ECO529: Modern Macro, Money and (International) Finance Problem Set 1

Andrey Alexandrov

September 19, 2022

Two approaches to solving differential equations:

- 1. Constructing the function starting from boundary condition
- 2. Updating the function starting from initial guess

$$y' = g(x, y)$$

 $y' = y^{-19}, \quad y' = x \cos(x^2) y^2, \quad y'' = -y$

$$y' = g(x, y)$$

 $y' = y^{-19}, \quad y' = x \cos(x^2) y^2, \quad y'' = -y$

- Idea:
 - Construct the function iteratively, using differential equation to move from one grid point to another
- Requires:
 - ► Interval [0, 10]
 - ▶ Initial condition

• Approximate the derivative by finite difference:

$$\frac{y_i - y_{i-1}}{x_i - x_{i-1}} = g(x, y)$$

Explicit method

$$\frac{y_i - y_{i-1}}{x_i - x_{i-1}} = g(x_{i-1}, y_{i-1})$$

Implicit method

$$\frac{y_i - y_{i-1}}{x_i - x_{i-1}} = g(x_i, y_i)$$

- Explicit method: evaluate function once, faster, less stable
- Implicit method: multiple function evaluations, slower, more stable

- Explicit method: evaluate function once, faster, less stable
- Implicit method: multiple function evaluations, slower, more stable
- Compromise: adjsut implicit method
 - Do not search for the root until convergence
 - Perform one step of Newton's method

$$F_i(y_i) := \frac{y_i - y_{i-1}}{x_i - x_{i-1}} - g(x_i, y_i)$$

$$y_i = y_{i-1} - (J^{i-1})^{-1}F_i(y_{i-1})$$

N = 51

- ▶ Solve the Basak-Cuoco model with $\rho^h < \rho^e$
 - 1. Non-degenerate stationary distribution of η
 - 2. Capital price q depends on η

- ▶ Solve the Basak-Cuoco model with $\rho^h < \rho^e$
 - 1. Non-degenerate stationary distribution of η
 - 2. Capital price q depends on η
- What changes?
 - 0. Postulate processes, obtain returns
 - 1. Given C/N and SDF:
 - Investment decision
 - Portfolio decision
 - Market clearing conditions
 - 2. Evolution of η
 - 3. Value functions $\rightarrow C/N$ and price of risk

Goods market clearing

$$C = C^e + C^h = \underbrace{(\rho^e \eta + \rho^h (1 - \eta))}_{\widehat{\rho}(\eta)} qK = (a - \iota)K$$

▶ Optimal investment choice: $q = 1 + \phi \iota$

$$q(\eta) = rac{1+\phi a}{1+\phi \hat{
ho}(\eta)} \ \iota(\eta) = rac{a-\hat{
ho}(\eta)}{1+\phi \hat{
ho}(\eta)}$$

Law of motion for η from LOMs of N^e and qK:

$$\frac{d\eta}{\eta} = \left(\frac{\mathsf{a} - \iota^\mathsf{e}}{\mathsf{q}} - \rho^\mathsf{e} + \theta^\mathsf{e}(\sigma + \sigma^\mathsf{q} - \varsigma^\mathsf{e})(\sigma + \sigma^\mathsf{q})\right)dt - \theta^\mathsf{e}(\sigma + \sigma^\mathsf{q})dZ$$

Capital market clearing $(\theta^e = -\frac{1-\eta}{\eta}) + \text{log-utility}$ $(\varsigma^e = \sigma^{n^e} = (1-\theta^e)(\sigma+\sigma^q))$ and $(a-\iota^e) = \hat{\rho}(\eta)q$:

$$\frac{d\eta}{\eta} = \underbrace{\left((1-\eta)(\rho^h - \rho^e) + \left(\frac{1-\eta}{\eta}\right)^2(\sigma + \sigma^q(\eta))^2\right)}_{\mu^\eta(\eta)} dt + \underbrace{\frac{1-\eta}{\eta}(\sigma + \sigma^q(\eta))}_{\sigma^\eta(\eta)} dZ$$

▶ Apply Ito's formula to $q(\eta)$:

$$dq(\eta) = \underbrace{\left(q'(\eta)\mu^{\eta}(\eta)\eta + \frac{(\sigma^{\eta}(\eta)\eta)^{2}}{2}q''(\eta)\right)}_{\mu^{q}(\eta)q(\eta)} dt + \underbrace{q'(\eta)\sigma^{\eta}(\eta)\eta}_{\sigma^{q}(\eta)q(\eta)} dZ$$

► Combine:

$$q(\eta) = rac{1+\phi a}{1+\phi \hat{
ho}(\eta)}, \qquad \sigma^q(\eta) q(\eta) = q'(\eta) \sigma^\eta(\eta) \eta, \qquad \sigma^\eta(\eta) = rac{1-\eta}{\eta} (\sigma + \sigma^q(\eta))$$

Obtain:

$$\sigma^{q}(\eta) = -\frac{\phi(\rho^{e} - \rho^{n})(1 - \eta)}{1 + \phi\rho^{e}}\sigma, \qquad \sigma^{\eta}(\eta) = \frac{1 - \eta}{\eta} \frac{1 + \phi\hat{\rho}(\eta)}{1 + \phi\rho^{e}}\sigma$$

► Get risk-free rate from experts portfolio choice:

$$r(\eta) = \frac{a - \iota(\eta)}{q(\eta)} + \Phi(\iota(\eta)) - \delta + \underbrace{\mu^{q}(\eta)}_{\neq 0} + \sigma \underbrace{\sigma^{q}(\eta)}_{\neq 0} - \varsigma^{e}(\eta)(\sigma + \underbrace{\sigma^{q}(\eta)}_{\neq 0})$$

► Total risk:

$$\sigma + \sigma^q(\eta) = \frac{\sigma}{1 - \frac{1 - \eta}{\eta} \frac{q'(\eta)}{q/\eta}} = \left(1 - \frac{\phi(\rho^e - \rho^h)(1 - \eta)}{1 + \phi\rho^e}\right)\sigma < \sigma \text{ if } \phi > 0$$

Goods clearing condition:

$$\hat{\rho}(\eta) \underbrace{q(\eta)K}_{C/N} + \iota(\eta)K = aK$$

- ▶ Suppose $K \downarrow$, $\eta \downarrow$, $C/N \downarrow \Longrightarrow q(\eta)$ and/or $\iota(\eta)$ must go up
- ightharpoonup A drop in K is compensated by an increase in q, stabilizes qK
- ▶ If $\phi = 0$, then $\iota(\eta)$ adjusts alone

2. Stationary Distribution

► Stationary KFE:

$$0 = -rac{d}{d\eta}\left(\mu_{\eta}(\eta)g(\eta)
ight) + rac{1}{2}rac{d^2}{d\eta^2}\left(\sigma_{\eta}(\eta)^2g(\eta)
ight)$$

▶ Define $D(\eta) = \sigma_{\eta}(\eta)^2 g(\eta)$:

$$D'(\eta) = 2 rac{\mu_{\eta}(\eta)}{\sigma_{\eta}(\eta)^2} D(\eta)$$

2. Stationary Distribution

► Stationary KFE:

$$0 = -rac{d}{d\eta}\left(\mu_{\eta}(\eta)g(\eta)
ight) + rac{1}{2}rac{d^2}{d\eta^2}\left(\sigma_{\eta}(\eta)^2g(\eta)
ight)$$

▶ Define $D(\eta) = \sigma_{\eta}(\eta)^2 g(\eta)$:

$$D'(\eta) = 2rac{\mu_{\eta}(\eta)}{\sigma_{\eta}(\eta)^2}D(\eta)$$

▶ Domain? [0,1] / [0,1) / (0,1] / (0,1)

2. Stationary Distribution

- ► Solve $D'(\eta) = 2 \frac{\mu_{\eta}(\eta)}{\sigma_{\eta}(\eta)^2} D(\eta)$ on [0.0001, 0.9999]
- No initial condition! But:

$$\int_0^1 g(\eta) d\eta = 1 \tag{1}$$

▶ Set D(0.0001) = anything(∈ ℝ) and then rescale using (1)

2. Stationary distribution

- Alternative to HJB, background for Martingale Method
 - Keep the stochastic structure as long as possible
 - ▶ Advantage: no state-space structure ⇒ economize on notation
- ► We will use for deriving:
 - Martingale pricing conditions
 - Equilibrium allocations

- ► Step 1: set up Hamiltonian (one for each agent type)
 - Experts' problem:

$$\max_{c^e,\theta^e,\iota^e} \mathbb{E}\left[\int_0^\infty \mathrm{e}^{-\rho^e t} \log(c_t^e) dt\right]$$
s.t
$$\frac{dn_t^e}{n_t^e} = -\frac{c_t^e}{n_t^e} dt + r_t dt + (1 - \theta_t^e) \left(dr_t^K(\iota_t^e) - r_t dt\right)$$

$$dr_t^K(\iota_t^e) = r_t^K(\iota_t^e) dt + \sigma_t^{r,K} dZ_t$$

ightharpoonup Rewrite LOM of n_t^e as:

$$dn_t^e = \underbrace{\left[-c_t^e + n_t^e\left(r_t + \left(1 - \theta_t^e\right)\left(r_t^K(\iota_t^e) - r_t\right)\right)\right]}_{\mu_t^{n^e}n_t^e} dt + \underbrace{n_t^e(1 - \theta_t^e)\sigma_t^{r,K}}_{\sigma_t^{n^e}n_t^e} dZ_t$$

- ► Step 1: set up Hamiltonian (one for each agent type)
 - Experts' problem:

- ► Step 1: set up Hamiltonian (one for each agent type)
 - Experts' problem:

Co-state process:

$$d\xi_t^e = \mu_t^{\xi^e} \xi_t^e dt + \sigma_t^{\xi^e} \xi_t^e dZ_t$$

Hamiltonian:

$$H_t^e = e^{-\rho^e t} \log(c_t^e) + \xi_t^e \mu_t^{n^e} n_t^e + \sigma_t^{\xi^e} \xi_t^e \sigma_t^{n^e} n_t^e$$

► Step 1: set up Hamiltonian (one for each agent type)

$$\begin{aligned} H_t^e &= e^{-\rho^e t} \log(c_t^e) + \xi_t^e \left[-c_t^e + n_t^e \left(r_t + (1 - \theta_t^e) \left(r_t^K (\iota_t^e) - r_t \right) \right) \right] + \sigma_t^{\xi^e} \xi_t^e n_t^e (1 - \theta_t^e) \sigma_t^{r,K} \\ r_t^K (\iota_t^e) &= \frac{a - \iota_t^e}{q_t} + \Phi(\iota_t^e) - \delta + \mu_t^q + \sigma \sigma_t^q, \quad \sigma_t^{r,K} = \sigma + \sigma_t^q \end{aligned}$$

► Step 1: set up Hamiltonian (one for each agent type)

$$\begin{aligned} \textit{H}_{t}^{e} &= e^{-\rho^{e}t}\log(c_{t}^{e}) + \xi_{t}^{e}\left[-c_{t}^{e} + \textit{n}_{t}^{e}\left(\textit{r}_{t} + (1-\theta_{t}^{e})\left(\textit{r}_{t}^{\textit{K}}(\iota_{t}^{e}) - \textit{r}_{t}\right)\right)\right] + \sigma_{t}^{\xi^{e}}\xi_{t}^{e}\textit{n}_{t}^{e}(1-\theta_{t}^{e})\sigma_{t}^{\textit{r},\textit{K}} \\ \textit{r}_{t}^{\textit{K}}(\iota_{t}^{e}) &= \frac{\textit{a} - \iota_{t}^{e}}{\textit{q}_{t}} + \Phi(\iota_{t}^{e}) - \delta + \mu_{t}^{\textit{q}} + \sigma\sigma_{t}^{\textit{q}}, \quad \sigma_{t}^{\textit{r},\textit{K}} = \sigma + \sigma_{t}^{\textit{q}} \end{aligned}$$

Step 2: FOCs and co-state equation:

$$\begin{split} \frac{\partial H_t^e}{\partial c_t^e} &= \frac{\partial H_t^e}{\partial \theta_t^e} = \frac{\partial H_t^e}{\partial \iota_t^e} = 0\\ d\xi_t^e &= -\frac{\partial H_t^e}{\partial n_t^e} dt + \sigma_t^{\xi^e} \xi_t^e dZ_t \end{split}$$

- ► Step 2
 - ► FOCs:

$$egin{aligned} \xi_t^e &= \mathrm{e}^{-
ho^e t} rac{1}{c_t} \ r_t^K(\iota_t^e) - r_t &= -\sigma_t^{\xi^e} \sigma_t^{r,K} \ \Phi'(\iota_t^e) &= rac{1}{q_t} \end{aligned}$$

Co-state equation:

$$\begin{aligned} d\xi_t^e &= -\left[r_t + (1 - \theta_t^e)\left(r_t^K(\iota_t^e) - r_t + \sigma_t^{\xi^e}\sigma^{r,K}\right)\right]\xi_t^e dt + \sigma_t^{\xi^e}\xi_t^e dZ_t \\ &= -r_t \xi_t^e dt + \sigma_t^{\xi^e}\xi_t^e dZ_t \end{aligned}$$

- ► What if there is a constraint?
- ▶ Suppose $\theta_t^e \ge -0.5$

- ▶ What if there is a constraint?
- ▶ Suppose $\theta_t^e \ge -0.5$
- ► Hamiltonian:

$$H_{t}^{e} = e^{-\rho^{e}t} \log(c_{t}^{e}) + \xi_{t}^{e} \mu_{t}^{n^{e}} n_{t}^{e} + \sigma_{t}^{\xi^{e}} \xi_{t}^{e} \sigma_{t}^{n^{e}} n_{t}^{e} + \lambda_{t} (\theta_{t}^{e} + 0.5)$$

▶ FOC wrt θ_t^e :

$$r_t^K(\iota_t^e) - r_t = -\sigma_t^{\xi^e} \sigma_t^{r,K} + \frac{\lambda_t}{\xi_t^e n_t^e}$$
$$\lambda_t (\theta_t^e + 0.5) = 0$$

Other FOCs and co-state equation unchanged