Safe Assets: A Retrading Perspective

Markus K. Brunnermeier Sebastian Merkel Yuliy Sannikov

UCL

2023-10-06

Motivation

- What is a safe asset? What are its features?
 - Precautionary savings
 - Why is (US) government debt a safe asset?
- (Safe) asset pricing formula for incomplete market setting
 - What is service flow? How does it differ from
 - cash flow and convenience yield?
 - Flight-to-safety phenomenon (negative β)
 - Loss of safe-asset status / exorbitant privilege
- Is there a public debt valuation puzzle?
 - Valuation too large? Risk premium too low?
- Can government spend without taxation? How much? Debt sustainability analysis and "Debt Laffer Curve"

Motivation

- Why is there debt valuation puzzle for US, Japan?
- Traditional FTPL equation:

$$\frac{B_t}{\omega_t} = E_t \left[PV_{\xi}(\text{primary surpluses}) \right] +$$

- Persistently negative primary surpluses
- Negative surpluses in recessions: Asset Pricing (with SDF ξ_t)

Asset Pricing with Safe Assets

Standard asset pricing: Buy and Hold Perspective

 $price = \mathbb{E}[PV_{\xi}(cash flow)]$

Asset Pricing with Safe Assets

Standard asset pricing with bubbles: Buy and Hold Perspective

$$price = \mathbb{E}[PV_{\xi}(cash flow)] + bubb$$

• Bubble if r < g (due to precautionary motive)

le

Asset Pricing with Safe Assets

Standard asset pricing with bubbles: Buy and Hold Perspective

$$price = \underbrace{\mathbb{E}[PV_{\xi}(cash flow)]}_{=\infty} + \underbrace{bubb}_{=\infty}$$

 $=-\infty$

- Bubble if r < g (due to precautionary motive)
- Effectively prices a buy-and-hold strategy
- But in incomplete markets, agents trade
- Dynamic Trading Perspective Alternative approach:
 - Value agents' actual portfolio strategies, then aggregate
 - Discounts at higher effective rate $r^{**} > g$

$$price = \underbrace{\mathbb{E}[PV_{\xi^{**}}(cash flow)]}_{>-\infty} + \underbrace{\mathbb{E}[PV_{\xi^{**}}(service)]}_{<-\infty}$$

Note: SDF ξ^{**} = "representative agent" discount rate $\neq m$ (Reis 2022)

e flow)

What's is a Safe Asset Service Flow?

- Safe asset = good friend
 - Idiosyncratic risk: provides partial insurance through re-trading

What's is a Safe Asset Service Flow?

- Safe asset = good friend
 - Idiosyncratic risk: provides partial insurance through re-trading

What's a Safe Asset? Exorbitant Privilege rises in Recessions

- Safe asset = good friend
 - Idiosyncratic risk: provides partial insurance through re-trading
 - Aggregate risk: appreciates in value in bad times (negative β)

• Service flow is more valuable Cash flows are lower (depends on fiscal policy)

Safe Asset Definition

- Equilibrium concept
- Good friend (relative to own net worth return $dr_t^{n^i}$)
 - Idiosyncratic risk
 - Aggregate risk
 - $-Cov_t \left[d\xi_t^i / \xi_t^i, dr_t^j dr_t^{n^i} \right] > 0$
 - For agent i with SDF ξ_t^i is SDF of agent $i (d\xi_t^i / \xi_t^i) = -r_t^f dt - \varsigma_t^i dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i)$ with net worth return $dr_t^{n^i}$
 - At time *t* possible loss of safe asset status/exorbitant privilege
- Re-tradeable:
 - No asymmetric info info insensitive
 - Service flow is derived from "dynamic re-trading"

Service Flow Term vs. Bubble Term

Service flow

- Partial insurance via retrading (partially undo incomplete markets)
 - Bewley ... smooth consumption
 - BruSan ... retrade capital and safe asset + smooth consumption
- Remaining (idiosyncratic) risk depresses cash flow return
- Bubble
 - $\lim_{T \to \infty} E[\bar{\xi}_t P_t] > 0$ if $r_t^f + risk \ premium \le g_t$ (on average)
 - r^f is depressed by precautionary savings (incl. uninsurable idiosyncratic risk)
 - Transversality condition holds for each individual, but not in aggregate
 - \neq complete markets

Related Literature 1

- **FTPL literature:** Leeper, Sims, Woodford, Cochrane, ...
- Cui Bassetto (2018), Sims (2020), Angeletos et al. (2020), Obstfeld Rogoff (1983),

	OLG	Incomplete Markets + idiosyncratic risk		
\Friction				
Risk	deterministic	endowment risk borrowing constraint	return risk Risk tied up with Individual capital	
Only money	Samuelson	Bewley		
			"I Theory without I" Brunnermeier-Sannikov (AER PP 2016)	
With capital	Diamond	Aiyagari	Angeletos (2006)	

ıt l" nikov

Related Literature 2

Safe Asset:

- Gorton-Pennachi (1990), Dang et al. (2017), Caballero et al. (2016,7), ...
- Brunnermeier et al. (2017), ESBies,
- Equity premium
 - Constantinides-Duffie (1996) imposes "aggregate" transversality condition
- Public Debt Evaluation Puzzles:
 - Jiang et al. (2020,2021)
- Fiscal debt sustainability r vs. g:
 - OLG: Bohn (1995), Samuelson (1958), Diamond (1965), Tirole (1985), Blanchard (2019), Martin-Ventura (2018)
 - Incomplete markets: Bewley (1980), Aiyagari-McGrattan (1998), Angeletos (2007) No capital Capital is a safe asset (risk-free)
 - Bassetto-Cui (2018), Reis (2020)

m instead of ξ^{**}/r^{**}

No debt

Roadmap

- Motivation
- Steady state model (closed form solution)
- Stochastic idiosyncratic risk model
- (Safe) asset pricing with SDF ξ_t^{**}
- Flight-to-Safety, $\beta < 0$, and Excess Volatility of capital
- Equity issuance, non-safe mutual fund with $\beta > 0$
- Debt Laffer Curve
- Price level determination with a bubble
 - Fiscal space to defend Exorbitant Privilege (crypto, ...)

Calibration

Exorbitant Privilege Model with a Bubble: Safe Asset Model

- Model overview:
 - Continuous time, infinite horizon, one consumption good
 - Continuum of agents
 - Operate capital with time-varying idiosyncratic risk, AK production technology
 - Can trade capital, government bond, and diversified equity claims
 - Government
 - Exogenous spending
 - Taxes output
 - Issues (nominal) bonds
 - Financial Frictions: incomplete markets
 - Agents cannot fully insure idiosyncratic risk (must retain skin in the game)
 - Aggregate risk: fluctuations in volatility of idiosyncratic risk (& capital productivity)
- Calibrated to US data to match macro and asset pricing moments

Model with Capital + Safe Asset

• Each heterogenous citizen $\tilde{\iota} \in [0,1]$

$$E\left[\int_0^\infty e^{-\rho t} \log c_t^{\tilde{\iota}} dt\right] \text{ s.t. } \frac{dn_t^{\tilde{\iota}}}{n_t^{\tilde{\iota}}} = -\frac{c_t^{\tilde{\iota}}}{n_t^{\tilde{\iota}}} dt + dr_t^{\mathcal{B}} + (1 - \theta_t^{\tilde{\iota}}) (dr_t)$$

- Each citizen operates physical capital $k_t^{\tilde{i}}$
 - Output (net investment) $a_t k_t^{\tilde{i}} dt \iota_t^{\tilde{i}} k_t^{\tilde{i}} dt$
 - Output tax $au_t a_t k_t^{\tilde{\iota}} dt$

$$= \frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = \left(\Phi(\iota_t^{\tilde{i}}) - \delta\right)dt + \tilde{\sigma}_t d\tilde{Z}_t^{\tilde{i}} + d\Delta_t^k$$

- $d\tilde{Z}_t^{\tilde{\iota}}$ idiosyncratic Brownian
- Financial Friction: Incomplete markets: no $d\tilde{Z}_t^{\tilde{\iota}}$ claims
- Aggregate risk: $\tilde{\sigma}_t$, a_t , g_t exogenous process by aggregate Brownian dZ_t
 - E.g. Heston model: $d\tilde{\sigma}_t^2 = -\psi \left(\tilde{\sigma}_t^2 \left(\tilde{\sigma}^0 \right)^2 \right) dt \sigma \tilde{\sigma}_t dZ_t$

•
$$a_t = a(\tilde{\sigma}_t), g_t = g(\tilde{\sigma}_t)$$

 $r_t^{K,\tilde{\iota}}(\iota_t^{\tilde{\iota}}) - dr_t^{\mathcal{B}})$ & No Ponzi

Government: Taxes, Bond/Money Supply, Gov. Budget

- Policy Instruments ($K_t \coloneqq \int k_t^{\tilde{\iota}} d\tilde{\iota}$)
 - Government spending $\mathcal{G}_t K_t$ (with exogenous \mathcal{G}_t)
 - Proportional output tax $\tau_t a_t K_t$
 - Nominal government debt supply $\frac{dB_t}{B_t} = \mu_t^{\mathcal{B}} dt$
 - Floating nominal interest rate i_t on outstanding bonds
- Government budget constraint (BC)

$$\underbrace{\left(\mu_{t}^{\mathcal{B}}-i_{t}\right)}_{\widecheck{\mu}_{t}^{B}:=}\mathcal{B}_{t}+\mathcal{D}_{t}K_{t}\underbrace{\left(\tau_{t}a_{t}-\mathcal{G}_{t}\right)}_{s_{t}:=}=0$$

Not market clearing, Payment/redistribution to bond holders q^B clears bond market

Equilibrium selection: No No-Ponzi constraint

Optimal Choices & Market Clearing

- Optimal investment rate
 - $\Phi(\iota) = \frac{1}{\phi} \log(1 + \phi \iota)$
 - $\boldsymbol{\iota_t} = \frac{1}{\phi}(q_t^K 1)$

Consumption

- Goods market
- $\bullet \frac{c_t}{n_t} =: \rho \qquad \Rightarrow C_t = \rho \left(q_t^K K_t + q_t^{\mathcal{B}} K_t \right) = (a \iota_t \mathcal{G}) K_t$ \mathcal{B}_t/\wp_t
- Portfolio
 - Solve for θ_t later

Capital market $1 - \boldsymbol{\theta}_t = \frac{q_t^K}{q_t^K + q_t^B} =: 1 - \vartheta_t$ Bond market clears by Walras law

ϑ = fraction of wealth in nominal claims

Equilibrium (before solving for portfolio choice)

Equilibrium
$$q_t^{\mathcal{B}} = \vartheta_t \frac{1 + \phi \check{a}}{(1 - \vartheta_t) + \phi \check{\rho}_t}$$
 $q_t^{\mathcal{K}} = (1 - \vartheta_t) \frac{1 + \phi \check{a}}{(1 - \vartheta_t) + \phi \check{\rho}_t}$ $\check{a} = a - \mathscr{G}$ $\iota_t = \frac{(1 - \vartheta_t)\check{a} - \check{\rho}_t}{(1 - \vartheta_t) + \phi \check{\rho}_t}$ $\iota_t = \frac{(1 - \vartheta_t)\check{a} - \check{\rho}_t}{(1 - \vartheta_t) + \phi \check{\rho}_t}$

- ${\ }^{\bullet}$ Moneyless equilibrium with $q_t^{\mathcal{B}}=0 \Rightarrow \vartheta_t=0$
- Next, determine portfolio choice.

- Price of idiosyncratic risk: $\tilde{\varsigma}_t = \gamma \tilde{\sigma}_t^n = \gamma (1 \theta_t) \gamma \tilde{\sigma}_t$
- Capital market clearing: $1 \theta_t = 1 \vartheta_t$

• FTPL/Money Valuation Equation: $\mu_t^{\vartheta} = \rho + \check{\mu}_t^{\mathscr{B}} - (1 - \vartheta_t)^2 \tilde{\sigma}^2$

• In steady state $\mu_t^{\vartheta} = 0$: $(1 - \vartheta) = \sqrt{\rho + \check{\mu}^{\mathcal{B}}} / \tilde{\sigma}$

Recall: ϑ = fraction of wealth in nominal claims

Two Stationary Equilibria – in closed form

- ρ time preference rate
- ϕ adjustment cost for investment rate
- $\check{\mu}_t^{\mathcal{B}} = \mu_t^{\mathcal{B}} i_t$ bond issuance rate beyond interest rate
- $\check{a} = a g$ part of TFP not spend on gov.

Remarks for steady state case:

Real risk-free rate • $r^f = (\Phi(\iota(\check{\mu}^{\mathcal{B}})) - \delta) - \check{\mu}^{\mathcal{B}}$

- Recall $\check{\mu}_t^B \mathcal{B}_t + \mathcal{D}_t K_t \underbrace{(\tau_t a_t g_t)}_{S_t :=} = 0$
- $\check{\mu}^{\mathcal{B}} = 0 \Rightarrow s = 0$ no primary surplus (no cash payoff for bond) • $q^{\mathcal{B}}K = \frac{\mathcal{B}}{R} > 0$ bond trades at a **bubble** due to service flow
- $\check{\mu}^{\mathcal{B}} > 0 \Rightarrow s < 0$ primary deficit (constant fraction of GDP) • As long as $q^{\mathcal{B}} > 0$ "mine the bubble"
- $\check{\mu}^{\mathcal{B}} < 0 \Rightarrow s > 0$ and r > g primary surplus (constant fraction of GDP) • $q^{\mathcal{B}}K_t = E_t[PV_{rf}(sK_t)]$ no bubble, but service flow $\bullet \frac{\mathcal{B}_0}{\omega} = \mathbb{E}\left[\int_0^\infty e^{-r^f t} sK_t dt\right]$

Flight-to-Safety when idiosyncratic risk is $\tilde{\sigma}_t$ high \Rightarrow negative β for Gov. Bond

Gov. debt value rises in recessions

Capital price

Safe Asset – Service flow >> Cash flow

Asset Price = E[PV(primary surplus/cash flows)] + E[PV(service flows)]

Debt Valuation (FTPL) – Two Perspectives

- Buy and Hold Perspective:
 - $= \frac{\mathcal{B}_0}{\mathcal{P}_0} = \lim_{T \to \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i s_t K_t dt \right] + \mathbb{E} \left[\xi_t^i \frac{\mathcal{B}_T}{\mathcal{P}_T} \right] \right)$
 - Valuation of strategy that buys and holds a fixed fraction of outstanding debt

• Agent *i*'s SDF, $\xi_t^i: d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$, idiosyncratic consumption vol. $\tilde{\sigma}_t^c$

Debt Valuation (FTPL) – Two Perspectives

Buy and Hold Perspective:

$$\frac{\mathcal{B}_0}{\mathscr{P}_0} = \lim_{T \to \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i s_t K_t dt \right] + \mathbb{E} \left[\xi_t^i \frac{\mathcal{B}_T}{\mathscr{P}_T} \right] \right)$$

Valuation of strategy that buys and holds a fixed fraction of outstanding debt

Dynamic Trading Perspective:

Valuation of equilibrium cash flows from individual bond portfolios, incl. trading cash flows (aggregated over all agents *i* to obtain total value of debt)

• Agent *i*'s SDF, $\xi_t^i: d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$, idiosyncratic consumption vol. $\tilde{\sigma}_t^c$

$\frac{B_t}{2}dt$

Debt Valuation (FTPL) – Two Perspectives

Buy and Hold Perspective:

$$\frac{\mathcal{B}_0}{\wp_0} = \lim_{T \to \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i s_t K_t dt \right] + \mathbb{E} \left[\xi_t^i \frac{\mathcal{B}_T}{\wp_T} \right] \right)$$

Valuation of strategy that buys and holds a fixed fraction of outstanding debt

Dynamic Trading Perspective:

$$= \frac{\mathcal{B}_0}{\mathscr{D}_0} = \mathbb{E}\left[\int_0^\infty \left(\int \xi_t^i \eta_t^i \, di \right) s_t K_t dt \right] + \mathbb{E}\left[\int_0^\infty \left(\int \xi_t^i \eta_t^i \, di \right) (\tilde{\sigma}_t^c)^2 \frac{\mathcal{B}}{\mathscr{D}_t} \right) \\ = \xi_t^{**} = \xi_t^{**}$$

Valuation of equilibrium cash flows from individual bond portfolios, incl. trading cash flows (aggregated over all agents *i* to obtain total value of debt)

• Agent *i*'s SDF, $\xi_t^i: d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$, idiosyncratic consumption vol. $\tilde{\sigma}_t^c$

$\frac{dt}{dt}$

Capital price "Excess" Volatility due to Flight to Safety

"Aggregate Intertemporal Budget Constraint Consumption share

$$\underbrace{q_t^K K_t + q_t^B K_t}_{\text{total (net) wealth}} = \mathbb{E}_t \left[\int_t^\infty \underbrace{\frac{\int \xi_s^l \eta_s^r di}{\int \xi_t^i \eta_t^i di}}_{=\xi_s^{**} / \xi_t^{**}} C_s ds \right]$$

• Lucas-type models: $q^B = 0$ (also $C_t = Y_t$, no idiosyncratic risk)

- Value of equity (Lucas tree) = PV of consumption claim
- Volatility equity values require (low) volatile RHS of (*)
- This model: even for constant RHS of (*), $q_t^K K_t$ can be volatile due to flight to safety:
 - increase in $\tilde{\sigma}_t \Rightarrow$ Portfolio reallocation from capital to bonds, $q_t^K K_t \downarrow, \frac{B_t}{\omega_t} = q_t^B K_t \uparrow$,
- Quantitatively relevant? Yes
 - Excess return volatility
 - 2.9% in equivalent bondless model (s = 0 and no bubble)
 - 12.9% in our model

(*)

 $\Delta \cap$

Service Flow Term, Convenience Yield, Ponzi Scheme

Service flow

- Convenience yield: relaxes collateral constraint or CIA constraint (money)
 - Traditional measure: BAA-US Treasury spread
- Here: Partially completing markets through retrading
 - Low interest rate (cash flow) asset can be issued by everyone Hence, corporate-Treasury spread = 0
- Ponzi scheme is not feasibly for everyone No Ponzi constraint may be binding
 - Who can run a Ponzi scheme? ... assigned by equilibrium selection
 - Likely to government, private entities are subject to solvency constraint
 - ... still there is a Debt Laffer Curve

exorbitant privilege

Roadmap

- Motivation
- Steady state model (closed form solution)
- Stochastic idiosyncratic risk model
- (Safe) asset pricing with SDF ξ_t^{**}
- \blacksquare Flight-to-Safety, $\beta < 0$, and Excess Volatility of capital
- Equity issuance, non-safe mutual fund with $oldsymbol{eta} > 0$
- Debt Laffer Curve
- Price level determination with a bubble
 - Fiscal space to defend Exorbitant Privilege (crypto, ...)

al Calibration

Equity Markets (ETF)

- Equity Market
 - Each citizen \tilde{i} can sell off a fraction $(1 \bar{\chi})$ of capital risk to outside equity holders
 - Return $dr_{t}^{E,\tilde{\iota}}$
 - Same risk as $dr_{t}^{K,\tilde{\iota}}$
 - But $\mathbb{E}_t \left[dr_t^{E,\tilde{\iota}} \right] < \mathbb{E}_t \left[dr_t^{K,\tilde{\iota}} \right]$... due to insider premium
 - Prop.: Model equations as before but replace $\tilde{\sigma}$ with $\bar{\chi}\tilde{\sigma}$

Calibration with Epstein-Zin Preferences

- Epstein-Zin preferences for calibration (EIS=1)
 - Citizen \tilde{i} maximizes $V_0^{\tilde{i}}$ where $V_t^{\tilde{i}}$ is recursively defined by

$$V_t^i = E_t \left[\int_t^\infty (1 - \gamma) \rho V_s^i \left(\log(c_s^i) - \frac{1}{1 - \gamma} \log\left((1 - \gamma) V_s^i \right) \right) ds \right]$$

Needed to generate realistic prices of risk (Sharpe ratio)

Numerical Illustration (Calibration)

- Exogenous processes: **Recessions** feature high idiosyncratic risk and low consumption
 - $\tilde{\sigma}_t$: Heston (1993) model of stochastic volatility

$$d\tilde{\sigma}_t^2 = -\psi\left(\tilde{\sigma}_t^2 - \left(\tilde{\sigma}^0\right)^2\right)dt - \sigma^{\tilde{\sigma}}\tilde{\sigma}_t dZ_t$$

•
$$a_t: a_t = a(\tilde{\sigma}_t)$$

 $a_t(\tilde{\sigma}_t) = a^0 - \alpha^a(\tilde{\sigma}_t - \tilde{\sigma}^0)$

- $q_t = 0$
- Government (bubble-mining policy) $\check{\mu}_{t}^{\mathcal{B}} = \check{\mu}_{t}^{\mathcal{B},0} + \alpha^{\mathcal{B}}(\tilde{\sigma}_{t} - \tilde{\sigma}^{0})$
- Calibration to US data (1970-2019, period length is one year)

hat $\tilde{\sigma}$ stays positive

Parameters

parameter	description	value	target
			external calibration
$egin{array}{c} & \widetilde{\sigma}^0 & \ \psi & \ \sigma & \ ar{\chi} & \end{array}$	$\tilde{\sigma}_t$ stoch. steady state $\tilde{\sigma}_t^2$ mean reversion $\tilde{\sigma}_t^2$ volatility undiversifiable idio. risk	0.54 0.67 0.4 0.3	MLE targeting common idiosyncra Heaton, Lucas (1996, 2000, 2001),
		calibrat	tion to match model moments
$\begin{array}{c} \gamma\\ \rho\\ a^{0}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	risk aversion time preference a_t stoch. steady state gov. expenditures $\breve{\mu}_t^{\mathcal{B}}$ stoch. steady state a_t slope $\breve{\mu}_t^{\mathcal{B}}$ slope capital adjustment cost	6 0.138 0.63 0.138 0.0023 0.071 0.12 8.5	chosen jointly to match (approxin - volatility of Y, C, I, S/Y - average C/Y, G/Y, S/Y, I/K - mean equity premium - equity Sharpe ratio
			other parameters
δ	depreciation rate	0.055	economic growth rate (ultimately i

tic volatility (Herskovic et al. 2018) , Angeletos (2007) (range [0.2, 0.6])

mately)

K, $q^K K/Y$, $q^B K/Y$

irrelevant for all results)

Quantitative Model Fit

moment		model
symbol	description	
$\sigma(Y) \ \sigma(C)/\sigma(Y) \ \sigma(S/Y)$	output volatility relative consumption volatility surplus volatility	1.3% 0.63 1.1%
$\mathbb{E}[S/Y] \\ \mathbb{E}[q^{K}K/Y] \\ \mathbb{E}[q^{B}K/Y]$	average surplus-output ratio average capital-output ratio average debt-output ratio	-0.0004 3.48 0.74
$\frac{\mathbb{E}[d\bar{r}^{E} - dr^{\mathcal{B}}]}{\frac{\mathbb{E}[dr^{E} - dr^{\mathcal{B}}]}{\sigma(dr^{E} - dr^{\mathcal{B}})}}$	average (unlevered) equity premium equity sharpe ratio	3.62% 0.31

Fiscal Sustainability given Exorbitant Privilege: Debt Laffer Curve

- Issue bonds at a faster rate $\check{\mu}^B$ (esp. in recessions)
 - \Rightarrow tax precautionary self insurance \Rightarrow tax rate
 - ⇒ real value of bonds, $\frac{\mathcal{B}}{\wp}$, ↓ ⇒ "tax base"

Sizeable revenue only if Gov. debt has negative β

Two Debt Valuation Puzzles

- Properties of US primary surpluses
 - Average surplus ≈ 0
 - Procyclical surplus (> 0 in booms, < 0 in recessions)
- Two valuation puzzles from standard perspective: (Jiang, Lustig, van Nieuwerburgh, Xiaolan, 2019, 2020) 1. "Public Debt Valuation Puzzle"
 - Empirical: E[PV(surpluses)] < 0, yet $\frac{B}{\omega} > 0$
 - Our model: bubble/service flow component overturns results
 - 2. "Gov. Debt Risk Premium Puzzle"
 - Debt should be positive β asset, but market don't price it this way
 - Our model: can be rationalized with countercyclical bubble/service flow

Roadmap

- Motivation
- Steady state model (closed form solution)
- Stochastic idiosyncratic risk model
- (Safe) asset pricing with SDF ξ_t^{**}
- Flight-to-Safety, $\beta < 0$, and Excess Volatility of capital
- Equity issuance, non-safe mutual fund with $\beta > 0$
- Debt Laffer Curve
- Price level determination with a bubble
 - Fiscal space to defend Exorbitant Privilege (crypto, ...)

Calibration

Why Does Gov. Safe Asset Survive in Presence of ETFs?

- Diversified stock portfolio is free of idiosyncratic risk
 - Trading in stocks (ETF) can also self-insure idiosyncratic risk
 - Good friend in idiosyncratically bad times
- But: poor hedge against aggregate risk, losses value in recessions
 - Positive β
 - Bad friend in aggregate bad times
 - Why positive β ? (after all r^f goes down in recessions, lowers discount rate)
 - Equity are claims to capital, but marginal capital holder is insider
 - Insider bears idiosyncratic risk, must be compensated
 - $\tilde{\sigma}_t \uparrow \Rightarrow$ insider premium $E_t[dr_t^K] E_t[dr_t^E] \uparrow \Rightarrow$ payouts to stockholders fall
 - Share of inside equity relative to outside equity compensation increases with $\tilde{\sigma}_t$
 - E.g. time of promise to issuance of new shares diluting outside equity holders

Exorbitant Privilege

- 1. Pay low real interest rate r (cash flow) on safe asset
- 2. Run **Ponzi scheme**
 - Issue more bonds to fund primary deficit
 - Dilute existing bond holdings "mine the bubble"
 - Tax on "precautionary savings"/self-insurance
 ... but it is limited ⇒ Debt Laffer Curve
- Safe-asset status = exorbitant privilege is like a bubble (it can pop)
 - Jump to bad equilibrium
 - Safe-asset status can jump to foreign safe asset or crypto asset

Conclusion

- Safe Asset = good friend
 - Individually: allows self-insurance through retrading
 - Aggregate: appreciates in bad times (negative β)
- Asset pricing with safe assets
 - Service Flow term >> convenience yield (BAA-Treasury spread)
 - Flight to Safety creates
 - Countercyclical safe asset valuation
 - Large stock market volatility
- Exorbitant privilege:
 - "Safe-asset status": low cash flow due to service flow (partially completing market via re-trading)
 - Extra space, but Debt Laffer Curve (\neq MMT)
 - Power to run Ponzi scheme
 - Debt sustainability analysis (off-equilibrium)
- Fiscal space to ensure that bubble is attached to gov. bond (not on crypto)
- Remark: Competing Safe Assets
 - Within country private bonds are partial safe assets
 - Across countries \Rightarrow Spillover of US Monetary Policy

Extra Slides