Modern Macro, Money, and **International Finance Eco529 Lecture 02: Why Continuous Time Modeling?**

Markus K. Brunnermeier Princeton University

Cts.-time Macro: Macro-Finance vs HANK

Agents:	Heterogenous investor focus - Net worth distribution (often discrete)	Heterogenous cor - Net worth distribution
Tradition:	Finance (Merton) PORTFOLIO AND CONSUMPTION CHOICE	DSGE (Woodford) CONSUMPTION CHOICE
	 Full/global dynamical system focused on non-linearities away from steady state (crisis) Length of recession is stochastic 	Transition dynamics bacZero probability shockLength of recession is
Money due to:	Risk & financial frictions	Price stickiness
Risk:	Risk & financial frictions	No aggregate risk
Price of risk:	Idiosyncratic & aggregate risk	
Assets:	Capital, money, bonds with different risk profile - Risk-return trade-off - Liquidity-return trade-off - Flight to safety	All assets are risk-fre - No risk-return trad - Liquidity-return tra

nsumer focus n (often cts.)

- k to steady state
- deterministic

(in HANK paper)

- e
- le-off ade-off

Financial Frictions and Distortions

(DGP)

- Belief distortions
 - Match "belief surveys"
- Incomplete markets
 - "natural" leverage constraint (BruSan)
 - Costly state verification (BGG)
- + Leverage constraints (no "liquidity creation")
 - Exogenous limit
 - Collateral constraints
 - Next period's price $Rb_t \leq q_{t+1}k_t$
 - Next periods volatility
 - Current price
- Search Friction

(*Bewley/Ayagari*) (*KM*) (*VaR, JG*) state Debt limit can depend on prices/volatility

Time aggregation

- Data come in different frequency
 - GDP quarterly
 - High frequency financial data

Consumption

- Same IES within and across periods
- Discrete time consumption
 - IES/RA within period = ∞ , but across periods = $1/\gamma$
- Optimal Stopping problems no integer issues
- Sharp distinction between stock and flow (rate)
 - Beginning of period = end of period wealth
 - E.g. consumption = time-preference rate * end of period wealth

1

Ito processes... fully characterized by drift and volatility

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dZ_t$$

- Arithmetic Ito Process $dX_t = \mu_t^X dt + \sigma_t^X dZ_t$
- Geometric Ito Process $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
- Characterization for full volatility dynamics on Prob.-space
 - Discrete time: Probability-loading on states
 - conditional expectations E[X|Y] difficult to handle
 - Cts. time: Loading on a Brownian Motion dZ_t (captured by σ)

ce ndle

• Brownian Motion as a binomial tree over Δt

• More steps with shrinking step size: $h_n = \sigma \sqrt{\Delta t/n}$

$\sigma \sqrt{\Delta t}$

 $-\sigma\sqrt{\Delta t}$

Ito processes... fully characterized by drift and volatility

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dZ_t$$

- Arithmetic Ito Process $dX_t = \mu_t^X dt + \sigma_t^X dZ_t$
- Geometric Ito Process $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
- Characterization for full volatility dynamics on Prob.-space
 - Discrete time: Probability-loading on states
 - conditional expectations E[X|Y] difficult to handle
 - Loading on a Brownian Motion dZ_t (captured by σ) Cts. time:
- Normal distribution for dt, yet with skewness for $\Delta t > 0$
 - If σ_t is time-varying

• E.g. from normal-dt to log-normal- Δt and vice versa (geom dX_t .)

Portfolio choice – tension in discrete time

Linearize:

kills σ -term, all assets are equivalent

- 2^{nd} order approximation: kills time-varying σ
- Log-linearize a la Campbell-Shiller
- As $\Delta t \rightarrow 0$ (log) returns converge to normal distribution
 - Constantly adjust the approximation point
 - Nice formula for portfolio choice for Ito process

Consumption choice

- Nice process
 - consumption/wealth ratio is constant for log-utility, e.g. for log-utility $C_t = \rho N_t$
 - Beginning = end of period net worth/wealth

Evolution of wealth (shares)/distribution

- Nice characterization
- Evolution of distributions (e.g. wealth distribution) characterized by Kolmogorov Forward Equation (Fokker-Planck equation)

Why Continuous Time Modeling with Ito?

Continuous path

- Information arrives continuously "smoothly" not in lumps
- Implicit assumption: can react continuously to continuous info flow
- Never jumps over a specific point, e.g. insolvency point
- Simplifies numerical analysis:
 - Only need change from grid-point to grid-point (since one never jumps beyond the next grid-points)
- No default risk
 - Can continuously delever as wealth declines
 - Might embolden investors ex-ante
- Collateral constraint
 - Discrete time: $b_t R_{t,t+1} \le \min\{q_{t+1}\}k_t$
 - $b_t \le (p_t + \underbrace{dp_t}_{\to 0})k_t$ Cts. time:
 - For short-term debt not for long-term debt ... or if there are jumps
- Levy processes... with jumps
 - Still price of risk * risk, but not linear

Why Continuous Time Modeling with Ito?

• $E[dV(\eta)] = V'(\eta)\mu^{\eta}\eta dt + \frac{1}{2}V''(\eta)(\sigma^{\eta})^{2}\eta^{2}dt$

- More analytical steps
 - Return equations
 - Next instant returns are essentially normal (easy to take expectations)
 - Explicit net worth and state variable dynamics
 - Continuous: only slope of price function determines amplification
 - Discrete: need whole price function (as jump size can vary)