then we define ρ1 in the first
case as the maximum of the correlation that makes the inequality to hold with equality and ρ∗,
and in the second case we just define it as ρ∗.

For correlations in [ρ∗, ρ1], the insurer offers a unique package xb = x a = c
−kb+ka

> 0 at the
price that makes the constraint I Ra to hold with equality. This generates profits equal to

π̂ =
η

2
− η

2

(
1 − c

ka − kb

)2
− (1 − q1) (µb − µa)

c
ka − kb

.

Since the profits depend on ρ only trough µb − µa and this dependence is linear, we conclude that
the profits are linear with a slope s1 = − ( (1−q1)ka+q1kb )c

q1 (ka−kb )
< 0.

The second inequality is true only for correlations for which the constraint x a > 0 binds as
well, that is, in the solution to the problem without these constraints both x a and xb are negative.
Therefore, since the b type is willing to pay more for insurance, the insurer sells only to him, and
we are back to the case in step 3.

Step 5. To prove 2, we only need to take the second derivative of the profit functions with
respect to c for all possible cases. In the corner solution with x a = 0 and xb > 0 we have

∂2π̂

∂c2
=
−(1 − q1)η

k2b
< 0,

in the corner solution with x a = xb > 0 we have

∂2π̂

∂c2
=

−η
(ka − kb )2

< 0,
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and in the interior solution with xb > x a > 0 we have that

∂2π̂

∂c2
=

−ηq1(1 − q1)
(1 − q1)k2a + q1k2b

< 0.

Therefore, the function π̂ (ρ, ·) is strictly concave with respect to c . �

Now we proceed to prove the finiteness result in five steps. First, we argue that the optimal
information disclosure policy is ordered, i.e., can be regarded as a partition. This automatically
implies that the optimal mechanism has at most a countable number of partitions, and then we
use the next four steps to gradually build towards the finiteness of the number of partitions.

Step 1. Define r−1(m) be the set of correlations for which is possible that the insurer sends the
message m, that is, r−1(m) = {ρ | P(m | ρ) > 0}. We say that a message rule is ordered if for any
m and m̂ and any correlations ρ ∈ r−1(m) and ρ̂ ∈ r−1(m̂) either ρ < ρ̂ or ρ > ρ̂. Now, we
show that it is without loss of generality for the insurer to use an ordered message rule. Note that
this definition implies directly that an ordered message rule is deterministic in the sense that given a
correlation ρ the insurer always sends the same message.

Suppose, in the optimal contract, the insurer uses a message rule that is not ordered. Then
there exists correlations ρ < ρ̂ < ρ ′ such that ρ ∈ r−1(m), ρ ′ ∈ r−1(m) and ρ̂ ∈ r−1(m̂).
Since the contract has to satisfy the convexity constraint it has to be that the slope of the optimal
profit satisfies the condition c (ρ) ≤ c ( ρ̂) ≤ c (ρ ′). However, as for both ρ and ρ ′ the seller sends
with positive probability the same message, the contract offered by the insurer for any of the two
correlations must be the same, i.e., c (ρ) = c (ρ ′). Both conditions imply that c (ρ) = c ( ρ̂) =

c (ρ ′) := c , that is, the profit function is locally linear. Then the profit function is locally linear
for correlations in the preimages r−1(m) and r−1(m̂) and any correlation ˆ̂ρ such that there exist
ρ ∈ r−1(m) and ρ̂ ∈ r−1(m̂) with ρ < ˆ̂ρ < ρ̂ or ρ̂ < ˆ̂ρ < ρ.

Now, let Em = E[ρ | ρ ∈ r−1(m)] and Em̂ = E[ ρ̂ | ρ̂ ∈ r−1(m̂)]. The local linearity of
the profit function π implies that π (ρ) = π (Em) + c (ρ − Em) = π (Em̂) + c (ρ − Em̂) for any
ρ ∈ r−1(m)⋃ r−1(m̂). Therefore, for any reshuffle of correlations in that sets r−1(m) and r−1(m̂)
that keeps Em and Em̂ constant, the seller can attain the same profits when offering the same con-
tract at those expected correlations. In particular, the insurer can always reshuffle the correlations
in that sets r−1(m) and r−1(m̂) in a way that keeps Em and Em̂ constant, and such that for any
ρ ∈ r−1(m) and ρ̂ ∈ r−1(m̂), ρ < ρ̂. Then, the insurer can obtain an ordered message rule that
attains the same profits as the original message rule by repeating this process as many times as nec-
essary.

Step 2. Suppose by contradiction that the profit function’s slope takes an infinite number of
different values. Fix ε1 > 0. As the slope take an infinite number of different values, there exists
two different messages m1 and m2 with the following properties:

1. the preimages r−1(m1) and r−1(m2) are contiguous,
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2. the contracts cm1 and cm2 generate different profits slopes c1 < c2 such that there are no
others posted contracts that generate the same slopes, and

3. the insuree’s expected correlations after observing those messages, ρ1 = E [ρ | r (ρ) = m1] <
ρ2 = E [ρ | r (ρ) = m2], are such that ρ2 − ρ1 < ε .

Without loss of generality, assume that ρ1 > ρ∗. By Proposition 1 we have that cRS (ρ1) >
cRS (ρ2). Further, Lemma 4 shows that the functions π̂ (ρ1, ·) and π̂ (ρ2, ·) are concave in c . There-
fore, cRS (ρ1) and cRS (ρ2) correspond to the uniquemaximizers of these functions, respectively, be-
cause Rothschild-Stiglitz problem does not impose constraints on c . Therefore, for any c < cRS (ρ),
π̂ (ρ, ·) is increasing, and for any c > cRS (ρ), π̂ (ρ, ·) is decreasing.

Step 3. Before delving into impossibility to infinite slopes, we show as an intermediate step that
it cannot be that c1 < cRS (ρ1) and c2 > cRS (ρ2). If they were, c1 would be in the increasing part
of π̂ (ρ1, ·) and c2 would be in the decreasing part of π̂ (ρ2, ·). Then, by slightly increasing c1 and
slightly decreasing c2, the firm relaxes the feasibility constraints and is able to increase its profits
(see Figure 11). Therefore, the original c1 and c2 cannot be optimal, a contradiction. Thus, we
conclude that c1 ≥ cRS (ρ1) or c2 ≤ cRS (ρ2).

Figure 11: Improvement arguments for Step 3 of the proof.

Step 4. Suppose first that c1 ≥ cRS (ρ1). We show by contradiction that in this case when-
ever the slope takes an infinite number of different values, the resulting profit function cannot be
continuous, contradicting the convexity constraint.

As c2 > c1 and cRS (ρ1) > cRS (ρ2), the previous discussion implies that both c1 and c2 are
located in the decreasing part of π̂ (ρ2, ·). Therefore, π̂ (ρ2, c1) − π̂ (ρ2, c2) = δ > 0.

Let π (.) denote the optimal profit function. By feasibility, it must be that π (ρ1) < π̂ (ρ1, c1)
and π (ρ2) < π̂ (ρ2, c2). We argue that it has to be that π (ρ1) = π̂ (ρ1, c1) by showing perturbations
that increase the seller’s profits. We pick perturbations that do not change the function π outside
the two partitions we are considering. There are two cases.

If both π (ρ1) < π̂ (ρ1, c1), and π (ρ2) < π̂ (ρ2, c2) then the insurer/seller can slightly increase
c1 and move ρ2 to the right. Figure 12a shows that this allows the insurer to increase profits, and
it is feasible because both inequalities are strict and all functions are continuous.

Instead, if π (ρ1) < π̂ (ρ1, c1) and π (ρ2) = π̂ (ρ2, c2), the insurer can slightly decrease c2 and
move ρ1 to the left. As the initial c2 is in the decreasing part of π̂ (ρ2, ·), this relaxes the constraint
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at the second partition and makes the perturbation feasible. Figure 12b depicts why this change
benefits the firm.

(a) Increase c1 and move ρ2 to the right. (b) Decrease c2 and move ρ1 to the right.

Figure 12: Improvement arguments for Step 4 of the proof.

Let ¤ρ be the threshold correlation between the two partitions. Fixed δ > 0. By continuity of
π̂ (ρ, c) with respect to ρ there exists ε2 such that if | ρ1− ρ2 |< ε2 then | π̂ (ρ1, c1) − π̂ (ρ2, c1) |< δ4 .
Take ε2 small enough such that if c1 < 0 then ε2 < −δ

4c1 and if c1 > 0 then ε2 < δ
4c1 .

Let ε = min{ε1, ε2}. Putting all our calculations together we obtain that

π (ρ1) + c1( ¤ρ − ρ1) = π̂ (ρ1, c1) + c1( ¤ρ − ρ1)
> (π̂ (ρ2, c1) − δ4 ) −

δ
4

= π̂ (ρ2, c2) + δ − δ2
> π̂ (ρ2, c2) + δ4 + c2(ρ2 − ¤ρ)
> π̂ (ρ2, c2) + c2(ρ2 − ¤ρ)
≥ π (ρ2) + c2(ρ2 − ¤ρ),

but this implies that the pasting condition is not satisfied. This is a contradiction because the
insurer’s optimal profit function π is convex, and therefore it is continuous. Therefore, there
cannot exist such elements of the partition.

An analogous argument leads to a contradiction in the case in which c2 ≤ cRS (ρ2).

Step 5. Finally, we argue that in the optimal contract, there can be at most two elements of the
partition that generate the same profit’s slope c . Lemma 4 implies that π̂ (·, c) is convex. Therefore,
a contract with three different messages that generate the same slope is trivially dominated by a
contract with only two different messages that lead to the same slope.

So, the partition in the optimal contract can contain only a finite number of elements.
�

Proof of Lemma 3. Notice thatE(ρ) > ρ∗. FromProposition 1we obtain that as η → ∞, xRSb (ρ) =
1 and xRSa (ρ) → 1 if ρ > ρ∗, and xRSa (ρ) = 1 and xRSb (ρ) → 1 otherwise. That is, the contract that
is offered in Rothschild-Stiglitz benchmark becomes independent of the correlation. Therefore, the
insurer can approximate the optimal profits at each point by offering only one contract that consists
of the Rothschild-Stiglitz menu at the ex-ante expected correlation. In the limit, when the insurer
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offers full insurance to both types, and obtains profit equal to η2 .
If instead the insurer decides to offer more than one contract, he has to face a non-vanishing

cost that is imposed by the convexity constraint. Actually, from the proof of Lemma 4 can be
observed that π̂ (ρ, c) is always smaller and away from η

2 as long as c ≠ ka −kb , the contract’s slope
that is generated by the full insurance contract. Therefore, in the limit the insurer cannot improve
upon having just one contract. �

8.4 Formal statement and proof for Section 6.1

Note that the global maximum for the lower red curve in Figure 7 is at a new point to the right
of ρ∗. We call this new peak as ρ̂∗. We can now state the main result for the introduction of
competition by an insurer that does not have access to big data.

Proposition 7. Define ρ̂∗∗ such that E[ρ | ρ < ρ̂∗∗] = ρ̂∗, and let I0 the insuree’s information rent at
the RS contract at ρe . Suppose ρe > ρ∗ and 2

3
(
µ ρ̂∗∗ (b) − µ ρ̂∗∗ (a)

)
> I0. Then we obtain the following

results:

• The insurer discloses less information when there is competition. With competition, there is a
pooling region in which the insurer sends the message r (ρ) = ρ̂∗. This pooling region is a superset
of the pooling region without competition.

• The insurer’s ex-ante expected profit is lower with competition. The ex-ante expected profits in the
pooling region ρ̂∗ are strictly smaller with competition than without competition.

• Total surplus is the same in the pooling regions with and without competition. Total surplus
is weakly larger with competition than without competition in the full disclosure region with
competition.

• If I0 > µ ρ̂∗ (b) − µρ∗ (b), ex-post consumer surplus is point-wise strictly larger with competition
than without competition for correlations that belong to the pooling region without competition.
Consumer surplus is always weakly larger for correlations in the full disclosure region with com-
petition.

An analogous result follows if E[ρ] < ρ∗.

Proof. The proof is divided into 3 steps.

Step 1. We first characterize the insurer’s optimal profits when ρ is common knowledge and
there is competition, that is, the lower red curve in Figure 7.

Suppose E[ρ] > ρ∗ and denote by I0 type b insuree’s information rent in the standard RS
problem. Recall that since E[ρ] > ρ∗ type a’s information rent is zero. Given that both the
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insuree and the insurer know that the correlation is ρ, the insurer problem is

max x ρ,pρ q1(pρ (a) − µρ (a)x ρ (a)) + (1 − q1) (pρ (b) − µρ (b)x ρ (b))

s.t. µρ (b)x ρ (b) −
η

2
(1 − x ρ (b))2 − pρ (b) ≥ −η

2
+ I0

µρ (a)x ρ (a) −
η

2
(1 − x ρ (a))2 − pρ (a) ≥ −η

2
µρ (b)x ρ (b) −

η

2
(1 − x ρ (b))2 − pρ (b) ≥ µρ (b)x ρ (a) −

η

2
(1 − x ρ (a))2 − pρ (a)

µρ (a)x ρ (a) −
η

2
(1 − x ρ (a))2 − pρ (a) ≥ µρ (a)x ρ (b) −

η

2
(1 − x ρ (b))2 − pρ (b)

This problem is analogous to RS problem, with the exception that the RHS of type b’s IR
constraint has increased by I0. This difference changes the set of restrictions that bind for each
correlation.

Consider first a correlation ρ < ρ∗. In RS problem, type b’s IR constraint and type’s a IC
constraint are the only that binds. This is still true in this case because only the RHS of type b’s IR
constraint has increased. Therefore, the optimal coverages are the same and the only difference is
that now the insurer has to decrease both prices by I0. Therefore, in this region the profit function
is still increasing and convex.

If instead ρ > ρ∗, RS contract might no be feasible, because according to proposition 1 type
b’s utility in RS contract is equal to uρ (b) = µρ (b) − µρ (a) − 1−q1

ηq1 (µρ (b) − µρ (a))
2 − η2 , and

this problem requires that it is at least equal to I0. Since uρ is strictly concave and by definition
uE[ρ ] = I0− η2 , there exist two thresholds ρ̃1 ≤ ρ̃2 such that uρ (b) < I0− η2 for ρ ∈ (ρ∗, ρ̃1)

⋃( ρ̃2, ρ̄)
and uρ (b) > I0− η2 for ρ ∈ ( ρ̃1, ρ̃2). Then type b’s constraint I R should bind only for correlations
ρ ∈ (ρ∗, ρ̃1)

⋃( ρ̃2, ρ̄).
Now suppose that none of the IC constraints bind. Then x a (ρ) and x ρ (b) would be both

equal to 1 and pρ (b) = µρ (b) + η2 − I0 and pρ (a) = µρ (a) − η2 . Comparing both prices allow us
to find which IC constraint should bind: If pρ (b) > pρ (a), ie, µρ (b) − µρ (a) > I0, type b’s IC
constraint should bind and and in the opposite case type a’s IC constraint should bind. We denote
by ρ̂∗ the unique correlation for which µ ρ̂∗ (b) − µ ρ̂∗ (a) = I0. By definition of uρ (b) and I0 we
conclude that u ρ̂∗ < I0 − η2 and ρ̂∗ < E[ρ]. Convexity of uρ (b) and the fact that uE[ρ ] = I0 − η2
imply that ρ̂∗ < ρ̃1.

Therefore, for ρ > ρ̂∗ we have three sets of correlations: ( ρ̂∗, ρ̃1), ( ρ̃1, ρ̃2) and ( ρ̃2, ρ̄). In
the first and third set, type b’s IC and IR constraints and type a’s IR constraint bind. In this case,
the optimal coverages are x ρ (b) = 1 and x ρ (a) =

I0
µρ (b)−µρ (a) and optimal prices are equal to

pρ (b) = µρ (b) + η2 − I0 and pρ (a) =
µρ (a) I0

µρ (b)−µρ (a) +
η
2 − η2

(
1 − I0

µρ (b)−µρ (a)

)2
. Therefore, for these

correlations profits are equal to

η

2
− (1 − q1)I0 − q1

η

2

(
1 − I0
µρ (b) − µρ (a)

)2
.

This function is clearly decresing since I0 < µρ (b) − µρ (a) and µρ (b) − µρ (a) is increasing in ρ.
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Further, this profit function is strictly convex iff µρ (b) − µρ (a) > 3
2 I0, this is, this profit function

is locally concave close to ρ̂∗.
In the set ( ρ̃1, ρ̃2) only type b’s IC constraint and type a’s IR constraint bind. Then the optimal

coverages and prices are exactly the same as in RS problem. Therefore, the profit function in this
set is strictly decreasing and strictly convex.

Finally, we need to characterize the optimal contract for correlations in the set (ρ∗, ρ̂∗). If only
type b’s IR constraint and type a’s IC constraint bind the optimal coverages would be x ρ (b) =

1 + q1
(1−q1)η (µρ (b) − µρ (a)) and x ρ (a) = 1 and prices would be pρ (b) = η

2 − I0 + µρ (b)x ρ (b) −
η
2
(
1 − x ρ (b)

)2 and pρ (a) =
η
2 − I0 + µρ (a)x ρ (a) + x ρ (b) (µρ (b) − µρ (a)). However, with this

contract type a’s utility is equal to I0− (µρ (b) − µρ (a))x ρ (b) − η2 . Therefore, if (µρ (b) − µρ (a)) +
q1

(1−q1)η (µρ (b) − µρ (a))
2 > I0, which by definition is true close to ρ∗, constraint IR should bind.

In that case x ρ (b) = I0
µρ (b)−µρ (a) , pρ (b) is obtained from the same formula and pρ (a) = η2 + µρ (a).

Let ρ̃3 be the unique correlation at which (µ ρ̃3 (b) − µ ρ̃3 (a)) +
q1

(1−q1)η (µ ρ̃3 (b) − µ ρ̃3 (a))
2 = I0.

Therefore, for ρ ∈ (ρ∗, ρ̃3) the structure of the solution is the same as the RS contract for
correlations ρ > ρ∗. Then, in this set, the profit function is strictly increasing and convex. The
profit function in the set ( ρ̃3, ρ̂∗) is equal to

η

2
− (1 − q1)I0 − (1 − q1)

η

2

(
1 − I0
µρ (b) − µρ (a)

)2
,

which is strictly increasing since in this case I0 > µρ (b) − µρ (a), and as in the set ( ρ̂∗, ρ̃1) before,
it is concave close to ρ̂∗ and strictly convex far from it.

In summary, with competition the insurer’s profit funtion has unique global and local maxi-
mum at the correlation ρ̂∗, strictly increasing to the left of this correlation and strictly decreasing
to its right. Further, it is locally concave close to that correlation, and strictly convex for the rest
of the support.

Step 2. In this step, we use the argument in the proof of Proposition 2 to show that the insurer’s
optimal message function has the same structure that in the case without competition.

First, it is clear that the insurer wants to send the same message m for all correlations ρ < ρ̂∗

and assigns for some correlations ρ > ρ̂∗ in order to make sure that ones that insuree observes
the message m, the insuree’s posterior expected correlation is exactly equal to ρ̂∗. As in the proof
of Proposition 2 one can argue that to maximize the probability that is assign to this message
r (ρ) = m iff ρ < ρ̂∗∗ with ρ̂∗∗ the correlation defined as the unique correlation for wich E[ρ |
ρ < ρ̂∗∗] = ρ̂∗.

Now, by assumption µ ρ̂∗∗ (b) − µ ρ̂∗∗ (a) > 3
2 I0. According to the first step, this condition

guarantees that the profit function at any correlation ρ > ρ̂∗∗ is strictly convex. Therefore the
insurer wants to disclose all information for any correlation ρ > ρ̂∗∗.

Therefore, we conclude that the first bullet-point in the statement is satisfied.
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Step 3. Finally, we make some comparisons in terms of the insurer’s profits, the insuree’s infor-
mation rent (or consumer surplus) and in terms of total surplus to see how efficiency is affected.

First, by strict convexity of the profit function without competition the optimal expected prof-
its without competition for correlations ρ < ρ̂∗∗ are larger than πRS ( ρ̂∗). Since, with competition,
at ρ̂∗ both types IC constraints bind and type a’s IR constrint bind, but withput competition, ty-
poe a’s IC constraint does not, the profits at this correlation with competition has to be strictly
smaller than πRS ( ρ̂∗). Further, for each correltion at which there is perfect information disclosure
with competition, there is perfect disclosure withpout competition, and the increase of the outside
option in type b’s IR constraint can only reduce profits.

Second, total surplus is the same at the pooling regions because both with and without com-
petition both types of insurees obtain a contract which provides full insurance. For correlations,
ρ > ρ̂∗∗ > ρ̃, we show in Step 1, that with competition type b’s coverage is equal to RS coverage
in type’s a coverage is either larger or equal than RS coverage, depending on whether type b’s IR
constraint binds or not. Therefore, in this region total surplus is weakly larger.

Third, consider a correlation ρ in the pooling region without competition. Type b’s ex-post
consumer surplus is equal to µr ℎo(b)− µρ∗ (b) and type a’s consumer surplus is equal to µr ℎo(a)−
µρ∗ (a), both without competition. When there is competition this correlation still belongs to the
pooling region, type b’s ex-post consumer surplus is equal to µr ℎo(b) − µ ρ̂∗ (b) + I0 and type
a’s consumer surplus is equal to µr ℎo(a) − µ ρ̂∗ (a). As ρ̂∗ > ρ∗, and µρ (b) is increasing in ρ
and µρ (a) is decreasing in ρ, we inmediately conclude that type a’s ex-post consumer surplus is
always larger with compwtition and type b’s ex-post consumer surplus is larger with competition
iff I0 > µ ρ̂∗ (b) − µρ∗ (b).

Finally, consider a correlation ρ in the full-disclosure region with competition, this is, ρ >
ρ̂∗∗ > ρ̃. Type b’s information rent is larger or equal with competition depending on whether type
b’s IR constraint binds or not. Type a’s information rent is zero both and without competition.
Therefore, with competition none of the types is worst off. �
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