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1 Introduction

Different monetary theories emphasize different roles of money and different equilibrium
equations to determine the price level. The Fiscal Theory of the Price Level (FTPL) stresses the
role of broad money, inclusive of nominal government debt, as a store of value and links deter-
mination of the price level to the sustainability of government debt. Its key equation equates
the real market value of debt, i.e., the nominal debt level, Bt, divided by the price level, Pt, to
the fundamental value. The fundamental value of government debt is the expected discounted
present value (PV) of the stream of future primary surpluses – the difference between the gov-
ernment revenues and expenditures excluding interest payments. According to the FTPL, the
price level adjusts to achieve equality between the market value and the fundamental value,
such that debt remains sustainable.

In this paper, we expand the FTPL, so that it even applies in settings with bubbles. In such
environments, the key debt valuation equation emphasized by the FTPL may no longer hold
because government debt can have a bubble component. Instead, a more general equation takes
its place:

Bt

Pt
= Et[PV(primary surpluses)] + bubble. (1)

Including the typically ignored bubble term is important to reconcile the theory with em-
pirical debt valuation puzzles. For the United States, Jiang et al. (2019) suggest that the price of
U.S. Treasury debt significantly exceeds the present value of primary surpluses. For Japan, the
standard debt valuation equation without a bubble term appears to be even more at odds with
the data. The fact that since the 1960s Japan’s primary surpluses were mostly negative and with
no positive future primary surplus in sight does not square well with the bubble-less valuation
equation.1

Theoretically, bubbles can exist whenever the real interest rate is persistently below the
growth rate of the economy, i.e., whenever r ≤ g. It is well known that this can be the case
in overlapping generations models (Samuelson 1958), models of perpetual youth (Blanchard
1985), and incomplete market models with uninsurable idiosyncratic risk à la Bewley (1980). In
this paper, we spell out the details of the FTPL with a bubble in a simple illustrative model with
uninsurable idiosyncratic risk based on Brunnermeier and Sannikov (2016a,b) in which r ≤ g
arises naturally as a precautionary savings demand depresses r.

Our key contribution is to expand the FTPL uniqueness reasoning to make it compatible

1This empirical evidence is, of course, not just an issue for the FTPL. The same valuation equation also holds in
conventional theories, but is there interpreted as an “intertemporal government budget constraint”. We adopt here
the interpretation of a valuation equation in line with the FTPL. In fact, in the presence of bubbles, it is unclear how
exactly this equation constrains government policy.

1



with the possibility of bubbles, which present a significant challenge to the conventional FTPL
argument. The existing FTPL literature is merely concerned with multiplicity of the price level
that arises from nominal indeterminacy. In a setting with bubbles, two additional layers of
multiplicity emerge: First, equilibria with and without bubbles may coexist. Second, when
bubbles do exist, they may be attached to different assets in different equilibria. A bubble on
government debt is merely one possibility. In other equilibria, other assets may have bubble
components, such as corporate bonds or crypto assets. Because a potential bubble component
affects the real value of nominal government debt, all three layers of multiplicity might interact
and affect the price level and inflation via equation (1).

We show how appropriate fiscal policy can not only uniquely determine the price level but
also select the unique bubble equilibrium in which the bubble is attached to government debt.
The key idea is to adjust policy off-equilibrium, should the bubble on government debt burst or
deflate. Specifically, we propose a threshold policy whereby the government commits to tax
hikes that prop up the value of its debt if it were ever to fall below a given threshold value.
The resulting capital gains bondholders would experience in such an event make it optimal for
them to hold on to the bonds in the first place, so that in equilibrium, the value of debt never falls
below the threshold.

Ruling out no-bubble equilibria merely requires that the government commits to a minimal
threshold that would trigger taxation after an extreme drop in the real value of its debt. Such a
fiscal rule rules out not only the no-bubble equilibrium, but also equilibria in which the bubble
deflates over time.

A threshold policy is, in principle, also suitable to ensure that the bubble is associated with
government debt instead of any other asset. However, accomplishing this additional goal is
more challenging and can impose additional restrictions on suitable thresholds that trigger tax-
ation. The threshold required depends on the issuance rate of bonds relative to that of the other
asset. If the issuance rate of bonds is lower, the bubble on the other asset has to grow faster
in any alternative equilibrium, ultimately crowding out the bubble on the government bond.
Hence, any threshold that imposes an effective lower bound on the value of government debt
can ultimately eliminate these equilibria. The same policies that rule out the no-bubble equi-
librium also achieve this additional goal. In contrast, if the issuance rate of bonds is at least as
large as that of the other asset, too low thresholds do not rule out all equilibria with bubbles on
other assets. The reason is that in these alternative equilibria the bubble on government debt
never fully deflates and hence may not fall below the threshold. To ensure that the bubble is
fully attached to the government debt in this case, the government has to commit to raise pri-
mary surpluses immediately, if the debt value were to drop (off-equilibrium) only marginally
below the full bubble value.
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The fact that the proposed threshold policy promises off-equilibrium actions that are never
observed in equilibrium raises the issue of credibility. In the context of our model, we for-
mally analyze credibility of the off-equilibrium backing by relaxing the assumption of perfect
commitment. That analysis yields a sharp prediction. When fiscal policy cannot commit to off-
equilibrium tax hikes, it is still able to eliminate both the no bubble equilibrium and all bubbles
on assets whose supply grows at a faster rate than the government’s bond growth rate along the
desired equilibrium path. But it is no longer able to eliminate bubbles on assets whose supply
grows at a slower rate. The reason is that ruling out the former type of equilibria requires future
governments to react only if the value of government debt becomes very small. Because gov-
ernment bonds serve as a safe asset that allows agents to partially overcome incomplete market
frictions, such a future government will find it optimal to provide additional government debt
even if it has to be backed with taxes.

We also discuss alternative policies that are specifically directed at preventing certain bub-
bles on assets other than government debt. Such policies include insolvency laws that rule out
private Ponzi schemes and holding restrictions or taxation of specific assets. When most or all
assets in the economy are liabilities of entities subject to insolvency laws, these laws are gener-
ally effective in ruling out alternative bubble equilibria. Crypto assets such as bitcoin are not
affected by insolvency laws, and hence additional regulation of these assets may be required to
prevent bubbles on them and to preserve debt sustainability when credibility of off-equilibrium
taxation is in question. Our paper thus provides a new rationale for the regulation of crypto as-
sets.

Besides raising the question of uniqueness and bubble fragility, a public debt bubble has also
beneficial implications for debt sustainability: the debt bubble represents a fiscal resource. By
“printing” bonds, the government imposes an inflation tax that reduces the return on the bonds.
Since government bonds are a bubble, the government in a sense “mines a bubble” to generate
seigniorage revenue. This seigniorage revenue can be used to finance government expenditures
without ever having to raise extra taxes. There is a limit to bubble mining seigniorage, however.
As more aggressive bubble mining reduces the attractiveness of government bonds as a store
of value, private agents try to substitute away into other assets or reduce their total savings. As
with traditional inflation taxes, bubble mining can erode the tax base. A Laffer curve emerges.

We also study optimal debt issuance policy. A positive rate of bubble mining with perpetu-
ally negative primary fiscal surpluses can be the optimal policy prescription, since bubble min-
ing discourages bond holdings and boosts physical capital investments and thereby economic
growth. Importantly, the optimal debt issuance policy only corrects for pecuniary externalities
but it never reacts to the size of or need for public expenditures. The main takeaway is that
welfare-maximizing policy should rely on taxes, not bubble mining, as the marginal funding
source for (additional) public expenditures.
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Literature. This paper contributes to the FTPL literature and its antecedent on the importance
of fiscal arrangements in monetary economies (e.g. Sargent and Wallace, 1981). Classic refer-
ences for the FTPL are Leeper (1991), Sims (1994), and Woodford (1995). For more compre-
hensive treatments see Leeper and Leith (2016) and Cochrane (2021). That literature considers
bubble-free environments. An exception is Bassetto and Cui (2018) who study the validity of
the FTPL in low interest rate environments.2 While they conclude that the FTPL breaks down,
we show that more sophisticated fiscal rules can ensure a unique price level.

Our paper is also related to an extensive literature on rational bubbles (e.g. Caballero and
Krishnamurthy 2006, Farhi and Tirole 2012, Martin and Ventura 2012, 2016, Miao and Wang
2012, 2018, Asriyan et al. 2021). Recent survey papers include Miao (2014) and Martin and
Ventura (2018).3 A common theme in this literature is the existence of bubbles on assets issued
by private agents and how these bubbles alleviate financial frictions. In contrast, our paper
emphasizes bubbles on government debt and how such bubbles generate fiscal space. Closest
to our discussion of equilibrium uniqueness is Asriyan et al. (2021) who show that monetary
policy can select a unique equilibrium path for bubbly money and the price level out of a given
pre-selected set of equilibria that are constrained by a “market psychology” that determines
the evolution of private bubbles. By connecting the uniqueness question with the FTPL, we
derive results that are considerably more far-reaching: using off-equilibrium fiscal backing,
fiscal policy can select a unique equilibrium out of the set of all possible equilibria.

Our uniqueness argument also relates to papers that seek to rule out hyperinflationary equi-
libria in models of fiat money. Wallace (1981), Obstfeld and Rogoff (1983), and Tirole (1985)
show how policy interventions such as partial commodity backing or reserve requirements can
ensure equilibrium uniqueness in models with money in the utility function or with bubbly
money, respectively. The fiscal strategy we propose can accomplish the same, but is consider-
ably broader in scope, as we show that it can also rule out equilibria with bubbles on other assets
than government debt.4 This broader scope connects our paper with work on multi-currency
environments such as Kareken and Wallace (1981) or Sargent and Smith (1997). In addition of
allowing for alternative bubbly assets, we also investigate when policies that ensure uniqueness
remain credible under imperfect commitment.

2Like Bassetto and Cui (2018), Farmer and Zabczyk (2020) also study the FTPL in an OLG model and conclude
that the FTPL is unable to resolve equilibrium multiplicity. However, their result is based on indeterminancy in
the underlying real model that is not directly related to either bubble multiplicity or indeterminacy of nominal
valuations.

3This paper abstracts from aggregate risk and then bubbles can exist if the risk-free rate r is below the economic
growth rate g, consistent with the empirical evidence. However, r < g does not necessarily imply the existence of
bubbles in all models, like in models with aggregate (disaster) risk and complete markets (e.g. Bohn 1995, Barro
2021, Mehrotra and Sergeyev 2021).

4In Wallace (1981) and Obstfeld and Rogoff (1983), money is by assumption the only possible store of value
and medium of exchange, respectively. Tirole (1985) does allow for bubbles on alternative assets, but his reserve
requirement does not ensure uniqueness (it only eliminates asymptotically bubble-free equilibria).
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The possibility to run perpetual deficits through bubble mining relates our paper to the lit-
erature on debt rollovers in OLG models (Diamond 1965, Ball et al. 1998, Blanchard and Weil
2001, Blanchard 2019). In an influential recent contribution, Blanchard (2019) concludes that
public debt may have no fiscal cost. Brumm et al. (2021) dispute Blanchard (2019)’s conclusion
by presenting four settings in which public debt expansion is not the ideal policy to overcome
the fundamental frictions causing the low interest rate. Methodologically, this literature does
not established a link to bubbles, but considers the dynamic stability properties of the debt-to-
gdp ratio. In contrast, our paper emphasizes that the perpetual deficits are possible precisely
when there is a public debt bubble. In our analytically tractable example, we provide the con-
ditions for the possibility of public debt bubbles, delineate the limits of bubble mining, and
characterize optimal bubble mining policy. Our FTPL focus also allows us to make progress on
the question of how policy can prevent coordination on adverse alternative equilibria, an issue
that Blanchard (2019) recognizes as important, but ultimately ignores.

Our characterization of optimal bubble mining relates to literature on the optimal quantity
of debt in Aiyagari (1994) models, without (Aiyagari and McGrattan, 1998) and with bubbles
(Domeij and Ellingsen, 2018). These papers study quantitative numerical solutions while we
provide analytical characterizations. More loosely related are Aguiar et al. (2023), who show
how debt expansions in Aiyagari (1994)-type models can be used to generate robust Pareto
improvements, and Angeletos et al. (2021) and Sims (2022), who study optimal taxation and
debt smoothing à la Barro (1979) when government debt enters the utility function. Unlike our
paper, these papers are not concerned with resolving equilibrium multiplicity or establishing a
link between a socially optimal positive quantity of debt and the ability of the government to
commit to off-equilibrium tax backing.

Since circulation of a previous draft, some recent papers have taken up and extended the
core insights from our paper. Like this paper, Reis (2021) emphasizes the bubble as a fiscal
resource that has implications for debt sustainability, but his focus is on the interaction with
other policies while we focus on FTPL aspects and optimal bubble mining. Brunnermeier et
al. (2021a) develop a safe asset theory of government debt based on a model related to ours
but with aggregate risk. Kocherlakota (2021) studies a bubble on government debt caused by
tail risk. Kocherlakota (2022) and Li and Merkel (2020) study monetary and fiscal policy in
New Keynesian models with government debt bubbles and show that monetary policy may be
inferior to fiscal policy in stabilizing inflation and the output gap. The uniqueness argument
based on fiscal backing made in this paper serves as a theoretical underpinning for the (often
implicit) equilibrium selection made in all of these papers.
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2 Model

There are several model structures in which rational bubbles can exist and thus the bubble
term can emerge in the debt valuation equation (1). We illustrate this in a simple example based
on a streamlined variant of Brunnermeier and Sannikov (2016a) without banks.5

In our model, bubbles can emerge due to incomplete idiosyncratic risk sharing. Govern-
ment debt may circulate as a bubble because bond trading allows agents to self-insure against
idiosyncratic shocks. We further include an alternative asset that is intrinsically worthless but
may also circulate as a bubble. This asset competes with the government bond as a safe store of
value.

While, in our view, incomplete idiosyncratic risk sharing is a plausible mechanism to gener-
ate bubbles, we emphasize that this modeling choice is not crucial for our key results. The main
insights from our paper should equally apply to other environments in which a bubble term in
equation (1) is possible.6

In this section, we briefly outline the model elements and present the solution. Additional
formal details and derivations are presented in Appendix A.1.

Environment. There is a continuum of households indexed by i ∈ [0, 1]. All households have
identical logarithmic preferences

Vi
0 := E

[∫ ∞

0
e−ρt log ci

tdt
]

with discount rate ρ.

Each agent operates one firm that produces an output flow aki
tdt of a perishable output

good, where ki
t is the (physical) capital input chosen by the firm. Absent market transactions of

capital, capital of firm i evolves according to

dki
t

ki
t
=

(
Φ
(

ιit

)
− δ

)
dt + σ̃dZ̃i

t,

where ιitk
i
tdt are physical investment expenditures of firm i (in output goods), Φ is a concave

function that captures adjustment costs in capital accumulation, δ is the depreciation rate, and
Z̃i is an agent-specific Brownian motion that is i.i.d. across agents i. Z̃i introduces firm-specific
idiosyncratic risk. To obtain simple closed-form expressions, we choose the functional form

5The model version without banks has previously been analyzed in Brunnermeier and Sannikov (2016b) and Di
Tella (2020). These papers frame the model as a model of money. Here, we add fiscal policy and reinterpret money
as bonds. The bond interpretation is also adopted in the safe asset framework of Brunnermeier et al. (2021a).

6A previous version of this paper also contained a second example based on the perpetual youth model. To make
space, we have removed this model.
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Φ (ι) = 1
ϕ log

(
1 + ϕι

)
with adjustment cost parameter ϕ ≥ 0 for the investment technology.

The key friction in the model is that agents are not able to share idiosyncratic risk. While
they are allowed to trade physical capital and risk-free assets, they cannot write financial con-
tracts contingent on individual Z̃i histories. As a consequence, all agents have to bear the id-
iosyncratic risk inherent in their physical capital holdings.

Besides households, there is a government that funds government spending, imposes taxes,
and issues nominal bonds. The government has an exogenous need for real spending gKtdt,
where g is a model parameter and Kt :=

∫
ki

tdi denotes the aggregate capital stock. The govern-
ment levies proportional output taxes (subsidies, if negative) τt on households. Outstanding
government debt has a nominal face value of Bt and pays nominal interest it. Bt follows a con-
tinuous process dBt = µB

t Btdt, where the growth rate µB
t is a policy choice of the government.

The government chooses the policy instruments τt, it, µB
t as functions of histories of prices tak-

ing g as given and subject to the nominal budget constraint7

bond growth in excess of payouts︷ ︸︸ ︷(
µB

t − it

)
︸ ︷︷ ︸

=:µ̆B
t

Bt +

(nominal) primary surpluses︷ ︸︸ ︷
Pt (τta − g)︸ ︷︷ ︸

=:st

Kt = 0, (2)

where Pt denotes the price level. µ̆B
t can be interpreted as the rate at which the government

dilutes the claim of existing bond owners to future primary surpluses.

Unlike capital, government bonds are free of idiosyncratic risk and therefore represent a
safe store of value for households. We do not assume that government bonds are special in this
regard but allow for the possibility of a competing safe store of value. Specifically, households
have access to an additional (non-perishable) asset that is intrinsically worthless and exists in
limited supply8 – for concreteness called cryptocoin. To keep matters simple, we assume that
the nominal supply of cryptocoins, Ct, grows at a constant exogenous rate,

dCt = µ̆CCtdt,

where µ̆C ≥ 0 is a model parameter. We furthermore assume that, if µ̆C > 0, newly gener-
ated cryptocoins are produced by capital. Under this assumption, seigniorage from cryptocoin
growth accrues to capital owners symmetrically to how a higher dilution rate µ̆B

t of government
bonds leads to lower capital taxes (compare equation (2)). The quantity of cryptocoins at t = 0,
C0, is initially owned by households according to some exogenously given distribution. Like

7Letting policy depend on histories of endogenous price paths is common in the FTPL literature to discuss what
happens off-equilibrium and important for our selection results in Section 4.

8While we limit attention to a single additional asset, this is without loss of generality. We could always combine
the portfolio of all such assets in the economy into a single one.
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capital and government bonds, households can trade cyptocoins on Walrasian asset markets.

The model is closed by the aggregate resource constraint

Ct + gKt + It = aKt, (3)

where Ct :=
∫

ci
tdi is aggregate consumption and It :=

∫
ιitk

i
tdi is aggregate investment.

Price Processes and Returns. At each date, agents can exchange four goods on Walrasian
markets: the output good, capital, bonds, and cryptocoins. Three variables are sufficient to
characterize all relative prices. The first is qK

t , which denotes the price of a single unit of physical
capital in terms of the output good. As a second variable, we could use nominal price level Pt,
which is the price of the output good in units of nominal bonds. However, it turns out to be
more convenient to use the transformation qB

t := Bt/Pt
Kt

, which is the ratio of the real value of
total government debt to total capital in the economy.9 As a third variable, we denote similarly
by qC

t the ratio of the real value of all cryptocoins to total capital.

Households can trade three assets, bonds, cryptocoins, and capital. We denote the real re-
turns on these assets by drBt , drCt , and drK,i

t (ιit), respectively. The return on capital depends on
the household’s own choice ιit of the physical investment rate. Explicit expressions for the three
returns are relegated to the appendix. Here, we merely emphasize that drK,i

t (ιit) is risky due to
idiosyncratic capital risk, whereas drBt and drCt are both risk-free.

Household Problem. Let ni
t denote the net worth of agent i, which consists of capital, bond,

and cryptocoin holdings. Denote by θB,i
t , θC,i

t the shares of total net worth the agent invests into
bonds and cryptocoins, respectively. Because agents can freely adjust portfolios at all times, the
household problem can be formulated in terms of the single state variable ni

t. Net worth evolves
according to

dni
t

ni
t
= − ci

t

ni
t︸︷︷︸

=:ĉi
t

dt + drK,i
t

(
ιit

)
+ θB,i

t

(
drBt − drK,i

t

(
ιit

))
+ θC,i

t

(
drCt − drK,i

t

(
ιit

))
. (4)

The household takes the initial net worth ni
0 and the returns drBt , drCt , and drK,i

t (·) as given10

and chooses the consumption-wealth ratio {ĉi
t}t≥0, real investment {ιit}t≥0, and the portfolio

shares {θB,i
t }t≥0 and {θC,i

t }t≥0 to maximize utility Vi
0 subject to the net worth evolution (4) and a

standard solvency constraint ni
t ≥ 0 that precludes Ponzi schemes.

9It is more convenient to work with this normalized version of the inverse price level 1/Pt because the latter
depends on the scale of the economy and the nominal quantity of outstanding bonds in equilibrium, whereas qB

t
does not.

10For the capital return, the function drK,i
t (·) is taken as given but the household understands how choosing ιit

affects the ultimate return drK,i
t (ιit).
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Equilibrium. Informally, a competitive equilibrium is a set of time paths for prices, govern-
ment policies, and allocations such that all households solve their decision problem given prices
and government policies and markets clear.11 The market clearing conditions are12

ĉt(qB
t + qC

t + qK
t ) + g+ ιt = a goods market clearing

θB
t (q

B
t + qC

t + qK
t ) = qB

t bond market clearing

θC
t (q

B
t + qC

t + qK
t ) = qC

t cryptocoin market clearing

An admissible government policy rule is, loosely speaking, a rule that maps histories of
prices into values of the policy instruments τt, it, and µB

t such that the government budget
constraint (2) is satisfied after all histories. Some care must be taken in how to interpret the
constraint in the case qB

t = 0. In this case, it is not feasible for the government to fund a negative
primary surplus, st = τta − g < 0, because no finite amount of new bond issuance will collect
any real resources. However, it is still feasible to generate a positive primary surplus, st > 0
because the government’s taxation power does not cease to exist when bonds become worthless.

We provide a formal equilibrium definition in Appendix A.1.1.

Model Solution. We state and solve the HJB equation of households in Appendix A.1.2. The
first-order conditions for the four choices can be written as

ci
t = ρni

t, permanent income consumption

qK
t =

1

Φ′
(

ιit

) , Tobin’s q

Et[drK
t (ι

i
t)]

dt
− r f

t =
(

1 − θB,i
t − θC,i

t

)
σ̃2, Merton portfolio for capital

drBt
dt

=
drCt
dt

= r f
t , no arbitrage

where r f
t denotes the risk-free rate.

The first condition is the familiar log-utility consumption rule. The agent optimally con-
sumes a constant fraction of total net worth at all times. The second condition equates the
market value of an installed unit of capital to the marginal cost of physical investment. The
third condition equates the excess return on capital with the required risk premium for bearing

11Throughout this paper, we limit attention to equilibria that are deterministic and feature absolutely continuous
price paths. This is not crucial for any of our results. However, considering non-time-continuous price paths and
equilibria driven by sunspot noise leads to additional technical complications that make the mathematical argu-
ments considerably more involved without generating additional economic insights.

12To be precise, the equations stated here are only the correct clearing conditions if all agents make the same
choices. This is indeed the case in equilibrium as shown in Appendix A.1.2.
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idiosyncratic risk. The fourth condition states that bonds and cryptocoins must both earn the
risk-free rate.

By combining these optimal choice conditions with market clearing, the model can be fully
solved up to two dynamic equations for the values qB

t of bonds and qC
t of cryptocoins. Instead

of using qB
t and qC

t directly, we normalize the values by total net worth, as this leads to simpler
equations. Specifically, we use the notation

ϑB
t :=

qB
t

qB
t + qC

t + qK
t

, ϑC
t :=

qC
t

qB
t + qC

t + qK
t

,

for the shares of total wealth due to bonds and cryptocoins, respectively.

Proposition 1. In any equilibrium,

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ
, qK

t = (1 − ϑt)
1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qB
t = ϑB

t
1 + ϕ (a − g)

1 − ϑt + ϕρ
, qC

t = ϑC
t

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

where ϑt = ϑB
t + ϑC

t is the share of total wealth due to safe assets. Furthermore, ϑB
t and ϑC

t satisfy the
equations

ϑB
t =

∫ ∞

t
e−ρ(s−t)

(
σ̃c

s − µ̆B
s

)
ϑB

s ds, (5)

ϑC
t =

∫ ∞

t
e−ρ(s−t)

(
σ̃c

s − µ̆C
)

ϑC
s ds, (6)

where σ̃c
t = (1 − ϑt)σ̃ is the (common) idiosyncratic consumption growth volatility faced by all house-

holds.

In particular, the first part of this proposition implies that asset values, physical investment,
and the consumption allocation13 only depend on the combined safe asset share ϑt but not on
the composition of the safe asset portfolio, i.e. the split into ϑB

t and ϑC
t .

Equations (5) and (6) represent valuation equations that relate the values of bonds and cryp-
tocoins to two future flows. Equation (5) relates ϑB

t positively to the future path
(
σ̃c

t
)2 of the

residual idiosyncratic consumption growth variance faced by households. This is a measure of
the value of the self-insurance “services” provided by safe bonds to households. The equation
also relates ϑB

t negatively to the future path of µ̆B
t , which measures the dilution of the claims

of existing bond holders through the issuance of new bonds in excess of what is required to
fund nominal interest payments. Equation (6) is the analogous condition for ϑC

t . Cryptocoins

13The consumption allocation is implied by asset values because log utility agents consume a fraction ρ of wealth.
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provide the same self-insurance “services” as government bonds, whereas their dilution rate
may differ.

Steady-State Equilibria. We now focus on steady-state equilibria with constant paths for the
policy variables µ̆B and τ and for the asset prices qB, qC, and qK – and hence constant ϑB and
ϑC. In these equilibria, equations (5) and (6) simplify to

ϑB =
(σ̃c)2 − µ̆B

ρ
ϑB, ϑC =

(σ̃c)2 − µ̆C

ρ
ϑC (7)

For any given value for µ̆B , there are four types of possible steady state equilibria:14

1. There is always a non-monetary, no-bubble steady state in which both government bonds
and cryptocoins are worthless, qB = qC = 0.15

2. There is at most one “monetary steady state” in which government bonds have a positive
value and cryptocoins are worthless, qB > 0, qC = 0. In this equilibrium, if it exists,

ι =

√
ρ + µ̆B (a − g)− ρσ̃√

ρ + µ̆B + ϕρσ̃
, qB =

(
σ̃ −

√
ρ + µ̆B

) (
1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

, qK =

√
ρ + µ̆B (1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

.

These formulas describe a valid equilibrium if the value of capital and the value of bonds
are both positive. This is the case if and only if idiosyncratic risk is sufficiently large,

σ̃2 > ρ + µ̆B . (8)

In this equilibrium, government debt may or may not have a bubble component depend-
ing on the sign of µ̆B . We return to this issue in Section 3.

3. Symmetrically, there is at most one “crypto bubble steady state” in which cryptocoins
have a positive value and government bonds are worthless, qC > 0, qB = 0. This equilib-
rium is isomorphic to the second type except that cryptocoins take the role of government
bonds.16 This equilibrium exists if and only if σ̃2 > ρ + µ̆C . In this equilibrium, crypto-
coins always must have a bubble component because they have a positive value despite
being intrinsically worthless.

4. Finally, there may be steady state equilibria in which both government bonds and cryp-
tocoins coexist with a positive value. From equations (7) we observe that this is only
possible if µ̆B = µ̆C =: µ̆. Economically, this makes sense as only then government bonds
and cryptocoins are diluted at the same rate, so that a constant exchange rate is consistent

14The exercise here is to fix µ̆B and let s be implicitly defined by the government budget constraint.
15In this equilibrium, the price level is infinite, P = ∞, and the government does not raise any primary surplus.
16In particular, the same equations for ι and qK hold but with µ̆B replaced by µ̆C .
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with no arbitrage. As before, these equilibria exist if idiosyncratic risk is sufficiently large,
σ̃2 > ρ + µ̆. If this is the case, there is a continuum of stationary steady state equilibria
with the same total safe asset value

qB + qC =

(
σ̃ −

√
ρ + µ̆

) (
1 + ϕ (a − g)

)√
ρ + µ̆ + ϕρσ̃

,

but an undetermined split into government bonds (qB) and cryptocoins (qC). This is rem-
iniscent of Kareken and Wallace (1981) exchange rate indeterminacy.

We remark that the previous discussion only focuses on steady-state equilibria. There can be
other, nonstationary, equilibria in which both cryptocoins and government bonds coexist with
a positive value. A policy rule that holds µ̆B constant after every price history can therefore
be consistent with multiple competitive equilibria. In Section 4 we show how a simple off-
equilibrium modification to such a policy rule can select the monetary steady state as the unique
equilibrium whenever it exists.

3 Transversality Conditions and Existence of Bubbles

Using the notation of our model, the debt valuation equation (1) with a bubble takes the
following form:17

Bt

Pt
= qB

t Kt = Et

[∫ ∞

t

ξ i
s

ξ i
t
ssKsds

]
+ lim

T→∞
Et

[
ξ i

T

ξ i
t

qB
TKT

]
. (9)

Here, ξ i
t := e−ρt 1

ci
t

denotes the SDF process of household i.18 Relative to the conventional valu-
ation equation, the limit in the second term may not vanish because government debt can have
a bubble component. More generally, we say for any asset that it has a bubble component if
its market value exceeds its fundamental value. We define the fundamental value as the dis-
counted present value of the asset’s cash flows where cash flows are discounted using the SDF
ξ i generated by the marginal utility of the marginal holder of the asset. Note that for the total
public debt stock – as opposed to individual bonds – the fundamental value is precisely the
present value of primary surpluses.

A bubble component is possible in our model because government debt serves as a store
of value that is free of idiosyncratic risk and thus allows agents to self-insure against their risk

17We provide a generic derivation of this equation in Appendix A.2.
18Because primary surpluses and the value of total debt are free of idiosyncratic risk, all agents i agree on the

present values in equation (9).
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exposures. In this section, we discuss why the private-sector transversality condition may not
rule out the existence of a bubble despite the infinite lifespan of all agents. The key insight is
that a bubble on government debt can exist because agents do not buy and hold government
bonds, but optimally trade them. Such trading makes their individual bond portfolios look very
different from the aggregate bond stock.19 We remark that symmetric arguments also apply for
cryptocoins. However, for simplicity, we discuss here only government debt bubbles in the
monetary steady state with qC ≡ 0.

Let bi
t := θB,i

t ni
t be the real value of agent i’s bond holdings. For each individual agent, a

transversality condition for bond holdings is necessary for an optimal choice:

lim
T→∞

E
[
ξ i

Tbi
T

]
= 0.

This transversality condition appears to suggest that it should not be possible to have a nonzero
bubble term in the debt valuation equation (9). However, this argument overlooks that individ-
ual bond wealth bi

T that enters the transversality condition differs from the aggregate value of
bonds qB

TKT that enters the valuation equation. The aggregate bond stock qB
TKT evolves deter-

ministically, yet individual bond wealth bi
T is optimally chosen to be stochastic because agents

constantly rebalance their portfolios in response to idiosyncratic shocks. Agents thus discount
bi

T at a risk-adjusted rate that takes into account their idiosyncratic risk. As idiosyncratic risk
cancels out in the aggregate, when valuing a fixed fraction of the outstanding bond stock, as in
the debt valuation equation (9), the relevant discount rate from the perspective of all agents is
instead the risk-free rate.

Formally, we have ci
t = ρni

t and ni
t ≥ bi

t (because capital wealth is positive), so that

E
[
ξ i

Tbi
T

]
= e−ρT 1

ρ
E

[
bi

T

ni
T

]
≤ 1

ρ
e−ρT → 0 (T → ∞)

and thus the individual transversality condition is clearly satisfied in any of the steady-state
equilibria determined in Section 2. Yet, when determining agent i’s time-0 valuation of the
entire government bond stock at time T, we obtain (up to a scaling constant)

E

[
ξ i

T

∫
bj

Tdj
]
= E

[
ξ i

TqBKT

]
∝ e−r f TqBKT = e(g−r f )TqBK0,

where g := Φ(ι) − δ is the (steady-state) output growth rate. The latter expression does not
converge to zero, if r f ≤ g. In this case, a bubble is possible in equation (9).

The difference in the second equation is the presence of the dj-integral. This integral av-

19While we discuss here the specific case of our model, this insight holds generally for any rational bubble model.
In the absence of equilibrium trades, individual transversality conditions are sufficient to rule out bubbles.
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erages out idiosyncratic shocks and changes the risk characteristics relative to the individual
bond portfolios in the integrand. All individual bond portfolios bi

T have idiosyncratic fluctu-
ations that are negatively correlated with agent i’s SDF ξ i

T. The effective discount rate in the
individual transversality condition therefore contains a covariance term (risk premium) that
raises the discount rate above r f . For the total bond stock, idiosyncratic risk averages out and
discounting happens at the risk-free rate.

Nothing in the model prevents the bubble existence condition r f ≤ g. Indeed, the growth
rate of the economy equals the capital growth rate and the risk-free rate equals the return on
bonds. In the monetary steady state,

r f = g − µ̆B . (10)

Consequently, r f ≤ g, if and only if µ̆B ≥ 0. By the government budget constraint (2), µ̆B ≥ 0
if and only if primary surpluses are nonpositive. In addition, a nonnegative value of µ̆B is
consistent with the existence condition (8) of the monetary steady state if idiosyncratic risk is
sufficiently large relative to the time preference rate, σ̃2 ≥ ρ. In this case, households’ precau-
tionary motive generates a sufficiently strong savings demand to sustain a bubble on govern-
ment bonds.

The possibility of r f ≤ g is also not merely a theoretical curiosity. Historically, real interest
rates on government bonds of advanced economies have mostly been below the growth rate.
Even Abel et al. (1989), who are often cited as providing evidence against the existence of ratio-
nal bubbles, report that the safe interest rate r f is smaller than g. With the more recent decline
in r f , as stressed by Blanchard (2019), the evidence for r f < g has become more clear-cut. See
also Geerolf (2013) and Lian et al. (2020).

4 Price Level Determination and Equilibrium Uniqueness

A core theme in the FTPL literature is the question of price level determinacy, i.e. whether
across the set of possible equilibria, there is a unique prediction for the price level. In many
model environments, including ours, price level determinacy requires the equilibrium itself to
be unique.

Uniqueness is not a purely technical issue but of economic importance. Price level determi-
nacy has always been a concern in monetary economics, ultimately because an indeterminate
price level casts doubt on the ability of government policy to control inflation. In the presence
of a bubble, the uniqueness question becomes an even bigger concern. If there is multiplicity,
then a bubble on government debt is an inherently fragile arrangement. Markets could coor-
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dinate any time on a different equilibrium, the government would lose the bubble on its debt
and would either have to replace its value with a larger fundamental value by raising surpluses
or accept an inflationary collapse of its currency (or default). Exploiting a bubble by mining
it could then be a very risky proposition because it would expose the government’s debt to
sunspot revaluations that would have to be met with large and sudden fiscal corrections. In
contrast, if there is a policy that can select a unique equilibrium with a bubble, then a bubble
can in fact be a stable arrangement that is not threatened by shifts in market beliefs.

In this section, we show how fiscal policy can both determine the price level and ensure
a stable bubble value that remains attached to government debt. We first briefly revisit the
conventional FTPL arguments and discuss how the possible presence of a bubble complicates
the situation. We subsequently provide a formal discussion in the context of our model. We
ultimately conclude that fiscal price level determination as studied in the FTPL literature still
works in the presence of a bubble, albeit the details of how to implement such a policy have to
be adapted.

4.1 Fiscal Policy as an Equilibrium Selection Device in the Previous Literature

Price Level Determination in the FTPL without Bubbles. In the standard FTPL, price level
determination is often explained by starting from the key equation (1) (without a bubble) and
interpreting it as an asset pricing equation. A holder of the total stock of government debt
who absorbs all new issuances in the future receives as a cash flow in each period precisely the
stream of primary surpluses. Like the value of a stock is determined by the present value of its
future dividends, the value of government debt should thus be determined by the present value
of its future cash flows, the primary surpluses. Because the nominal price level is the relative
price between nominal bonds and consumption goods, this is the correct “asset price” that
must adjust to clear the bond market.20 If fiscal policy ensures that the present value of primary
surpluses is unique, then precisely one value of debt and thus one price level is consistent
with the (bubble-free) debt valuation equation (1), which is the main reason why this is the
key equation of the theory. The simplest way to ensure a unique present value is by assuming
that policy commits to a fully exogenous sequence of primary surpluses. This assumption is
commonly made in the FTPL literature, but it is by no means essential for the FTPL to work.

How Bubbles Challenge this Intuition. In the presence of a bubble, the previous intuition
breaks down because the size of the bubble is not determined by the present value identity itself.
There is, however, an alternative intuition about the economic mechanism behind the FTPL that
centers on goods market clearing and wealth effects and that remains fully operational when

20To be precise, the price level is the relative price between a maturing bond and consumption goods, while there
are additional bond prices for longer-term bonds that depend on the term structure of nominal rates.
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bubbles are possible.21 A larger real value of government bonds, holding taxes constant, means
bonds represent more net wealth for the private sector, which increases consumption demand
through a wealth effect. The equilibrium price level is the price level at which consumption
demand equals consumption supply.

Still, this mechanism can generally not ensure a unique prediction for the price level in an
environment with bubbles. Goods market clearing only determines the size of aggregate net
wealth consisting of the pre-tax value of capital and the aggregate bubble, the sum of all bubble
values in the economy. Even if the value of capital is given, there is no economic force that
suggests that the residual, the aggregate bubble, should be attached to government debt. There
could be bubble components on other assets, so that government debt has a smaller bubble
component and a lower value. In addition, also the value of capital wealth is typically not given
because discount rates depend on the presence and size of bubbles. Goods market clearing
therefore at best imposes an upper bound on the real value of government debt, but it does not
pin it down uniquely.

Based on this reasoning, one may be tempted to conclude that in an environment with bub-
bles, fiscal policy is generally unable to select a unique equilibrium and thereby pin down the
price level. This is the conclusion of Bassetto and Cui (2018) in the context of a dynamically
inefficient OLG model. They study constant tax policies that are not contingent on the price
level and conclude that “the FTPL breaks down in [their] OLG economy” (p. 13).22 In contrast
to their conclusion, we show in the remainder of this section how fiscal price level determina-
tion can succeed even in the presence of bubbles when the government’s tax policy is made
contingent on the price level. Our analysis highlights the importance of contingent policy that
raises positive surpluses at least off-equilibrium to deliver fiscal price level determination.23

Our argument proceeds in three steps. We first consider positive surplus policies that elim-
inate all bubbles, including on government debt, and thus restore the standard fiscal theory
intuition. By construction, such policies are unable to deliver uniqueness in the presence of an
equilibrium bubble. However, we show in a second and third step that the elimination of all
bubbles can be used as an “off-equilibrium threat” to select a unique bubble equilibrium. The
second step focuses on the special case that a bubble can at most be attached to government
bonds. In this case, uniqueness requires merely the elimination of all asymptotically bubble-free
equilibria. Our fiscal strategy is then very similar to the ones proposed by Wallace (1981) and,
in particular, Obstfeld and Rogoff (1983) to eliminate hyperinflationary equilibria in monetary
economies. These strategies are specifically designed to rule out asymptotically non-monetary

21This alternative intuition is in fact the original economic story told by Woodford (1995).
22Bassetto and Cui (2018) do not discuss the possibility of bubbles explicitly. But it is our interpretation that their

result is ultimately due to bubble multiplicity in their framework.
23A contingent policy specification is also more desirable, because an uncontingent commitment to primary

deficits, as analyzed by Bassetto and Cui (2018), is not feasible in the sense of Bassetto (2005).
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equilibria. However, we do not stop there. In a third step, we show under which conditions
the same policy specification can still ensure uniqueness even when bubbles can also emerge
on other assets than government debt. This is a significant extension because, with alternative
bubbly assets, merely ruling out asymptotically bubble-free equilibria is no longer sufficient.

4.2 Fiscal Policy as an Equilibrium Selection Device in Our Model

Positive Surplus Policies and Elimination of All Bubbles. We start by observing that wealth
effects limit the total value of private-sector net wealth by an upper bound proportional to
available resources. Any bubble (on any asset) represents net wealth, so that the aggregate
bubble value cannot persistently outgrow the economy. As a consequence, the expected long-
horizon growth rate of the bubble component on any asset cannot exceed the growth rate of
the economy, g, and therefore no bubble on any asset can exist in an equilibrium that features
r f > g in the long run.

More precisely, a sufficient condition for the absence of bubbles is

lim
T→∞

E [ξTYT] = 0, (11)

where YT denotes aggregate output at time T. If output growth and the risk-free rate are con-
stant, then this condition is equivalent to r f > g.

In the monetary steady state of our model, a positive surplus-capital ratio s > 0 necessarily
implies r f > g. This follows immediately from the risk-free rate equation (10) and the govern-
ment budget constraint (2). This steady state must therefore be bubble-free. We now argue that
a similar conclusion applies more generally: if the government commits to a positive surplus
policy by choosing24

τt =
s + g

a
, µ̆B

t = − s
qB

t
, (12)

any equilibrium consistent with this policy specification must satisfy condition (11) and, thus,
no bubbles can exist.

Intuitively, if r f ≤ g, at least on average, then the present value of primary surpluses would
be infinite and government debt would have infinite value.25 Indeed, we have the inequality

B0

P0
≥ E

[∫ ∞

0
ξtsKtdt

]
=

s
a

E

[∫ ∞

0
ξtYtdt

]
.

If condition (11) is violated, then the integral on the right does not converge and thus B0/P0 =

24This is always consistent with the government’s flow budget constraint (2) and thus a feasible policy specifica-
tion after any price history.

25A possible bubble component can only increase the value of debt.
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∞. However, then also total net wealth must be infinite in contradiction to our previous argu-
ment that wealth effects bound the ratio of total net wealth to output from above.26 Therefore,
condition (11) must be satisfied in any equilibrium under this policy.

The previous argument implies that a positive surplus policy is inconsistent with bubbles.
In Appendix A.3.2 we establish that then the equilibrium is indeed unique.

Proposition 2. If government policy is specified by (12) with s ∈ (0, a − g],27 then there is a unique
equilibrium. That equilibrium coincides with a monetary steady state and the initial price level P0 is
uniquely determined.

The key takeaway from this proposition is that the conventional FTPL without bubbles re-
mains valid in an environment where bubbles are possible, if the government commits to posi-
tive primary surpluses at all times. Such a commitment also destroys the possibility of bubbles
and therefore restores the conventional intuition.

We remark, however, on the following subtlety in the previous argument. For the argument
to work, it is crucial that the process of taxation to back government debt generates net wealth
for the private sector. Otherwise, there would be no reason why the total value of debt has
to be bounded. Instead, any positive wealth effect from higher debt would simply be offset
by a negative wealth effect from the additional tax liability. This is not the case in our models
because Ricardian equivalence does not apply to proportional output taxes.28 Backing of debt
with surpluses would fail to select a unique bubble-free equilibrium if the government used
taxes that are consistent with Ricardian equivalence and thus failed to generate net wealth.29

Uniqueness with an Equilibrium Bubble. We now discuss how government policy can select
a unique equilibrium with a bubble under the additional assumption that a bubble can only be on
government debt, i.e. cryptocoins are not available, qC

t = 0. Even under this assumption, the
equilibrium is not necessarily unique as the debt bubble can take multiple values.

Specifically, we are interested in the selection of a steady state equilibrium with a bubble.
By Proposition 2 any such equilibrium must be associated with a non-positive primary surplus.
However, except for the special case of zero surpluses, the government cannot simply choose a
constant surplus policy rule of the form (12) with s ≤ 0. This is not a feasible policy rule because
the government cannot commit to funding deficits with bond issuance even after histories in
which bonds are worthless.30

26Total net wealth at t = 0 is B0/P0 + qK
0 K0 (and possibly larger if other assets have bubble components). While

higher taxes depress the second component, qK
0 K0, this component cannot become negative. Hence, an infinitely

large value of debt cannot be offset by an infinitely large present value of future taxes.
27We impose the additional upper bound a − g to ensure that taxes τt do not exceed 1.
28Individual tax liabilities are contingent on individual idiosyncratic shock histories, so that individuals discount

their future tax liability at a higher rate than the return on bonds.
29In our model, this would be the case if surpluses were raised exclusively by imposing lump-sum taxes.
30Feasibility considerations aside, such a policy would also fail to attain uniqueness because of the Laffer curve
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An alternative is to consider a policy rule that fixes µ̆B ≥ 0 at a constant level and adjusts
surpluses st such that the government budget constraint (2) holds after any price history. Under
the assumption (8), we have shown in Section 2 that this policy is consistent with two steady-
state equilibria: a monetary steady state with (scaled) bond value qB∗ > 0 and a non-monetary
steady state in which qB = 0. In addition, there is a continuum of nonstationary equilibria in
complete analogy to the well-known situation in OLG models.

To derive economic intuition for the structure of these equilibria, note that a larger value of
government bonds tends to raise the real interest rate. This is the case because a higher bond
wealth allow households to better self-insure against idiosyncratic risk and thereby weakens the
precautionary motive. If the initial bond value was qB

0 > qB∗, the interest rate would therefore
be higher than in the monetary steady state. Such a higher (required) interest rate must be
associated with a higher rate of appreciation of qB

t , as otherwise households would no longer be
willing to hold bonds.31 In an equilibrium with qB

0 > qB∗, agents would have to expect an even
larger bond value qB

t in the future. Clearly, the same reasoning then also holds for any future
period. Hence, in such an equilibrium, bond valuations would have to growth without bounds,
which is inconsistent with market clearing (and wealth effects).

Symmetrically, if 0 < qB
0 < qB∗, the interest rate would have to be lower than in the monetary

steady state. At the lower interest rate, households would increase their bond demand unless
they expect qB

t to depreciate over time. However, unlike in the case qB
0 > qB∗, a decaying path

for qB
t is indeed consistent with an equilibrium. All such equilibrium paths have the property

that qB
t converges asymptotically to 0, the non-monetary steady state.

While intuitive and usually correct, the previous arguments do not apply universally for all
model parameters. The reason is that movements in endogenous physical investment induced
by changes in the bond value can sometimes have opposing effects on the interest rate. How-
ever, this issue can easily be fixed by normalizing the value of bonds differently and, instead of
using qB

t , considering the share ϑB
t of bonds as a proportion of total wealth. In Appendix A.3.1,

we show that any equilibrium must be associated with a path for ϑB
t that is contained in the

interval [0, 1] and solves an ordinary differential equation (ODE) of the form

ϑ̇B
t = f

(
ϑB

t

)
ϑB

t + µ̆B
t ϑB

t (13)

with some function f .32 This equation captures the same economic intuition as previously de-
scribed. But it is mathematically more convenient: the key feature is that the function f is always
strictly increasing in ϑB

t .

discussed in Section 5. This is essentially the observation of Bassetto and Cui (2018).
31This is the case because a fixed µ̆B keeps the dilution rate of bonds, the effective “dividend yield”, constant.
32Equation (13) can be obtained by taking the time derivative in equation (5).
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Equation (13) verifies the previous intuitive argument formally. With constant µ̆B ≥ 0, the
right-hand side of equation (13) is of course zero for ϑB

t = ϑB∗, the steady-state value associated
with the monetary steady state. Because f is strictly increasing, ϑB∗ is an unstable steady state
of the forward evolution implied by equation (13). All solutions with larger or smaller ϑB

t drift
away from ϑB∗. The larger solutions eventually cross 1 at which capital values become negative.
These are purely mathematical solutions that do not correspond to equilibrium paths. The
smaller solutions decay and converge asymptotically to the stable steady state ϑ = 0. Hence,
there is a continuum of solution paths that remain inside [0, 1]. This continuum can be indexed
by the initial value ϑB

0 ∈
[
0, ϑB∗

]
. All but one of these equilibria converge to 0.

Convergence to 0 of all equilibrium paths with the exception of the monetary steady state
suggests a simple strategy for selecting the latter. Suppose a policy maker is somehow able to
convince households that the equilibrium value of ϑB could never fall below a positive thresh-
old ϑ > 0. Then a value of government debt below the monetary steady state is no longer
consistent with any equilibrium path.

These considerations suggest the following off-equilibrium modification of the fiscal policy
rule to achieve equilibrium uniqueness: fix an arbitrary threshold 0 < ϑ ≤ ϑ∗ and, whenever
ϑt falls below ϑ, switch from a constant debt growth rule (constant µ̆B) to a positive surplus
rule as discussed previously for as long as ϑt < ϑ. This works because, as we have shown
previously, the positive surplus rule implies a unique equilibrium with a positive value of debt.
Furthermore, an expectation of the regime change cannot become self-fulfilling: the value of
debt under the positive surplus rule is so large that ϑt > ϑ∗ ≥ ϑ and thus the threshold criterion
would be violated if the positive surplus policy was permanently in place.

Formally, this threshold policy is given

τt =


−µ̆BqB

t +g
a , ϑt ≥ ϑ

s+g
a , ϑt < ϑ

, µ̆B
t =

µ̆B , ϑt ≥ ϑ

− s
qB

t
, ϑt < ϑ

, (14)

where µ̆B ≥ 0 and s > 0 are given constants. As we show in detail in Appendix A.3.3, the
threshold rule (14) implies that the right-hand side of ODE (13) becomes even more negative as
ϑB

t falls below ϑ and, most importantly, remains negative even for ϑB
t = 0. As a consequence,

any mathematical solution with initial condition ϑB
0 < ϑB∗ would eventually lead to ϑB

t < 0,
which is inconsistent with an equilibrium. Households could only be convinced that bond
valuations are so low despite the government’s commitment to positive primary surpluses if
they expected future bond values to become negative. Such a belief cannot be rationally held
because it is inconsistent with free disposal of bonds.

Proposition 3. Suppose the government follows the threshold policy (14) with threshold ϑ ∈ (0, ϑB∗]
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and surplus s > 0. Then there is a unique equilibrium among equilibria that satisfy qC ≡ 0. This
equilibrium does not depend on ϑ or s and satisfies ϑB

t = ϑB∗ for all t.

We emphasize that our policy rule modifies fiscal policy only off-equilibrium. Along the
equilibrium path, the government is free to choose any rate of bubble mining µ̆B , effectively
selecting the monetary steady state.

Bubbles on Other Assets. We now remove the assumption that only government debt can
have a bubble by considering also equilibria in which cryptocoins have positive value, qC

t > 0.
Our main result is that the same threshold policy as studied previously can rule out bubbles
on other assets, too, if either the supply of these assets grows sufficiently fast or the taxation
threshold ϑ is tight, i.e. ϑ = ϑB∗.

It is again convenient to use the fractions ϑB
t and ϑC

t of total wealth that is due to government
bonds and cryptocoins, respectively, to analyze equilibrium dynamics. Recall also that ϑt =

ϑB
t + ϑC

t denotes the wealth share due to all safe assets combined. When cryptocoins can have
positive value, equilibrium dynamics are described by two ODEs in analogy to equation (13):

ϑ̇B
t = f

(
ϑB

t + ϑC
t

)
ϑB

t + µ̆B
t ϑB

t , (15)

ϑ̇C
t = f

(
ϑB

t + ϑC
t

)
ϑC

t + µ̆CϑC
t , (16)

where f is the same increasing function as before.

Now, f (ϑt) depends on the total value of safe assets because both government bonds and
cryptocoins equally allow households to self-insure against idiosyncratic risk. A higher value
of either lowers the precautionary motive and raises the interest rate. This observation is impor-
tant. Consider again a policy that keeps µ̆B constant and denote by ϑB∗ the associated monetary
steady state value in the steady state with ϑC = 0. If the value of government bonds is below
this steady-state value, ϑB

t < ϑB∗, it no longer follows that also ϑt < ϑB∗. Instead, a sufficiently
large cryptocoin bubble can fill the gap. A higher value of safe assets raises the required interest
rate, so that we can no longer conclude that agents must expect ϑB to decay. This opens up the
possibility for equilibria in which bonds retain a positive value asymptotically, yet their value
is smaller than in the desired monetary steady state. The simplest example of such equilibria is
the continuum of steady state equilibria in which which bond and cryptocoin bubbles coexist
in the special case µ̆B = µ̆C .

Outside of the special case µ̆B = µ̆C , the set of equilibria for a constant µ̆B policy is illustrated
in the left column of Figure 1. That figure plots phase diagrams for dynamics of ϑB

t and ϑC
t

implied by ODEs (15) and (16).

In the top left panel, the growth rate of cryptocoins exceeds the dilution rate of govern-
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ment bonds. There are three steady state equilibria depicted by the colored circles. Additional
non-stationary equilibria can start either on the blue solid line or below it. The latter type of
equilibria converge asymptotically to the locally stable no-bubble steady state at the original
(orange circle). The former type of equilibria travels along the blue line downward over time
and converges asymptotically to a saddle-path stable steady state in which only cryptocoins
retain value (blue circle). The only equilibrium in which bonds retain value asymptotically is
the – locally unstable – monetary steady state (red circle). Hence, in this case there are no other
equilibria in which bonds retain a positive value asymptotically, just as in the case without
cryptocoins.

The bottom left panel, in contrast, depicts the same situation in the case that the growth
rate of cryptocoins is smaller than the dilution rate of government bonds. In this case, the
stability properties of the monetary and the pure cryptocoin steady states flip (hence the change
of color). All saddle-path stable non-stationary equilibria that originate on the blue line now
travel upward over time towards the monetary steady state. Therefore, all these equilibria also
have the property that bonds retain their value even asymptotically.

The economic difference between the top left and the bottom left panel lies in the no-arbitrage
condition between bonds and cryptocoins. If cryptocoins are diluted at a larger rate than bonds,
µ̆C > µ̆B , then households are only willing to hold cryptocoins if they expect them to appreciate
in value relative to government bonds over time at rate µ̆C − µ̆B . Because the aggregate bubble
is bounded (relative to the size of the economy), this is only possible if ϑB

t shrinks over time.
Asymptotically, the cryptocoin bubble dominates the economy. Conversely, symmetry consid-
erations imply that the exact opposite conclusion must hold if cryptocoins are diluted at a lower
rate than bonds, µ̆C < µ̆B . In this case, bonds must appreciate over time relative to cryptocoins
in any equilibrium. For such equilibrium paths, the bond bubble can be very small initially, yet
it always remains strictly bounded away from zero.

These considerations suggest that a threshold policy of the type (14) may still succeed to
select the monetary steady state, even for an arbitrarily small taxation threshold ϑ > 0, when
cryptocoins grow sufficiently fast (µ̆C > µ̆B). If the threshold policy is still capable of eliminat-
ing any equilibria in which ϑB

t falls below ϑ, then the dynamics in the top left panel of Figure 1
suggest that only the monetary steady state remains. Indeed, the structure of equation (15) is
sufficiently similar to that of equation (13) that we can still show that there cannot be an equilib-
rium path for which ϑB

t falls below the threshold. The economic intuition is as before: if ϑB ever
fell below ϑ, this low valuation of bonds would only be consistent with the positive surplus
policy if agents expected ϑB to fall even below 0 in finite time. Such an expectation is not con-
sistent with an equilibrium. For the case µ̆C > µ̆B , the dynamics under a threshold policy are
depicted in the top right panel of Figure 1. In this case, only the monetary steady state remains
a valid equilibrium.
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Figure 1: Phase diagrams illustrating typical dynamics of ϑB (vertical axes) and ϑC (horizontal axes) under a
constant µ̆B policy (left column) and a threshold policy (right column), respectively. The top row illustrates the case
of fast cryptocoin growth, µ̆B < µ̆C . The bottom row the case of slow cryptocoin growth, µ̆B > µ̆C . Gray vector
fields indicate the direction of change over time, black solid lines the regions where either ϑB

t or ϑC
t is locally constant.

Possible equilibria with the exception of those converging to (0, 0) asymptotically are depicted by the colored circles
and the blue solid lines. Circles depict steady state equilibria, their colors encode stability properties: red: locally
unstable, yellow: locally stable, blue: saddle-path stable. The blue solid lines depict saddle-path stable equilibrium
paths toward the blue steady state.
Under a constant µ̆B policy (left column), the bubble-free steady state (0, 0) always exists and is a point of attraction
for all starting points below the blue line. Under a threshold policy (right column), these trajectories cross the
horizontal axis in finite time and are no longer valid equilibria.
In the case µ̆B < µ̆C (top row), the desired monetary steady state is unstable and the threshold policy eliminates
all other equilibria as well. In the case µ̆B > µ̆C (bottom row), the monetary steady state is the limit point of the
saddle-path stable trajectory. The parts of the trajectory above the threshold remain valid equilibria even under a
threshold policy. Only if ϑ = ϑB∗, the saddle path reduces to the unique steady state.
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The situation is, unfortunately, less favorable for the policy if µ̆C ≤ µ̆B . Even in this case, the
policy is still able to rule out equilibria for which ϑB

t falls below the threshold ϑ. But, as we have
discussed before, there are many equilibria that feature an asymptotically large bond wealth
share ϑB

t . The bottom right panel of Figure 1 depicts this situation. Under the threshold policy,
the two steady states with no bond bubble and all equilibria that converge asymptotically to
(0, 0) are inconsistent with the policy. But there is still a continuum of equilibria for any initial
point on the blue line. This is the same blue line as without a threshold policy (bottom left
panel), but only points above the threshold remain valid equilibrium solutions.

This leads us to the conjecture that a single threshold policy still succeeds in selecting a
unique equilibrium, the one with a tight threshold, ϑ = ϑB∗. Then, there is no “space” left for
a bubble on cryptocoins. For any lower threshold ϑ < ϑB∗, the policy fails to select a unique
equilibrium if µ̆C ≤ µ̆B . In total, we obtain the following proposition.

Proposition 4. Under the threshold policy (14) (with s > 0), all equilibria have the property that
ϑB

t ≥ ϑ for all t. If ϑ = ϑB∗ or µ̆C > µ̆B , the equilibrium is unique and satisfies ϑB
t = ϑt = ϑB∗ for all t.

We remark that the distinction between µ̆C > µ̆B and µ̆C ≤ µ̆B affects the nature of the off-
equilibrium backing considerably. In the former case, any threshold ϑ works. Any promise of
arbitrarily small surpluses arbitrarily far in the future is sufficient to rule out all equilibria but
the one featuring a stationary public debt bubble. In the latter case, only ϑ = ϑB∗ works. The
fiscal authority must start raising surpluses immediately in response to any drop in the value
of debt below its equilibrium value.

We conclude this subsection with a remark regarding the connection with Obstfeld and
Rogoff (1983). That paper shows how an off-equilibrium commodity backing of money can rule
out hyperinflationary equilibria in models of money as a medium of exchange. The important
difference relative to our proposed policy is that their policy requires the government to hold
the stock of commodity backing in equilibrium. In contrast, in our approach, government debt
remains fully unbacked along the equilibrium path. The tax backing is a strict off-equilibrium
phenomenon.

In their setting, which is closer to the situation analyzed in Proposition 3, this may not
appear to be a major issue. Like the threshold ϑ in Proposition 3, the fraction of commodity
backing in the Obstfeld and Rogoff (1983) setting can be arbitrarily small. This is a consequence
of assigning the money role to a specific asset and not allowing for any competing moneys,
just like Proposition 3 does not allow for competing bubbles. However, once we do allow for
competing bubbles, as in Proposition 4, the backing threshold ϑ may have to be “large” (in the
case µ̆C ≤ µ̆B). In this case, the equivalent Obstfeld and Rogoff (1983) policy would reduce
to full commodity backing and thereby eliminate all bubbles in equilibrium, just like the positive
surplus policy in Proposition 2.
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4.3 Discussion

Beyond our Model. We have used a specific model to discuss how a suitable specification of
off-equilibrium fiscal backing can select a unique equilibrium in the presence of bubbles and
determine the price level. We wish to emphasize, however, that the key ideas remain valid
beyond this specific model.

First, we have in fact verified Propositions 3 and 4 also for one additional model. A previous
version of this paper has featured a second example based on a perpetual youth model. Both
propositions hold identically also for that model with identical proofs.

Second, we conjecture that the essence of the economic argument generalizes to other set-
tings. Proposition 3 follows immediately from the fact that ϑB∗ is an unstable steady state in the
forward evolution described by ODE (13). In a different model, as long as the value of govern-
ment debt or scaled version thereof (such as ϑB

t ) necessarily satisfies an equation like this with
strictly increasing f in any equilibrium, a variant of Proposition 3 will hold. Similarly, Proposi-
tion 4 ultimately only requires that ODEs (15) and (16) with strictly increasing f must hold in
any equilibrium.

Economically, we have traced the monotonicity of f to the fact that a larger bubble tends
to raise the equilibrium interest rate. This fact is true in any other rational bubble model we
are aware of. In rational bubble models, a lack of certain trading opportunities depresses the
interest rate below the growth rate. This is what creates room for bubbles in the first place.
Trade in the bubble mitigates the original trading friction and typically more so, the larger is
the size of the aggregate bubble. Therefore, larger bubbles tend to raise interest rates.

One sense in which our analysis appears more restrictive is that f does not depend on addi-
tional state variables of the model. However, such additional state variables do not necessarily
represent a challenge to our argument. For one, if the state variables evolve independently from
the value of government debt or other bubbly assets, such as in the case of exogenous variables,
our analysis easily generalizes. Second, even if the state variables do depend on the value of
government debt, they only represent a challenge to our argument if the feedback between the
value of debt and the state variable stabilizes the dynamics of the hypothetical expected future
value of debt required to justify a certain value today. While theoretically possible, it is unclear
why such a stabilizing feedback should only occur when bubbles are present but not under pos-
itive surplus policies that ensure a positive fundamental value of government debt. Therefore,
such a situation is most likely to be encountered in models that feature multiplicity even in the
absence of bubbles. In such a framework, no one would expect the FTPL to select a unique
equilibrium in the first place.
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The Monetary Approach to Price Level Determination. While the FTPL emphasizes fiscal
price level determination, the more conventional approach to resolve price level indeterminacy
is the “monetary” one based on active Taylor rules. This approach is less suitable for our pur-
poses for two reasons.

First, active Taylor rules only locally determine the price level but not globally. Other equi-
libria are typically consistent with a Taylor rule but are ruled out by ad-hoc requirements, e.g.
boundedness of inflation, that are not derived from economic conditions (e.g. Atkeson et al.
2010, Cochrane 2011). The FTPL, in contrast, can determine the price level globally. While this
is an issue unrelated to the presence of bubbles, it is particularly severe when there can also be
multiplicity due to bubbles. Local determinacy merely means that there are no other equilib-
ria arbitrarily close to a given reference equilibrium. But with bubbles, alternative equilibria
typically involve a bubble that bursts or jumps to another asset.33 These equilibria therefore
naturally feature outcomes that are “far away” from a reference equilibrium along some di-
mensions. Ruling out that private agents are able to coordinate their actions on such alternative
equilibria precludes such bubble bursts and jumps by assumption. Surely, the sustainability of
bubbly government debt should rest on a more solid foundation than such an assumption.

Second, and more importantly, the conventional “monetary” selection approach still comes
with fiscal requirements: it assumes that the fiscal authority faces equation (1) without a bubble
as an intertemporal budget constraint that restricts the set of admissible policies and forces
the fiscal authority to adjust surpluses “passively” in the background such that this constraint
holds for all prices. But such a constraint on fiscal policy precludes public debt bubbles from
the outset and is thus unsuitable for studying them. If we instead allow for the more general
equation (1) with bubbles, it is unclear in which sense this equation can be interpreted as an
intertemporal budget constraint and, consequently, how a more generalized notion of “passive”
fiscal policy would need to be defined to make the monetary approach workable. Adopting a
FTPL perspective avoids this difficulty.

The Nature of Equilibrium Selection. In line with a common tradition in macroeconomics,
and, in particular, monetary economics, we have pursued the question of unique implementa-
tion of an equilibrium by restricting attention to uniqueness of competitive equilibria starting
at time zero. This approach to unique implementation has been criticized by Kocherlakota et al.
(1999) in the context of the FTPL, and by Atkeson et al. (2010) more generally. The main concern
raised by Atkeson et al. (2010) is that this type of analysis allows for a trivial type of unique im-
plementation that they call implementation via non-existence (p. 59): “specify policies so that
no competitive equilibrium exists after deviation histories.”

33Due to the perfect foresight nature of our analysis, such “bursts” and “jumps” are to be interpreted as differences
in time-zero valuations across equilibria.
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While we agree in principle with the sentiment that uniqueness via non-existence is uninter-
esting economically, we wish to emphasize that this implementation strategy is not underlying
the uniqueness arguments of either the traditional FTPL or our paper. For the traditional FTPL,
Bassetto (2002) recasts the standard model into an explicit dynamic game and validates the key
predictions of the FTPL in this setting.

While also our model could be recast as an explicit game or, at least, formulated in the lan-
guage of “sophisticated equilibrium” inspired by game theory that was proposed by Atkeson
et al. (2010), we have decided not to pursue this approach in this paper. Such a reformulation
would significantly complicate the notation requirements and confound the basic economic
ideas discussed in this section. However, we briefly remark here why such a reformulation
would likely confirm the viability of our threshold policies to select a unique equilibrium.

Under the specific policies considered in this paper, we could restart time at a later date
t0 > 0 and obtain the exact same results as in Propositions 2, 3, and 4. The reason is that private
agent decision rules are purely forward looking and the specific government policy rule we
consider only depends on current prices but not on the history of past prices and allocations.
Therefore, there is always a unique (competitive) continuation equilibrium after any time-t0

history, not just after the equilibrium history from t = 0 to t = t0. The off-equilibrium “threat” to
back government debt with taxes does not select a unique equilibrium because no continuation
equilibrium exists after an off-equilibrium history. It selects a unique equilibrium because the
higher payout yield associated with positive primary surpluses makes bonds more attractive,
so that individual private households find it optimal to deviate and demand more bonds.

Despite the different context, the off-equilibrium prescription for fiscal policy in our setting
is therefore quite similar to the one emphasized by Bassetto (2002) in the context of the standard
FTPL. In that paper, the government raises additional taxes in off-equilibrium contingencies in
which private agents are not willing to purchase sufficient bonds required to fund a planned
deficit. These additional surpluses generate gains to bond holders and make bonds more at-
tractive in the first place.34

5 Mining the Bubble

In this section, we show how the government can mine a bubble, i.e. finance government
expenditures without ever raising taxes for them. We also discuss limits to bubble mining,
under which circumstances bubble mining is inflationary, and optimal bubble mining policy.

Throughout this section, we restrict attention to equilibria in which cryptocoins are worth-
less, qC

t = 0, and bonds remain asymptotically valuable. These assumptions are justified by the

34We wish to thank an anonymous referee for pointing out this connection.
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results of Section 4.

5.1 The Bubble as a Fiscal Resource

Recall that the primary surplus in the monetary steady state is given by sKt = (τta − g)Kt

where s = −µ̆BqB (by the government budget constraint (2)). Because capital grows at a con-
stant rate g in steady state, we can write the debt valuation equation (9) as

qBK0 = lim
T→∞

∫ T

0
e−(r f −g)tsK0dt︸ ︷︷ ︸
=:PVS0,T

+e−(r f −g)TqBK0

.

Provided qB > 0, equation (10) implies precisely three cases:

1. s > 0, µ̆B < 0: then r f > g, PVS0,∞ > 0 and a bubble cannot exist. This is the “conven-
tional” situation commonly considered in the literature.

2. s = µ̆B = 0: then r f = g, PVS0,∞ = 0 and there is a finite positive bubble whose value
exactly equals qBK0 and grows over time at the growth rate/risk-free rate.

3. s < 0, µ̆B > 0: then r f < g and thus the integral PVS0,T converges to −∞ as T → ∞. Yet,
qB is still positive, which is only possible if there is an offsetting infinite positive bubble.
These infinite values do not violate any no-arbitrage condition and are also not otherwise
economically problematic, since the bubble cannot be traded separately from the claim to
surpluses. Both are necessarily bundled in the form of government bonds. As long as
Bt
Pt

= qBKt is determined and finite in equilibrium, the model remains economically and
mathematically sensible despite the infinite values in the decomposition of the value of
government bonds.

In all three cases, the (possible) presence of a bubble represents a fiscal resource that grants the
government some extra leeway. Clearly in case 3, the government can run a perpetual deficit,
“mine the bubble” and never has to raise taxes to fully fund all government expenditures. In
case 2, the existence of the bubble is beneficial, because the value of government debt is positive
– allowing agents to self-insure against risk – despite the fact that the present value of primary
surpluses is zero. Even in case 1, government debt is more sustainable since an unexpected
drop of primary surpluses to zero results in a bubble instead of a total collapse of the value of
debt.
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5.2 The Bubble Mining Laffer Curve

In case 3 above, the bubble can become arbitrarily large. Does this mean that the government
faces no budget constraint and can expand spending without limits? The answer must of course
be no as real resources are still finite. Considering present value relationships can be misleading
when r f ≤ g. Instead, it is instructive to look at flow quantities.

Specifically, primary deficits per unit of capital are given by

−s = µ̆BqB.

The first factor, µ̆B , represents the rate of bubble mining: revenue raised by bond issuance that is
not distributed to bond holders in the form of interest payments. If it is positive, the claim of old
bond holders is diluted by the issuance of new bonds, i.e., a positive µ̆B effectively represents a
tax on existing bond holders.

The second factor, qB, is the tax base, the real value of existing debt (per unit of capital). If
this was unaffected by µ̆B , then the government could indeed generate arbitrarily large deficits
by bubble mining. However, private agents react do the dilution of their claims by reducing
bond demand. Thus, the tax base qB reacts negatively to an increase in µ̆B . A standard Laffer
curve intuition emerges.

We can see the reaction of qB to µ̆B explicitly from our closed-form solution in the monetary
steady state:

qB =

(
σ̃ −

√
ρ + µ̆B

) (
1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

.

This equation reveals two possible reasons how higher deficits may decrease qB. First, there
is a direct effect from increasing µ̆B . This emerges because higher debt growth makes bond
savings less attractive, reduces bond demand, and thereby lowers the fraction ϑB of wealth that
originates from bond wealth. If additional deficits are used to lower the output tax rate τ, as we
have assumed throughout, this is the only effect. However, if additional deficits were instead
used to fund government spending by raising g, qB would decrease further due to the presence
of the term a − g. This second effect is a consequence of the resource constraint (3): when the
government claims a larger share of output, consumption has to decline, which lowers all asset
values symmetrically.35

35This intuition breaks down for ϕ = 0, as then agents can convert existing capital goods freely into consumption
goods and instead the growth rate declines.
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5.3 Bubble Mining and Inflation

Is bubble mining inflationary? Not necessarily. Among steady-state policies the answer
depends on how the government mines the bubble, by issuing more debt or paying less interest,
and on the impact of policy on economic growth.

Specifically, by the Fisher equation, inflation in our models is

π = i − r f = i + µ̆B − g.

For a given nominal interest rate i, there is a direct inflationary effect from an increase in bubble
mining µ̆B . Higher bubble mining at a given interest rate requires the government to grow its
debt at a larger rate µB . When the growth rate is exogenously given, then this is the only effect.
But in general, there could be an additional indirect effect that operates through the growth rate
g. This is the case in our model: bubble mining decreases the attractiveness of bonds, making
the agents want to hold more physical capital, which stimulates real investment and increases
the steady-state growth rate g. This latter effect tends to be deflationary.

When the growth rate is endogenous, an increase in µ̆B may therefore in principle lower
the µ̆B − g term and thus inflation. However, this is unlikely to be the case for any realistic
calibration of our model: the effect on growth g is largest without capital adjustment costs
(ϕ = 0) and then

dg
dµ̆B =

dι

dµ̆B =
1
2

ρ

ρ + µ̆B
1

1 − ϑ
.

For µ̆B ≥ 0, this derivative can only be larger than 1 if ϑ > 1/2, that is if the majority of private
wealth is bond wealth. Despite the recent rise in the levels of public debt throughout advanced
economies, this condition is unlikely to be satisfied in the foreseeable future. The most plausible
situation is therefore the one in which the direct effect dominates the indirect growth effect.
Thus, for a fixed nominal interest rate i, an increase in bubble mining is inflationary.

The government can also offset the inflationary effect of bubble mining further by lowering
the interest rate i. This is possible whenever there is no binding lower bound on nominal interest
rates. If i fully offsets the rise in µ̆B , so that i + µ̆B = µB is unaffected, then only the indirect
deflationary effect due to higher growth remains. By using the policy tools of debt growth and
interest rate in the right proportion, the government can increase bubble mining in an inflation-
neutral way.

Note, however, that the previous discussion solely centers on the steady-state inflation rate
as a result of a steady-state level of bubble mining µ̆B . If the government was to announce more
aggressive bubble mining going forward, government debt would become less attractive and
its real value would have to fall, as we have seen in our Laffer curve discussion. This is brought

30



about in equilibrium by an inflationary upward jump in the price level.36

5.4 Optimal Bubble Mining

Even if bubble mining is possible, is it ever socially optimal for the government to engage in
mining? In this subsection, we characterize the optimal policy and draw two key conclusions:

First, a bubble facilitates trade in response to idiosyncratic shocks and mining the bubble
inhibits these beneficial trades. Optimal policy therefore only calls for a positive rate of bubble
mining, µ̆B > 0, if pecuniary externalities generate an equilibrium bubble that is “too large”.
Such a situation can arise in our model because the bubble crowds out real investment ιt. The
optimal policy balances a trade-off between growth and risk sharing and may call for a positive
rate of bubble mining, µ̆B > 0, if idiosyncratic risk is sufficiently large.

Second, the optimal degree of bubble mining is independent of the government spending
need g. This implies that, under the optimal policy, any additional government spending is
optimally funded by raising taxes, not by bubble mining.

Formally, expected utility of an agent with initial wealth share ηi
0 := ni

0/
(
(qB

0 + qK
0 )K0

)
is37

E

[∫ ∞

0
e−ρt log ci

tdt
]
=

log ηi
0 + log K0

ρ

+ E

∫ ∞

0
e−ρt

(
log

(
ρ
(
1 + ϕ (a − g)

)
1 − ϑt + ϕρ

)
︸ ︷︷ ︸

=log(a−g−ιt)

+
1

ϕρ
log

(
(1 − ϑt)

(
1 + ϕ (a − g)

)
1 − ϑt + ϕρ

)
− δ

ρ︸ ︷︷ ︸
=
(Φ(ιt)−δ)

ρ

− (1 − ϑt)
2 σ̃2

2ρ︸ ︷︷ ︸
=
(1−ϑt)

2
σ̃2

2ρ

)
dt

.

(17)

For arbitrary Pareto weights, a social planner would like to manipulate the safe asset wealth
share ϑt period by period to maximize the integrand in the second line.38 The first term in the
integrand is utility from consumption a − g− ιt, which is increasing in ϑt because a higher ϑt

depresses investment and leaves more resources for consumption. The second term is propor-
tional to the endogenous component Φ (ιt) of the growth rate, which is decreasing in ϑt. The
last term represents the reduction of utility due to idiosyncratic risk. Higher ϑt reduces residual
consumption risk (1 − ϑt) σ̃ and thereby increases this term.39

36If we were to add price stickiness to the model, this initial price level jump would translate into a transition
period of larger inflation. See e.g. Li and Merkel (2020) for a closely related model with sticky prices.

37We provide a derivation of this equation in Appendix A.4.
38This is the case because the second line is the same for all agents i, whereas the first line depends only on initial

conditions that cannot be affected by bubble mining policy.
39Representing the objective in this way highlights similarities to the classic analysis of the optimal quantity of

debt by Aiyagari and McGrattan (1998). In their framework, a larger value of government debt increases liquidity
by effectively relaxing borrowing constraints, but reduces the quantity of capital. Here, a larger debt wealth share
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Figure 2: Optimal policy versus no policy (µ̆B = 0) for ϕ = 0 as a function of σ̃/
√

ρ. The left
panel depicts the bond wealth share ϑ = ϑB, the right panel the associated bubble mining policy
µ̆B normalized by the time-preference rate ρ.

While ϑt is not a policy instrument, in the selected equilibrium it equals the bond wealth
share ϑB

t . The government can effectively control the latter by adjusting µ̆B
t . We show in the

appendix that there is a unique optimal solution ϑ∗ for ϑt, which is time-invariant, depends
only on ρ, σ̃, and ϕ, and is strictly increasing in idiosyncratic risk σ̃. Figure 2 depicts this optimal
bond wealth share ϑ and the bubble mining rate µ̆B required to implement it as a function of
idiosyncratic risk.40 It also compares the optimal policy to the competitive equilibrium without
policy intervention (µ̆B = 0). Relative to that benchmark, optimal policy backs the value of
government debt by primary surpluses (negative µ̆B) if risk is low. In these cases, the bubble
created by market forces is too small (for σ̃ >

√
ρ) or even absent (for σ̃ ≤ √

ρ) and risk-
sharing is suboptimal. If risk is high, market forces generate a bubble that is too large. Optimal
policy then runs deficits (positive µ̆B) and funds government expenditures out of the bubble to
encourage higher real investment and growth.

Market forces may fail to generate a bubble that achieves the optimal trade-off between
growth and risk sharing. Inefficiencies are possible due to pecuniary externalities with respect
to agents’ portfolio choices because agents take returns as given when making these choices, yet
their collective choice affects the risk-free rate and risk-premium on capital.41 On the one hand,
a greater portfolio allocation to bonds discourages real investment ι in the economy, which in
turn affects the real return on all assets through the growth term in the risk-free rate. This force
tends to generate too much bond demand, a too high ϑ and thus under-investment in capital.

directly improves risk sharing (even in the absence of borrowing constraints) but reduces the growth rate of capital
and output.

40The figure assumes no capital adjustment cost, ϕ = 0. It looks qualitatively identical for ϕ ∈ (0, ∞).
41These pecuniary externalities have been previously identified by Brunnermeier and Sannikov (2016b) and Di

Tella (2020) in closely related frameworks.
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On the other hand, a greater allocation to bonds increases the total value of bonds and thus
reduces the residual (proportional) idiosyncratic consumption risk (1− ϑ)σ̃ that each agent has
to bear.42 This in turn affects asset returns through the precautionary motive in the risk-free rate
and through the risk premium on capital. This second force tends to generate too little bond
demand, a too low ϑ and thus over-investment in capital.

It is instructive, however, that the optimal value ϑ∗ is independent of the government spend-
ing need g. In addition, also the optimal degree of bubble mining µ̆B required to implement ϑ∗

is independent of g. While the government could increase µ̆B in response to an (unanticipated)
increase in g in order to fund the additional spending, this is never optimal. The optimal policy
should rely on taxes as the marginal funding source for additional government spending.

The reason for this result is that when government spending g increases, the government
must transfer a larger fraction of current output away from the private sector to itself. Tax-
ing current output is the most direct way of achieving this and does not distort the portfolio
choice between capital and bonds. In contrast, funding additional spending by increasing pri-
mary deficits and bubble mining dilutes the bubble at a faster rate and thereby distorts agents’
portfolio choice in favor of larger capital holdings. Because the pecuniary externalities just dis-
cussed do not depend on either the level of government spending gKt or total output left for
private uses (a − g)Kt, the optimal portfolio distortion induced by µ̆B is also independent of
these quantities.43

6 Extensions and Additional Considerations

In this section, we discuss three extensions to the uniqueness analysis from Section 4: (i) im-
perfect government commitment, (ii) aggregate shocks and imperfect shock observability by the
government, (iii) a richer structure of alternative bubbles than “cryptocoins” that includes the
possibility of bubbles attached to assets issued by private households. With regard to the first
two extensions, which we analyze formally, the key takeaway is that equilibrium selection with
fiscal policy remains feasible and credible if the desired dilution rate µ̆B is below the growth
rate of cryptocoins µ̆C but may otherwise break down (in case (i)) or require modifications (in
case (ii)). With regard to the last extension, we argue verbally how more generic bubbles can be

42Specifically, higher bond prices benefit the bond-selling agents: those who suffered idiosyncratic losses and who
have higher marginal utilities, on average.

43The size of the pecuniary externalities does depends on the aggregate consumption-wealth ratio which equals
the time preference rate ρ in our model with log utility. Admittedly, this is a somewhat knife-edge case that only
holds for unit EIS. For general EIS, the aggregate consumption-wealth ratio depends on the growth rate of the
economy, which in turn is increasing in output left for private uses a − g per unit of capital. Nevertheless, our result
represents an important benchmark case and the broader point that optimal bubble mining only adjusts to correct
pecuniary externalities remains valid also for EIS ̸= 1.
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reinterpreted as cryptocoin bubbles but with slightly more general assumptions regarding the
dilution rate µ̆C and the production of cryptocoins than we have made in this paper. For this
reason, we conjecture that our results could be adapted to such settings.

We conclude the section with a discussion of alternative policies that may complement the
fiscal selection strategy or substitute for it. A common theme is that several different alternative
strategies limit the scope of possible assets that could play the role of cryptocoins or make them
less attractive by reducing the effective difference µ̆B − µ̆C .

6.1 Imperfect Commitment

The propositions in Section 4 hold under the assumption that the government can perfectly
commit to a threshold policy rule as in equation (14). We now ask whether off-equilibrium
fiscal backing can remain credible if the government has a social welfare objective and imperfect
commitment power.

We modify the setup of our model as follows to capture imperfect commitment. We replace
the single infinite-horizon government by a sequence of governments, each with a finite term
of office T > 0. Government j ∈ {0, 1, . . . } chooses the policy variables it, µB

t , τt subject to
the budget constraint (2) for periods t ∈ [jT, (j + 1)T), but takes the policy choices at other
times (made by other governments j′ ̸= j) as given. All governments maximize the same social
welfare function which is given by some weighted average of individual agent utilities as stated
in equation (17).

We describe the details of the modified setup in Appendix A.5. Effectively, each government
j takes prices qB

(j+1)T, qC
(j+1)T, qK

(j+1)T at the end of its tenure as given and chooses an optimal
(Ramsey) policy path over [jT, (j+ 1)T) that implies price paths for qB

t , qC
t , qK

t in the competitive
equilibrium of our model over that time interval.44 In the language of dynamic games, this
means that we are focusing on Markov perfect equilibria in the game played by the sequence
of governments. Specifically, an equilibrium in this policy game consists of a set of price paths
{qB

t , qC
t , qK

t }∞
t=0 and policies {it, µB

t , τt}∞
t=0 such that (1) the sequences are part of a competitive

equilibrium of our model and (2) for each j, the policy sequence restricted to the interval [jT, (j+
1)T) is optimal for government j conditional on terminal prices qB

(j+1)T, qC
(j+1)T, qK

(j+1)T.

We assume that model parameters are such that, in the situation of Section 5.4, a positive
rate of bubble mining is optimal and denote that rate by µ̆∗. As in Section 5.4, we denote by ϑ∗

the optimal value of ϑ corresponding to that policy. With these assumptions and definitions, we
can formulate our main result, which characterizes the possible values of government bonds in
the equilibria of the policy game:

44Once terminal prices over the finite time interval have been fixed, there is no scope for multiplicity anymore.
Each policy path over the interval is associated with a unique equilibrium.
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Proposition 5. Suppose µ̆∗ ≥ 0. Any equilibrium of the policy game features a positive aggregate
bubble with ϑt ≥ ϑ∗. In addition:

(i) If µ̆C > µ̆∗, the equilibrium is unique and satisfies ϑt = ϑB
t = ϑ∗, ϑC

t = 0.

(ii) If µ̆C ≤ µ̆∗, there exists an equilibrium for any initial value ϑB
0 ∈ [0, ϑ∗].

We prove this result in Appendix A.5. There are two key takeaways from this proposition.
First, even under imperfect commitment, fiscal policy always eliminates the no bubble equilib-
rium. Second, equilibria with bubbles on cryptocoins can only be ruled out in case (i), i.e. if the
growth rate of cryptocoins exceeds the optimal bubble mining rate µ̆∗ in the equilibrium with
a stationary public debt bubble (and no other bubbles). Otherwise, equilibria with arbitarily
small public debt bubbles cannot be ruled out. Selecting a unique equilibrium under imperfect
commitment fails in precisely the cases in which the switching threshold ϑ has to be tight in the
results under perfect commitment presented in the previous subsection.

To gain intuition for the result, we first explain why commitment is not required to elimi-
nate the no bubble equilibrium. In many standard models, there is a basic time-inconsistency
problem of nominal debt: a government would prefer to inflate away pre-existing nominal li-
abilities in order to avoid current and future distortionary taxes necessary to repay the debt.
Key to this argument is that the taxes required to support additional debt are welfare-reducing.
But this is not the problem here. Even though debt is funded by distortionary capital taxes that
reduce growth, a larger value of government debt can nevertheless be beneficial because it im-
proves risk sharing (compare Section 5.4). If the total value of safe assets such as government
bonds is sufficiently small, each finite-horizon government has incentives to raise taxes during
its own term of office to create more safe assets and improve risk sharing. Commitment power
is thus not needed to eliminate equilibria in which the total value of safe assets is too small. This
explains why the no bubble equilibrium can be ruled out even under limited commitment.

Importantly, it is the total value of safe assets ((qB
t + qC

t )Kt) not the value of public debt
(qB

t Kt) that is relevant for risk sharing. For a sufficiently large cryptocoin bubble, safe assets are
abundant and the marginal welfare impact of additional (tax-funded) debt becomes negative.
In this case, the standard intuition is restored: a government would prefer not to honor the full
outstanding real value of its nominal liabilities.

The question is therefore whether, in equilibrium, a sufficiently large cryptocoin bubble can
provide a substitute for government debt as a safe asset. The answer is yes if the growth rate
of cryptocoins is sufficiently low, but it is no otherwise.45 If µ̆C > µ̆∗, cryptocoins are diluted
at a faster rate than the optimal bubble mining rate, so that, unless cryptocoins are worthless,

45Even if the answer is yes, this does not mean that the equilibria in which cryptocoins have value are equally
desirable. Except for the knife-edge case µ̆C = µ̆∗, the equilibrium bubble is then too large.
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the aggregate bubble must be suboptimally small, at least in some future period. In such a fu-
ture period, the government in charge would have incentives to raise taxes in order to create
additional safe assets (through government debt). These incentives to tax by some future gov-
ernment implement a form of off-equilibrium fiscal backing that eliminates cryptocoin bubbles
in the first place.

6.2 Aggregate Shocks and Imperfect Observability

A different concern with our baseline analysis from Section 4 is that, even if the government
can commit, the only threshold policy that selects a unique equilibrium in the case µ̆C ≤ µ̆B

is the one with ϑ = ϑB∗. That is, the government must start raising surpluses immediately in
response to a drop in the value of debt. Such a policy can only be implemented if the govern-
ment knows the precise level of the equilibrium value ϑB∗ at all times. This is not an issue in
our setting with deterministic aggregates where ϑB∗ is a time-invariant constant. But it could
become an issue in the presence of aggregate shocks that stochastically shift the value of ϑB∗

along the equilibrium path.

In this subsection, we discuss this issue in the context of a minimal model extension that
generates stochastic asset price variation by introducing a two-state Markov process for the
idiosyncratic shock volatility σ̃, i.e. we replace this parameter with a time-varying stochastic
process σ̃t that may take values in {σ̃l , σ̃h} with σ̃l < σ̃h.46 We relegate the formal details of the
analysis to Appendix A.6.

First, we note that all our previous results remain valid in the context of this extension
if the government can observe the underlying state σ̃t. If the government exogenously fixes
µ̆B

t = µ̆B(σ̃t), there is at most one stationary equilibrium in which cryptocoins are worthless
and bonds have a positive value. Assuming that parameters are such that this equilibrium
exists, we denote by ϑB∗

t the associated equilibrium process for ϑB
t and by ϑB∗,l and ϑB∗,h the

realizations of ϑB∗
t in the two states. To avoid the need for case distinctions, we also assume

0 < ϑB∗,l < ϑB∗,h.47 A result analogous to Proposition 4 holds (compare Proposition A.1): if
the government chooses a threshold policy with state-contingent taxation threshold ϑt := ϑB∗

t ,
there is a unique equilibrium, cryptocoins have no value, and ϑt = ϑB

t = ϑB∗
t . The intuition for

this result is precisely the same as in Section 4.

The situation becomes more interesting if we assume that only private agents observe σ̃t but
the government does not – and has also insufficient information about endogenous variables to

46We restrict attention to a two-state process for simplicity. Our arguments would equally apply for a more general
finite-state process.

47This is the most relevant case. E.g., both a constant µ̆B policy and the optimal policy analyzed in Section 5.4
would lead to this outcome.
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infer it. To connect the analysis to the results in Section 4, we still require that the government
is able to observe or infer ϑB

t . Both requirements are satisfied, for example, under the following
assumptions: (1) the government observes the value of its own liabilities (e.g. by observing the
price level Pt and the outstanding stock of debt Bt), (2) the government observes the value of
all other assets ((qC

t + qK
t )Kt) but is unable to determine whether these assets are backed by

productive capital or a bubble, (3) the capital stock evolves exogenously (ϕ → ∞).48

When the government does not observe the state (σ̃t), it cannot determine with certainty
whether a cryptocoin bubble exists. We analyze this situation in two steps. We first investigate
in Appendix A.6.4 whether threshold policies can still be used to select the equilibrium that
features ϑt = ϑB

t = ϑB∗
t at all times. We conclude that this is only sometimes possible. Second,

we go further in Appendix A.6.5 and devise a richer fiscal strategy that succeeds in selecting the
desired equilibrium except for a knife-edge case.49 This richer strategy is based on the threshold
policies analyzed in the first step. It adds an additional trigger after which the government
permanently switches from one such threshold policy to a different one. Here, we summarize
the main economic points.

With regard to threshold policies, the same arguments as in Section 4 apply: no equilibrium
can exist for which ϑB

t falls below the threshold. However, when the state is unobservable, the
threshold ϑ may not depend (explicitly) on the σ̃t-state. We consider the special case that ϑ is
constant over time. There are then two natural choices for ϑ, a “high” threshold ϑ = ϑB∗,h and
a “low” threshold ϑ = ϑB∗,l .

Under a threshold policy with a “high” threshold, ϑ = ϑB∗,h, the tax backing is no longer
confined to off-equilibrium contingencies. Instead, the government raises positive primary sur-
pluses in equilibrium whenever σ̃t = σ̃l .50 One would expect that such a policy always selects
a unique equilibrium. We show in Proposition A.2 that this is indeed the case. However, this
unique equilibrium is only the desired equilibrium with ϑB = ϑB∗, if (1) in the latter equilib-
rium, the government generates positive primary surpluses in the low-risk state and (2) the
constant surplus-capital ratio s below the threshold is chosen consistent with the desired equi-
librium surplus in the low state. In this special case, the fact that the government must raise
primary surpluses in equilibrium under this policy does not prevent implementation of the
desired equilibrium because the government would want to raise primary surpluses in the lat-
ter equilibrium anyway. In all other cases, the unique equilibrium under the “high” threshold

48Assumption (3) is required so that observation of total wealth is insufficient to determine the split of aggregate
resources into consumption and investment, which in turn, through Tobin’s q condition, allows the government to
infer qK

t .
49The knife-edge case is µ̆B,l = µ̆C + λh, where µ̆B,l is the desired bubble mining rate in the low-risk state and λh

is the transition rate from the high-risk to the low-risk state.
50Nevertheless, there can still be a bubble in equilibrium if primary deficits are sufficiently large in the high-risk

state.
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policy leads to a higher than desired bond value in the low-risk state, ϑB,l > ϑB∗,l .51

The threshold policy with a “low” threshold, ϑ = ϑB∗,l , in turn, remains always consistent
with the desired equilibrium but may fail to implement it uniquely under some circumstances.
Specifically, this policy only rules out equilibria for which the bond wealth share falls below
ϑB∗,l with positive probability. Whether more than one (continuation) equilibrium with this
property exists depends on the specific situation. We draw three conclusions from this specific
lower bound on ϑB

t :

First, if the cryptocoin dilution rate µ̆C is sufficiently large, then, once again, only the desired
equilibrium survives. All other potential solution paths would require agents to expect that the
bond wealth share ϑB shrinks over time and eventually falls below the lower bound ϑB∗,l .

Second, regardless of the cryptocoin dilution rate, this specific threshold policy involves
a tight threshold policy in the sense of Proposition 4 conditionally on being in the low-risk state.
Hence, there is no longer any space left for cryptocoin bubbles in the low-risk state. Any such
bubble must become worthless whenever σ̃t = σ̃l . But because a bubble on a given asset that
has burst completely can never re-appear,52 this implies that the policy in fact succeeds in im-
plementing the desired equilibrium uniquely once the system has entered the low state for the
first time. However, cryptocoin bubbles may exist at the initial time if the state at time zero is
σ̃0 = σ̃h. Such bubbles must necessarily burst once the system enters the low-risk state for the
first time.

Third, because cryptocoin bubbles must be expected to burst after the first transition into
the low-risk state, they become also harder to sustain at the initial time in the high-risk state.
The reason is that households are only willing to hold cryptocoins if they are compensated by
higher capital gains conditional on the bubble not bursting. This has the same economic effects
as a higher effective dilution rate µ̆C in the deterministic model. In Proposition A.3 we provide a
precise condition for when the policy can select a unique equilibrium. This condition is strictly
weaker than the condition µ̆B,h < µ̆C that would be obtained if there was no possibility for σ̃t

to jump to the low-risk state σ̃l in the future (here µ̆B,h is the desired bubble mining rate in the
high-risk state). Still if µ̆B,h is sufficiently large, then cryptocoin bubbles may not be ruled out.

To sum up, the two types of threshold strategies can still select the desired equilibrium
uniquely in many special cases, but they fail to do so in general. In Appendix A.6.5, we therefore
devise a richer strategy that generically succeeds in selecting the desired equilibrium uniquely
(except for one very special parameter restriction). This richer strategy combines the thresh-
old policies with “low” and “high” thresholds in a fully history-contingent way. Specifically, it

51We assume in Appendix A.6.4 that the government adjusts µ̆B above the threshold upward to still achieve its
target level for ϑB in the high state.

52Otherwise, the expected future value of cryptocoins would be positive and so would be the current value in the
low-risk state itself.
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follows the “low” threshold strategy, that is always consistent with the desired equilibrium, so
long as only price histories consistent with the desired equilibrium have been observed. Off-
equilibrium, if the government ever observes a price history inconsistent with the desired equi-
librium, it switches permanently to the “high” threshold rule, which always selects a unique
equilibrium, but not necessarily the desired one.

The key insight for why combining the two threshold policies in this way can be successful
is because these policies have complementary benefits. The “low” threshold policy is always
consistent with the desired equilibrium but leaves room for alternative equilibria in the (initial)
high-risk state. These alternative equilibria involve values for ϑB

t different from ϑB∗,h in that
state. In contrast, the “high” threshold policy selects a unique equilibrium that features a value
of government debt in line with the desired equilibrium (ϑB

t = ϑB∗,h) in the high-risk state.
“Threatening” to switch to this unique equilibrium if any other value of debt was to be observed
eliminates the alternative equilibria.

To be more specific, suppose first that the government was always to follow the threshold
policy with a “low” threshold. Under this policy, only the desired equilibrium would have the
feature that ϑB

t assumes the two values ϑB∗,l or ϑB∗,h along the equilibrium path at all times.53

All other equilibria would result in a value of ϑB
t in the (initial) high-risk state that is not in

{ϑB∗,l , ϑB∗,h}. Next, suppose the government was to switch immediately to a “high” threshold
strategy forever if it ever observed a value different from ϑB∗,l or ϑB∗,h. Then, the unique contin-
uation equilibrium after the switch would require ϑB

t = ϑB∗,h in the high-risk state. Because the
switch only happens if ϑB

t ̸= ϑB∗,h right before the switching time, such a switch would generate
capital gains or losses to bond holders at an infinite rate around the switching time. Households
anticipating these capital gains would alter their bond demands right before the switching time
such that the bond market cannot clear at any value other than ϑB

t = ϑB∗,h. Hence, the addi-
tional (off-equilibrium) threat to switch to a policy with a more stringent taxation threshold can
achieve uniqueness even in the initial high-risk state.

In Appendix A.6.5 we provide a formal definition of the switching policy described in the
previous paragraphs. Proposition A.4 proves that then, indeed, there is a unique equilibrium.

6.3 Bubbles on Private Assets and Ponzi Schemes

So far, we have attached the bubble on other assets than government debt to cryptocoins,
a separate intrinsically worthless asset in exogenous supply. Here, we argue that there is no
economic difference if instead we consider one of the following two alternative arrangements.

First, bubbles could be attached to long-lived liabilities issued by households in the model.
53To be precise: this holds if µ̆B,l ̸= µ̆C + λh. Except for the knife-edge case of equality, the relative valuation of

bonds and cryptocoins necessarily must drift upward or downward over time by a no arbitrage condition.
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These liabilities neither need to be intrinsically worthless, nor in exogenous supply. If, for ex-
ample, a private household issued a perpetuity with a positive fundamental value, there could
be an additional bubble component attached to it and the household may be able to create ad-
ditional bubbles when issuing more perpetuities. Whether this is possible is ultimately a matter
of coordination of market beliefs and thus depends on the equilibrium selection. If other agents
are only willing to buy such a bond at a price that does not exceed the present value of future
coupon payments, then bubble creation fails and the agent has to pay back in present value ex-
actly what she has borrowed. However, when rational bubbles are possible, then other agents
could coordinate on an equilibrium in which they are willing to pay more for the bond than the
present value of coupon payments in the expectation that they can pass it on to others at a high
price in the future.

However, we can in such cases always logically split the assets into a bubble-free asset and
an intrinsically worthless asset and simply select an equilibrium in which the two are always
effectively held as a bundle. Therefore, any policy that rules out intrinsically worthless bubbles
ultimately also rules out bubbles on assets issued by private agents.

The difference to our model with cryptocoins is therefore not fundamental. It merely lies
in the auxiliary assumptions that we have made to keep the model tractable and make the
analysis more transparent. Specifically, there is no reason why bubbles attached to other assets
should grow at a constant rate µ̆C or the ability to create them should be tied to an agent’s
capital holdings. But there is also no reason to expect that generalizing either assumption will
invalidate the economic arguments we have presented.

Second, the benefits of issuing a bubbly asset can be generated in an alternative way without
issuing long-lived liabilities. We have defined a bubble as a situation in which the market value
of an asset exceeds its fundamental value and this works only for long-lived assets. However,
the economic equivalent of issuing a bubbly asset can also be achieved through a Ponzi scheme,
a chain of debt issuance that is perpetually grown and rolled over such that the present value
of time-T debt liabilities does not converge to zero as the horizon T approaches infinity. Unlike
issuing a long-lived asset with a bubble, each individual debt claim in this chain can have finite
maturity and be priced according to its fundamental value and thus not have a bubble com-
ponent. Yet, when the totality of all debt claims is considered as a bundle, the Ponzi scheme
represents a bubble because the present value of payouts to debt holders falls short of the total
value of debt issued. An agent able to run a Ponzi scheme can effectively mine this bubble by
growing such “Ponzi debt” at a faster rate.

Formally, the ability of private households to run Ponzi schemes would require that markets
do not enforce a strict no Ponzi condition on individual agents as we have assumed so far by
imposing on each agent a solvency constraint ni

t ≥ 0. This constraint has been set ad-hoc and
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not been justified by economic arguments. Indeed, in an economy that allows for bubbles,
strict no Ponzi conditions or solvency constraints are no necessary requirement of equilibrium.
Specifically, the transversality conditions of all other agents than agent i does not preclude that
agent i runs a Ponzi scheme for precisely the same reason why these conditions do not preclude
a bubble (compare Section 3).

In Appendix A.7 we therefore present a generalized equilibrium definition in which each
agent only faces a less stringent solvency constraint ni

t ≥ ni
t with a lower bound ni

t ≤ 0 that
binds only asymptotically.54 An agent is able to run a (limited) Ponzi scheme in equilibrium
if limT→∞ E0[ξ i

Tni
T] < 0. We show that there are generalized equilibria that permit agents to

engage in such Ponzi schemes, whenever bubbles can exist in our baseline model without Ponzi
schemes. As a specific example, we construct equilibria with private Ponzi schemes that are
equivalent to equilibria with cryptocoin bubbles and µ̆C = 0.

In a sense, such Ponzi scheme equilibria are always equivalent to certain bubble equilibria in
economies in which agents face strict solvency constraints. To see this, suppose that agent i faces
a generalized solvency constraint ni

t ≥ ni
t. To simplify matters, further assume that ni

t is deter-
ministic.55 Then that agent’s transversality condition becomes E0[ξ i

Tni
T] → limT→∞ E0[ξ i

Tni
T] <

0. Denote by np,i
0 the negative of the right-hand side, which is the present value of bubble min-

ing or “Ponzi wealth” that the market permits the agent in a given equilibrium. The equilibrium
allocation is then equivalent to the one of a model in which the agent faces a strict solvency con-
straint ni

t ≥ 0, but is permitted to issues a long-lived bubble asset of value np,i
0 at time 0, so that

np,i
0 is included in the agent’s measured net worth ni

0.

Because of this equivalence between equilibria with private Ponzi schemes and private bub-
ble issuance, policies that rule out bubbles on private assets also eliminate equilibria featuring
private Ponzi schemes. This is in particular true for the off-equilibrium fiscal policy analyzed
in this paper.

Importantly, we remark that private agents could not resort to a similar equilibrium selec-
tion policy as the government to force the bubble onto their liabilities. While the government
can use taxation to raise surpluses that grow proportionally with the economy, private house-
holds in our models are unable to generate resources that grow in lockstep with the economy
and thus provide off-equilibrium backing to their liabilities in the same way as the government.
The reason is that private agents face idiosyncratic risk while the government taxes everyone
and thereby diversifies idiosyncratic risk away. For any given agent, there are some states in

54This is the sense in which the solvency constraint imposes merely a “borrowing constraint at t = ∞”, i.e. a
no-Ponzi condition in analogy to the “natural borrowing constraint” nt = 0.

55If ni
t contains idiosyncratic risk, this may encode idiosyncratic expansions or contractions of the permissible

Ponzi scheme which alters the agent’s overall risk exposure and changes portfolio behavior relative to our baseline
model. However, we conjecture that such a Ponzi scheme equilibrium is still equivalent to a suitable equilibrium
with idiosyncratic bubble creation opportunities for bubbles on private assets.
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which this agent has experienced many negative shocks and become arbitrarily poor relative to
the size of the economy.

6.4 Alternative Policies

Fiscal policy is not the only policy that can rule out bubbles on other assets. We briefly
discuss here how other policies, insolvency law, restrictions on certain assets, and financial
repression, can facilitate the equilibrium selection.

Insolvency Law. Institutional rules such as insolvency laws can effectively impose no Ponzi
conditions in the form of strict solvency constraints on private agents through the legal system.
If effective, such rules can rule out all Ponzi schemes run by private agents, so that at most the
government is able to run a Ponzi scheme.

While effective to eliminate Ponzi schemes, such rules do not directly rule out bubbles on
long-lived assets. However, because most assets in reality are not long-lived, eliminating Ponzi
schemes goes a long way in narrowing down the possibilities for alternative bubbles.

In addition, insolvency law can indirectly affect the viability of bubbles on long-lived assets
that are liabilities of firms subject to insolvency law such as stocks. If the claims of holders of
these assets are wiped out in bankruptcy, then the institutional environment triggers a forced
bubble burst in any bankruptcy event.56 To the extent that all firms face some background
bankruptcy risk, bubbles on their long-lived liabilities are harder to sustain because their re-
quired return conditional on no bankruptcy must rise to compensate investors for the bubble
burst in bankruptcy. This is effectively very similar to a larger dilution rate due to supply
growth of the asset, i.e. like a higher µ̆C in our model. Thus off-equilibrium fiscal backing is
more credible against such bubbles.

Restrictions on Specific Assets. Specific asset classes (of long-lived assets) can also be tar-
geted directly by legal restrictions to prevent bubbles on them. This is particularly relevant for
cryptoassets that are not liabilities of entities affected by insolvency law and thus not affected
by considerations in the previous paragraph.

For example, the government could impose a tax on holding such asset. In our model, a
tax on cryptocoins whose tax revenues are used to lower output taxes would have an identical
effect as a higher exogenous growth rate µ̆C . A sufficiently high tax can therefore drive the
effective µ̆C above µ̆∗ and thereby ensure that off-equilibrium fiscal backing remains credible.

Alternatively, a government could also impose trading restrictions on long-lived assets that
could support a bubble. Because the ultimate economic value of a bubble results from enabling

56Specifically, it is important that a bankruptcy also inhibits the continued trading of the fundamentally worthless
claims post-bankruptcy. This is, e.g., the case if the claims only exist in digital accounts and are deleted in bankruptcy.
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beneficial trades (compare Section 3), bubbles on illiquid assets are less likely or even outright
impossible.

Financial Repression. Instead of making bubbles on other specific assets more difficult, fi-
nancial repression tools such as reserve and liquidity requirements seek to support the demand
for government liabilities relative to other assets. Formally, such policies work like monetary
frictions, e.g. a cash-in-advance constraint, but for bonds, and open up a spread, or convenience
yield, ∆i between bonds and both the (illiquid) risk-free rate r f and the return on cryptocoins.
If conducted on a sufficiently large scale, such policies can even drive r f above g and elimi-
nate bubbles, yet keep the government’s funding costs r f − ∆i low, so that the government still
enjoys the same advantages as with a bubble.57

7 Conclusion and Lessons for Debt Sustainability Analysis

This paper integrates the typically ignored bubble term in the FTPL, which is necessary to
explain low inflation in countries with persistently negative primary surpluses. We conclude
with some lessons for debt sustainability analysis. Applying these lessons to assess debt sus-
tainability of specific countries appears an interesting avenue for future research.

The traditional concern of debt sustainability analysis is the ability of a government to gen-
erate the future primary surpluses that are necessary to back its outstanding debt obligations
(in equilibrium). A public debt bubble opens up the possibility that debt may be sustainable
even in the absence of such future surpluses. Whether it is, requires an analysis of the bubble.
There are two aspects to be considered.

First, debt sustainability analysis should attempt to quantify the fiscal space created by the
bubble (in equilibrium). This can be done, for example, by determining the maximum debt
level that can be supported in the absence of any primary surpluses or by mapping out the
Laffer curve. To do so, one has to determine not only the size of the bubble for the policy
regime in place, but also how the bubble reacts to changes in policy. An example of such an
exercise is carried out by Brunnermeier et al. (2021a) who extend our model, calibrate it to U.S.
data, and quantify the Laffer curve.

Second, debt sustainability analysis should assess stability of the bubble by considering the
defenses in place to prevent coordination to other equilibria. The primary defense discussed
in this paper is (contingent) fiscal policy. Just like traditional debt sustainability analysis, as-
sessing the stability of the bubble thus starts with an assessment of the government’s capacity
to generate future primary surpluses. However, the emphasis shifts from the capacity to raise

57See e.g. Di Tella (2020) and Merkel (2020) for frameworks similar to our model in which monetary frictions may
crowd out bubbles.

43



actual future surpluses in equilibrium to backup capacity, the mere ability and credibility to do
so off-equilibrium. Backup capacity may be limited, for example, by actual limits to taxation, by
imperfect commitment, or by political frictions. In addition to analyzing backup fiscal capac-
ity, the stability of the public debt bubble can be assessed by identifying other potential assets
to which the bubble could jump and the policies in place to prevent such bubble jumps (e.g.
insolvency law, regulation of crypto assets). Going beyond the closed economy framework of
this paper, this analysis should also consider foreign assets such as foreign government debt as
competing stores of value that may carry a bubble. Some important policy considerations in the
international case are explored in Brunnermeier et al. (2021b).
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A Appendix

A.1 Omitted Details in Section 2

In this section, we present additional formal details for the model setup and solution that
have been omitted from the main text.

A.1.1 Additional Details about the Model Setup

Return Expressions. We denote by µ
q,B
t := q̇B

t /qB
t , µ

q,C
t := q̇C

t /qC
t and µ

q,K
t := q̇K

t /qK
t the

instantaneous growth rates of qB
t , qC

t and qK
t , respectively.58

The (real) return on bonds is

drBt = itdt +
d(1/Pt)

1/Pt
=
(
−µ̆B

t + µK
t + µ

q,B
t

)
dt, (18)

where the second equality follows immediately from 1/Pt = qB
t Kt/Bt and the definition of µ̆B

t ,
µ̆B

t = µB
t − it. µK

t := K̇t/Kt denotes the growth rate of aggregate capital.

The return on cryptocoins is defined analogously. The value of a single unit of cryptocoins
is qC

t Kt/Ct. Consequently, the return on cryptocoins is

drCt =
d(qC

t Kt/Ct)

qC
t Kt/Ct

=
(
−µ̆C + µK

t + µ
q,C
t

)
dt.

The return on agent i’s capital, conditional on choosing an investment rate ιit, is

drK,i
t

(
ιit

)
=

(
(1 − τt) a − ιit + µ̆CqC

t

qK
t

+ Φ
(

ιit

)
− δ + µ

q,K
t

)
dt + σ̃dZ̃i

t. (19)

The expected capital return consists of the after-tax dividend yield, (1−τt)a−ιit+µ̆CqC
t

qK
t

, and the cap-

ital gains rate, Φ
(

ιit

)
− δ + µ

q,K
t . Capital returns are risky due to the presence of idiosyncratic

risk σ̃dZ̃i
t.

Equilibrium Definition. Before we provide a formal definition, we make two remarks that
allow us to reduce notation and simplify the exposition. First, all households face essentially
the same decision problem and individual net worth ni

t does not affect optimal choices. We may

58These rates are only well-defined if qB
t , qC

t , qK
t > 0. As qB

t = 0 is a possibility in our model, we use in this case
the convention that µ

q,B
t = 0 if also q̇B

t = 0 and µ
q,B
t = ∞ if q̇B

t > 0. The remaining case qB
t = 0, q̇B

t < 0 will never be

relevant. A similar convention applies to µ
q,C
t .
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therefore limit attention to symmetric equilibria in which all households make the same choices.
Second, while the aggregate capital stock Kt, the stocks of nominal bonds Bt and cryptocoins Ct,
and the cross-sectional wealth distribution are natural state variables of the economic system,
we can define equilibrium in terms of appropriately descaled aggregates and do not need to
keep track of these variables explicitly. Given any such equilibrium for descaled aggregates
and initial conditions for K0, B0, C0, and the cross-sectional asset distribution, these objects can
be recovered ex post.59

Definition A.1 (Competitive Equilibrium). A (symmetric) competitive equilibrium (in descaled
aggregates) consists of absolutely continuous time paths

[0, ∞) → R9, t 7→ (µ̆B
t , τt, qB

t , qC
t , qK

t , ĉt, ιt, θB
t , θC

t )

for government policy (µ̆B
t , τt), asset prices (qB

t , qC
t , qK

t ) and household choices (ĉt, ιt, θB
t ,θC

t ) such
that

(i) µ̆B
t and τt satisfy the government budget constraint given prices (for all t ≥ 0)60

µ̆B
t qB

t + τta − g = 0;

(ii) prices are nonnegative, qB
t , qC

t , qK
t ≥ 0 (for all t ≥ 0);61

(iii) for all agents i, ĉi = ĉ, ιi = ι, θB,i = θB, and θC,i = θC solve the household problem for any
initial ni

0 > 0 given the returns drBt , drCt and drK,i(·) implied by prices and government
policies;

(iv) all markets clear (for all t ≥ 0):62

ĉt(qB
t + qC

t + qK
t ) + g+ ιt = a goods market clearing

θB
t (q

B
t + qC

t + qK
t ) = qB

t bond market clearing

θC
t (q

B
t + qC

t + qK
t ) = qC

t cryptocoin market clearing

59Note also that the following definition only includes the difference µ̆B
t = µB

t − it between nominal bond growth
and nominal interest rates into the equilibrium definition. To determine the law of motion of Bt (and Pt), one
therefore also needs to specify either it or µB

t individually.
60This equation follows immediately from equation (2) and the definition of qB

t .
61This requirement can be derived from a free disposal assumption (in the case of capital, disposal also removes

the associated tax liability).
62In all equations, note that qB

t + qC
t + qK

t =
∫

ni
tdi/Kt represents aggregate net worth per unit of capital. The

goods market clearing condition is effectively the resource constraint (3) divided by Kt. The bond market clearing
condition uses that real bond supply is Bt/Pt = qB

t Kt. The cryptocoin market clearing condition is analogous. The
capital market clearing condition is omitted as that market clears by Walras’ law.
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The previous definition includes government policy paths as part of the equilibrium defi-
nition. In the main text, we are concerned with government policy rules that specify policy in
reaction to observed aggregate histories. To keep notation minimal, we only consider policies
that ignore all histories but those of asset prices qB, qC, and qK. Policy rules are feasible if they
satisfy the government flow budget constraint (2) after any price history. We must take special
care in the case Pt = ∞ ⇔ qB

t = 0. In this case, it is not feasible for the government to fund a
negative primary surplus, st = τta − g < 0, because no finite amount of new bond issuance in
excess of interest payments µ̆B

t < ∞ will collect any real resources. However, it is still feasible
to generate a positive primary surplus, st > 0 because the government’s taxation power does
not cease to exist when bonds become worthless. In this case, the nominal budget constraint (2)
implies that the government attempts to repurchase bonds at an infinite rate, µ̆B

t = −∞. We
therefore need to allow for this possibility in our formal definition of a feasible policy rule. It is
simplest to define first a feasible rule for primary surpluses st and then define τt and µ̆B

t , such
that they are consistent with this surplus choice and the government budget constraint.

Definition A.2 (Policy Rules). A feasible surplus rule at time t is a function

st :
(
[0, ∞)[0,t]

)3
→ R

such that for all nonnegative histories of present and past prices {qB
t′ , qC

t′ , qK
t′}t′≤t, the following

condition holds
qB

t = 0 ⇒ st

(
{qB

t′ , qC
t′ , qK

t′}t′≤t

)
≥ 0

A feasible surplus rule is a time path {st}t≥0 of feasible primary surplus rules st for all times t.

For a feasible surplus rule s, the associated policy rules for taxes τ and debt dilution µ̆B are
defined by

τt

(
{qB

t′ , qC
t′ , qK

t′}t′≤t

)
:=

s
(
{qB

t′ , qC
t′ , qK

t′}t′≤t

)
+ g

a
,

µ̆B
t

(
{qB

t′ , qC
t′ , qK

t′}t′≤t

)


:=
s
(
{qB

t′ ,q
C
t′ ,q

K
t′}t′≤t

)
qB

t
, qB

t > 0

:= −∞, qB
t = 0, s

(
{qB

t′ , qC
t′ , qK

t′}t′≤t

)
> 0

∈ R, qB
t = s

(
{qB

t′ , qC
t′ , qK

t′}t′≤t

)
= 0

.

In principle, a policy is therefore fully specified by a surplus rule up the special case in which
bonds are worthless and surpluses are not positive. This incomplete definition in the latter case
is economically irrelevant, however. In the main text, we nevertheless often prefer to specify
also the µ̆B-component of policy explicitly for additional clarity.
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Definition A.3 (Equilibrium Consistent with a Policy). Let s be a given feasible surplus rule.
We say that a competitive equilibrium (µB∗, τ∗, qB∗, qC∗, qK∗, ĉ∗, ι∗, θB∗, θC∗) is consistent with s if
for all t ≥ 0

µ̆B∗
t = µ̆B

t

(
{qB∗

t′ , qC∗
t′ , qK∗

t′ }t′≤t

)
, τ∗

t = τt

(
{qB∗

t′ , qC∗
t′ , qK∗

t′ }t′≤t

)
,

where τ and µ̆B are the policy rules for taxes and debt dilution associated with s

A.1.2 Model Solution

Solution to the Household Problem. The HJB equation for the household problem is problem
is63

ρVt

(
ni
)
− ∂tVt

(
ni
)
= max

ĉi ,θB,i ,θC,i ,ιi

 log
(

ĉini
)

+ V′
t

(
ni
)

ni

−ĉi + θB,i drBt
dt

+ θC,i drCt
dt

+
(

1 − θB,i − θC,i
) Et

[
drK,i

t

(
ιi
)]

dt


+

1
2

V′′
t

(
ni
) (

ni
)2 (

1 − θB,i − θC,i
)2

σ̃2

.

This is a standard consumption-portfolio-choice problem, so we conjecture a functional form
Vt

(
ni
)

= αt +
1
ρ log ni

t for the value function, where αt depends on (aggregate) investment

opportunities, but not on individual net worth ni.

Substituting this guess into the HJB equation and simplifying yields

ραt − α̇t = max
ĉi

(
log ĉi − ĉi

ρ

)

+
1
ρ

max
θB,i ,θC,i ,ιi

θB,i drBt
dt

+ θC,i drCt
dt

+
(

1 − θB,i − θC,i
) Et

[
drK,i

t

(
ιi
)]

dt
−

(
1 − θB,i − θC,i

)2
σ̃2

2

 .

(20)

The first-order conditions for the maximization with respect to ci, ιi, θB,i, and θC,i are

0 =
1
ĉi

t
− 1

ρ
,

63Here, we have used the government budget constraint (2) to eliminate τta in the return on capital.
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0 =
1 − θB,i

t − θC,i
t

ρ

d
dιit

Et

[
drK,i

t

(
ιit

)]
dt

0 =
drBt
dt

−
Et

[
drK,i

t

(
ιit

)]
dt

+
(

1 − θB,i
t − θC,i

t

)
σ̃2

0 =
drCt
dt

−
Et

[
drK,i

t

(
ιi
)]

dt
+
(

1 − θB,i
t − θC,i

t

)
σ̃2

The first condition is equivalent to the permanent income consumption rule stated in the main
text. The second condition reduces to

d
dιi

Et

[
drK,i

t

(
ιi
)]

dt
= 0

because 1 − θB,i − θC,i cannot be zero for all agents simultaneously in equilibrium by market
clearing. Substituting in the return expression (19) and rearranging yields

1
qK

t
= Φ′(ιit),

which is equivalent to the Tobin’s q condition stated in the main text.

By subtracting the last two first-order conditions from each other, we obtain

drBt
dt

=
drCt
dt

,

which is the no-arbitrage condition stated in the main text. Because both returns are risk-free,
they also equal the risk-free rate r f

t . Substituting this into one of the last two first-order condi-
tions and rearranging yields the Merton portfolio condition for capital stated in the main text.

Note that these conditions also verify that all agents make the same choices up to indiffer-
ence,64 an assumption made in Definition A.1.

Expressing qB, qC qK, ι in Terms of ϑB and ϑC. Combining the aggregate resource constraint
(3) with the optimal consumption rule (aggregated over all agents) relates total wealth to total

64Clearly ĉi
t = ρ for all i, ιit is equalized because all face the same price qK

t , then as a consequence all face the same
expected return on capital; individual θB,i

t , θC,i
t might differ due to indifference but we can assume without loss of

generality that they are not i-dependent.
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consumption in each period,

qB
t + qC

t + qK
t =

1
ρ

Ct/Kt =
a − g− ιt

ρ
.

Divide both equations by qK
t , use 1 − ϑt =

qK
t

qB
t +qC

t +qk
t

on the left-hand side and qK
t = 1

Φ′(ιt)
=

1 + ϕιt on the right hand side to obtain an equation that relates ϑt to the investment rate ιt:

1
1 − ϑt

=
a − g− ιt

1 + ϕιt
.

Solving for ιt yields

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ
.

Substituting this equation into qK
t = 1 + ϕιt and qB

t + qC
t = ϑt

1−ϑt
qK

t implies

qB
t + qC

t = ϑt
1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
.

Finally, qB
t = ϑB

t /ϑt(qB
t + qC

t ) and qC
t = ϑC

t /ϑt(qB
t + qC

t ) by definition of ϑB
t , ϑC

t , ϑt. Hence,

qB
t = ϑB

t
1 + ϕ (a − g)

1 − ϑt + ϕρ
, qC

t = ϑC
t

1 + ϕ (a − g)

1 − ϑt + ϕρ

This also proves the first part of Proposition 1.

Derivation of Equations (5) and (6). Bond market clearing and the fact that all households
choose the same θB,i

t , θC,i
t imply θB,i

t = ϑB
t and θC,i

t = ϑC
t . Hence, the Merton portfolio choice

condition can be written as (recall ϑt = ϑB
t + ϑC

t )

Et[drK
t (ιt)]

dt
− r f

t = (1 − ϑt) σ̃2 =
1

1 − ϑt
(σ̃c

t )
2 ,

where the last equality holds because σ̃c
t = (1 − ϑt)σ̃ is the idiosyncratic net worth volatility

in equilibrium as can be easily observed from equation (4). Next, plug in the explicit return
expression for the expected return on capital from equation (19):

(1 − τt) a − ιt + µ̆CqC
t

qK
t

+ Φ (ιt)− δ + µ
q,K
t − r f

t =
1

1 − ϑt
(σ̃c

t )
2 ,
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Using τta = g− µ̆B
t qB

t (from the government budget constraint (2)), a − g− ιt = ρ(qB
t + qC

t + qK
t )

(by goods market clearing), and µK
t = Φ(ιt)− δ, this can be written as

ρ

1 − ϑt
+

µ̆B
t ϑB

t + µ̆CϑC
t

1 − ϑt
+ µK

t + µ
q,K
t − r f

t =
1

1 − ϑt
(σ̃c

t )
2 , (21)

If bonds have positive value in equilibrium, then drBt
dt is well-defined and must equal r f

t .

Making this substitution in equation (21) and also replacing drBt
dt with the explicit expression

from equation (18) yields

ρ + µ̆B
t

1 − ϑt
+

(
µ̆C − µ̆B

t

)
ϑC

t

1 − ϑt
+ µ

q,K
t − µ

q,B
t =

1
1 − ϑt

(σ̃c
t )

2

Finally, note that
(

µ̆C − µ̆B
t

)
ϑC

t =
(

µ
q,C
t − µ

q,B
t

)
ϑC

t . If cryptocoins have positive value, ϑC
t > 0,

this holds by the no arbitrage condition between bonds and cryptocoins. Otherwise, this holds
trivially because the factor ϑC

t = 0 appears on both sides. Substituting this relationship into the
previous equation and multiplying everything by 1 − ϑt yields

ρ + µ̆B
t + ϑB

t µ
q,B
t + ϑC

t µ
q,C
t + (1 − ϑt)µ

q,K
t − µ

q,B
t︸ ︷︷ ︸

=ϑ̇B
t /ϑB

t

= (σ̃c
t )

2

Rearranging this equation yields the ODE

ϑ̇B
t =

(
ρ + µ̆B

t − (σ̃c
t )

2
)

ϑB
t . (22)

While the previous derivation has assumed that bonds have positive value (ϑB
t > 0), equa-

tion (22) remains valid even if they do not, provided µ̆B
t remains finite (we discuss the case that

it does not below): if ϑB
t = 0, then it must also be that ϑ̇B

t = 0 as otherwise the return drBt
dt would

become infinite in absolute value, allowing agents to earn an infinite risk-free return, either by
investing into bonds or by short-selling them (depending on the sign). This is clearly impossible
in any equilibrium.65

A reasoning that is fully symmetric to the previous one lead also to an ODE for the fraction
of cryptocoin wealth ϑC

t :
ϑ̇C

t =
(

ρ + µ̆C − (σ̃c
t )

2
)

ϑC
t . (23)

Again, this equation must hold in any equilibrium regardless of whether cryptocoins have a

65In fact, the equation even remains valid in the case that µ̆B
t is not finite if the product µ̆B

t ϑB
t is suitably interpreted.

We ignore this for now but return to this issue in Appendix A.3.1
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positive value.66

Equations (22) and (23) are the differential versions of the equations (5) and (6) that are stated
in Proposition 1. We present in the following only a derivation of equation (5). The derivation
of equation (6) is analogous:

Taking the time derivative of e−ρtϑB
t yields

d(e−ρtϑB
t ) =

(
−ρe−ρtϑB

t + e−ρtϑ̇B
t

)
dt

= e−ρt
(

µ̆B
t − (σ̃c

t )
2
)

ϑB
t dt,

where the second line uses equation (22). Integrating both sides of the previous equation over
all s ∈ [t, T] yields

e−ρTϑB
T − e−ρtϑB

t =
∫ T

t
e−ρs

(
µ̆B

s − (σ̃c
s )

2
)

ϑB
s ds.

Rearranging and taking the limit T → ∞ implies equation (5).

This concludes the proof of the second part of Proposition 1.

Steady-State Equilibria. Clearly, the equations stated in formula (7) are the steady-state ver-
sions of ODEs (22) and (23) (they can be obtained by setting ϑ̇B

t = ϑ̇C
t = 0). The first equation is

satisfied if either of the following two conditions is satisfied:

ϑB = 0 or (σ̃c)2 = ρ + µ̆B .

The second equation is satisfied if either of the following two conditions is satisfied:

ϑC = 0 or (σ̃c)2 = ρ + µ̆C .

In addition, σ̃c = (1 − ϑ)σ̃ and only a mathematical solution with ϑ = ϑB + ϑC ≤ 1 is a valid
equilibrium solution as otherwise the equilibrium condition qK ≥ 0 is violated (compare Defi-
nition A.1). These considerations lead to the four cases for steady state equilibria discussed in
the main text.

A.2 Derivation of the Debt Valuation Equation (Equation (9))

We derive here the debt valuation equation with a bubble in a generic partial equilibrium
setting that is much more general than our model. We specialize below to the variant that
holds in our model. The derivation of the debt valuation equation typically starts with the

66Here, there is no issue of potentially infinite µ̆C , so this equation holds in fact without qualifications on how to
interpret it.
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government flow budget constraint, which is, in a generic setting, given by(
µB

t Bt + PtTt

)
dt = (itBt + PtGt) dt,

where Bt is the nominal face value of outstanding government bonds, µB
t is its growth rate,

Pt is the price level, Tt are (real) taxes, Gt is (real) government spending, and it is the nominal
interest rates paid on bonds.67

Denote by ξt the real stochastic discount factor (SDF) process that prices government bonds.
Multiplying the budget constraint by the nominal SDF ξt/Pt and rearranging yields

(
µB

t − it

) ξt

Pt
Btdt = −ξt (Tt − Gt) dt. (24)

Next, Ito’s product rule implies

d
(

ξt

Pt
Bt

)
=
(

µB
t − it

) ξt

Pt
Btdt +

ξt

Pt
Bt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
.

Solving this equation for
(

µB
t − it

)
ξt
P tBtdt and substituting the result into equation (24) yields

(after rearranging)

d
(

ξt

Pt
Bt

)
= −ξtPt (Tt − Gt) dt + ξt

Bt

Pt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
,

or in integral form

ξT
BT

PT
− ξt

Bt

Pt
= −

∫ T

t
ξs (Ts − Gs) ds +

∫ T

t
ξs
Bs

Ps

(
d (ξs/Ps)

ξs/Ps
+ isdt

)
.

Up to this point, we have merely rearranged and integrated the government budget constraint.
To derive the debt valuation equation, the literature proceeds by using two equilibrium con-
ditions. First, if the nominal SDF ξ/P prices the government bonds, then its expected rate
of change must be the negative of the nominal interest rate. Then, the last stochastic integral
on the right must be a martingale and disappears when taking conditional time-t expectations
Et[·]. Second, a private-sector transversality condition is invoked to eliminate a terminal value
of government debt when passing to the limit T → ∞. We perform the first operation, but
are interested in environments where transversality conditions cannot rule out a nonzero dis-
counted terminal value. When taking the limit T → ∞, we therefore arrive at the more general

67Here we abstract from long-term bonds and the possibility of taxes, spending, and adjustments in B that are not
absolutely continuous over time (e.g., lumpy adjustments in response to a Poisson shock).
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equation:
Bt

Pt
= Et

[∫ ∞

t

ξs

ξt
(Ts − Gs) ds

]
+ lim

T→∞
Et

[
ξT

ξt

BT

PT

]
.

To get to equation (9) stated in the main text for our model, we note that the generic SDF ξt has
to be replaced with the SDF ξ i

t of some agent in the model (they are all marginal in government
bonds, so the identity of i does not matter), primary surpluses are Tt − Gt = stKt, and the real
value of total debt is Bt/Pt = qB

t Kt. With these replacements, the previous equation becomes
equation (9).

A.3 Proofs of the Uniqueness Propositions Presented in Section 4

In this appendix, we present the left-out technical steps and proofs necessary to establish the
uniqueness results stated in Section 4. In line with Definition A.1, we remark that the equilibria
we consider always feature deterministic and absolutely continuous price paths. In addition,
we impose as a (purely technical) regularity condition on government policy that the ratio s̄t :=

st
qB

t +qC
t +qK

t
of primary surpluses to total wealth must be a bounded and measurable function

t 7→ s̄t along any equilibrium path. The precise nature of this additional assumption is of
no relevance for any of the proofs below. But some regularity condition is required for all
mathematical objects to be well-defined.

A.3.1 The Equilibrium ODEs

We start with a technical lemma that reduces the study of uniqueness of model equilib-
ria to the study of uniqueness of solution paths t 7→ ϑB

t , ϑC
t to certain ODEs that satisfy some

additional requirements. Specifically, we have shown in Appendix A.1.2 that any model equi-
librium is necessarily associated with time paths for ϑB

t and ϑC
t that satisfy the ODEs (22) and

(23) – except in the former case for ϑB
t = 0 unless the product ϑB

t µ̆B
t is “suitably interpreted”,

compare footnote 65. Here, we revisit the case ϑB
t = 0 with more care as a precise mathematical

formulation is important for the uniqueness results. The following lemma gives such a precise
formulation.

Lemma A.1. Any model equilibrium is associated with absolutely continuous functions ϑB, ϑC : [0, ∞) →
R for the time paths of ϑB and ϑC such that

(i) ϑB
t , ϑC

t ≥ 0 for all t ≥ 0;

(ii) ϑB
t + ϑC

t ≤ 1 for all t ≥ 0;

(iii) there is a (bounded and measurable) function [0, ∞) → R, t 7→ s̄t satisfying s̄t ≥ 0 whenever
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ϑB
t = 0 such that ϑB and ϑC solve the two ODEs

ϑ̇B
t = f

(
ϑB

t + ϑC
t

)
ϑB

t − s̄t (25)

ϑ̇C
t = f

(
ϑB

t + ϑC
t

)
ϑC

t + µ̆CϑC
t (26)

where
f : R → R, x 7→ ρ − (1 − x)2σ̃2.

Proof. The requirement of absolutely continuous time paths follows immediately from Defini-
tion A.1. Also by that definition, an equilibrium must be associated with positive asset prices,
hence ϑB

t , ϑC
t , 1 − ϑB

t − ϑC
t ≥ 0 for all t ≥ 0. This yields properties (i) and (ii).

ODE (26) is precisely ODE (23), which is a necessary condition for an equilibrium by the
arguments made in Appendix A.1.2. Similarly, whenever ϑB

t > 0, the arguments made in that
appendix also imply ODE (22), which is equivalent to ODE (25) for the specific choice s̄t :=
−µ̆B

t ϑB
t .

In the remaining case that ϑB
t = 0, a feasible policy according to Definition A.2 can assume

one of two cases. The first case is st = 0, in which case any arbitrary finite µ̆B
t is consistent with

the government budget constraint. In this case, ODE (22) remains mathematically well-defined
and valid. Therefore, ODE (25) also holds in this case with the definition s̄t := −µ̆B

t ϑB
t = 0. The

second case is st > 0, in which case one easily checks that all steps in the derivation of ODE (22)
still work if µ̆BϑB

t is replaced with −s̄t := −st/(qB
t + qC

t + qK
t ) throughout. Hence, also in this

case ODE (25) holds and s̄t > 0. In total, s̄t must be nonnegative in the case ϑB
t = 0.

Finally, boundedness and measurability of s̄t are the additional technical requirements dis-
cussed in the beginning of this appendix.

We remark that the proof also reveals that the quantity s̄t corresponds to the ratio of primary
surpluses to total wealth in equilibrium. Whenever ϑB

t > 0, the identity s̄t = −µ̆B
t ϑB

t holds. Note
also that if the government chooses a constant surplus s > 0, the associated s̄t is given by

s̄t = sh(ϑB
t + ϑC

t ), (27)

where
h : R → R, x 7→ 1 − x + ϕρ

1 + ϕ(a − g)
.

We remark further that the following proofs (as well as the uniqueness proofs under imper-
fect commitment in Appendix A.5 and with aggregate shocks in Appendix A.6) do not depend
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on the precise definitions of f and h but only on the following properties:68

Fact A.1. f is continuous and strictly increasing on [0, 1], f (0) < 0, and f (1) = ρ > 0.

Fact A.2. h is continuous, weakly decreasing, strictly positive for all x ∈ [0, 1), and satisfies

(a − g)h(1) ≤ ρ.

We emphasize that the exact same proofs would remain valid in any other model, provided
there are ODE representations as in Lemma A.1 with a function f satisfying Fact A.1 and a con-
stant surplus policy can be described as in equation (27) with a function h satisfying Fact A.2.69

A.3.2 Omitted Steps in Proof of Proposition 2

We have already shown in the main text that the policy (12) with s > 0 is inconsistent with
equilibrium bubbles on any asset. It is therefore without loss of generality (w.l.o.g.) to complete
the proof of Proposition 2 under the assumption qC

t = ϑC
t ≡ 0.

We first show that there is a unique solution path ϑB
t to ODE (25) that is consistent with

the policy specification (12) and remains within the interval [0, 1] at all times (a requirement of
Lemma A.1). Under policy (12), ODE (25) can be written as

ϑ̇B
t = f (ϑB

t )ϑ
B
t − sh(ϑB

t ) (28)

where f and h have properties as in Facts A.1 and A.2. In particular, f is strictly increasing and
h is positive and weakly decreasing.

It is sufficient to show that the right-hand side of equation (28) crosses zero at precisely one
value for ϑB

t ∈ [0, 1], is negative below that value and positive above it.70 If f (ϑB
t ) < 0 and

ϑB
t ≥ 0, then the right-hand side of (28) is negative. In addition, monotonicity of f implies

that also f (ϑ) < 0 for any other ϑ ∈ [0, ϑB
t ], so that the right-hand side remains negative for

lower values of ϑB
t . Instead, if f (ϑB

t ) ≥ 0, then the monotonicity properties of f and h imply
that the right-hand side of (28) is strictly increasing in ϑB

t , so that there can be at most one
point at which the right-hand vanishes. Finally, there must be also at least one such point by
the intermediate value theorem: the right-hand side of (28) is continuous, negative for ϑt = 0

68For f , these properties are only true if σ̃2 > ρ, which is the requirement for bubbles in our model to be possible.
69This is, for example, the case for the perpetual youth model that we have considered in a previous version of

this paper.
70Then, all mathematical solutions that start at a different value than that steady state value drift off to values

below 0 or above 1 in finite time and can thus not correspond to valid equilibria.
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(because h is positive) and nonnegative for ϑt = 1,71. In addition, this unique value ϑB∗ must
satisfy ϑB∗ > 0.

To conclude the proof, note that the unique solution ϑB∗ indeed corresponds to a model
equilibrium. It is associated with the monetary steady state equilibrium discussed in Section 2
for the parameter choice µ̆B = − sh(ϑB∗)

ϑB∗ .

A.3.3 Proof of Proposition 3

We know already that there is a unique equilibrium with ϑB
t = ϑB∗ and ϑC

t = 0 at all times,
the monetary steady state equilibrium discussed in Setion 2. It is therefore sufficient to show
that, under the threshold policy (14), ϑB

t = ϑB∗ in any equilibrium such that qC ≡ 0 ⇔ ϑC ≡ 0.

By Lemma A.1, we need to show that ϑB
t = ϑB∗ is the only solution to ODE (25) that is

consistent with the specified threshold policy and contained in the interval [0, 1] under the as-
sumption that ϑC ≡ 0. Under the threshold policy (14), ODE (25) can be written as

ϑ̇B
t =


(

f
(

ϑB
t

)
+ µ̆B

)
ϑB

t , ϑB
t ≥ ϑ

f
(

ϑB
t

)
ϑB

t − sh
(

ϑB
t

)
, ϑB

t < ϑ
,

where f and h satisfy Facts A.1 and A.2.

By definition, ϑB = ϑB∗ is the unique solution to the equation

f (ϑB) + µ̆B = 0.

Because the left-hand side of this equation is strictly increasing in ϑB, it must be negative for
any ϑB < ϑB∗ and positive for any ϑB > ϑB∗. In addition, because µ̆B ≥ 0 by assumption, we
can also conclude that f (ϑB) < 0 if ϑB < ϑB∗.

The previous considerations together with sh(ϑB
t ) > 0 allow us to make the following con-

clusions about the ODE stated previously: (1) ϑB
t = ϑB∗ ⇒ ϑ̇B

t = 0, (2) ϑB
t ∈ (ϑB∗, 1] ⇒ ϑ̇B

t > 0,
(3) ϑB

t ∈ [0, ϑB∗) ⇒ ϑ̇B
t < 0. Conclusion (1) implies that ϑB

t = ϑB∗ is a solution that always
remains inside the interval [0, 1]. Conclusion (2) implies that any solution that is ever above ϑB∗

must be larger than 1 within a finite time and can thus not be contained in [0, 1]. Conclusion
(3) implies, symmetrically, that any solution that is ever below ϑB∗ must turn negative within

71If ϑB
t = 1, then by Facts A.1 and A.2, f (ϑB

t ) ≥ ρ and

sh(ϑB
t ) ≤ (a − g)h(1) ≤ ρ,

where the first inequality follows from the assumption s ≤ a− g. Combining these results implies that the right-hand
side of (28) must be nonnegative.
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a finite time and can thus also not be contained in [0, 1]. Consequently, ϑB
t = ϑB∗ is the unique

solution that satisfies 0 ≤ ϑB
t ≤ 1 for all t.

A.3.4 Proof of Proposition 4

The proof of Proposition 4 follows the logic outlined in the main text and depicted in Fig-
ure 1. However, while the economic logic presented in the main text is sound, there are some
subtle technical difficulties associated with the proof that the threshold policy indeed succeeds
in establishing a lower bound for the equilibrium fraction of wealth ϑB

t that is due to govern-
ment bonds. We relegate these technical points to Appendix A.3.5 and here simply state the
result as a lemma:

Lemma A.2. In any equilibrium consistent with the threshold policy (14), ϑB
t ≥ ϑ for all t.

With the help of Lemma A.2, the proof of Proposition 4 is relatively straightforward. Before
presenting it, we prove another simple lemma that establishes also an upper bound on ϑB

t :

Lemma A.3. In any equilibrium consistent with the threshold policy (14), ϑB
t ≤ ϑB∗ for all t.

Proof. We prove the assertion by contradiction. Suppose otherwise that ϑB∗ < ϑB
t for some time

t. Then also ϑt ≥ ϑB
t > ϑB∗ and thus ϑ̇B

t =
(

f (ϑt) + µ̆B
)

ϑB
t > 0. Such a solution would have to

exceed 1 in finite time, contradicting Lemma A.1

Proof of Proposition 4. The first part of Proposition 4 follows immediately from Lemma A.2.

For the second part, we consider the cases ϑ = ϑB∗ and µ̆C > µ̆B separately:

1. In the case ϑ = ϑB∗, Lemma A.3 implies the inequality chain

ϑB∗ = ϑ ≤ ϑB
t ≤ ϑB∗

for all t ≥ 0 in any equilibrium. Clearly, this can only be the case if ϑB
t = ϑB∗ at all times.

Then, in particular, ϑ̇B
t = 0 and ODE (25) also implies f (ϑt)+ µ̆B = 0 and, hence, ϑt = ϑB∗.

It is also clear that there is unique equilibrium that satisfies ϑB
t = ϑt = ϑB∗ for all t ≥ 0

(the monetary steady-state equilibrium without cryptocoin bubbles).

2. Now consider the case µ̆C > µ̆B . The time derivative of the ratio ϑC
t /ϑB

t along any equi-
librium path72 is given by

d(ϑC
t /ϑB

t )

dt
=
(

f (ϑt) + µ̆C
) ϑC

t

ϑB
t
−
(

f (ϑt) + µ̆B
) ϑC

t

ϑB
t
=
(

µ̆C − µ̆B
) ϑC

t

ϑB
t

72Note that this ratio is always well-defined because ϑB
t ≥ ϑ > 0 in any equilibrium.
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and hence

ϑC
t = ϑC

0
ϑB

t

ϑB
0

e(µ̆
C−µ̆B)t ≥ ϑC

0
ϑ

ϑB
0

e(µ̆
C−µ̆B)t.

Because µ̆C − µ̆B > 0, the term on the right-hand side is unbounded unless ϑC
0 = 0. As ϑC

t

must remain bounded in any equilibrium, ϑC
0 = 0 is the only possibility. But this implies

ϑC
t = 0 for all t. Hence, the assertion reduces to the conclusions of Proposition 3.

This completes the proof of Proposition 4.

A.3.5 Proof of Lemma A.2

We start by remarking that for the threshold policy (14), the ODE (25) can be written as

ϑ̇B
t =


(

f
(

ϑB
t + ϑC

t

)
+ µ̆B

)
ϑB

t , ϑB
t ≥ ϑ

f
(

ϑB
t + ϑC

t

)
ϑB

t − sh
(

ϑB
t + ϑC

t

)
, ϑB

t < ϑ
. (29)

The proof of the lemma is split in a series of additional lemmas that exclude certain paths
for ϑB

t and ϑC
t as valid equilibrium paths. In the proofs, we repeatedly make us of the following

simple fact about ODEs: if the right-hand side of an ODE for a function xt is continuous in xt,
strictly negative for all xt ∈ [0, x), and strictly positive for all xt ∈ (x, 1], then all solution paths
with xt < x for some t fall below 0 in finite time and all solution paths with xt > x̄ for some t
rise above 1 in finite time.73

We start with a lemma that excludes values for the total safe asset share ϑt = ϑB
t + ϑC

t that
are “too large” under the condition that ϑB

t ≥ ϑ. In the following, let ϑ0 denote the unique
solution to the equation f (ϑ) = 0.

Lemma A.4. Let (ϑB
t , ϑC

t ) be a solution to ODEs (26) and (29) satisfying ϑB
t , ϑC

t ≥ 0 for all t ≥ 0. If
there is a t0 such that ϑB

t0
+ ϑC

t0
> ϑ0 and ϑB

t0
≥ ϑ, then there is also a t1 < ∞ such that ϑB

t1
+ ϑC

t1
> 1.

Proof. Suppose that ϑt := ϑB
t + ϑC

t ≥ ϑ0, ϑB
t ≥ ϑ, and ϑt ≤ 1. For any such time t, equation (29)

implies
ϑ̇B

t =
(

f (ϑt) + µ̆B
)

︸ ︷︷ ︸
>0

ϑB
t > 0

73The proof of this simple fact is omitted, but the basic idea is that, close to the boundaries, ẋt is bounded away
from zero and thus boundaries must be reached (and crossed) in finite time as opposed to asymptotically.
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and equation (26) implies
ϑ̇C

t =
(

f (ϑt) + µ̆C
)

︸ ︷︷ ︸
>0

ϑC
t ≥ 0,

so that also ϑ̇t = ϑ̇B
t + ϑ̇C

t > 0. Hence, if the first two inequalities are satisfied for some time t0,
then they must also be satisfied for all subsequent times t ≥ t0. In addition, for such times t,
because ϑ̇t is strictly positive so long as ϑt ≤ 1, it must be the case that ϑt crosses 1 in finite time,
i.e. there is some t1 < ∞ such that ϑt1 > 1.

The next lemma is the counterpart of the previous lemma for the case ϑB
t < ϑ. In this case,

the situation is more difficult because positive surpluses tend to be associated with decaying
ϑt whereas large ϑt by itself tends to be associated with further growth in ϑt. The additional
condition ϑ̇t0 > 0 in the following lemma is required to resolve this tension.

Lemma A.5. Let (ϑB
t , ϑC

t ) be a solution to ODEs (26) and (29) satisfying ϑB
t , ϑC

t ≥ 0 for all t ≥ 0. If
there is a t0 such that ϑB

t0
+ ϑC

t0
≥ ϑ0, ϑB

t0
< ϑ, and ϑ̇B

t0
+ ϑ̇C

t0
> 0, then there is also a t1 < ∞ such that

ϑB
t1
+ ϑC

t1
> 1.

Proof. We show that for all t ≥ t0 such that ϑt := ϑB
t + ϑC

t ≤ 1, necessarily

ϑ̇t ≥ ϑ̇t0 > 0.

It follows then that ϑt must exceed 1 in finite time.

Combining equations (26) and (29) implies (for all t)

ϑ̇t ≥ f (ϑt) ϑt − sh (ϑt)︸ ︷︷ ︸
=:F(ϑt)

+µ̆CϑC
t .

To see why this holds, note that in the case ϑB
t < ϑ it holds with equality. This is particularly

true at t = t0. Because µ̆BϑB
t > −sh (ϑt), the inequality version must then also hold in the case

ϑB
t ≥ ϑ.

Note that F is a strictly increasing function on the interval [ϑ0, 1], so if 1 ≥ ϑt ≥ ϑt0 , then
F(ϑt) ≥ F(ϑt0). In addition, if 1 ≥ ϑt ≥ ϑt0 ≥ ϑ0, then f (ϑt) + µ̆C ≥ 0 and thus ϑC

t is nonde-
creasing over time by equation (26).

From these considerations, it is straightforward to establish for all t ≥ t0 such that ϑt ≤ 1

ϑ̇t ≥ F(ϑt) + µ̆CϑC
t ≥ F(ϑt0) + µ̆CϑC

t0
= ϑ̇t0 > 0.

This completes the proof of the lemma.
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The final lemma deals with solutions for which ϑ remains below 1 at all times. Under this
additional restriction, it can be shown that when ϑB

t falls below the threshold ϑ, it must further
decay in all future periods with a derivative that is bounded away from 0:

Lemma A.6. There is ε > 0 such that ϑB
t < ϑ implies ϑ̇B

t ≤ −ε for any solution (ϑB
t , ϑC

t ) to ODEs (26)
and (29) that satisfies ϑB

t , ϑC
t ≥ 0 and ϑB

t + ϑC
t ≤ 1 for all t ≥ 0.

Proof. By Facts A.1 and A.2, f and h are continuous. Consequently, the function δ 7→ f (ϑ0 +

δ)ϑ − sh(ϑ0 + δ) is also continuous. Because s > 0, h is strictly positive, and f (ϑ0) = 0, this
function is negative for δ = 0. By continuity, we can find some δ > 0 such that it is still
negative. Then, by construction

ε1 := sh(ϑ0 + δ)− f (ϑ0 + δ)ϑ > 0

Furthermore, define
ε2 := f (ϑ0 + δ)δ > 0

We claim that ε := min{ε1, ε2} has the desired property. To prove it, suppose that ϑB
t < ϑ and

distinguish two cases (in the following, ϑt := ϑB
t + ϑC

t ):

1. ϑt ≤ ϑ0 + δ:
In this case, equation (29) implies

ϑ̇B
t = f (ϑt)ϑ

B
t − sh(ϑt)

≤ f (ϑ0 + δ)ϑB
t − sh(ϑ0 + δ)

≤ f (ϑ0 + δ)ϑ − sh(ϑ0 + δ) = −ε1 ≤ −ε.

Here, the first inequality follows from the fact that f is (strictly) increasing, h is (weakly)
decreasing (Facts A.1 and A.2), and ϑB

t ≥ 0 by assumption. The second inequality follows
from ϑB

t < ϑ and f (ϑ0 + δ) > 0.

2. ϑt > ϑ0 + δ:
We first remark that it must be the case that ϑ̇t ≤ 0. Otherwise, the assumptions of
Lemma A.5 are satisfied, whose conclusion is inconsistent with the requirement that ϑ

remains (weakly) below 1 at all times. Next, using ϑt ≥ ϑ0 + δ, ϑB
t < ϑ ≤ ϑB∗ ≤ ϑ0,

we can conclude that f (ϑt) ≥ f (ϑ0 + δ) ≥ 0 (because f is increasing) and ϑt − ϑB
t ≥ δ.

Consequently,
f (ϑt)(ϑt − ϑB

t ) ≥ f (ϑt)δ ≥ f (ϑ0 + δ)δ = ε2.
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We can then use the previous inequality and ϑ̇t ≤ 0 to bound ϑ̇B
t , which is by equation (29)

given by

ϑ̇B
t = f (ϑt)ϑ

B
t − sh(ϑt) = f (ϑt)ϑt − f (ϑt)(ϑt − ϑB

t )− sh(ϑt)

≤ f (ϑt)ϑt − sh(ϑt)− ε2

≤ f (ϑt)ϑt + µ̆CϑC
t − sh(ϑt)− ε2

= ϑ̇t − ε2 ≤ −ε2 ≤ −ε

Here, the inequality in the third line follows from µ̆CϑC
t ≥ 0 and the inequalities in the last

line from ϑ̇t ≤ 0 and ε2 ≥ ε.

Hence, in either case we can conclude ϑ̇B
t ≤ −ε.

With the help of the previous lemma, it is straightforward to prove Lemma A.2:

Proof of Lemma A.2. Take any equilibrium consistent with the threshold policy and let (ϑB
t , ϑC

t )

be the associated equilibrium paths for ϑB
t and ϑC

t . By Lemma A.1, (ϑB
t , ϑC

t ) must solve the
ODEs (26) and (29) and satisfy the additional properties ϑB

t , ϑC
t ≥ 0 and ϑB

t + ϑC
t ≤ 1 for all

t ≥ 0. We show that the assumption ϑB
t0
< ϑ for any time t0 leads to a contradiction.

Indeed, if ϑB
t0
< ϑ, then Lemma A.6 implies that ϑB

t < ϑ for all t ≥ t0 and, hence, again by
the same lemma, there is some ε > 0 such that ϑ̇B

t ≤ −ε for all t ≥ t0. The previous inequality
implies (for t ≥ t0)

ϑB
t ≤ ϑB

t0
− ε(t − t0)

The right-hand side of this inequality turns negative for finite t1 > t0, so that necessarily also
ϑB

t1
< 0, in contradiction to ϑB

t ≥ 0 for all t ≥ 0.

A.4 Omitted Details in Section 5.4

Derivation of Equation (17). Because all agents consume the same constant fraction ρ of their
wealth, the consumption share ci

t/Ct of agent i at time t must equal the agent’s wealth share ηi
t.

We can therefore write, using the aggregate resource constraint (3),

ci
t = ηi

tCt = ηi
t (a − g− ιt)Kt.

Thus, expected utility of agent i is given by

E

[∫ ∞

0
e−ρt log ci

tdt
]
= E

[∫ ∞

0
e−ρt

(
log ηi

t + log (a − g− ιt) + log Kt

)
dt
]

. (30)

66



To compute the integrals in equation (30), note that if

dxt

xt
= µx

t dt + σ̃x
t dZ̃t,

then

E

[∫ ∞

0
e−ρt log xtdt

]
=

log x0

ρ
+ E

∫ ∞

0
e−ρt µx

t −
(
σ̃x

t
)2 /2

ρ
dt

 . (31)

This follows from a simple calculation:

∫ ∞

0
e−ρt (log xt − log x0

)
dt =

∫ ∞

0
e−ρt

∫ t

0
d log xsdt

=
∫ ∞

0
e−ρt

(∫ t

0
µx

s ds +
∫ t

0
σ̃x

t dZ̃s −
1
2

∫ t

0
(σ̃x

t )
2 ds
)

dt

=
∫ ∞

0

∫ ∞

s
e−ρtdt

(
µx

s −
1
2
(σ̃x

t )
2
)

ds +
∫ ∞

0
e−ρt

∫ t

0
σ̃x

t dZ̃sdt

=
∫ ∞

0
e−ρs µx

s −
(
σ̃x

t
)2 /2

ρ
ds +

∫ ∞

0
e−ρt

∫ t

0
σ̃x

t dZ̃sdt.

When taking expectations, the second term disappears because it is a martingale. Thus, we
obtain formula (31).

To apply formula (31), we need to determine dKt
Kt

and dηi
t

ηi
t

. We know that

dKt

Kt
=
(
Φ(ιt)− δ

)
dt. (32)

For ηi
t, we have (recall that qC

t ≡ 0 and ϑB = ϑ)

dηi
t

ηi
t
=

dni
t

ni
t
− dq̄t

q̄t
− dKt

Kt

=

(
−ρdt + drBt + (1 − ϑt)

(
drK,i

t (ιt)− drBt
))

− µ
q̄
t dt −

(
Φ(ιt)− δ

)
dt

=
(
−ρ − µ̆B

t + µϑ
t

)
dt + (1 − ϑt)

(
a − g− ιt

qK
t

+
µ̆B

t − µϑ
t

1 − ϑt

)
dt + (1 − ϑt) σ̃dZ̃i

t

=

(
−ρ + (1 − ϑt)

ρ

1 − ϑt

)
dt + (1 − ϑt) σ̃dZ̃i

t

= (1 − ϑt) σ̃dZ̃i
t (33)

where q̄t := qB
t + qK

t and µ
q̄
t := ˙̄qt

q̄t
. Here, the third line uses the return expressions and the

government budget constraint (2) and the fourth line the aggregate resource constraint (3).
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Equations (32) and (33) together with formula (31) allow us to compute the integrals in (30):

E

[∫ ∞

0
e−ρt log ηi

tdt
]
=

log ηi
0

ρ
− 1

2ρ
E

[∫ ∞

0
e−ρt (1 − ϑt)

2 σ̃2dt
]

,

E

[∫ ∞

t0

e−ρt log Ktdt
]
=

log K0

ρ
+ E

[∫ ∞

0
e−ρt

(
Φ(ιt)− δ

)
ρ

dt

]
.

Consequently,

E

[∫ ∞

t0

e−ρt log ci
tdt
]
=

log ηi
0 + log K0

ρ

+ E

∫ ∞

0
e−ρt

(
log (a − g− ιt) +

(
Φ(ιt)− δ

)
ρ

− (1 − ϑt)
2 σ̃2

2ρ

)
dt


After substituting ιt as a function of ϑt (as stated in Proposition 1) and the functional form
Φ(ι) = 1

ϕ log
(
1 + ϕι

)
, we obtain equation (17).

Existence, Uniqueness and Properties of ϑ∗. Taking first order conditions for maximizing the
time-t integrand in equation (17) with respect to ϑt implies

(1 − ϑt)
3 σ̃2 + ϕρ (1 − ϑt)

2 σ̃2 + ρ (1 − ϑt)− ρ = 0. (34)

This is a third-order polynomial equation in 1 − ϑt and has thus precisely three complex so-
lutions. Because the coefficients on all monomials of positive order are nonnegative and the
constant coefficient is negative, standard results on polynomial roots imply that precisely one
of these complex solutions is real and that solution must be positive. Consequently, there is a
unique real number ϑ∗ < 1 such that 1− ϑ∗ satisfies the first-order condition.74 It is also easy to
see that ϑ∗ > 0 as otherwise the positive-sign terms in equation (34) would exceed the negative-
sign term in absolute value. Therefore, there is a unique optimal ϑ∗ ∈ (0, 1) that maximizes the
time-t integrand in equation (17) with respect to ϑt. Because the coefficients in equation (34) just
depend on the parameters σ̃, ρ and ϕ, so does ϑ∗. By the implicit function theorem, ϑ∗ must be
strictly increasing in σ̃.

A.5 Uniqueness under Imperfect Commitment

In this Appendix, we provide a more detailed formal description of the policy game outlined
in Section 6.1 and prove Proposition 5.

74The objective is not generally concave, but it is quasiconcave (over the domain [0, 1]), such that the first-order
condition nevertheless always corresponds to a global maximum.
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A.5.1 The Policy Game

We have described asset prices in the main text by the three variables qB
t , qC

t , qK
t and policies

by the three variables it, µB
t , τt. Instead, our approach in Appendix A.3 was to reduce the study

of equilibria to the analysis of the two ODEs (25) and (26) for ϑB
t and ϑC

t . These ODEs are affected
by the government policy only through the one-dimensional policy variable s̄t that has to satisfy
the requirement s̄t ≥ 0 if ϑB

t = 0. It is relatively straightforward to show that, conversely, any
solution to ODEs (25) and (26) that satisfies the requirements stated in Lemma A.1 corresponds
to a model equilibrium.75 As this saves on notation, we formulate here the policy game in terms
of just the variables ϑB

t , ϑC
t , and s̄t instead of working with the original variables as in the main

text.

Problem of a Government. Our assumption of Markov perfect equilibria implies that gov-
ernments do not react to the policy choices of previous governments because there are no state
variables in the model. As a consequence, each government j takes the terminal asset values
ϑB
(j+1)T, ϑC

(j+1)T as given because actions of future governments (that will ultimately determine
these values) are not directly impacted by government j’s actions.

It is sufficient to describe the problem of government j = 0 in more detail. The problem of
governments j > 0 is identical with the only difference that time has to be shifted to the right
by jT time units.

Government j = 0 takes terminal asset values ϑB
T , ϑC

T ≥ 0 with ϑB
T + ϑC

T ≤ 1 as given and
makes a policy choice for {s̄t}t∈[0,T) in order to control the price dynamics of ϑB and ϑC over
[0, T) in line with ODEs (25) and (26). As discussed in Appendix A.3.1, the policy {s̄t}t∈[0,T)

must satisfy the constraint s̄t ≥ 0 whenever ϑB
t = 0. In addition, we only admit policies that

lead to valuation paths satisfying ϑB
t + ϑC

t ≤ 1 for all t ∈ [0, T], as otherwise the resulting
solution to ODEs (25) and (26) would not correspond to a valid competitive equilibrium of the
underlying model.76

Because each path for s̄ (that is bounded and measurable) implies a unique solution for ϑB

and ϑC (given terminal values), there is no gain from requiring that a policy must be specified
as a full function from observed histories of prices as we have previously done. Instead, it is
sufficient to think about the government’s problem as a Ramsey problem, i.e. choosing a time
path of the policy variable that is actually followed conditional on terminal asset values being
ϑB

T and ϑC
T .

75The proof consists in constructing all other model variables out of ϑB
t , ϑC

t , and s̄t = st/(qB
t + qC

t + qK
t ) using

Proposition 1 and the optimal choice conditions derived in Appendix A.1. Once this constructions have been com-
pleted, one has to verify all conditions in Definition A.1, which is not difficult but tedious. A previous version of
this paper contained an explicit statement of this proof, but in the interest of space it has been removed.

76We do not need to impose the inequalities ϑB
t , ϑC

t ≥ 0 explicitly. For any backward solution to the ODEs, these
conditions are automatically satisfied at all times if they are satisfied at the terminal time t = T.
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A strategy of government j = 0 is therefore a function that maps pairs of terminal asset
values (ϑB

T , ϑC
T ) satisfying ϑB

T , ϑC
T ≥ 0 and ϑB

t + ϑC
t ≤ 1 into a time path {s̄t}t∈[0,T) for the policy

variable. Given a strategy, ODEs (25) and (26) then provide a mapping from pairs (ϑB
T , ϑC

T ) into
time paths {ϑB

t , ϑC
t }t∈[0,T) of asset values over the interval [0, T).

The government desires to maximize a social welfare function as in Section 5.4:

W :=
∫ 1

0
λ(i)E

[∫ ∞

0
e−ρt log ci

tdt
]

di,

where {λ(i)}i∈[0,1] is a given distribution of (nonnegative) welfare weights. As we have argued
in Section 5.4, individual utility can be written in the form (17) that separates individual and
aggregate variables, so that the former (and the welfare weights) are not relevant for a planner’s
optimal choices. In addition, the government in question here has no way of influencing prices
after period T. Consequently, we can assume that government j = 0 maximizes the simpler
objective

W
(
{ϑt}t∈[0,T]

)
:=
∫ T

0
e−ρT

log

(
ρ
(
1 + ϕ (a − g)

)
1 − ϑt + ϕρ

)
+

1
ϕρ

log

(
(1 − ϑt)

(
1 + ϕ (a − g)

)
1 − ϑt + ϕρ

)
− δ

ρ
− (1 − ϑt)

2 σ̃2

2ρ


︸ ︷︷ ︸

=:Ψ(ϑt)

dt.

where ϑt := ϑB
t + ϑC

t .

We remark that Ψ is a strictly quasiconcave function with a unique global maximizer. As in
Section 5.4, we denote this maximizer by ϑ∗ in the following.

Equilibrium. An equilibrium in the policy game consists of absolutely continuous valuation
paths {ϑB

t , ϑC
t }t∈[0,∞) and a bounded and measurable government policy path {s̄t}t∈[0,∞) such

that for all j = 0, 1, . . . , {s̄t}t∈[jT,(j+1)T) is the optimal policy chosen by government j given
terminal valuations (ϑB

(j+1)T, ϑ(j+1)T) and {ϑB
t , ϑC

t }t∈[jT,(j+1)T is the valuation path over [jT, (j +
1)T) implied by that optimal policy.

Note that, this definition automatically implies that {ϑB
t , ϑC

t }t∈[0,∞) corresponds to a solution
to ODEs (25) and (26) for the policy choice {s̄t}t∈[0,∞). By the remark made in the beginning of
this appendix, these solution paths identify a competitive equilibrium in the sense of Defini-
tion A.1.

A.5.2 Proof of Proposition 5

We first show that any equilibrium in the policy game must feature ϑt ≥ ϑ∗ at all times.
The proof of this part is organized into a sequence of technical lemmas that provide key results
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about the associated ODEs (25) and (26) and the optimal choices of any individual government.

Lemma A.7. Let (ϑB,i
T , ϑC,i

T ), i = 1, 2 be two sets of terminal conditions and {s̄i
t}t∈[0,T), i = 1, 2 two

policy paths over [0, T). Let {ϑB,i
t , ϑC,i

t }t∈[0,T] be the implied solution paths to ODEs (25) and (26).
Define ϑi

t := ϑB,i
t + ϑC,i

t . If ϑ1
t ≤ ϑ2

t for all t ∈ [0, T] and ϑC,1
T ≥ ϑC,2

T , then also ϑC,1
t ≥ ϑC,2

t for all
t ∈ [0, T].

Proof. Let α(ϑ) := f (ϑ) + µ̆C . By Fact A.1, α is strictly increasing in ϑ ∈ (0, 1). ODE (26) implies

ϑ̇C,i
t =

(
f (ϑt) + µ̆C

)
ϑC,i

t = α(ϑi
t)ϑ

C,i
t .

This has the solution

ϑC,i
t = ϑC,i

T exp

(
−
∫ T

t
α(ϑi

s)ds

)
. (35)

If ϑ1
t ≤ ϑ2

t for all t, then α(ϑ1
t ) ≤ α(ϑ2

t ) for all t, and so

exp

(
−
∫ T

t
α(ϑ1

s )ds

)
≥ exp

(
−
∫ T

t
α(ϑ2

s )ds

)
.

Combining this inequality and the assumption ϑC,1
T ≥ ϑC,2

T with inequality (35) implies ϑC,1
t ≥

ϑC,2
t for all t.

Lemma A.8. Consider the problem of government j = 0 with terminal condition (ϑB
T , ϑC

T ) and let
{ϑt}t∈[0,T], {ϑ′

t}t∈[0,T] be two absolutely continuous time paths such that ϑT = ϑ′
T = ϑB

T + ϑC
T . Suppose

there is a feasible policy that implements {ϑt}t∈[0,T] as a time path for ϑB + ϑC, {ϑ′
t}t∈[0,T] has bounded

derivative, and ϑ′
t ≥ ϑt for all t ∈ [0, T]. Then there is also a feasible policy that implements {ϑ′

t}t∈[0,T]

as a time path for ϑB + ϑC.

Proof. First, we “backsolve” the ODEs for the policy s̄′t required to generate the path ϑ′
t. Assum-

ing ϑB + ϑC follows indeed the path ϑ′
t, ODE (26) can be solved backward from the terminal

condition ϑC
T to obtain a time path for ϑC, denote it by ϑC′

t . Given ϑC′
t , the corresponding path

for ϑB must be ϑB′
t := ϑ′

t − ϑC′
t . Note that this definition automatically satisfies the terminal

condition ϑB′
T = ϑB

T . Substituting this path into ODE (25) allows us to back out the associated
policy s̄′t.

77

We need to show that s̄′ is a feasible policy choice. The policy s̄′ is feasible if it satisfies the
condition s̄′t ≥ 0 whenever ϑB′

t = 0. Inspecting ODE (25) reveals that this property is equivalent

77 s̄′t is always uniquely defined, except possibly on a set of measure zero. It is easy to see that s̄′t must be bounded
because ϑ′

t has bounded derivative by assumption and all other terms in equation (25) are also bounded.
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to ϑB′
t ≥ 0 for all t and we choose to prove this equivalent property.78

Let ϑB
t denote the solution for ϑB associated with the feasible path ϑt. Then ϑB

t ≥ 0 for all t.
By assumption, also ϑt ≤ ϑ′

t and thus by Lemma A.7, ϑC
t ≥ ϑC′

t . Combining these facts yields
for all t ∈ [0, T] the inequality chain

0 ≤ ϑB
t = ϑt − ϑC

t ≤ ϑ′
t − ϑC′

t = ϑB′
t .

Thus, policy s̄′ is indeed feasible.

Lemma A.9. Consider the problem of government j = 0 for a given terminal condition. Suppose
{ϑ◦

t }t∈[0,T] is an arbitrary absolutely continuous time path with bounded derivative that satisfies ϑ◦
T ≤

ϑB
T + ϑC

T and ϑ◦
t ≤ ϑ∗ for all t. Then the optimal policy choice implies ϑB

t + ϑC
t ≥ ϑ◦

t for all t ∈ [0, T].

Proof. Let ϑt := ϑB
t + ϑC

t be the time path for ϑB + ϑC implied by the optimal solution. Define
ϑ′

t := max{ϑt, ϑ◦
t }. Because both ϑ and ϑ◦ are absolutely continuous with bounded derivative,

so is also the pointwise maximum ϑ′. In addition, by construction ϑ′
t ≥ ϑt for all t and by

assumption on the terminal values, ϑ′
T = ϑT. Thus, all assumptions of Lemma A.8 are satisfied

and we can conclude that there is a feasible policy that implements the time path ϑ′.

We show next that this alternative policy generates at least as high welfare as the original
plan leading to ϑ and strictly larger welfare if ϑ and ϑ′ are different. Because ϑ is optimal by
assumption, the latter cannot be the case and so it must be that ϑt = ϑ′

t ≥ ϑ◦
t for all t.

To do so, we use that the relevant part of the government’s objective can be written as

W
(
{ϑ}t∈[0,T]

)
=
∫ T

0
e−ρtΨ(ϑt)dt

and Ψ is a strictly quasiconcave function with global maximizer ϑ∗. For each t ∈ [0, T] we have
two cases

(i) if ϑt ≥ ϑ◦
t , then ϑ′

t = ϑt and thus Ψ(ϑ′
t) = Ψ(ϑt);

(ii) if ϑt < ϑ◦
t , then ϑ∗ ≥ ϑ′

t > ϑt and thus Ψ(ϑ′
t) > Ψ(ϑt).

So in any case, Ψ(ϑ′
t) ≥ Ψ(ϑt) for all t ∈ [0, T]. Thus ϑ′ must yield at least as high welfare as

ϑ. In addition, if case (ii) ever occurs, then Ψ(ϑ′
t) > Ψ(ϑt) must hold on a set of positive mea-

sure for t because all expressions are continuous in t. But that would imply W
(
{ϑ′}t∈[0,T]

)
>

W
(
{ϑ}t∈[0,T]

)
. Therefore, ϑ′ yields strictly higher welfare unless the two paths are identical at

all times.
78This is the case because f (0) < 0, so the only way ϑB can cross zero in a backward solution is if s̄t < 0 at a time

when ϑB
t = 0.
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The previous lemma implies the following corollary that is key to the proof that ϑt ≥ ϑ∗ in
all equilibria in the policy game.

Corollary A.1. Consider the problem of any government j for any terminal condition at time (j + 1)T.
Then the optimal solution to the government problem features ϑB

jT + ϑC
jT ≥ ϑ∗.

In addition, if the terminal condition satisfies ϑB
(j+1)T + ϑC

(j+1)T ≥ ϑ∗, then the optimal solution even
satisfies ϑB

t + ϑC
t ≥ ϑ∗ for all t ∈ [jT, (j + 1)T].

Proof. We show the assertion for j = 0. Because the problem of government j > 0 is identical to
the problem of government j = 0 except for a time shift, the result for j = 0 immediately carries
over to any j ≥ 0. Throughout the proof, we write ϑt = ϑB

t + ϑC
t .

We start by proving the additional statement in the special case ϑT ≥ ϑ∗. This also proves
the main assertion in this case. To see that this statement must hold, simply define ϑ◦

t := ϑ∗ and
apply Lemma A.9 to conclude ϑt ≥ ϑ◦

t = ϑ∗ for all t ∈ [0, T].

Next, suppose ϑT < ϑ∗. In this case, the time path ϑ◦ defined by

ϑ◦
t := ϑ∗ +

t
T

ϑT

satisfies the terminal condition and ϑ◦
t ≤ ϑ∗ for all t ∈ [0, T]. We can thus again apply Lemma A.9

and conclude ϑt ≥ ϑ◦
t . In particular, ϑ0 ≥ ϑ◦

0 = ϑ∗.

Corollary A.2. Any equilibrium in the policy game features ϑt ≥ ϑ∗ for all t.

Proof. By the previous corollary, any government j always chooses a policy that implies ϑjT ≥
ϑ∗. But because this holds for all j, this means that any government j − 1 for j ≥ 1 faces a
terminal condition with ϑjT ≥ ϑ∗. Applying again the previous corollary, we can even conclude
ϑt ≥ ϑ∗ for all t ∈ [(j − 1)T, jT]. As this must hold for all j ≥ 1, we obtain ϑt ≥ ϑ∗ for all
t ∈ [0, ∞).

The previous result completes the proof of the first part of Proposition 5 that ϑt ≥ ϑ∗.

We next characterize all equilibria in the policy game in which the inequality always holds
with equality, ϑt = ϑ∗ for all t. In this case, we only need to check under which conditions there
is a feasible infinite-horizon policy path {s̄t}t∈[0,∞) and there are valuation paths {ϑB

t , ϑC
t }t∈[0,∞)

for this policy consistent with ODEs (25) and (26) and ϑt := ϑB
t + ϑC

t = ϑ∗ for all t. Whenever
this is the case, this automatically represents an equilibrium of the policy game because this
particular path for ϑt is the global maximizer of the objective of any government j = 0, 1, . . .
and so no government has an incentive to deviate.
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If ϑt = ϑ∗ for all t, then ODE (26) implies for ϑC
t

ϑ̇C
t = ( f (ϑ∗) + µ̆C)ϑC

t =: αϑC
t .

This is a linear ODE with the general solution

ϑC
t = ϑC

0 eαt,

where ϑC
0 ∈ R parameterizes the possible solutions. All solutions with ϑC

0 < 0 violate the
nonnegativity requirement and are therefore not associated with equilibria in the policy game.
To determine which solutions with ϑC

0 ≥ 0 are possible in the policy game, we consider two
cases separately:

(i) If µ̆C > µ̆∗, then α > 0 and thus any solution with ϑC
0 > 0 generates a ϑC path that grows

without bounds. Eventually, such a solution implies ϑC
t > ϑ∗ = ϑt and thus ϑB

t < 0. Such
a solution does not correspond to an equilibrium. Consequently, only the solution with
ϑC

0 = 0, i.e. ϑC
t = 0 for all t ≥ 0 remains. This solution implies ϑB

t = ϑt = ϑ∗ and this
represents indeed a valid equilibrium in the policy game.

(ii) If µ̆C ≤ µ̆∗, then α ≤ 0. For any initial condition ϑC
0 ∈ [0, ϑ∗], the implied path satisfies

ϑC
t ∈ [0, ϑ∗] for all t ≥ 0. This implies ϑB

t = ϑ∗ − ϑC
t ∈ [0, ϑ∗] for all t ≥ 0. All of these

solutions are valid solutions in the policy game.

To complete the proof of Proposition 5, we only need to show that in the case µ̆C > µ̆∗ (case
(i) above), there can be also no other equilibria in the policy game (so far we have only shown
there can be none satisfying ϑt = ϑ∗). Such other equilibria must necessarily feature ϑt > ϑ∗ for
some time t. But it is easy to see that this cannot be possible:

First, we show that there is no equilibrium with ϑC
t > 0 for any t ≥ 0. The proof is largely

identical to the one in case (i) above. We know already that ϑt ≥ ϑ∗ in any equilibrium and thus
with α defined as previously,

ϑ̇C
t ≥ αϑC

t .

Therefore, any solution must satisfy ϑC
t1
≥ ϑC

t0
eα(t1−t0) for any t0 < t1. If ϑC

t0
> 0, then, because

α > 0, there is some t1 such that ϑC
t1
> 1, violating ϑB

t1
+ ϑC

t1
≤ 1. Consequently, ϑC

t0
= 0 is the

only possibility. Because t0 was arbitrary, any equilibrium must feature ϑC
t = 0 for all t ≥ 0. For

the remainder of the proof, we therefore identify ϑt and ϑB
t and remark that ϑt is determined by

ODE (25).

Second, restricting attention to the situation ϑ = ϑB, we show that ϑt > ϑ∗ at any time t is
impossible in any equilibrium of the policy game. We proceed in two steps:
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1. If any government j faces a terminal condition ϑ(j+1)T = ϑ∗, then it is feasible and (strictly)
optimal to implement ϑt = ϑ∗ for all t ∈ [jT, (j + 1)T]. Feasibility follows from the pre-
vious discussion, optimality from the structure of the government’s objective. Therefore,
the observation ϑt > ϑ∗ for some t cannot result from the policy of any government that
faces the terminal condition ϑ(j+1)T = ϑ∗.

2. We show next that if any government j was to face a terminal condition ϑ(j+1)T > ϑ∗, its
optimal policy would still imply ϑjT = ϑ∗ at the beginning of its period of office, so that
the previous government j − 1 would face the terminal condition ϑjT = ϑ∗. But if this
holds for all j, then a terminal condition ϑ(j+1)T > ϑ∗ cannot actually be the outcome of
any equilibrium.

We prove this last result by contradiction and assume w.l.o.g. that j = 0. Suppose the
optimal response of the government to a terminal condition ϑT > ϑ∗ was leading to a
price path {ϑt}t∈[0,T] such that ϑ0 > ϑ∗. We construct a feasible alternative price path
{ϑ′

t}t∈[0,T] that generates higher welfare than {ϑt}t∈[0,T] contradicting the assumption that
the latter is the result of an optimal policy choice by the government.

For the construction of {ϑ′
t}t∈[0,T], let s̄t denote the optimal policy chosen by the govern-

ment. For x > 0, define s̄′′t := s̄t − x. Consider the solution ϑ′′
t to ODE (25) under this

policy with the terminal condition ϑ′′
T = ϑT. Clearly, that solution satisfies ϑ′′

t < ϑt for all
t < T.79 Also, if x is sufficiently large, ϑ′′

t must cross ϑ∗ in the interval [0, T]. We define the
last crossing time,

t0 := sup{t ∈ [0, T] | ϑ′′
t ≤ ϑ∗}.

By continuity of ϑ′′ and ϑ′′ = ϑT, ϑ′′
t0
= ϑ∗ whenever t0 > 0. Clearly t0 is increasing in x

and t0 → T as x → ∞. Consequently, for any given ε > 0, we can choose x > 0 sufficiently
large such that t0 > T − ε. Choose such x appropriately and define next

s̄′t :=

αϑ∗, t < t0

s̄′′t , t ≥ t0

,

where α is defined as previously. Now let ϑ′
t be the solution to ODE (25) with terminal

condition ϑ′
T = ϑT and the policy s̄′. Because the ODE coincides with the one for ϑ′′ on

[t0, T] and because the terminal conditions are identical, it must be that ϑ′
t = ϑ′′

t for all
t ∈ [t0, T]. Furthermore, ϑ′

t0
= ϑ′′

t0
= ϑ∗ and we have seen above that the policy s̄ = αϑ∗

makes the right-hand side of ODE (25) vanish whenever ϑt = ϑ∗. Consequently, the
solution ϑ′ must satisfy ϑ′

t = ϑ∗ for all t ≤ t0.

79This is because the ODE’s right-hand side for policy s̄′′ is strictly larger than that for s̄ if evaluated at any given
ϑ path. By ODE comparison logic, ϑ′′ must thus fall faster than ϑ when moving backward in time.
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The path ϑ′ just constructed has the property ϑ′
t = ϑ∗ for all t ≤ T − ε and ϑ′

t ≤ ϑ̄ :=
maxt∈[0,T] ϑt ≤ 1 for all t ∈ [T − ε, T]. Consequently, the relevant part of the government’s
welfare objective under this path is

W
({

ϑ′
t
}

t∈[0,T]

)
=
∫ T

0
e−ρtΨ

(
ϑ′

t
)

dt

=
∫ T−ε

0
e−ρtΨ (ϑ∗) dt +

∫ T

T−ε
e−ρtΨ

(
ϑ′

t
)

dt

≥
∫ T

0
e−ρtΨ (ϑ∗) dt −

∫ T

T−ε
e−ρt

(
Ψ
(
ϑ̄
)
− Ψ (ϑ∗)

)
dt

≥ W∗ − ε
(

Ψ
(
ϑ̄
)
− Ψ (ϑ∗)

)
,

where W∗ denotes the global maximum of the government’s objective.

On the one hand, as we have constructed such an alternative path ϑ′ for any ε > 0, we
can move the achievable welfare arbitrarily close to the global maximum W∗ by choosing
ε > 0 sufficiently small. On the other hand, welfare attained under the optimal policy,
W
(
{ϑt}t∈[0,T]

)
must be strictly below W∗ for the following reason: ϑ0 > ϑ∗ and by conti-

nuity there must be numbers δ0, δ1 > 0 such that ϑt ≥ ϑ∗ + δ0 for all t ≤ δ1. We therefore
arrive at a contradiction.

A.6 Model Extension and Uniqueness Results with Aggregate Shocks

In this appendix we provide additional details that complement Section 6.2. We first outline
the extended model with aggregate shocks and discuss how our uniqueness arguments from
Section 4 and Appendix A.3 can be extended to this setting if the government is able to observe
the underlying state. We then analyze threshold policies of the type discussed previously if the
government cannot observe the state. Finally, we provide a more complex and sophisticated
example policy that nevertheless achieves unique implementation of the desired equilibrium
(except in a special case).

We remark that, in the interest of space, we keep this appendix more concise than previous
appendices and occasionally skip over (purely technical) definitions and arguments that are in
analogy to the ones presented in the deterministic model in this paper. From our presentation, it
should be feasible for a reader to fill in the gaps and work out the remaining details. The space
required to make them explicit, however, would easily exceed the number of pages required for
Appendices A.1 and A.3 combined.
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A.6.1 Model Setup and Solution

The model is identical to the baseline model presented in Section 2 with one difference:
we replace the parameter σ̃ with a time-varying stochastic process σ̃t that may take values in
{σ̃l , σ̃h} with σ̃l < σ̃h. We assume that σ̃t follows a continuous-time Markov chain with tran-
sition rates λl , λh > 0, where λl is the transition rate from σ̃l to σ̃h and λh is the transition rate
from σ̃h to σ̃l .

State transitions in σ̃t can, in equilibrium, lead to jumps in asset prices qB
t , qC

t , and qK
t . These

jumps introduce aggregate risk into the returns that households face on the three assets. Other-
wise, the household problem is identical to the one of the baseline model.

A competitive equilibrium is defined as in Definition A.1, except that time paths must be
replaced with stochastic processes. We continue to assume that, except at state transition times,
paths for all variables in the equilibrium definition are absolutely continuous in t.

The definition of a feasible surplus rule and the associated policy rules for τ and µ̆B is in
analogy to Definition A.2. The only difference is that, in principle, the surplus st at time t may
not only depend on the the history {qB

t′ , qC
t′ , qK

t′}t′≤t of asset prices but also on the history of
exogenous shocks.

Finally, an equilibrium consistent with a policy rule is then defined in complete analogy to
Definition A.3.

We note that the model can be solved along the same lines as outlined in Section 2 and
Appendix A.1.2. The HJB equation of households is largely identical, the additional jump risk
terms only affect the first-order condition for portfolio choices θB,i

t and θC,i
t . Because the remain-

ing first-order conditions are unaffected, the first part of Proposition 1 holds in this model as
well and the proof is identical word by word. The second part also holds if we add a con-
ditional expectations operator Et in front of the integrals in equations (5) and (6) and replace
σ̃c

t = (1 − ϑt)σ̃ with the equation σ̃c
t = (1 − ϑt)σ̃t. We briefly explain why this is the case be-

low. Given that Proposition 1 essentially still holds in this model, the qualitative dynamics in
this model can be fully understood by considering comparative statics with respect to σ̃ in our
baseline model.

We now briefly explain why the dynamic equations (5) and (6) still holds even though there
is aggregate jump risk (if an expectation operator is added). Specifically, note that these equa-
tions can be equivalently written in differential form as

Et[dϑB
t ] =

(
ρ + µ̆B

t − (σ̃c
t )

2
)

ϑB
t dt, (36)

Et[dϑC
t ] =

(
ρ + µ̆C − (σ̃c

t )
2
)

ϑC
t dt. (37)
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Unlike the equations (22) and (23), which we have derived as the differential versions of equa-
tions (5) and (6) in the baseline model, the previous two equations are not ODEs but stochastic
differential equations (SDEs). Specifically, because they only specify the dynamics of the ex-
pected rates of change Et[dϑB

t ] and Et[dϑC
t ] of the processes ϑB

t and ϑC
t , they are what is called

backward SDEs (BSDEs). A solution to each of these equations consists of both a value, ϑB
t and

ϑC
t , at time t and a (hypothetical) jump target, denoted by ϑB,+

t and ϑC,+
t , to which the process

would jump if a state transition was to occur at time t. We now motivate equation (36). The
same reasoning explains why equation (37) must hold.

In Appendix A.1.2 we have derived ODE (22) by first deriving the portfolio choice condition
of households with returns expressed in the usual consumption numeraire and then imposing
a number of market clearing conditions and rearranging. While this is the most natural ap-
proach, there is actually a faster way to get to equation (22) directly. Following this approach
avoids having to re-state the HJB equation and to follow all the steps in Appendix A.1.2 once
again. For this faster way, we express returns for the portfolio choice condition in a different
numeraire, in units of total wealth in the economy. In this numeraire, the return on bonds
is simply µ̆B

t dt + dϑB
t /ϑB

t . The return on household i’s total wealth portfolio is ĉi
tdt + σ̃n

t dZ̃i
t,

where σ̃n
t is the idiosyncratic risk loading of the household’s net worth. We know that σ̃n

t = σ̃c
t

because of the consumption rule ci
t = ρni

t (which holds regardless of numeraire). The reason for
this return is that, in equilibrium, all households make the same choices so that ni

t/
∫

nj
tdj only

moves because of idiosyncratic shocks. The previous two return expressions are valid regard-
less of whether there are jumps in asset prices or not. The portfolio choice condition for bonds,
expressed in this way, is

Et

[
µ̆B

t dt + dϑB
t /ϑB

t −
(

ĉi
tdt + σ̃c

t dZ̃i
t

)]
= required risk premium

The required risk premium, in turn, when expressed in the total net worth numeraire, only
includes a compensation for idiosyncratic risk in net worth. Why? Because of the consumption
rule ci

t = ρni
t (which holds regardless of the numeraire), the agent’s consumption is always

proportional to net worth and, in this numeraire, has the evolution σ̃n
t dZ̃i

t = σ̃c
t dZ̃i

t. There is no
jump risk in consumption relative to total wealth because all agents experience the same relative
appreciation or depreciation of their wealth (and consumption) in a state transition. Hence, the
required risk premium is simply −(σ̃c

t )
2. Substituting this into the previous portfolio choice

condition and rearranging yields equation (36).
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A.6.2 The Valuation ODEs

As in Appendix A.3.1, we can derive two ODEs for ϑB
t and ϑC

t as necessary conditions in
any equilibrium. These ODEs take the place of ODEs (25) and (26) in a result analogous to
Lemma A.1 in this augmented model.

We start with the BSDEs (36) and (37). We remark that, as in the deterministic model, equa-
tion (36) is not entirely precise in the special case ϑB

t = 0. The precise conditions are the stochas-
tic variants of ODEs (25) and (26):

Et[dϑB
t ] =

(
f (ϑB

t + ϑC
t , σ̃t)ϑ

B
t − s̄t

)
dt,

Et[dϑC
t ] =

(
f (ϑB

t + ϑC
t , σ̃t) + µ̆C

t

)
ϑC

t dt,

where the function f is defined by

f (ϑ, σ̃) = ρ − (1 − ϑ)2σ̃2

and satisfies, for any fixed second argument, the properties in Fact A.1. With the previous
BSDEs in place of equations (25) and (26), Lemma A.1 continues to hold in this model variant
with aggregate shocks.

Because stochastic variation only occurs at discrete state transition times, ϑB
t and ϑC

t follow
“most of the time” deterministic time paths that can be equivalently described by ODEs like
in earlier parts of the paper. To transform the two BSDEs into ODEs, we define the following
notation. For any process xt whose paths are continuously differentiable except at state transi-
tion times, define by ẋt the time derivative conditional on no state transition. Recall also that we
denote by x+t the (hypothetical) jump target conditional on a state transition happening at time
t. With this notation, Et[dxt]/dt = ẋt + λt(x+t − xt), where λt is the transition intensity at time
t (i.e. λt = λl1{σ̃t=σ̃l} + λh1{σ̃t=σ̃h}).

Applying these definitions to the previous BSDEs for ϑB and ϑC yields the ODEs

ϑ̇B
t = f (ϑB

t + ϑC
t , σ̃t)ϑ

B
t − s̄t − λt(ϑ

B,+
t − ϑB

t ) (38)

ϑ̇C
t =

(
f (ϑB

t + ϑC
t , σ̃t) + µ̆C

t

)
ϑC

t − λt(ϑ
C,+
t − ϑC

t ) (39)

These ODEs are necessary equilibrium conditions that have to hold (almost surely) for any
equilibrium path.80

All uniqueness arguments in this appendix follow precisely the same strategy as in Ap-
80We remark that the ODEs are not an equivalent representation of the BSDEs as they lack explicit conditions for

the determination of the jump targets ϑB,+ and ϑC,+. For our uniqueness proofs, such explicit conditions are not
required.
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pendix A.3. There is an added difficulty in how to bound the additional jump terms. We
illustrate how this can be done explicitly in Appendix A.6.6. Similar arguments are required
throughout to translate the proofs from Appendix A.3 to the present setting.

A.6.3 Threshold Policies when the State is Observable

We start by investigating threshold policies when the state σ̃t can be observed by the gov-
ernment. Specifically, we restrict attention to policies (in terms of s̄) of the form

s̄t =

−µ̆B(ϑB
t , σ̃t)ϑB

t , ϑB
t ≥ ϑ(σ̃t)

sh(ϑB
t + ϑC

t ), ϑB
t < ϑ(σ̃t)

, (40)

where h denotes the same function as in Appendix A.3 and µ̆B(·, ·) is a continuous function that
is nonnegative everywhere and weakly increasing in its first argument.

Define ϑB∗,l , ϑB∗,h as the solution to the two “steady state” equations

0 =
(

f (ϑB∗,l , σ̃l) + µ̆B(ϑB∗,l)
)

ϑB∗,l − λl(ϑB∗,h − ϑB∗,l), (41)

0 =
(

f (ϑB∗,h, σ̃h) + µ̆B(ϑB∗,h)
)

ϑB∗,h − λh(ϑB∗,l − ϑB∗,h). (42)

Using standard monotonicity arguments, it is easy to establish that at most one solution to
these equations with ϑB∗,l , ϑB∗,h ∈ (0, 1) can exist. If σ̃l , σ̃h are large enough, such a solution
does indeed exist. We assume in the following always that this is the case. As stated in the main
text, we also assume that parameters are such that ϑB∗,l < ϑB∗,h. In what follows, we denote by
µ̆B,l and µ̆B,h the implied values for µ̆B

t in the low and high state, respectively, that is

µ̆B,j := µ̆B(ϑB∗,j, σ̃j), j ∈ {l, h}.

Our key result is that, when the state is observable, so that any policy of the form (40) is
feasible, then a conclusion in analogy to Proposition 4 holds:

Proposition A.1. Under the threshold policy (40) (with s > 0), all equilibria have the property that
ϑB

t ≥ ϑt for all t almost surely. If ϑ = ϑB∗ or µ̆C > max{µ̆B,l , µ̆B,h}, the equilibrium is unique and
satisfies ϑB

t = ϑt = ϑB∗
t for all t almost surely.

The proof of this result is analogous to the one presented in Appendix A.3.4. Again, most of
the technical details are established in the following lemmas that are analogous to Lemmas A.2
and A.3.
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Lemma A.10. In any equilibrium consistent with the threshold policy (40), ϑB
t ≥ ϑt for all t almost

surely.

Lemma A.11. In any equilibrium consistent with the threshold policy (40), ϑB
t ≤ ϑB∗

t for all t almost
surely.
In addition, if ϑB

t0
= ϑB∗

t0
at some time t0 (after some exogenous history), then, conditional on this event,

necessarily ϑB
t = ϑB∗

t and ϑC
t = 0 for all t ≥ t0.

We provide a proof of Lemma A.11 in Appendix A.6.6. The proof of the main statement
follows the same logic as the proof of Lemma A.3 in Appendix A.3.4. However, unlike the
short proof of the latter result, the proof in Appendix A.6.6 is considerably longer as additional
technical considerations are necessary to deal with the jump terms. We therefore present the
details of this proof explicitly to illustrate how to handle these additional terms.

We omit the proof of Lemma A.10. Its logic follows exactly the same lines as the proof of
Lemma A.2 presented in Appendix A.3.5. When following those arguments, additional auxil-
iary considerations are necessary to deal with the jump terms. Those, in turn, work in the same
way as in the proof of Lemma A.11 presented in Appendix A.6.6.

Proof of Proposition A.1. The first part of the proposition follows immediately from Lemma A.10.
The second part in the case ϑ = ϑB∗ follows by combining Lemmas A.10 and A.11.

For the second part in the case µ̆C > max{µ̆B,l , µ̆B,h}, the proof needs to be adapted. Note
first that this inequality implies µ̆C > µ̆B

t along any equilibrium path because µ̆B(·) is weakly
increasing and ϑB

t ≤ ϑB∗ by Lemma A.11.

We use that equations (5) and (6) from Proposition 1 still hold in this model if a conditional
expectation Et is added to the right-hand sides (compare the discussion in Section A.6.1). It is
easy to see that ϑC

t > 0 in alternative equilibria, at least in some states. Suppose there is such an
alternative equilibrium with ϑC

t > 0. Then due to ϑC
t < 1 and ϑB

t ≥ ϑ > 0, the ratio xt := ϑC
t /ϑB

t

must be bounded above. Let x̄ be the supremum and suppose it is attained at t0 (after some
exogenous history). Then

ϑC
t0
= Et0

∫ ∞

t0

e−ρ(t−t0)
(

σ̃c
t − µ̆C

)
ϑC

t dt

< Et0

∫ ∞

t0

e−ρ(t−t0)
(

σ̃c
t − µ̆B

t

)
ϑC

t dt

= Et0

∫ ∞

t0

e−ρ(t−t0)
(

σ̃c
t − µ̆B

t

)
ϑB

t xtdt

≤ x̄Et0

∫ ∞

t0

e−ρ(t−t0)
(

σ̃c
t − µ̆B

t

)
ϑB

t xtdt = x̄ϑB
t0
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and hence

xt0 =
ϑC

t0

ϑB
t0

< x̄

in contradiction that the supremum is attained at t0.81 If the supremum is not attained any-
where, an additional ε-argument can be used to arrive at the same conclusion.

A.6.4 Threshold Policies when the State is Unobservable

When the state is unobservable, not every threshold policy of the type (40) is feasible. Specif-
ically, ϑ may no longer be a function of σ̃t but must be a constant. In addition, the function µ̆B

may only depend on ϑB but not on the second argument σ̃t. Any threshold policy of the type (40)
that satisfies these additional restrictions is still feasible when the state is unobservable.82

Definition A.4. We say that a threshold policy of the type (40) is feasible for an unobserved state if
the functions µ̆B and ϑ do not depend (explicitly) on the argument σ̃t.

If we choose such a feasible threshold policy, then Proposition A.1 continues to hold, even
if the state is unobservable. This leads immediately to the following two conclusions:

1. If max{µ̆B,l , µ̆B,h} < µ̆C , a threshold policy with any (arbitarily small) constant threshold
ϑ < ϑB∗,l can be used to uniquely implement the equilibrium that satisfies ϑB = ϑB∗

and ϑC ≡ 0. It is not necessary to observe the state and adapt the threshold in a state-
contingent way.

Note that when implementing this equilibrium, µ̆B
t in equilibrium will typically depend on

σ̃t (unless µ̆B,l = µ̆B,h). This is feasible because the observed equilibrium price ϑB
t reveals

the state. The function µ̆B does not need to depend explicitly on σ̃t to implement this but
only on the observed equilibrium object ϑB

t .

2. If µ̆B,l < 0, so that the government plans to run positive primary surpluses in the low-risk
state, then a suitable threshold policy can be constructed with constant threshold ϑ = ϑB∗,h

that uniquely selects the equilibrium that satisfies ϑB = ϑB∗ and ϑC ≡ 0. The government
simply chooses the constant surplus s below the threshold so that it equals the desired
surplus in the low-risk state on the equilibrium path, s = − µ̆B,lϑB∗,l

h(ϑB∗,l)
.

In these cases, suitably designed threshold policies are therefore still sufficient to select the
desired stationary equilibrium in which only government bonds have a positive value.

81Note that this argument only works if ϑC
t0
> 0 and hence ϑC

t > 0 on a set of positive measure for some t ≥ t0.
Otherwise there is no strict inequality in the second line.

82Note that the unobservable ϑC
t still enters the function h, which may appear problematic. However, this is not

problematic because the government does not choose s̄t but the constant surplus s. The function h simply captures
how the mathematically more convenient variable s̄t adjusts in response in any equilibrium.
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In the remaining cases, this may not be possible. We discuss in the following the most in-
teresting remaining case in which both µ̆B,l and µ̆B,h are positive and at least as large as µ̆C .
In this case, we were not able to find a threshold policy of the type (40) that is feasible for an
unobserved state and always selects the desired equilibrium ϑB = ϑB∗, ϑC = 0 in all contingen-
cies. In fact, we conjecture that, without additional parameter restrictions, no such policy exists.
Instead, we discuss two natural choices of threshold policies that achieve the objective at least
partially. The first choice imposes a “high” taxation threshold ϑ = ϑB∗,h and succeeds in se-
lecting a unique equilibrium, but at the cost of equilibrium taxation in the low-risk state which
raises ϑB in that state above the desired target ϑB∗,l . The second choice imposes a “low” taxa-
tion threshold ϑ = ϑB∗,l and therefore always remains consistent with the desired equilibrium.
However, it does not always succeed in selecting this equilibrium uniquely.

We start with the first policy that chooses a “high” threshold ϑ = ϑB∗,h. Below this threshold,
the government chooses a constant surplus-capital ratio of s > 0. We denote the resulting
stationary equilibrium solution (under the condition ϑC ≡ 0) for ϑB by ϑB∗∗. We assume that
the government adjusts µ̆B in the high-risk state to a value above µ̆B,h, so that the equilibrium
value of ϑB remains at ϑB∗,h in that state, i.e. ϑB∗∗,h = ϑB∗,h. The equilibrium value for ϑB∗∗,l in
the low-risk state is determined by the equation

0 = f (ϑB∗∗,l , σ̃l)ϑB∗∗,l − sh(ϑB∗∗,l)− λl(ϑB∗,h − ϑB∗∗,l). (43)

Comparing this with equation (41), it is easy to see that ϑB∗∗,l > ϑB∗,l . Hence, the government
fails in implementing the desired equilibrium values for ϑB. However, it is easy to see from
Proposition A.1 that the equilibrium is unique. We thus obtain the following proposition:

Proposition A.2. Under the parameter assumptions made in the previous paragraphs and if the gov-
ernment chooses a threshold policy with a “high” threshold, then there is a unique equilibrium. This
equilibrium features ϑB = ϑB∗∗ and ϑC ≡ 0, where ϑB∗∗,h = ϑB∗,h and ϑB∗∗,l > ϑB∗,l solves equa-
tion (43). ϑB∗∗,l is strictly increasing in the surplus s.

Next, consider a policy that chooses a “low” threshold ϑ = ϑB∗,l and, above that threshold,
picks a functional form for µ̆B that is consistent with the desired equilibrium (e.g. the affine
linear function that satisfies µ̆B(ϑB∗,l) = µ̆B,l and µ̆B(ϑB∗,h) = µ̆B,h). Clearly, ϑB = ϑB∗, ϑC ≡ 0 is
one equilibrium solution under this policy.

While this may not be the unique equilibrium solutions, we can rule out some alternative
solution paths as equilibria. Specifically, Proposition A.1 implies that no equilibrium can exist
for which ϑB

t < ϑ = ϑB∗,l with positive probability. Combining this with Lemma A.11 allows us
to conclude even more:

Lemma A.12. Suppose the parameter assumptions made in this subsection hold and the government
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chooses a threshold policy with a “low” threshold as just described. Let τ0 ≥ 0 be the (random) time at
which the low-risk state σ̃l is visited for the first time. Then ϑB

t = ϑB∗
t and ϑC

t = 0 for all t ≥ τ0 in any
equilibrium.

Proof. Proposition A.1 implies that ϑB
t ≥ ϑB∗,l (a.s.) at all times in any equilibrium. Lemma A.11

also implies the opposite inequality ϑB
t ≤ ϑB∗,l at all times t such that σ̃t = σ̃l . Consequently,

in all equilibria and for any time t0 ≥ 0 (and any path), σ̃t0 = σ̃l implies ϑB
t0

= ϑB∗
t0

. By the
additional statement in Lemma A.11, we can then conclude even that σ̃t0 = σ̃l implies ϑB

t = ϑB∗
t

and ϑC
t = 0 for all t ≥ t0, that is after the full continuation path following time t0. The assertion

follows immediately by choosing for each path the smallest t0 possible, i.e. the realization of τ0

for that path.

The immediate consequence from the previous lemma is that, while the “low” threshold
policy may fail to achieve global uniqueness, continuation equilibria are unique once the low-
risk state is visited for the first time. At this point, all potential cryptocoin bubbles must burst
forever. A potential cryptocoin bubble can therefore only exist if the initial state is σ̃h before
time τ0.

A more subtle additional conclusion is that on the event {τ0 > 0}, even in the initial high
state, a cryptocoin bubble is harder to sustain because it must compensate its holders for the an-
ticipated eventual burst at time τ0. Specifically, the ODEs (38) and (39) before time τ0 become83

ϑ̇B
t =

(
f (ϑB

t + ϑC
t , σ̃h) + λh + µ̆B(ϑB

t )− λh ϑB∗,l

ϑB
t

)
ϑB

t , (44)

ϑ̇C
t =

(
f (ϑB

t + ϑC
t , σ̃h) + λh + µ̆C,h

)
ϑC

t . (45)

This looks like our deterministic model without state transitions. The effective dilution rate
of cryptocoins is constant and given by µ̆C,h + λh. The effectively dilution rate of bonds is not
constant but increasing in ϑB

t . The largest possible value is

µ̆B(ϑB∗,h) + λh − λh ϑB∗,l

ϑB∗,h = µ̆B,h + λh − λh ϑB∗,l

ϑB∗,h .

Note that this is always smaller than µ̆B,h + λh because, unlike cryptocoins, bonds do not lose
their full value at time τ0. Therefore, even if µ̆B,h > µ̆C,h, as we have assumed, it may still be the
case that the effective dilution rate of bonds is always below that of cryptocoins. In this case,
arguments in complete analogy to the ones we have made in the proofs of Propositions 4 and
A.1 imply that, whenever ϑC

0 > 0, a solution to the ODEs has the feature that ϑC
t /ϑB

t must grow

83We have also slightly rearranged the equations and restricted attention to ϑB
t ≥ ϑ = ϑB∗,l as we already know

that any values below are not valid equilibrium solutions.
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over time. This is only possible if ϑB
t falls below the threshold ϑ in finite time. With positive

probability, this finite time is before τ0, so that this cannot happen on any equilibrium path.
Hence, we have established the following proposition:

Proposition A.3. Suppose the parameter assumptions made in this subsection hold and the government
chooses a threshold policy with a “low” threshold as just described. Let τ0 ≥ 0 be the (random) time at
which the low-risk state σ̃l is visited for the first time. Then the following statements are true:

(i) There is one equilibrium such that ϑB = ϑB∗ and ϑC ≡ 0 (“desired equilibrium”).

(ii) All equilibria coincide with the desired equilibrium after time τ0.

(iii) Under the additional condition

µ̆C + λh > µ̆B,h + λh − λh ϑB∗,l

ϑB∗,h

all equilibria coincide with the desired equilibrium also before time τ0.

A.6.5 A Policy that Delivers Uniqueness with Unobservable State

We continue to assume that parameter are such that 0 < ϑB∗,l < ϑB∗,h, µ̆B,l , µ̆B,h > 0 and
µ̆B,j ≥ µ̆C for at least one j ∈ {l, h}. As we have discussed in the previous section, threshold
policies may then fail to uniquely implement the desired equilibrium ϑB = ϑB∗, ϑC ≡ 0. Propo-
sitions A.2 and A.3 nevertheless show that such policies can partially achieve the desired goal.
A “high” threshold policy as in Propositions A.2 can deliver uniqueness and the desired value
for ϑB in the high-risk state. A “low” threshold policy as in Propositions A.3 is consistent with
the desired equilibrium and delivers uniqueness in the low-risk state. However, it may fail to
deliver uniqueness before the first occurrence of the low-risk state if µ̆B,h − µ̆C is too large.

In this section, we show how a richer strategy that combines both types of threshold poli-
cies can uniquely implement the desired equilibrium. The idea is to follow the “low” threshold
policy as in Proposition A.3 whenever the history of the observed ϑB

t -path is not obviously
inconsistent with the desired equilibrium but switch to the “high” threshold policy as in Propo-
sitions A.2 that delivers global uniqueness if an inconsistent observation ever occurs. As we
show below in more detail, if the “low” threshold policy was followed forever, any alterna-
tive equilibrium would necessarily lead to values for ϑB

t outside the set {ϑB∗,l , ϑB∗,h} eventually,
i.e. values that are obviously inconsistent with the desired equilibrium. Hence, coordination
on any alternative equilibrium would trigger a switch to the “high” threshold policy. But sec-
ond, under the latter policy, the equilibrium is necessarily unique and involves ϑB = ϑB∗,h in
the high-risk state. If ϑB ̸= ϑB∗,h right before the switch, the switch would generate infinite
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capital gains or losses to bond holders, so that a switch in the high-risk state cannot become a
self-fulfilling alternative equilibrium. With a small modification to the switching trigger, one
can also ensure that the expectation of a switch in the low-risk state can never be self-fulfilling.
Then, the only equilibrium that remains is the desired one in which the government never sees
any reason to switch to the “high” threshold policy.

We now provide some formal details that clarify the previous arguments. Formally, the
policy is a rule of the form (40) that is feasible for an unobserved state, except that ϑ is not
constant but depends on a switching indicator ωt ∈ {0, 1} as follows:

ϑ(ωt) = (1 − ωt)ϑ
B∗,l + ωtϑ

B∗,h.

ωt, in turn, depends on the full history {ϑB
s }s≤t observed up to time t. We define it below. As for

all threshold policies considered in this paper, the parameter s > 0 may be chosen arbitrarily so
long as it is positive. The function µ̆B also depend on ωt. For ωt = 1, only the value assumed at
ϑB = ϑB∗,h matters. This must be chosen larger than µ̆B,h such that for the unique equilibrium
solution ϑB∗∗ the condition ϑB∗∗,h = ϑB∗ holds, as in Proposition A.2. For ωt = 0, µ̆B can be any
continuous and weakly increasing function such that µ̆B(ϑB∗,l) = µ̆B,l and µ̆B(ϑB∗,h) = µ̆B,h,
as required in Proposition A.3. In addition, if ϑB∗∗,l ̸= ϑB∗,h, we also require that µ̆B(ϑB∗∗,l) ̸=
µ̆C + λh ϑB∗,l

ϑB∗∗,l for reasons that become apparent in the proof of the following proposition. Note
that due to the condition ϑB∗∗,l ̸= ϑB∗,l , this additional requirement is never in conflict with the
previously stated properties of µ̆B and can therefore always be achieved, possibly by perturbing
a given µ̆B-function slightly around the point ϑB∗∗,l . Finally, the indicator ωt is defined as

ωt =

0, ∀s ≤ t : ϑB
s ∈ {ϑB∗,l , ϑB∗,h, ϑB∗∗,l}

1, ∃s ≤ t : ϑB
s /∈ {ϑB∗,l , ϑB∗,h, ϑB∗∗,l}

.

Note that we also include ϑB∗∗,l in the set of observations that prevent switching.84

The previous paragraph fully specifies the proposed policy rule up to irrelevant off-equilibrium
specifications. We now prove that this policy rule indeed delivers uniqueness (and implements
the desired equilibrium):

Proposition A.4. Under the parameter assumptions of this section and the additional assumption
µ̆B,l ̸= µ̆C,h + λh, the policy rule just defined implements a unique equilibrium. The equilibrium satisfies
ϑB = ϑB∗ and ϑC ≡ 0 as well as ω ≡ 0 at all times almost surely.

Proof. We first show that there cannot be an equilibrium in which ω ever switches to 1 (with
84Even though such an observation is typically obviously inconsistent with the desired equilibrium (unless by

chance ϑB∗∗,l = ϑB∗,h), switching to ωt = 1 at such a value may lead to an alternative equilibrium, in which, after a
transition to the low-risk state, ϑB∗ does not jump to ϑB∗,l but to ϑB∗∗,l .
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positive probability). To do so, consider any given equilibrium path and suppose ω switches to
1 at some time t1. Proposition A.2 then implies that there is a unique continuation equilibrium
for all t ≥ t1 that features ϑB

t = ϑB∗∗
t . Note that by definition of ω, it cannot be that ϑB

t1− (the left
limit of values just before t1) is in the set {ϑB∗∗,l , ϑB∗,h} = {ϑB∗∗,l , ϑB∗∗,h}. Hence, ϑB

t1
̸= ϑB

t1−. If
this holds with inequality >, then agents just before time t1 have an unbounded bond demand
because the capital gains rate becomes locally ∞. If this holds with inequality <, then agents
just before time t1 seek to take an unbounded short position in bonds because the capital gains
rate becomes locally −∞. In both cases, the bond market cannot clear so that this cannot occur
on an equilibrium path (except perhaps on a set of measure zero).

The previous argument establishes ω ≡ 0 in any equilibrium. We are therefore in the situ-
ation of Proposition A.3 with the additional requirement that any equilibrium consistent with
that proposition must also satisfy ϑB

t ∈ {ϑB∗,l , ϑB∗,h, ϑB∗∗,l} at all times (almost surely) to prevent
ω from switching to 1. We show next that ϑB = ϑB∗, ϑC ≡ 0 is the only possibility.

First of all, note that we may restrict attention to times before τ0, where again τ0 denotes the
first time the low-risk state occurs. Because ϑB

t is continuous over time absent state transitions,
it must then be constant and take on precisely one of the three values in {ϑB∗,l , ϑB∗,h, ϑB∗∗,l} for
t ≤ τ0.85 We show that only ϑB

t = ϑB∗,h is consistent with a constant solution to ODE (44) (and
any solution ϑC

t to ODE (45)).

Clearly, ϑB
t = ϑB∗,h, ϑC

t = 0 is a constant solution that is consistent with ODEs (44) and (45).

Next, consider a constant solution ϑB
t = ϑB∗,l to ODE (44). This only works if ϑC

t is also
constant and takes on a value ϑ̂C such that

0 = ϑ̇B
t =

(
f (ϑB∗,l + ϑ̂C, σ̃h) + µ̆B,l

)
ϑB∗,l .

We know that this value for ϑ̂C must be different from zero because f (ϑB∗,l , σ̃h) < f (ϑB∗,l , σ̃l).
But to obtain also a constant and nonzero ϑC, equation (45) requires further

0 = ϑ̇C
t =

(
f (ϑB∗,l + ϑ̂C, σ̃h) + λh + µ̆C

)
ϑ̂C.

Clearly, both equations can only hold simultaneously if µ̆B,l = µ̆C + λh. Because we have ex-
cluded this parameter configuration by assumption, a constant solution ϑB

t = ϑB∗,l cannot exist.

An entirely analogous argument applies to a potential constant solution ϑB
t = ϑB∗∗,l in

the case ϑB∗∗,l ̸= ϑB∗,h (otherwise, we are already done). Such a solution is only possible
if µ̆B(ϑB∗∗,l) = µ̆C + λh ϑB∗,l

ϑB∗∗,l . Because we have excluded this possibility by choice of the µ̆B-
function, a constant solution ϑB

t = ϑB∗∗,l is also not possible.

85On a given path. The values may, of course, be different for different paths, at least in principle.
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A.6.6 Proof of Lemma A.11

Define recursively
(

ϑ̄B,(k),j
)

j∈{l,h},k=0,1,2,...
as follows: for k = 0, let ϑ̄B,(0),l = ϑ̄B,(0),h := 1 and

for any k > 1, let (ϑ̄B,(k),l , ϑ̄B,(k),h) be the unique solution to

0 = f (ϑ̄B,(k),j, σ̃j) + µ̆B,j + λj − λj ϑ̄B,(k−1),−j

ϑ̄B,(k),j
, j ∈ {l, h}. (46)

Finally, define ϑ̄
B,(k)
t := ϑ̄B,(k),l1{σ̃t=σ̃l} + ϑ̄B,(k),h1{σ̃t=σ̃h}.

We first establish a number of properties of these objects in a sequence of additional lemmas.
We then apply these lemmas to proof Lemma A.11.

Lemma A.13. ϑB∗
t ≤ ϑ̄

B,(k)
t ≤ ϑ̄

B,(k−1)
t for all k ≥ 1.

Proof. We show both inequalities by induction. First note that ϑ̄
B,(0)
t = 1 ≥ ϑB∗

t . Also note
that the right-hand side of the equation for both j is strictly increasing in ϑ̄B,(k),j and strictly
decreasing in ϑ̄B,(k−1),−j and the equation would be satisfied for the specific choice ϑ̄B,(k),j =

ϑ̄B,(k−1),j = ϑB∗,j (which is generally not the true value for ϑB,(k),j and ϑB,(k−1),j, however).

ϑB∗
t ≤ ϑ̄

B,(k)
t follows then immediately by induction. Because ϑ̄B,(k−1),−j ≥ ϑB∗,−j, the so-

lution ϑ̄B,(k),j cannot be smaller than the solution in the equation that replaces ϑ̄B,(k−1),−j with
ϑB∗,−j (which equals ϑB∗,j). Hence, also ϑ̄B,(k),j ≥ ϑB∗,j.

For the inequality ϑ̄
B,(k)
t ≤ ϑ̄

B,(k−1)
t , note that it holds trivially for k = 1. If it holds for k,

then, again, we can use the monotonicity of the solution to the equations to conclude that it also
holds for k + 1.

Lemma A.14. Any solution that satisfies ϑB
t ≤ ϑ̄

B,(k)
t for all t with probability 1 already satisfies ϑB

t ≤
ϑ̄

B,(k+1)
t for all t with probability 1.

Proof. Let ϑB
t be a solution that satisfies ϑB

t ≤ ϑ̄
B,(k)
t for all t and let ϑB,+

t the associated jump
target process. If σ̃t = σ̃j, then clearly also ϑB,+

t ≤ ϑ̄B,(k),−j as otherwise ϑB
t would jump above

ϑ̄
B,(k)
t with positive probability. Now, if ϑB

t > ϑ̄
B,(k+1)
t (still assuming σ̃t = σ̃j), then

ϑ̇B
t

ϑB
t
=
(

f (ϑB
t + ϑC

t , σ̃t) + µ̆B (σ̃t) + λ (σ̃t)
)
− λ (σ̃t)

ϑB,+
t

ϑB
t

≥
(

f (ϑB
t , σ̃t) + µ̆B (σ̃t) + λ (σ̃t)

)
− λ (σ̃t)

ϑ̄B,(k),−j

ϑB
t
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>

(
f (ϑ̄B,(k+1),j, σ̃j) + µ̆B

(
σ̃j
)
+ λ

(
σ̃j
))

− λ
(

σ̃j
) ϑ̄B,(k),−j

ϑ̄B,(k+1),j

= 0,

where the last line follows by definition of ϑ̄B,(k+1),j. Therefore, conditional on remaining in state
j, ϑB

t must grow beyond 1 ≥ ϑ̄B,(k) in finite time contradicting the assumption that ϑB
t ≤ ϑ̄

B,(k)
t

for all t.

Lemma A.15. ϑ̄B := limk→∞ ϑ̄B,(k) exists and any equilibrium solution satisfies ϑB
t ≤ ϑ̄B.

Proof. We establish first by induction that ϑB
t ≤ ϑ̄B,(k) for all equilibrium solutions. For k = 0,

this is trivial. For the induction step from k to k + 1, apply Lemma A.14: any equilibrium
solution must satisfy ϑB ≤ ϑ̄B,(k), but then by that lemma it must already satisfy ϑB ≤ ϑ̄B,(k+1).

Next, Lemma A.13 implies that ϑ̄B,(k+1) ≤ ϑ̄B,(k), so that the limit ϑ̄B = limk→∞ ϑ̄B,(k) exists.

Finally, if there was an equilibrium solution such that ϑB
t > ϑ̄B (with positive probability) at

some time t, this would lead to a contradiction: we can then find k so large that ϑB
t > ϑ̄B,(k) (with

positive probability) contradicting the previous conclusion that each ϑ̄B,(k) is an upper bound
for equilibrium solutions.

Proof of Lemma A.11. We first show that any equilibrium solution satisfies ϑB
t ≤ ϑB∗

t . This essen-
tially follows from Lemma A.15. Let ϑ̄B as there. We show that ϑ̄B = ϑB∗.

Note that ϑ̄B is constant conditional on the state σ̃t because all ϑ̄B,(k) are. Therefore, it is fully
characterized by the two values ϑ̄B,j for j ∈ {l, h}. These values satisfy ϑ̄B,j = limk→∞ ϑ̄B,(k),j.
Because the dependence of equation (46) on ϑ̄B,(k),j and ϑ̄B,(k−1),−jis continuous, we can take the
limit k → ∞ and obtain that (ϑ̄B,l , ϑ̄B,j) must solve the equation system

0 = f (ϑ̄B,j, σ̃j) + µ̆B,j + λj − λj ϑ̄B,−j

ϑ̄B,j , j ∈ {l, h}

But this is also solved by (ϑB∗,l , ϑB∗,h) and there is a unique solution. Hence, (ϑ̄B,l , ϑ̄B,j) =

(ϑB∗,l , ϑB∗,h) which implies ϑ̄B = ϑB∗.

For the second part of the lemma, suppose that ϑB
t0
= ϑB∗

t0
at some time t0 (after some exoge-

nous history). To see that then ϑB
t = ϑB∗

t and ϑC
t = 0 for all t ≥ t0, we first restrict attention only

to times before the next state transition. Before the state transition, if ϑB
t = ϑB∗

t , then

ϑ̇B
t = f (ϑB∗

t + ϑC
t , σ̃t)ϑ

B∗
t + µ̆B

t ϑB∗
t − λt(ϑ

B,+
t − ϑB∗

t )

≥ f (ϑB∗
t , σ̃t)ϑ

B∗
t + µ̆B

t ϑB∗
t − λt(ϑ

B,+
t − ϑB∗

t )

= λt

(
ϑB∗,+

t − ϑB,+
t

)
≥ 0,
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whereas ϑ̇B∗
t = 0. Hence, if ϑB

t0
= ϑB∗

t0
, then ϑB

t ≥ ϑB∗
t for all t ≥ t0 before the next state transition.

As any equilibrium solution also has to satisfy the opposite inequality, it must be that ϑB
t = ϑB∗

t

for all t ≥ t0 before the next state transition. Next, note that the inequality from the first to the
second line above is strict if ϑC

t > 0. In this case, ϑ̇B
t > 0 and hence ϑB

t+ε would have to exceed
ϑB∗

t+ε (conditional on no state transition), which is not a valid equilibrium solution. Therefore, it
must be that ϑC

t = 0 for all t ≥ t0 before the next state transition. With an identical argument,
we can also conclude that ϑB,+

t = ϑB∗,+
t for all t ≥ t0 before the next state transition.

But this latter conclusion implies that also ϑB
t1
= ϑB∗

t1
at the next state transition time t1. With

what has been proven already, we can then conclude that ϑB
t = ϑB∗

t , ϑC
t = 0, and ϑB,+

t = ϑB∗,+
t

for all t ≥ t1 before the next state transition after time t1. Inductively, we can then conclude the
three equations for all t ≥ t0 before the next n state transitions after time t0 have taken place (for
any n). This is sufficient to show that the equations hold for all t ≥ t0 regardless of the number
of state transitions that have already happened since t0.

A.7 Generalized Equilibrium and Private Ponzi Schemes

In this appendix we define the generalized notion of equilibrium with Ponzi schemes dis-
cussed in the main text and relate equilibria with Ponzi schemes to equilibria with cryptocoin
bubbles. To keep matters simple, we assume that there are no cryptocoins in the setting with
Ponzi schemes.

Because of the absence of cryptocoins, households are forced to choose θC,i
t = 0 at all times,

but otherwise household net worth still evolves according to equation (4). Consider the fol-
lowing variant of the household problem for agent i: taking the initial net worth ni

0 and the
returns drBt and drK,i

t (·) as given, choose the consumption-wealth ratio {ĉi
t}t≥0, real investment

{ιit}t≥0, and the portfolio share {θB,i
t }t≥0 in bonds to maximize utility Vi

0 subject to the net worth
evolution (4) (with θC,i

t = 0) and a generalized solvency constraint ni
t ≥ ni

t for all t ≥ T. Here,
T ∈ [0, ∞) is a given time from which on the constraint is imposed and {ni

t}t≥0 is a given
stochastic process such that ni

t ≤ 0 for all t.

Definition A.5. We say the generalized solvency constraint ni
t ≥ ni

t is at most asymptotically
binding if the set of optimal solutions to the household problem is independent of the time T.

The previous definition formalizes the notation that the solvency constraint is supposed to
not constrain the household at any finite time but only represent a “constraint at infinity”. The
idea of the generalized equilibrium concept is to treat the solvency constraints, like prices, as ob-
jects that are determined in equilibrium. This is consequent as solvency or no Ponzi constraints
do not represent fundamental restrictions of the physical environment. Instead, they are meant
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to formalize the notion that other agents’ optimizing behavior does not leave room for a given
agent to roll over debt indefinitely. But as for the absence of bubbles, it is an economically more
sound approach to derive such restrictions instead of imposing them from the outset.

In the following definition, we restrict attention to the special case that every agent i faces
the same relaxed solvency constraint ni

t ≥ nt with a, consequently deterministic, time path
nt. This is consistent with our previous approach to restrict attention to symmetric equilibria
throughout this paper (compare Definition A.1). However, it should be remarked that one
could easily generalize the definition and allow for possibly asymmetrically relaxed solvency
constraints across different agents.

Even in this special case, it is insufficient to define a symmetric equilibrium here because the
optimal choices of ĉi

t and θB,i
t may now depend on ni

t. Nevertheless, to simplify matters slightly,
we define here only equilibria under ex-ante symmetry, in which all agents start with the same
asset holdings:

Definition A.6 (Generalized Competitive Equilibrium). Given K0 > 0, a (ex-ante symmetric)
generalized competitive equilibrium (without cryptocoins) consists of absolutely continuous time
paths

[0, ∞) → R7, t 7→ (µ̆B
t , τt, qB

t , qK
t , ιt, Kt, nt)

for government policy (µ̆B
t , τt), asset prices (qB

t , qK
t ), an investment rate ιt, capital stock Kt, and a

lower bound on net worth (nt) as well as a collection of stochastic processes

{ĉi
t, θB,i

t , ni
t}t≥0,i∈[0,1]

for household consumption and portfolio choices and (measured) net worth such that

(i) µ̆B
t and τt satisfy the government budget constraint given prices (for all t ≥ 0);

(ii) prices are nonnegative, qB
t , qK

t ≥ 0 (for all t ≥ 0);

(iii) the capital stock Kt satisfies the evolution equation

dKt = (Φ(ιt)− δ)Ktdt;

(iv) for all agents i, {ĉi
t, ιt, θB,i

t }t≥0 solves the (generalized) household problem for initial ni
0 =

(qB
0 + qK

0 )K0 with solvency constraint ni
t ≥ nt given the returns drBt and drK,i(·) implied by

prices and government policies and {ni
t}t≥0 is the associated net worth process under the

optimal choice;

(v) nt ≤ 0 for all t and, for each i, the constraints ni
t ≥ nt in the household problem bind at

most asymptotically;
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(vi) all markets clear (for all t ≥ 0):∫
ĉi

tn
i
tdi + gKt + ιtKt = aKt goods market clearing∫

θB,i
t ni

tdi = qB
t Kt bond market clearing

We say that a (generalized) equilibrium features private Ponzi schemes if the time path for
nt cannot be replaced with nt ≡ 0 without violating some equilibrium condition. As stated in
the main text, whenever parameters are such that bubbles can exist in our baseline model, i.e.
whenever σ̃2 ≥ ρ, then also equilibria exist that feature private Ponzi schemes.

The previous claim follows immediately from the following proposition. This proposition
also provides a link between equilibria with cryptcoin bubbles and (certain) equilibria with
Ponzi schemes. The idea is to turn measured wealth from cryptocoin holdings into implicit
wealth arising from the ability to run Ponzi schemes.

Proposition A.5. Let (µ̆B∗
t , τ∗

t , qB∗
t , qC∗

t , qK∗
t , ĉ∗t , ι∗t , θB∗

t , θC∗
t ) be an equilibrium in the baseline model

(according to Definition A.1) with µ̆C = 0 (“∗-equilibrium”). For this equilibrium, denote by r f ∗
t the

risk-free rate at time t.

Then, for any initial capital stock K0 > 0, there is an equilibrium according to Definition A.6 with
private Ponzi schemes and

nt = − exp
(∫ t

0
r f ∗

s

)
qC∗

0 K0.

This equilibrium features the same capital and bond valuations and the same aggregate consumption and
investment as the ∗-equilibrium, provided the latter is started at the same initial condition for K0.

Furthermore, if the ∗-equilibrium is started at a symmetric initial wealth allocation, then both equi-
libria feature the same cross-sectional consumption allocation.

Proof. The proof is constructive. We use the ∗-equilibrium to construct a Ponzi scheme equilib-
rium according to Definition A.6.

We start with the deterministic portion of the equilibrium objects. Denote by K∗
t the aggre-

gate capital stock in the ∗-equilibrium under the initial condition K0, i.e. the solution to

dK∗
t =

(
Φ(ι∗t )− δ

)
K∗

t dt, K∗
0 = K0.

With this notation, define

(µ̆B
t , τt, qB

t , qK
t , ιt, Kt, nt) =

(
µ̆B∗

t , τ∗
t , qB∗

t , qK∗
t , ι∗t , K∗

t ,− exp
(∫ t

0
r f ∗

s

)
qC∗

0 K0

)
.
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We claim that this is the deterministic portion of a valid generalized equilibrium. The properties
(i), (ii), and (iii) of Definition A.6 are clearly satisfied by construction. Also by construction, n
satisfies the equation stated in the proposition.

For the remaining properties in Definition A.6, we also need to construct a suitable collection
of stochastic processes {ĉi

t, θB,i
t , ni

t}t≥0,i∈[0,1]. Let for each i,

ĉi
t :=

ni
t + qC∗

t K∗
t

ni
t

ĉ∗t , θB,i
t := θB∗

t + θC∗
t

ni
t − qK∗

t K∗
t

ni
t

and let {ni
t}t≥0 be the implied net worth process according to equation (4). We show next that

these choices satisfy properties (iv)–(vi) in Definition A.6.

We start with the market clearing conditions, property (vi). For the goods market,

∫
ĉi

tn
i
tdi =

∫ ni
t + qC∗

t K∗
t

ni
t

ni
tdi · ĉ∗t

=
(
(qB

t + qK
t )Kt + qC∗

t K∗
t

)
ĉ∗t

=
(

qB∗
t + qK∗

t + qC∗
t

)
ĉ∗t K∗

t

= (a − ι∗t − g)K∗
t = (a − ιt − g)Kt.

Here, the last line follows from the fact that the ∗-variables form an equilibrium according to
Definition A.1. Similarly, for the bond market,∫

θB,i
t ni

tdi =
∫

ni
tdi · θB∗

t +
∫ (

ni
t − qK∗K∗

t

)
di · θC∗

t

= (qB∗
t + qK∗

t )θB∗
t K∗

t +
(
(qB∗

t + qK∗
t )K∗

t − qK∗
t K∗

t

)
θC∗

t

=
(qB∗

t + qK∗
t )qB∗

t + qB∗
t qC∗

t

qB∗
t + qC∗

t + qK∗
t

K∗
t

= qB∗
t K∗

t = qB
t Kt,

where the third line follows because the ∗-variables satisfy the asset market clearing conditions
in Definition A.1.

Next, for property (v), we simply show that ni
t > nt almost surely for all t ≥ 0. This

is sufficient because, if the conjectured choices are indeed optimal as shown below, then it is
indeed true that the constraints are not binding along the optimal solution path at any finite
time t. To show this, let n̂i

t := ni
t − nt and note that

dn̂i
t = dni

t − dnt
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= −ĉi
tn

i
tdt + ni

tdrK,i
t (ιt) + θB,i

t ni
t

(
drBt − drK,i

t (ιt)
)
− r f ∗

t ntdt

= −
(

ni
t + qC∗

t K∗
t

)
ĉ∗t dt + ni

tdrK,i
t (ι∗t ) +

((
θB∗

t + θC∗
t

)
ni

t − θC∗
t qK∗K∗

t

)(
r f ∗

t dt − drK,i
t (ι∗t )

)
− r f ∗

t ntdt

Now use θC∗
t qK∗

t K∗
t =

qC∗
t qK∗

t
qB∗

t +qC∗
t +qK∗

t
K∗

t =
(

1 − θB∗
t − θC∗

t

)
qC∗

t K∗
t and qC∗

t K∗
t = −nt. The latter

equation follows from the definition of nt and the fact that r f ∗
t = µ

q,C,∗
t − µK∗

t − µ̆C = µ
q,C,∗
t − µK∗

t

in the ∗-equilibrium. Substituting both equations into the previous equation yields

dn̂i
t = −

(
ni

t − nt

)
ĉ∗t dt + ni

tdrK,i
t (ι∗t ) +

((
θB∗

t + θC∗
t

)
ni

t −
(

θB∗
t + θC∗

t − 1
)

nt

)(
r f ∗

t dt − drK,i
t (ι∗t )

)
− r f ∗

t ntdt

= −
(

ni
t − nt

)
ĉ∗t dt +

(
ni

t − nt

)
drK,i

t (ι∗t ) +
(

θB∗
t + θC∗

t

) (
ni

t − nt

) (
r f ∗

t dt − drK,i
t (ι∗t )

)
= n̂i

t

(
−ĉ∗t dt + drK,i

t (ιt) +
(

θB∗
t + θC∗

t

) (
r f ∗

t dt − drK,i
t (ιt)

))
(47)

The previous equation implies n̂i
t = ni∗

t provided we impose in the ∗-equilibrium the initial
condition ni∗

0 = n̂i
0. Because ni∗

t > 0, we can conclude n̂i
t > 0.

For property (iv), we use the stochastic maximum principle in the finite-horizon problem
with terminal condition ni

T ≥ ni
T and take the limit T → ∞. Because we have already shown

that the constraints ni
t ≥ nt are not binding at any finite time t along the conjectured optimal net

worth path, this is sufficient to establish optimality in the actual problem with the additional
constraints. Denote by λi

t the costate process for agent i and by σ̃i
λ,t its (arithmetic) volatility

loading with respect to dZ̃i
t. Maximization of the Hamiltonian over [0, T] is associated with the

first-order conditions with respect to ĉi
t, ιit, and θB,i

t , respectively (these are also sufficient due to
concavity)

λi
t = e−ρt 1

ĉi
tn

i
t

0 =
d

dιit

Et[drK,i
t (ιit)]

dt

λi
t

(
Et[drK,i

t (ιit)]

dt
− drBt

dt

)
= −σ̃λ,tσ̃

In addition, λi
t ≥ 0 has to satisfy the costate equation

Et[dλi
t] = −

λi
t

(
(1 − θB

t )
Et[drK,i

t (ιit)]

dt
+ θB

t
drBt
dt

)
+ σ̃λ,t(1 − θB

t )σ̃

 dt (48)

and the terminal condition
E[λi

T(n
i
T − ni

T)] = 0.
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In the limit T → ∞, these conditions remain unchanged, except for the last which is replaced
by the limit condition

lim
T→∞

E[λi
T(n

i
T − ni

T)] = 0.

We show that all conditions are satisfied if we choose λi
t := e−ρt 1

ci
t
= e−ρt 1

ĉi
tn

i
t
.

With this choice, the first first-order condition is satisfied by construction. The second first-
order condition only depends on ιit and qK

t and is satisfied because ιit = ι∗t , qK
t = qK∗

t , and an
identical condition holds in the ∗-equilibrium. For the final first-order condition, note that

σ̃λ,t = −λi
tσ̃

c,i
t = −λi

t
ni

t(1 − θB,i
t )

ni
t + qC∗

t K∗
t

σ̃

= −λi
t
ni

t − θB∗
t ni

t − θC∗
t ni

t + θC∗
t qK∗K∗

t

ni
t + qC∗

t K∗
t

σ̃

= −λi
t

(
1 − θB∗

t − θC∗
t

) ni
t + qC∗K∗

t

ni
t + qC∗

t K∗
t

σ̃ = −λi
t

(
1 − θB∗

t − θC∗
t

)
σ̃. (49)

Hence, the third first-order condition is equivalent to

Et[drK,i,∗
t (ι∗t )]

dt
− drB∗t

dt
=
(

1 − θB∗
t − θC∗

t

)
σ̃2. (50)

This equation is precisely the Merton portfolio choice condition in the ∗-equilibrium and there-
fore satisfied at all times.

Finally, consider the costate equation (48). Using λi
t = e−ρt 1

ci
t

and Ito’s lemma, we obtain for
the left-hand side of this equation

Et[dλi
t] = −ρλi

tdt − λi
t
Et[dci

t]

ci
t

+ λi
t

(
σ̃c,i

t

)2
dt.

We know ci
t = ρn̂i

t, where n̂i
t = ni

t − nt as defined previously. Hence, Et[dci
t]

ci
t

=
Et[dn̂i

t]

n̂i
t

. By

equation (47), we can therefore write Et[dλi
t] as follows:

Et[dλi
t] = −λi

t

((
1 − θB∗

t − θC∗
t

) Et[drK,i
t (ι∗t )]

dt
+
(

θB∗
t + θC∗

t

)
r f ∗

t −
(

σ̃c,i
t

)2
)

dt.

Now use equations (49) and (50) to conclude

Et[dλi
t] = −λi

t

((
1 − θB∗

t − θC∗
t

)(
r f ∗

t +
(

1 − θB∗
t − θC∗

t

)
σ̃2
)
+
(

θB∗
t + θC∗

t

)
r f ∗

t −
(

1 − θB∗
t − θC∗

t

)2
σ̃2

)
dt

= −λi
tr

f ∗
t dt.
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To prove that the costate equation (48) holds, we show that also its right-hand side evaluates
to −λi

tr
f ∗
t dt. This merely requires a few replacements using equilibrium relationships. First note

that that Et[drK,i
t (ιit)]
dt =

Et[drK,i
t (ι∗t )]
dt and drBt

dt = r f ∗
t dt along the conjectured equilibrium path. Sub-

stituting these equations and equations (49) and (50) into the right-hand side of equation (48)
yields

−

λi
t

(
(1 − θB

t )
Et[drK,i

t (ιit)]

dt
+ θB

t
drBt
dt

)
+ σ̃λ,t(1 − θB

t )σ̃

 dt

=−
(

λi
t

(
r f ∗

t +
(

1 − θB
t

) (
1 − θB∗

t − θC∗
t

)
σ̃2
)
− λi

t

(
1 − θB∗

t − θC∗
t

) (
1 − θB

t

)
σ̃2

)
dt

=− λi
tr

f ∗
t dt.

Hence, equation (48) holds and therefore the choices are indeed optimal.

This concludes the proof of the proposition.
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