Modern Macro, Money, and International Finance

Eco 529

Lecture 10: One Sector Monetary Model with Heterogenous Agents

Markus K. Brunnermeier

Princeton University

Roadmap

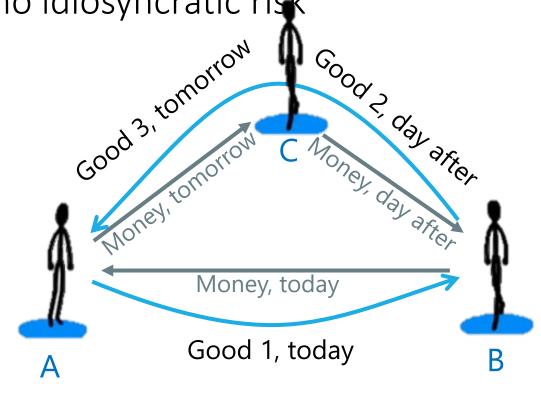
- Intuition for different "Monetary Theories"
- Monetary Model with one sector with constant idiosyncratic risk
 - Safe Asset and Service Flows
 - Bubble (mining) or not
 - 2 Different Asset Pricing Perspectives/SDFs
- Monetary model with time-varying idiosyncratic risk
 - Safe asset has negative CAPM- β
 - Calibration:
 Debt valuation puzzle, Debt Laffer Curve, Flight-to-Safety and Equity excess volatility
- Medium of Exchange Role

The 3 Roles of Money

- Unit of account
 - Intratemporal: Numeraire
 - Intertemporal: Debt contract

bounded rationality/price stickiness incomplete markets

- Store of value
 - "I Theory of Money without I" Less risky than other "capital" – no idiosyncratic risk
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence of wants problem



- Record keeping device money is memory
 - Virtual ledger

Money versus Credit

Credit zero net supply

Money positive net supply

- "Medium of Exchange Money" (double-coincidence of wants)
 - Credit renders money useless
- "Store of value Money" (safe asset)
 - Money/gov. debt still useful if bubble since it "partially completes markets"
 - Incomplete markets
 - OLG

Money, Reserves, and Government Debt

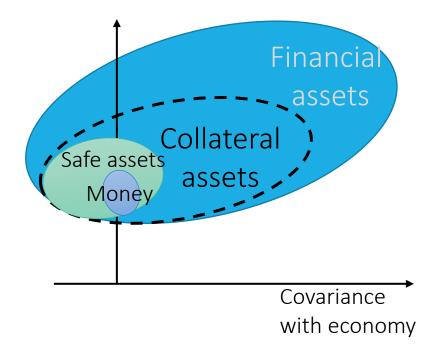
- Cash: extra convenience yield and zero interest \Rightarrow lower return by Δi
 - Erodes due to Fintech revolution
- Reserves: Interest bearing M (Δi)
 - Special form of
 - Infinite maturity more like equity (no rollover risk)
 - Zero duration more like overnight debt
 - Banking system can't offload it
 - Financial Repression
- Is QE simply swapping one debt for another one (reserves)?

(Narrow) Money, Gov. Debt, Safe Assets

- Service flows ⊇ convenience yield
 - 1. Safe asset:

[good friend analogy]

- When one needs funds, one can sell at stable price ... since others buy
- Partial insurance through retrading market liquidity
- 2. Collateral: relax constraints (Lagrange multiplier)
- 3. Money (narrow): relax double-coincidence of wants



Higher Asset Price = lower expected return - exorbitant privilege
Precautionary savings/self-insurance

- Problem: safe asset + money status might burst like a bubble
 - Multiple equilibria: [safe asset tautology]

Inflation Theories

Fiscal Theory of the Price Level (FTPL)

- store of value
- Price level is determined by $\frac{\mathcal{B}_t}{\wp_t} = E_t[PV(\text{primary surpluses})] + \cdots$
- Fiscal vs. Monetary Dominance + Financial Dominance
- Monetarism assumes Monetary Dominance
 - Fiscal implications of monetary policy induces government to change lump-sum taxes
 - so that per-period budget constraint holds (is unaltered)
 - Money \mathcal{M}_t/\wp_t serves as

medium of exchange

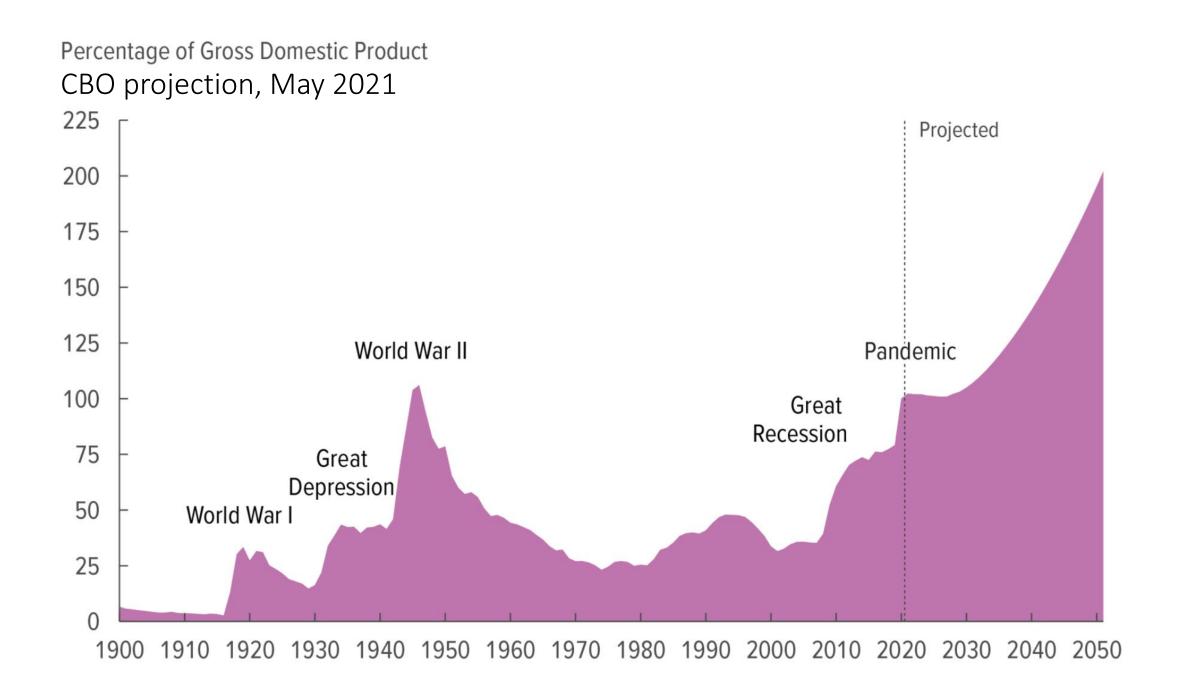
- Cash-in-advance constraint, transaction cost, shopping time model, ...
- $\blacksquare \Rightarrow \Delta i$ (convenience yield)
- Price level is determined by $\mathcal{M}_t v = \wp_t Y_t$ (if velocity, v is constant)
- (New) Keynesianism assumes Monetary Dominance
 - Cashless limit
 - Interest rate policy
 - All price/inflation paths are explosive except for one
 - (Cochrane: What's wrong with explosive nominal paths?)

Price Stickiness and Phillips Curve

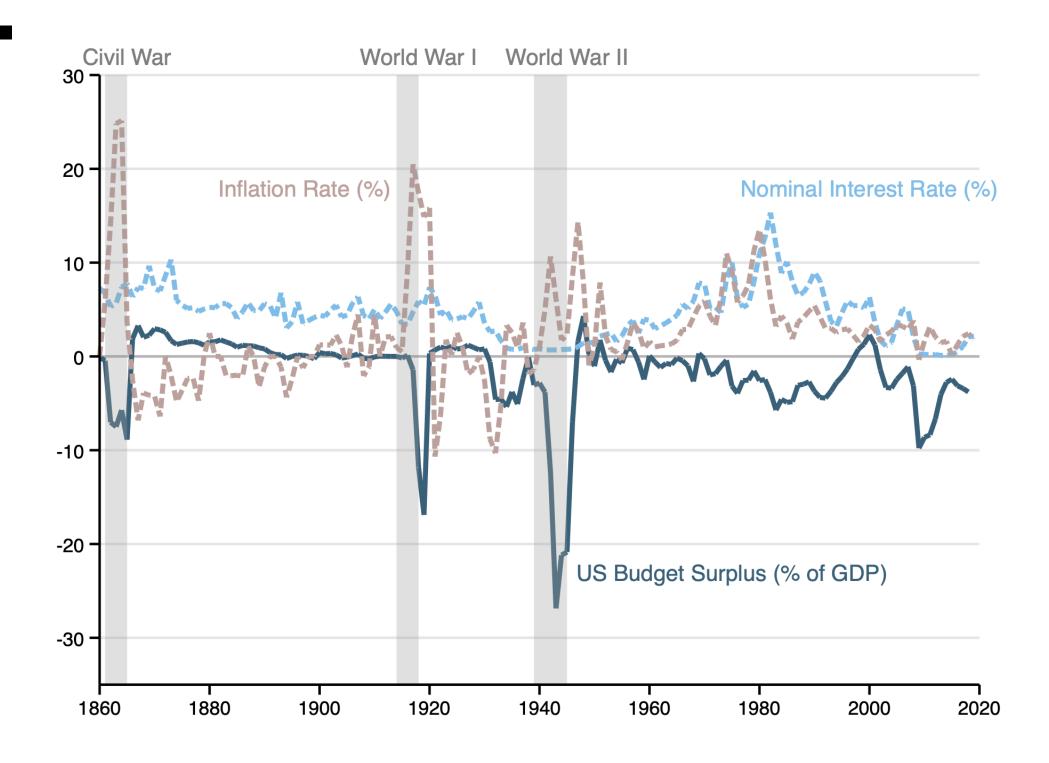
Flexible prices: Prices adjust immediately

- Sticky prices:
 - Since prices adjust sluggishly, output has to adjust
 - Inflation pressure: prices too low during transition period, output (demand) overshoots natural (= flexible price) level
 - Deflation pressure: prices too high during transition period,
 output (demand) undershoots natural level
 - Sticky price models smooth out adjustment dynamics relative to equivalent flex price models

Inflation & Gov. Debt

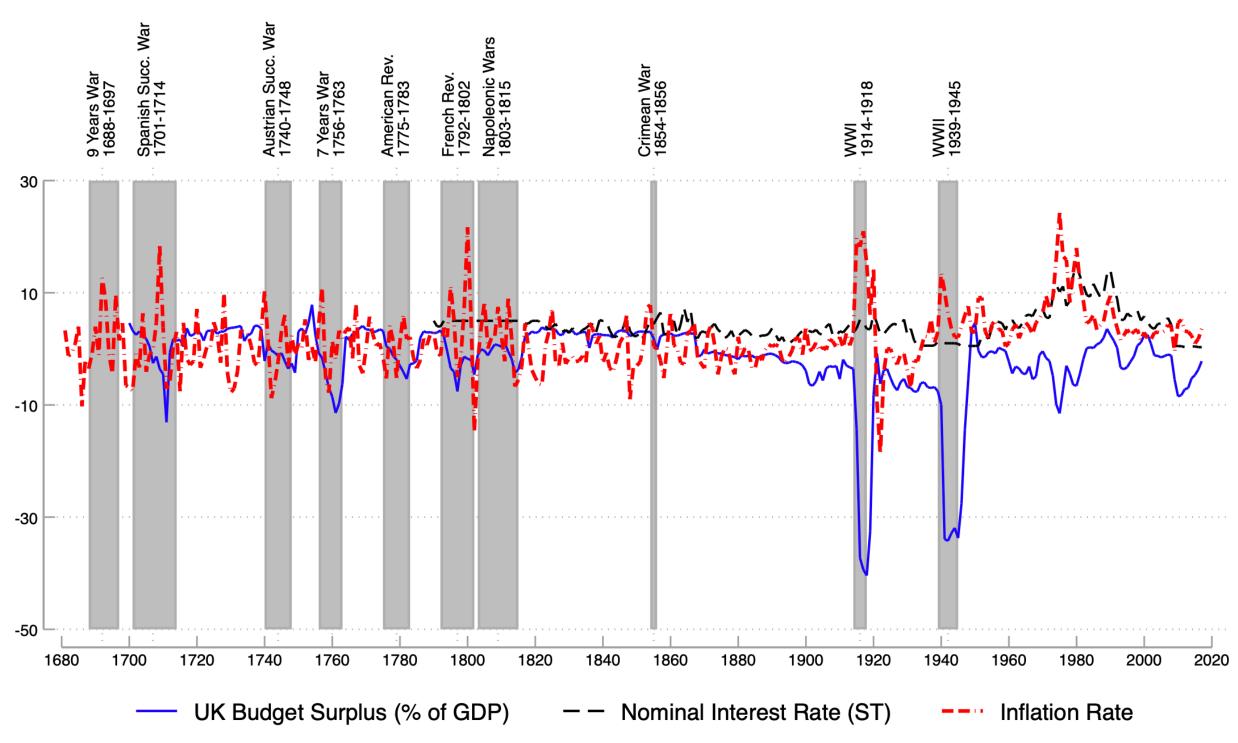


FTPL: US: Inflation – Fiscal Link



FTPL: UK: inflation-fiscal link + wars

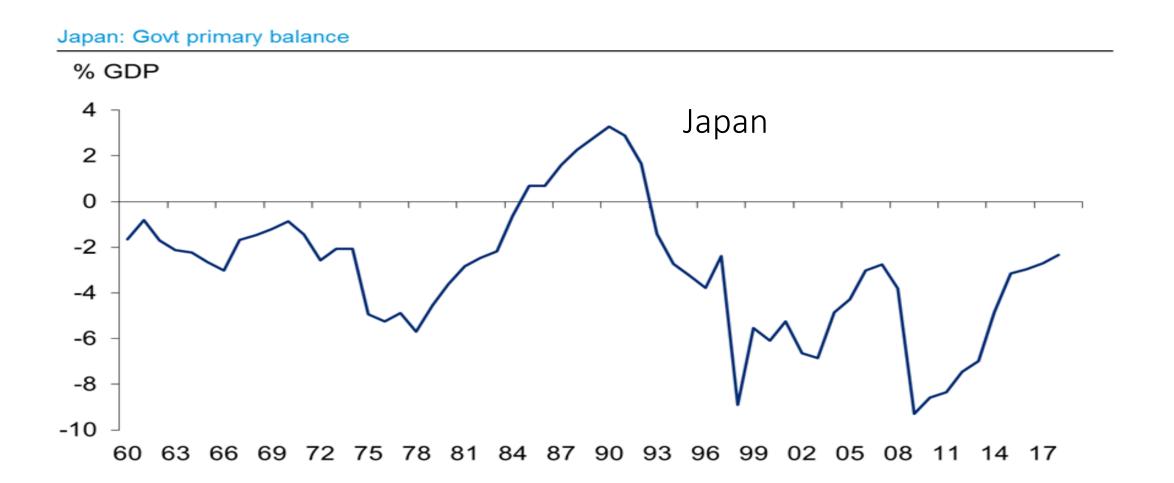
UK Budget Surpluses, Nominal Interest Rate and Inflation 1680-2018



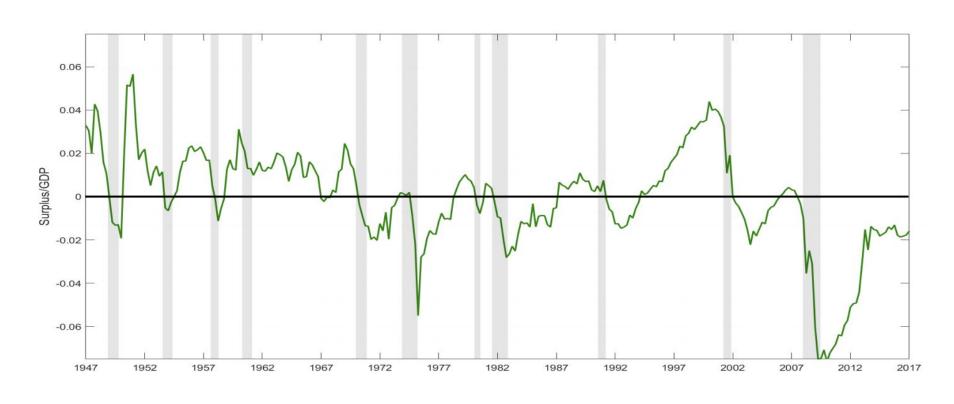
Source: ukpulicrevenues.co.uk, MeasuringWorth.com, Young (1925), Maddison (2010), Schmelzing (2020)

FTPL: Valuating Government Debt: Japan

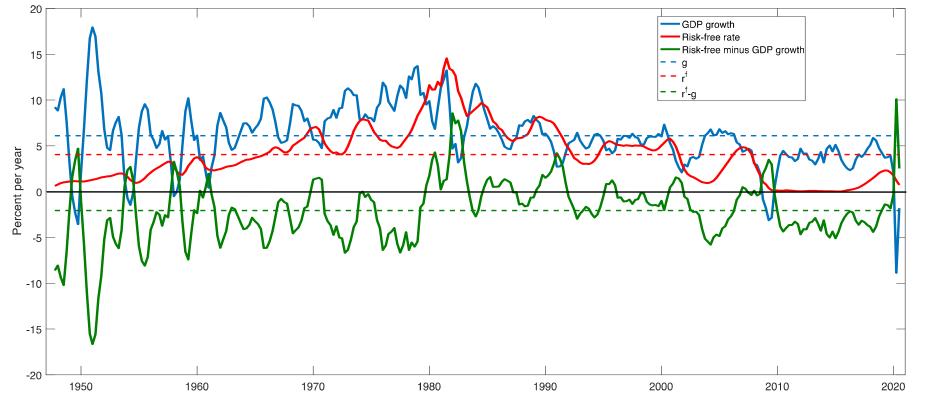
- Think of a representative agent holding all gov. debt
 - His cash flow is primary surplus
 - $= \frac{\mathcal{B}_t}{\wp_t} = E_t[PV_r(\text{primary surpluses})] + Bubble$ [FTPL]
 - ... link to inflation
 - \blacksquare Can surpluses be negative forever? Yes, if r < g (e.g. due to safe asset nature)



FTPL: Primary surplus, r and g for United States



- Primary surplus/GDP
 - Negative surplus in recession



- g GDP growth
- r
- r-g

FTPL Equation: Negative primary surplus forever?

- without creating inflation (devaluing debt)?
- lacktriangle Yes, if r < g

To determine real value of gov. debt and price level FTPL equation is not enough (goods market clearing and wealth effect)

FTPL Equation: Negative primary surplus forever?

- without creating inflation (devaluing debt)?
- \blacksquare Yes, if r < g

lacktriangle Discount at a different rate $r^{**}>g$ instead, so that

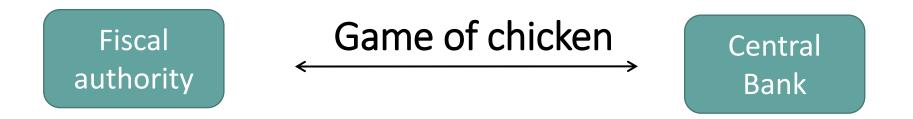
$$\frac{\mathcal{B}_t}{\wp_t} = E_t[PV_{r^{**}}(\text{primary surpluses})] + E_t[PV_{r^{**}}(\text{service flow})]$$

$$> -\infty$$

$$< +\infty$$

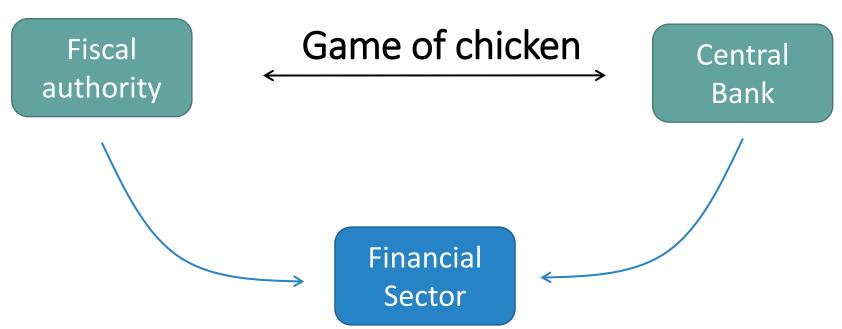
- Both terms meaningful
- Discount rate r^{**} = representative agents' risk-free rate $\neq m$ (Reis)

FTPL: Monetary vs. Fiscal Dominance



- Monetary dominance
 - Monetary tightening leads fiscal authority to reduce fiscal deficit
- Fiscal dominance
 - Interest rate increase does not reduce primary fiscal deficit
 - ... only lead to higher inflation

FTPL: Monetary vs. Fiscal Dominance



Monetary dominance

Monetary tightening leads fiscal authority to reduce fiscal deficit

Fiscal dominance

- Interest rate increase does not reduce primary fiscal deficit
- ... only lead to higher inflation

Financial dominance

Monetary tightening causes havoc in financial markets

Roadmap

- Intuition for different "Monetary Theories"
- Monetary Model with one sector with constant idiosyncratic risk
 - Safe Asset and Service Flows
 - Bubble (mining) or not
 - 2 Different Asset Pricing Perspectives/SDFs
- Monetary model with time-varying idiosyncratic risk
 - Safe asset has negative CAPM- β
 - Calibration:
 Debt valuation puzzle, Debt Laffer Curve, Flight-to-Safety and Equity excess volatility
- Medium of Exchange Role

Simplify to One Sector Model

Expert sector

- Output: $y_t^e = a^e k_t^e$
- Consumption rate: c_t^e
- Investment rate:

$$\begin{split} \frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} \\ &= \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + d\Delta_t^{k,\tilde{\imath},e} + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}} \end{split}$$

$$E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt \right]$$
 Can only issue

- Risk-free debt
- Equity, but most hold $\chi_t^e \ge \alpha \kappa_t$

Household sector

- Output: $y_t^h = a^h k_t^h$
- •Consumption rate: c_k^h

Investment rate:
$$l_t^h$$

$$\frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = \left(\Phi\left(l_t^{\tilde{\imath},h}\right) - S\right)dt + d\Delta_t^{k,\tilde{\imath},h} + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$$

$$E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Model Overview

- Continuous time, infinite horizon, one consumption good
- Continuum of agents
 - Operate capital with time-varying idiosyncratic risk, AK production technology
 - Can trade capital and government bond, Extension: add diversified equity claims
- Government
 - Exogenous spending
 - Taxes output
 - Issues (nominal) bonds
- Financial Frictions: incomplete markets
 - Agents cannot trade idiosyncratic risk
 - Extension with equity: must retain skin in the game
- Aggregate risk: fluctuations in volatility of idio risk (& capital productivity)

Model with Capital + Safe Asset

■ Each heterogenous citizen $\tilde{i} \in [0,1]$

$$\mathbb{E}_t \left[\int_t^\infty e^{-\rho s} \left(\frac{c_s^{1-\gamma}}{1-\gamma} + f(gK_s) \right) ds \right] \quad \text{where } K_t \coloneqq \int k_t^{\tilde{\iota}} d\tilde{\iota}$$

where
$$K_t\coloneqq\int k_t^{\tilde{\imath}}d\tilde{\imath}$$

$$\text{s.t.} \, \frac{dn_t^{\tilde{\imath}}}{n_t^{\tilde{\imath}}} = -\frac{c_t^{\tilde{\imath}}}{n_t^{\tilde{\imath}}} dt + dr_t^{\mathcal{B}} + \left(1 - \theta_t^{\tilde{\imath}}\right) \left(dr_t^{K,\tilde{\imath}} \left(\iota_t^{\tilde{\imath}}\right) - dr_t^{\mathcal{B}}\right)$$

- lacksquare Each citizen operates physical capital k_t^l

• Output (net investment)
$$y_t^{\tilde{\imath}} = a_t k_t^{\tilde{\imath}} - \iota_t^{\tilde{\imath}} k_t^{\tilde{\imath}} dt$$

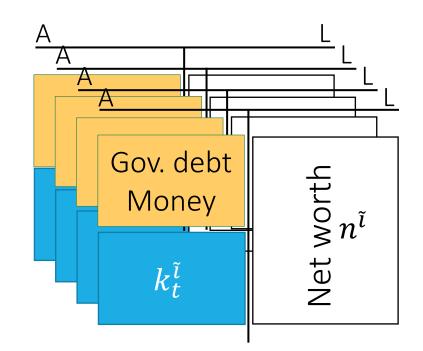
Output tax

$$au a_t k_t^{ ilde{\imath}} dt$$

$$= \frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = (\Phi(\iota_t^{\tilde{i}}) - \delta)dt + \tilde{\sigma}_t d\tilde{Z}_t^{\tilde{i}} + d\Delta_t^{k,\tilde{i}}$$

- $\mathbf{d}\tilde{Z}_{t}^{\tilde{i}}$ idiosyncratic Brownian
- Aggregate risk dZ_t : Heston model (time-varying idiosyncratic risk)

- $a_t = a(\tilde{\sigma}_t)$
- Financial Friction: Incomplete markets: no $d\tilde{Z}_t^l$ claims



Government: Taxes, Bond/Money Supply, Gov. Budget

- Policy Instruments
 - Government spending gK_t (with exogenous g)
 - Proportional output tax $\tau a K_t$
 - lacktriangle Nominal value of total government debt supply $d\mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t dt$
 - \blacksquare Floating nominal interest rate i_t on outstanding bonds
- Government budget constraint (BC)

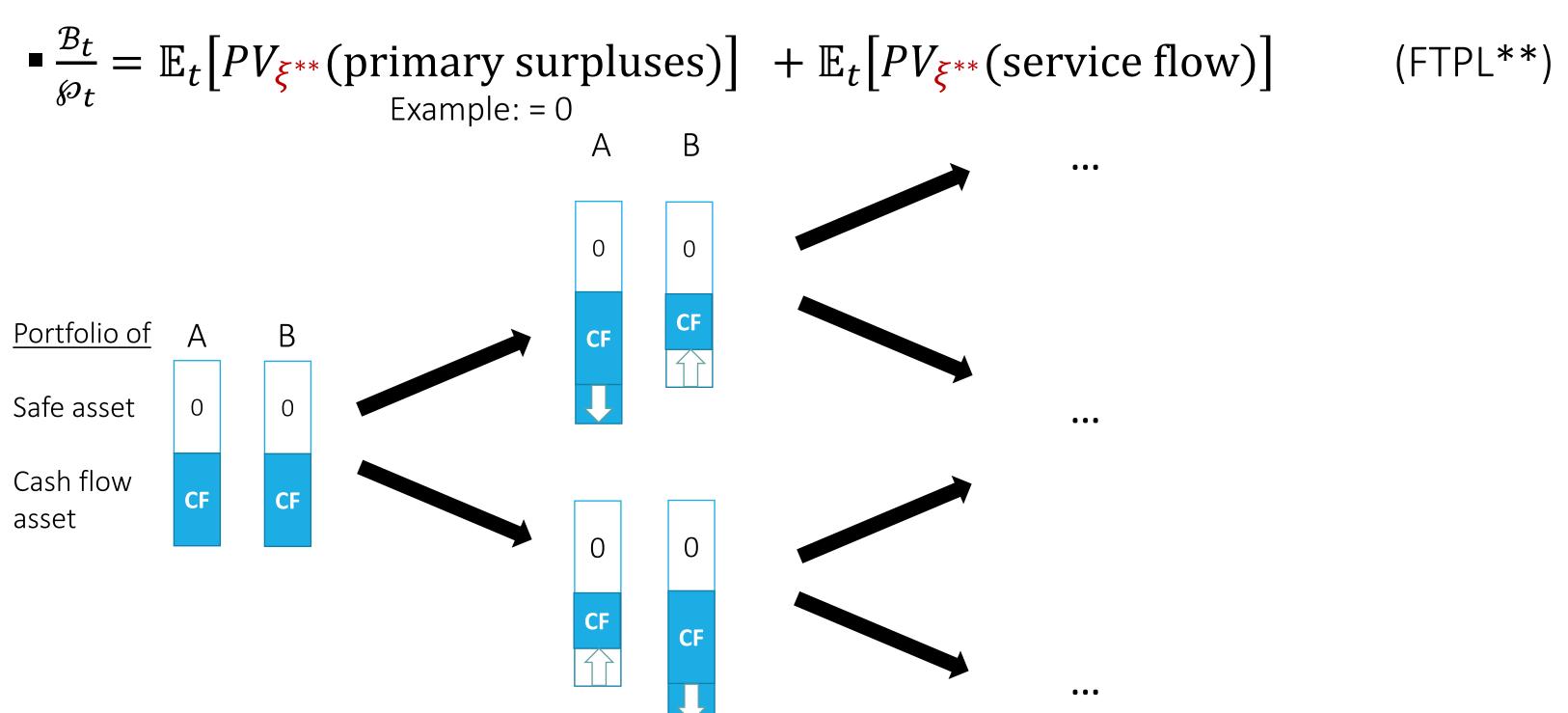
$$\underbrace{\left(\mu_t^{\mathcal{B}} - i_t\right)}_{\widecheck{\mu}_t^{\mathcal{B}} :=} \mathcal{B}_t + \mathcal{D}_t K_t \underbrace{\left(\tau a - \mathcal{G}\right)}_{s :=} = 0$$

Primary surplus (per K_t)

What's a Safe Asset? What is its Service Flow?

$$= \frac{\mathcal{B}_t}{\wp_t} = E_t \left[PV_{\xi^{**}}(\text{primary surpluses}) \right] + E_t \left[PV_{\xi^{**}}(\text{service flow}) \right]$$
 (FTPL*)

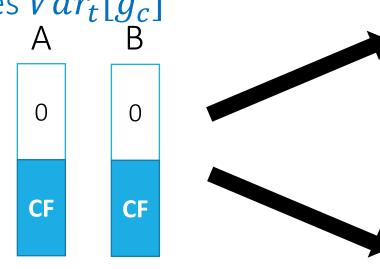
What's a Safe Asset? What is its Service Flow?



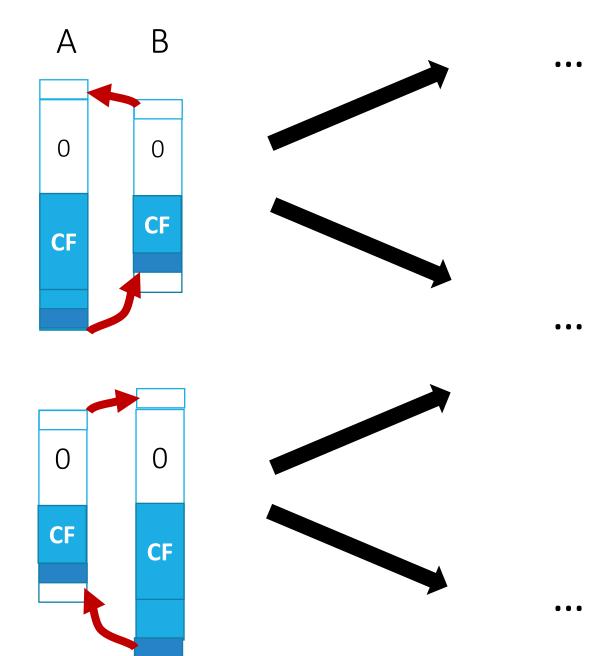
What's a Safe Asset? What is its Service Flow?

$$= \frac{\mathcal{B}_t}{\wp_t} = \mathbb{E}_t [PV_{\xi^{**}}(\text{primary surpluses})] + \mathbb{E}_t [PV_{\xi^{**}}(\text{service flow})]$$
 (FTPL**)

- Value come from re-trading
- Insures by partially completing markets Reduces $Var_t[\tilde{g}_c]$



■ Can be "bubbly" = fragile



What's a Safe Asset?

- In incomplete markets setting (Bewley, Aiyagari, BruSan, ...)
- Good friend analogy (Brunnermeier Haddad, 2012)
 - When one needs funds, one can sell at stable price... since others buy
 - Idiosyncratic shock: Partial insurance through retrading low bid-ask spread
 - Aggregate (volatility) shock: Appreciate in value in times of crises
- Safe asset definition
 - Tradeable: no asymmetric info info insensitive
 - Service flow is derived from "dynamic re-trading"

$$\begin{array}{l} \text{Individual } \beta_t^i = -\frac{\operatorname{Cov}_t \left[d\xi_t^i/\xi_t^i, dr_t \right]}{\operatorname{Var}_t \left[d\xi_t^i/\xi_t^i \right]} \leq 0 \\ & \text{where } \xi_t^i \text{ is SDF of agent } i \end{array}$$

Solving MacroModels Step-by-Step

- Postulate aggregates, price processes & obtain return processes
- For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
 - "Money evaluation/FTPL equation" ϑ
- 2. Evolution of state variable η (and K)
- forward equation 3. Value functions backward equation
 - a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)(\tilde{\eta}^{\tilde{\imath}})^{1-\gamma}u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
 - c. Derive $\check{\rho} = C/N$ -ratio and ς price of risk
- Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

Assets, Aggregate Resource Constraint, and Markets

- Assets: capital and bonds
 - q_t^K Capital price
 - $q_t^{\mathcal{B}} := \frac{\mathcal{B}_t}{\wp_t} / K_t$ value of the bonds per unit of capital

 - Postulate Ito price processes

$$dq_t^K/q_t^K = \mu_t^{q,K}dt + \sigma_t^{q,K}dZ_t, dq_t^B/q_t^B = \mu_t^{q,B}dt + \sigma_t^{q,B}dZ_t, d\theta_t^B/\theta_t = \mu_t^{q,B}dt + \sigma_t^{q,B}dZ_t, d\theta_t^B/\theta_t = \mu_t^{q,B}dt + \sigma_t^{q,B}dZ_t$$

- $= \text{SDF for each } \tilde{\imath} \text{ agent } d\xi_t^{\tilde{\imath}}/\xi_t^{\tilde{\imath}} = -r_t^{f\tilde{\jmath}}dt \varsigma_t^{f}dZ_t \tilde{\varsigma}_t^{f}d\tilde{Z}_t^{\tilde{\imath}}$
- Aggregate resource constraints:
 - Output: $C_t + \iota_t K_t + gK_t = aK_t$
 - Capital: $\int \left(k_t^{\tilde{\iota}} d\Delta_t^{k,\tilde{\iota}}\right) d\tilde{\iota} = 0$
- Markets: Walrasian goods, bonds, and capital markets

Poll 34: Why do risk-free rate and price of risk not depend on individual \(\tilde{\cappa}\)?

- a) risk-free bond can be traded
- b) aggregate risk can be traded
- c) CRRA utility for all agents with same γ

0. Return on Gov. Bond/Money

Number of Bonds/coins follows:

$$\frac{d\mathcal{B}_t}{\mathcal{B}_t} = (\check{\mu}_t^{\mathcal{B}} + i_t)dt + \sigma_t^{\mathcal{B}}dZ_t$$

- Where i_t is interest paid on government bonds/outside money (reserves)
- Return on Gov. Bond/Money: in output numeraire

$$dr_{t}^{\mathcal{B}} = i_{t}dt + \underbrace{\frac{d(q_{t}^{\mathcal{B}}K_{t}/\mathcal{B}_{t})}{q_{t}^{\mathcal{B}}K_{t}/\mathcal{B}_{t}}}_{-inflation}$$

$$= \underbrace{\frac{d(q_{t}^{\mathcal{B}}K_{t})}{q_{t}^{\mathcal{B}}K_{t}}}_{-\mu_{t}^{\mathcal{B}}dt - \sigma_{t}^{\mathcal{B}}dZ_{t} + \sigma_{t}^{\mathcal{B}}\left(\sigma_{t}^{\mathcal{B}} - \sigma - \sigma_{t}^{q,\mathcal{B}}\right)dt}$$

Seigniorage (excluding interest paid to money holders)

0. Distribution of "Seigniorage"

- 1. Proportionally to bond/money holdings
- No real effects, only nominal
- 2. Proportionally to capital holdings
- Bond/Money return decreases with $d\mathcal{B}_t$ (change in debt level/money supply)
- Capital return increases
- Pushes citizens to hold more capital
- 3. Proportionally to net worth
- Fraction of seigniorage goes to capital same as 2.
- Rest of seigniorage goes to money holders same as 1.
- 4. Per capita
- No real effects:
 people simply borrow against the transfers they expect to receive

O. Return on Capital (with seigniorage rebate terms)

$$\begin{split} & \bullet dr_t^{K,\tilde{\iota}} = \frac{a\,(1-\tau)-\iota_t^{\tilde{\iota}}}{q_t^K}dt + \frac{d\left(q_t^K k_t^{\tilde{\iota}}\right)}{q_t^K k_t^{\tilde{\iota}}} \\ & = \left(\frac{a\,(1-\tau)-\iota_t^{\tilde{\iota}}}{q_t^K} + \Phi\bigl(\iota_t^{\tilde{\iota}}\bigr) - \delta + \mu_t^{q^K}\right)dt + \sigma_t^{q^K}dZ_t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{\iota}} \end{split}$$

• Use government budget constraint to substitute out τ (and $\mathcal{B}_t/\wp_t=q_t^{\mathcal{B}}K_t$)

$$\underbrace{\left(\mu_t^{\mathcal{B}} - i_t\right)}_{\widecheck{\mu}_t^{\mathcal{B}} :=} q_t^{\mathcal{B}} + \underbrace{\left(\tau \, a - g\right)}_{S :=} = 0$$

$$dr_t^{K,\widetilde{\iota}} = \left(\frac{\widetilde{a} = g - \iota_t^{\widetilde{\iota}}}{q_t^K} + \Phi(\iota_t^{\widetilde{\iota}}) - \delta + \mu_t^{q^K} + \frac{q_t^{\mathcal{B}}}{q_t^K} \widecheck{\mu}_t^{\mathcal{B}}\right) dt + \sigma_t^{q^K} dZ_t + \widetilde{\sigma} d\widetilde{Z}_t^{\widetilde{\iota}}$$

Simplified case: $\sigma^B = 0$

1. Optimal Choices

- Optimal investment rate
- Consumption

 - Looking ahead to Step 3: When is $\frac{c}{n}$ constant? Recall $\frac{c}{n} = \rho^{1/\gamma} \omega^{1-1/\gamma}$
 - Log utility, $\gamma = 1$: $\check{\rho} = \rho$
 - In steady state: ω investment opportunity/net worth multiplier is constant

1. Optimal Choices & Market Clearing

- Optimal investment rate
- Consumption

- Portfolio
 - Solve for θ_t later

Capital market

Goods market

$$1 - \theta_t = 1 - \vartheta_t$$

Bond market

clears by Walras law

Equilibrium (before solving for portfolio choice)

Equilibrium

$$q_t^{\mathcal{B}} = \vartheta_t \frac{1 + \phi \check{a}}{(1 - \vartheta_t) + \phi \check{\rho}_t}$$

$$q_t^K = (1 - \vartheta_t) \frac{1 + \phi \check{a}}{(1 - \vartheta_t) + \phi \check{\rho}_t}$$

$$\iota_t = \frac{(1 - \vartheta_t)\check{a} - \check{\rho}_t}{(1 - \vartheta_t) + \phi \check{\rho}_t}$$

- lacktriangledown Moneyless equilibrium with $q_t^{\mathcal{B}}=0 \Rightarrow \vartheta_t=0$
- Next, determine portfolio choice.

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
 - "Money evaluation/FTPL equation" ϑ
- 2. Evolution of state variable η (and K)
- 3. Value functions

- forward equation backward equation
- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)(\tilde{\eta}^{\tilde{\imath}})^{1-\gamma}u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive $\check{\rho} = C/N$ -ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1.b Portfolio choice θ : Bond/Money Evaluation/FTPL Equation

- Recall: Expected return: $\mu_t^A = r_t^i + \varsigma_t^i \sigma_t^A$
 - Excess expected return to risky asset B:

$$\mu_t^A - \mu_t^B = \varsigma_t^i (\sigma_t^A - \sigma_t^B)$$

- Alternative derivations:
 - In consumption numeraire
 - i. Expected excess return of capital w.r.t. bond return
 - ii. Expected excess return of net worth (portfolio) w.r.t. bond return
 - In total net worth numeraire
 - iii. Expected excess return of capital w.r.t. bond return
 - iv. Expected excess return of individual net worth (=net worth share)w.r.t. bond return (per bond)

1.b Portfolio choice θ : Bond/Money Evaluation/FTPL Equation

lacksquare For stationary setting with $m{\sigma}=m{\sigma}_t^B=m{0}$

Price capital relative to money in consumption numeraire

• Asset pricing equation (martingale method): $\mu_t^A - \mu_t^B = \varsigma_t^i (\sigma_t^A - \sigma_t^B)$

$$\frac{\mathbb{E}_{t}\left[dr_{t}^{K,\tilde{\iota}}\right]}{dt} = \frac{\check{a} - \iota_{t}}{q_{t}^{K}} + \frac{q_{t}^{B}}{q_{t}^{K}} \check{\mu}^{B} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q^{K}} + \sigma\sigma_{t}^{q^{K}} \qquad = r_{t}^{f} + \varsigma_{t}\sigma_{t}^{q^{K}} + \tilde{\varsigma}_{t}\tilde{\sigma}$$

$$\frac{\mathbb{E}_{t}\left[dr_{t}^{B}\right]}{dt} = \mathbf{1} \qquad -\check{\mu}^{B} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q^{B}} + \sigma\sigma_{t}^{q^{B}} \qquad = r_{t}^{f} + \varsigma_{t}\sigma_{t}^{q^{B}} \mathbf{1}$$

$$\mathbb{E}_{t}\left[dr_{t}^{K,\tilde{\iota}}\right] = \mathbb{E}_{t}\left[dr_{t}^{B,\tilde{\iota}}\right] = \mathbb{E}_{t}\left[dr_{t}^{B,\tilde{\iota}}\right$$

- Goods market clearing: $\check{\rho}(q_t^{\mathcal{B}} + q_t^{\mathcal{K}})K_t = (\check{a} \iota_t)K_t \Rightarrow \frac{\check{a} \iota_t}{q_t^{\mathcal{K}}} = \frac{\check{\rho}}{1 \vartheta_t}$ $\begin{vmatrix} \mu^{q^K + q^{\mathcal{B}}} = \frac{\mu_{q^K + q^{\mathcal{B}}}}{q^K + q^{\mathcal{B}}} = \frac{\mu^{q^K} q^K + \mu^{q^{\mathcal{B}}} q^{\mathcal{B}}}{q^K + q^{\mathcal{B}}} = (1 \vartheta)\mu^{q^K} + \vartheta\mu^{q^{\mathcal{B}}}.$ $\sigma^{q^K + q^{\mathcal{B}}} = \frac{\sigma_{q^K + q^{\mathcal{B}}}}{q^K + q^{\mathcal{B}}} = \frac{\sigma^{q^K} q^K + \mu^{q^{\mathcal{B}}} q^{\mathcal{B}}}{q^K + q^{\mathcal{B}}} = (1 \vartheta)\sigma^{q^K} + \vartheta\sigma^{q^{\mathcal{B}}}.$
- Price of idiosyncratic risk: $\tilde{\varsigma}_t = \gamma \tilde{\sigma}_t^n = (1 \theta_t) \gamma \tilde{\sigma}$
- Capital market clearing: $1 \theta_t = 1 \vartheta_t$

Hint:
$$d(q^{K} + q^{\mathcal{B}}) = dq^{K} + dq^{\mathcal{B}}$$

 $\mu^{q^{K} + q^{\mathcal{B}}} = \frac{\mu_{q^{K} + q^{\mathcal{B}}}}{q^{K} + q^{\mathcal{B}}} = \frac{\mu^{q^{K}} q^{K} + \mu^{q^{\mathcal{B}}} q^{\mathcal{B}}}{q^{K} + q^{\mathcal{B}}} = (1 - \vartheta)\mu^{q^{K}} + \vartheta\mu^{q^{\mathcal{B}}}.$

$$\sigma^{q^{K} + q^{\mathcal{B}}} = \frac{\sigma_{q^{K} + q^{\mathcal{B}}}}{q^{K} + q^{\mathcal{B}}} = \frac{\sigma^{q^{K}} q^{K} + \sigma^{q^{\mathcal{B}}} q^{\mathcal{B}}}{q^{K} + q^{\mathcal{B}}} = (1 - \vartheta)\sigma^{q^{K}} + \vartheta\sigma^{q^{\mathcal{B}}}.$$

Poll 43: Why is the price of idiosyncratic risk simply $\gamma \tilde{\sigma}_{t}^{n}$ for CRRA?

a) because idiosyncratic risk for $\sigma=0$ there is no idiosyncratic investment opportunity b) idiosyncratic risk is always myopic (like for log-4)

1.b Portfolio choice θ : Bond/Money Evaluation/FTPL Equation

lacksquare For stationary setting with $oldsymbol{\sigma}=oldsymbol{\sigma}_t^B=\mathbf{0}$

Price capital relative to money in consumption numeraire

• Asset pricing equation (martingale method): $\mu_t^A - \mu_t^B = \varsigma_t^i (\sigma_t^A - \sigma_t^B)$

$$\frac{\mathbb{E}_{t}\left[dr_{t}^{K,\tilde{t}}\right]}{dt} = \frac{\check{a} - \iota_{t}}{q_{t}^{K}} + \frac{q_{t}^{B}}{q_{t}^{K}} \check{\mu}^{B} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q^{K}} + \sigma\sigma_{t}^{q^{K}} = r_{t}^{f} + \varsigma_{t}\sigma_{t}^{q^{K}} + \tilde{\varsigma}_{t}\tilde{\sigma}$$

$$\frac{\mathbb{E}_{t}\left[dr_{t}^{B}\right]}{dt} = \mathbf{1} \qquad \mathbf{$$

- Goods market clearing: $\check{\rho}(q_t^{\mathcal{B}} + q_t^{\mathcal{K}})K_t = (\check{a} \iota_t)K_t \Rightarrow \frac{\check{a} \iota_t}{q_t^{\mathcal{K}}} = \frac{\check{\rho}}{1 \vartheta_t}$
- Price of idiosyncratic risk: $\tilde{\varsigma}_t = \gamma \tilde{\sigma}_t^n = (1 \theta_t) \gamma \tilde{\sigma}$
- Capital market clearing: $1 \theta_t = 1 \vartheta_t$
- Money valuation Equation: $\mu_t^{\vartheta} = \rho + \check{\mu}_t^{\mathcal{B}} (1 \vartheta_t)^2 \gamma \tilde{\sigma}^2$
 - In steady state $\mu_t^{\vartheta} = 0$: $(1 \vartheta) = \sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}}/(\sqrt{\gamma}\tilde{\sigma})$

1.b Deriving FTPL - traditional

lacktriangle Money valuation equation for log utility $\gamma=1$

tion equation for log utility
$$\gamma = 1$$

$$\vartheta_t \mu_t^{\vartheta} = \vartheta_t (\rho + \widetilde{g} - (1 - \vartheta_t)^2 \widetilde{\sigma}^2 - g + \widecheck{\mu}_t^{\mathcal{B}})$$

- Integrate forward
- $\theta_0 = \mathbb{E} \int_0^\infty e^{-r^f t} e^{gt} (-\check{\mu}_t^{\mathcal{B}}) \theta_t dt$ recall gov. budget constraint $\check{\mu}_t^{\mathcal{B}} = -s/q_t^{\mathcal{B}}$ $= \mathbb{E} \int_0^\infty e^{-rft} e^{gt} \frac{s}{a_t^{\mathcal{B}}} \vartheta_t dt$ $= \mathbb{E} \int_0^\infty e^{-(r^f - g)t} \frac{sK_t}{N_t} dt$
- $\blacksquare \text{ Multiply by } N_0: \vartheta_0 N_0 = \mathbb{E} \left[\int_0^\infty e^{-(r^f g)t} \ \frac{N_0}{N_t} \ sK_t \right] dt = \frac{\mathcal{B}_0}{\mathcal{B}_0} = q_0^{\mathcal{B}} K_0 = \vartheta_0 N_0$
- FTPL equation: $\frac{\mathcal{B}_0}{\wp_0} = \mathbb{E}\left[\int_0^\infty e^{-r^f t} sK_t dt\right]$ if $g < r^f$ since $K_t = e^{gt}K_0$

1.b Deriving FTPL – separating service flow with SDF ξ_t^{**}

• Money valuation equation for log utility $\gamma = 1$ $\vartheta_t \mu_t^{\vartheta} = \vartheta_t (\rho - (1 - \vartheta_t)^2 \tilde{\sigma}^2 + \check{\mu}_t^{\mathcal{B}})$

Integrate forward

• Multiply by N_0

$$\vartheta_0 N_0 = \frac{\mathcal{B}_0}{\wp_0} = \mathbb{E} \left[\int_0^\infty \underbrace{e^{-\rho t} \frac{N_0}{N_t}}_{\xi_t^{**} := \int \xi_t^{\tilde{\imath}} \eta_t^{\tilde{\imath}} d\tilde{\imath}}_{t} sK_t dt \right] + \mathbb{E} \left[\int_0^\infty \underbrace{e^{-\rho t} \frac{N_0}{N_t}}_{\xi_t^{**} := \int \xi_t^{\tilde{\imath}} \eta_t^{\tilde{\imath}} d\tilde{\imath}}_{t} (1 - \vartheta_t)^2 \tilde{\sigma}^2 \frac{\mathcal{B}_t}{\wp_t} dt \right]$$

What is Quasi-SDF $\xi_t^{**} = \int \xi_t^i \eta_t^i di$?

 $\bullet \xi_t^{**} := \int \xi_t^{\tilde{\imath}} \eta_t^{\tilde{\imath}} d\tilde{\imath}$

$$= \int e^{-\rho t} \frac{u'(c_t^{\tilde{i}})}{u'(c_0^{\tilde{i}})} \eta_t^{\tilde{i}} d\tilde{i} = \int e^{-\rho t} \left(\frac{c_t^{\tilde{i}}}{c_0^{\tilde{i}}}\right)^{-\gamma} \eta_t^{\tilde{i}} d\tilde{i} = \int e^{-\rho t} \left(\frac{\widecheck{p} n_t^{\tilde{i}}}{\widecheck{p} n_0^{\tilde{i}}}\right)^{-\gamma} \eta_t^{\tilde{i}} d\tilde{i}$$

- For log utility $\gamma=1$: $\xi_t^{**}=\int e^{-\rho t}\left(\frac{n_0^{\tilde{\iota}}}{n_t^{\tilde{\iota}}}\right)\eta_t^{\tilde{\iota}}d\tilde{\iota}=e^{-\rho t}\frac{N_0}{N_t}$
- Total net worth (incl. bubble wealth) = $N_t = \mathbb{E}_t \left[\int_t^\infty \frac{\int \xi_s^i \eta_s^i di}{\int \xi_t^i \eta_t^i di} c_s ds \right]$
 - Net worth share weighted SDF
 - "Representative agent SDF"
 - Complete markets: $\xi_t^{**} = \xi_t$

Eliciting the service flow term - 2 Asset pricing perspectives

Agent *i*'s SDF,
$$\xi_t^i$$
: $d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$

- Buy and Hold Perspective:
 - market cap = $P_0 = \lim_{T \to \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i \operatorname{AssetCashflow}_t dt \right] + \mathbb{E} \left[\xi_T^i P_T \right] \right)$ Bubble term

First aggregate and then iterate (over time)

• If all agents i are marginal investors of aggregate risk asset

Eliciting the service flow term - 2 Asset pricing perspectives

Agent
$$i$$
's SDF, ξ_t^i : $d\xi_t^i/\xi_t^i = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t^i d\tilde{Z}_t^i$

Buy and Hold Perspective:

■ market cap =
$$P_0 = \lim_{T \to \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i \operatorname{AssetCashflow}_t dt \right] + \mathbb{E} \left[\xi_T^i P_T \right] \right)$$
Bubble term

First aggregate and then iterate (over time)

lacktriangleright If all agents i are marginal investors of aggregate risk asset

Dynamic Trading Perspective:

- Dynamic trading strategy leads to cashflows conditional on idiosyncratic risks
- Denote η^i the *share of asset* held by agent i

$$= \lim_{T \to \infty} \left(\int \mathbb{E} \left[\int_0^\infty \xi_t^i \left(\eta_t^i \text{AssetCashflow}_t + \eta_t^i \text{TradingCashflow}_t \right) dt \right] di + \cdots \right) \quad \begin{array}{l} \textit{First iterate (over time)} \\ \textit{then aggregate} \end{array}$$

$$= \mathbb{E} \left[\int_0^\infty \underbrace{\int \xi_t^i \eta_t^i di}_{\xi_t^{**} :=} \text{AssetCashflo} w_t \right] dt + \mathbb{E} \left[\int_0^\infty \underbrace{\int \xi_t^i \eta_t^i di}_{\xi_t^{**} :=} \text{TradingCashflo} w_t dt \right]$$

Service flow term

- Discount rate $E[dr^{\eta}]/dt = r^f + \tilde{\varsigma}\tilde{\sigma}$
- ξ^i and η^i are negatively correlated \Rightarrow depresses weighted "Quasi-SDF" (higher discount rate)

FTPL Equation with Bubble: 2 Perspectives - Intuition

Buy and Hold Perspective:

Expected bond return

Ramsey term Precautionary savings/self-insurance

$$= \rho + \gamma \mu^c - \frac{1}{2} \gamma (\gamma + 1) \left\{ (\sigma^c)^2 + (\tilde{\sigma}^c)^2 \right\} + risk \ premium - convience \ yield$$
 Risk-free rate $r^f =$

Dynamic Trading Perspective:

Expected bond return

$$= \rho + \gamma \mu^{c} - \frac{1}{2} \gamma (\gamma + 1) \{ (\sigma^{c})^{2} \} + risk \ premium - \{ \frac{1}{2} \gamma (\gamma + 1) (\tilde{\sigma}^{c})^{2} + convience \ yield \}$$

Risk-free rate $r^{f**} =$

"Service Flow"

 $r^{f**} = "representative agent's" risk-free rate$

Recall: Equilibrium (before solving for portfolio choice)

■ In steady state $\mu_t^{\vartheta} = 0$: $(1 - \vartheta) = \sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}}/(\sqrt{\gamma}\tilde{\sigma})$

Equilibrium

$$q_t^{\mathcal{B}} = \vartheta_t \frac{1 + \phi \check{a}}{(1 - \vartheta_t) + \phi \check{\rho}_t}$$

$$q_t^K = (1 - \vartheta_t) \frac{1 + \phi \check{a}}{(1 - \vartheta_t) + \phi \check{\rho}_t}$$

$$\iota_t = \frac{(1 - \vartheta_t)\check{a} - \check{\rho}_t}{(1 - \vartheta_t) + \phi\check{\rho}_t}$$

Two Stationary Equilibria

Non-Monetary	Monetary		
$q_0^{\mathcal{B}}=0$	$q^{\mathcal{B}} = \frac{\left(\sqrt{\gamma}\tilde{\sigma} - \sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}}\right)(1 + \phi\check{a})}{\sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}} + \phi\sqrt{\gamma}\tilde{\sigma}\check{\rho}} = \frac{\left(\sqrt{\gamma}\tilde{\sigma} - \sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}}\right)(1 + \phi\check{a})}{\sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}} + \phi\sqrt{\gamma}\tilde{\sigma}\check{\rho}}$	$= \frac{\left(\sqrt{\gamma}\tilde{\sigma} - \sqrt{\check{\rho} - s/q^{\mathcal{B}}}\right)(1 + \phi\check{\alpha})}{\sqrt{\check{\rho} - s/q^{\mathcal{B}}} + \phi\sqrt{\gamma}\tilde{\sigma}\check{\rho}}$	
$q_0^K = \frac{1 + \phi \check{a}}{1 + \phi \check{\rho}_0}$	$q^{K} = \frac{\sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}} + \varphi \sqrt{\gamma} \check{\sigma} \check{\rho}}{\sqrt{\check{\rho} + \check{\mu}^{\mathcal{B}}} + \varphi \sqrt{\gamma} \check{\sigma} \check{\rho}}$	$\sqrt{\rho - s/q^2 + \phi \sqrt{\gamma o \rho}}$	
$\iota = \frac{\check{a} - \check{\rho}_0}{1 + \phi \check{\rho}_0}$	$\iota = \frac{\check{\alpha}\sqrt{\check{\rho}+\check{\mu}^{\mathcal{B}}}-\sqrt{\gamma}\widetilde{\sigma}\check{\rho}}{\sqrt{\check{\rho}}+\check{\mu}^{\mathcal{B}}}+\phi\sqrt{\gamma}\widetilde{\sigma}\check{\rho}}$		

- For log utility
 - \bullet $\check{\rho} = \check{\rho}_0 = \rho$
 - $\gamma = 1$

ho time preference rate

 ϕ adjustment cost for investment rate

 $\check{\mu}^{\mathcal{B}}_t = \mu^{\mathcal{B}}_t - i_t$ bond issuance rate beyond interest rate

 $\check{a} = a - g$ part of TFP not spend on gov.

Remarks

- Real risk-free rate
 - $\mathbf{r}^f = \underbrace{\left(\Phi\left(\iota(\check{\mu}^{\mathcal{B}})\right) \delta\right)}_{=g} \check{\mu}^{\mathcal{B}}$
- $-\check{\mu}^{\mathcal{B}} = 0 \Rightarrow s = 0$ no primary surplus (no cash payoff for bond)
 - $q^{\mathcal{B}}K = \frac{\mathcal{B}}{P} > 0$ bond trades at a **bubble** due to service flow
- $-\check{\mu}^{\mathcal{B}} > 0 \Rightarrow s < 0$ primary deficit (constant fraction of GDP)
 - As long as $q^{\mathcal{B}} > 0$ "mine the bubble"
- $\blacksquare \check{\mu}^{\mathcal{B}} < 0 \Rightarrow s > 0$ and r > g primary surplus (constant fraction of GDP)
 - $q^{\mathcal{B}}K_t = E_t[PV_{rf}(sK_t)]$ no bubble, but service flow

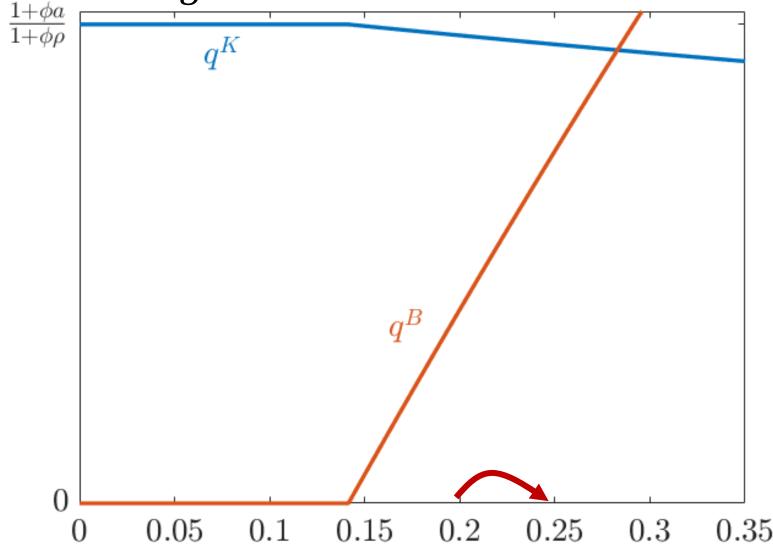
Service Flow Term, Convenience Yield, Ponzi Scheme

- Service flow
 - Convenience yield: relaxes collateral constraint or CIA constraint (money)
 - Traditional measure: BAA-US Treasury spread
 - Here: Partially completing markets through retrading
 - Low interest rate (cash flow) asset can be issued by everyone
 Hence, corporate-Treasury spread = 0
- Ponzi scheme is not feasibly for everyone No Ponzi constraint may be binding
 - Who can run a Ponzi scheme?
 - ... assigned by equilibrium selection
 - Likely to government, private entities are subject to solvency constraint
 - ... still there is a Debt Laffer Curve

exorbitant privilege

Flight to Safety: Comparative static w.r.t. $\tilde{\sigma}$

- Flight to safety into bubbly gov. debt
 - $q^{\mathcal{B}}$ rises (disinflation)
 - q^K falls and so does ι and g



■ Similar with 0 0.05 0.1 stochastic idiosyncratic volatility

Extra: 1.b Portfolio choice/Bond/Money Evaluation/FTPL Equation

- Recall: Expected return: $\mu_t^A = r_t^i + \varsigma_t^i \sigma_t^A$
 - Excess expected return to risky asset B: $\mu_t^A \mu_t^B = \varsigma_t^i (\sigma_t^A \sigma_t^B)$
- Alternative derivations:
 - In consumption numeraire
 - i. Expected excess return of capital w.r.t. bond return
 - ii. Expected excess return of net worth (portfolio) w.r.t. bond return (homework!)
 - In total net worth numeraire
 - iii. Expected excess return of capital w.r.t. bond return (homework!)
 - iv. Expected excess return of individual net worth (=net worth share)w.r.t. bond return (per bond)

Extra: 1.b Recall: Change to total net worth numeraire N_t

SDF in consumption numeraire

$$\frac{d\xi_t^{\tilde{i}}}{\xi_t^{\tilde{i}}} = -r_t^f dt - \varsigma_t dZ_t - \tilde{\varsigma}_t d\tilde{Z}_t^{\tilde{i}}$$

■ SDF in N_t -numeraire

$$\frac{d\hat{\xi}_t^{\tilde{i}}}{\hat{\xi}_t^{\tilde{i}}} = \frac{d(\tilde{\xi}_t^{\tilde{i}} N_t)}{(\tilde{\xi}_t^{\tilde{i}} N_t)} = -(r_t^f - \mu_t^N + \varsigma_t \sigma_t^N) dt - (\varsigma_t - \sigma_t^N) dZ_t - \tilde{\varsigma}_t d\tilde{Z}_t^{\tilde{i}}$$

■ Return in consumption numeraire:

$$dr_t^j = \mu_t^{r^j} dt + \sigma_t^{r^j} dZ_t - \tilde{\sigma}_t^{r^j} d\tilde{Z}_t^{\tilde{\imath}}$$

■ Return in N_t -numeraire

$$dr_{t,N}^{j} = \left(\mu_{t}^{r^{j}} - \mu_{t}^{N} - \sigma_{t}^{N} \left(\sigma_{t}^{r^{j}} - \sigma_{t}^{N}\right)\right) dt + \left(\sigma_{t}^{r^{j}} - \sigma_{t}^{N}\right) dZ_{t} - \tilde{\sigma}_{t}^{r^{j}} d\tilde{Z}_{t}^{\tilde{\imath}}$$

■ Value of self-financing strategy investing in asset in the consumption numeraire, e.g. x^j satisfies $dx_t^j/x_t^j = dr_t^j$. The same holds in the N_t -numeraire, but now the value is x_t^j/N_t .

Extra: 1.b Alternative iii: Portfolio choice θ (N_t -numeraire)

Total net worth N_t relative to a single bond/coin of money

Asset pricing equation (martingale method)

$$\frac{\mathbb{E}\left[dr_{t}^{\widetilde{\eta}^{\widetilde{t}}}\right]}{dt} = \widecheck{\rho}_{t} \qquad = \left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right) + (\varsigma_{t} - \sigma_{t}^{N})0 + \widecheck{\varsigma}_{t}(1 - \theta_{t})\widecheck{\sigma}$$

$$\frac{\mathbb{E}\left[dr_{t}^{\vartheta/B}\right]}{dt} = i_{t} + \mu_{t}^{\vartheta/B} = \underbrace{\left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right)}_{risk-free\ rate\ in\ N_{t}-numeraire} + \underbrace{\underbrace{\left(\varsigma_{t} - \sigma_{t}^{N}\right)\sigma_{t}^{\vartheta/B}}_{price\ of\ risk}}_{in\ N_{t}-numeraire}$$

$$\check{\rho}_t - i_t - \mu_t^{\vartheta/\mathcal{B}} = -(\varsigma_t - \sigma_t^N)\sigma_t^{\vartheta/\mathcal{B}} + \check{\varsigma}_t(1 - \theta_t)\check{\sigma}$$

- Remark: ϑ/\mathcal{B} = wealth share per bond
 - Value of a single bond/coin in N_t -numeraire

$$\begin{split} \frac{d(\vartheta_t/\mathcal{B}_t)}{\vartheta_t/\mathcal{B}_t} &= \mu_t^{\vartheta} dt + \sigma_t^{\vartheta} dZ_t - \mu_t^{\mathcal{B}} dt - \sigma_t^{\mathcal{B}} dZ_t + \sigma_t^{\mathcal{B}} \left(\sigma_t^{\mathcal{B}} - \sigma_t^{\vartheta}\right) dt \\ &= \mu_t^{\vartheta/\mathcal{B}} dt + \sigma_t^{\vartheta/\mathcal{B}} dZ_t \text{ (defining return-drift and volatility)} \end{split}$$

lacktriangle Terms are shifted into risk-free rate in N_t -numeraire, which drop out when differencing

Recall
$$\mu_t^{\vartheta/\mathcal{B}} = \mu_t^\vartheta - \mu_t^\mathcal{B} + \sigma_t^\mathcal{B} (\sigma_t^\mathcal{B} - \sigma_t^\vartheta)$$

$$\check{\mu}^\mathcal{B} = \mu_t^\mathcal{B} - i_t$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
 - "Money evaluation/FTPL equation" ϑ
- 2. Evolution of state variable η (and K)

forward equation

backward equation

- 3. Value functions
 - a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)\big(\widetilde{\eta}^{\tilde{\imath}}\big)^{1-\gamma}u(K)\big(n^{\tilde{\imath}}/n\big)^{1-\gamma}$
 - c. Derive $\check{\rho} = C/N$ -ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

3a.+b. + Isolating Idio. Risk For CRRA utility fcn

Rephrase the conjecture value function as

$$V_t^{\tilde{\imath}} = \frac{\left(\omega_t^i n_t^{\tilde{\imath}}\right)^{1-\gamma}}{1-\gamma} = \underbrace{\left(\omega_t \frac{N_t}{K_t}\right)^{1-\gamma}}_{=:v_t} \underbrace{\left(\frac{n_t^{\tilde{\imath}}}{N_t}\right)^{1-\gamma}}_{=:\left(\tilde{\eta}_t^{\tilde{\imath}}\right)^{1-\gamma}} \underbrace{\left(\frac{n_t^{\tilde{\imath}}}{N_t}\right)^{1-\gamma}}_{=:\left(\tilde{\eta}_t^{\tilde{\imath}}\right)^{1-\gamma}}$$

- v_t^l depend only on aggregate state η_t
- Ito's quotation rule

$$\frac{d\tilde{\eta}_t^{\tilde{\imath}}}{\tilde{\eta}_t^{\tilde{\imath}}} = \frac{d\left(n_t^{\tilde{\imath}}/N_t\right)}{n_t^{\tilde{\imath}}/N_t} = \left(\mu_t^{n^{\tilde{\imath}}} - \mu_t^N + \left(\sigma_t^N\right)^2 - \sigma^N \sigma^{n^{\tilde{\imath}}}\right)dt + \left(\sigma_t^{n^{\tilde{\imath}}} - \sigma_t^N\right)dZ_t + \tilde{\sigma}^{n^{\tilde{\imath}}}d\tilde{Z}_t^{\tilde{\imath}} = \tilde{\sigma}^{n^{\tilde{\imath}}}d\tilde{Z}_t^{\tilde{\imath}}$$

Ito's Lemma

$$\frac{d\left(\tilde{\eta}_{t}^{\tilde{i}}\right)^{1-\gamma}}{\left(\tilde{\eta}_{t}^{\tilde{i}}\right)^{1-\gamma}} = -\frac{1}{2}\gamma(1-\gamma)\left(\tilde{\sigma}^{n^{\tilde{i}}}\right)^{2}dt + (1-\gamma)\tilde{\sigma}^{n^{\tilde{i}}}d\tilde{Z}_{t}^{\tilde{i}}$$

3b. BSDE for v_t^i

$$\frac{dV_t^{\tilde{i}}}{V_t^{\tilde{i}}} = \frac{d\left(v_t(\tilde{\eta}_t^{\tilde{i}})^{1-\gamma}(K_t)^{1-\gamma}\right)}{v_t(\tilde{\eta}_t^{\tilde{i}})^{1-\gamma}(K_t)^{1-\gamma}}$$

By Ito's product rule

$$= \left(\mu_t^v + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)\left(\sigma^2 + \left(\tilde{\sigma}^{n^{\tilde{\iota}}}\right)^2\right) + (1 - \gamma)\sigma\sigma_t^v\right)dt + volatility terms$$

Recall by consumption optimality

$$\frac{dV_t^{\tilde{i}}}{V_t^{\tilde{i}}} - \rho dt + \frac{c_t^{\tilde{i}}}{n_t^{\tilde{i}}} dt \text{ follows a martingale}$$

- Hence, drift above = $\rho \frac{c_t^{\tilde{l}}}{n_t^{\tilde{l}}}$
- BSDE:

$$\mu_t^v + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)\left(\sigma^2 + \left(\tilde{\sigma}_t^{n^{\tilde{\iota}}}\right)^2\right) + (1 - \gamma)\sigma\sigma_t^v = \rho - \frac{c_t^{\tilde{\iota}}}{n_t^{\tilde{\iota}}}$$

3. Deriving C/N-ratio $\check{\rho}$ in stationary setting

In stationary equilibrium

$$\underbrace{\mu_t^{v} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)\left(\sigma^2 + \left(\tilde{\sigma}^{n^{\tilde{\iota}}}\right)^2\right) + \underbrace{(1 - \gamma)\sigma\sigma_t^{v}}_{=0} = \rho - \underbrace{\frac{c_t^{\tilde{\iota}}}{n_t^{\tilde{\iota}}}}_{=\tilde{\rho}}$$

Recall and plug in

$$\tilde{\sigma}^{n^{\tilde{\imath}}} = (1 - \vartheta)\tilde{\sigma} = \sqrt{\check{\rho} + \mu^{\mathcal{B}}} / \sqrt{\gamma} \operatorname{using} (1 - \vartheta) = \sqrt{\check{\rho} + \mu^{\mathcal{B}}} / (\sqrt{\gamma}\tilde{\sigma})$$

$$\iota = \frac{a\sqrt{\widecheck{\rho} + \mu^{\mathcal{B}}} - \sqrt{\gamma} \widetilde{\sigma} \widecheck{\rho}}{\sqrt{\widecheck{\rho} + \mu^{\mathcal{B}}} + \kappa \sqrt{\gamma} \widetilde{\sigma} \widecheck{\rho}}$$

yields an equation for $\check{\rho}$

$$(1 - \gamma) \left(\frac{1}{\kappa} \log \frac{\sqrt{\check{\rho} + \mu^{\mathcal{B}}} (1 + \phi a)}{\sqrt{\check{\rho} + \mu^{\mathcal{B}}} + \phi \sqrt{\gamma} \tilde{\sigma} \check{\rho}} - \delta \right) - \frac{1}{2} \gamma (1 - \gamma) \left(\sigma^{2} + \frac{\check{\rho} + \mu^{\mathcal{B}}}{\gamma^{2}} \right) = \rho - \check{\rho}$$

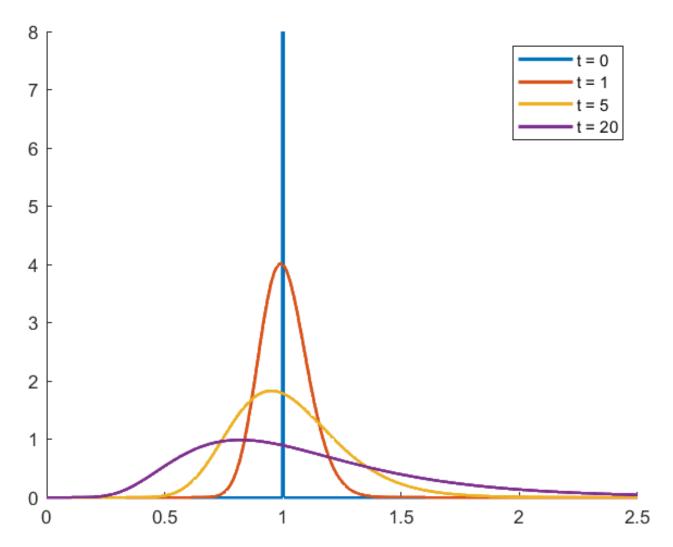
• For $\gamma=1$: $\check{\rho}=\rho$

4. Numerical Solution

- Simpler than previous lectures since there is no state variable
- lacktriangle Generalization with $ilde{\sigma}_t$ as a state variable.

Cross-sectional net worth distribution

 $\blacksquare \tilde{\eta}_t^{\tilde{\imath}} = \frac{\tilde{n}_t^{\tilde{\imath}}}{N_t}$ is non-stationary ... and log-normally distributed



■ Next: Extend model with net worth reset jumps to η^*

Aside 1: Model with idiosyncratic net worth reset jumps

- lacktriangle With Poisson intensity λ net worth $ilde{\eta}_t^{ ilde{l}-}$ jumps from to
- Log-utility ⇒ same returns, no impact on equilibrium

$$\frac{dn_t^{\tilde{i}}}{n_t^{\tilde{i}}} = \left(-\underbrace{\rho}_{c_t^{\tilde{i}}/n_t^{\tilde{i}}} + \underbrace{g}_{r_t^B = \Phi(\iota) - \delta} + (1 - \theta_t) \underbrace{\frac{a - \iota}{q^K}}_{E[r_t^{k,\tilde{i}}] - r_t^B}\right) dt + (1 - \theta_t) \tilde{\sigma} dZ_t^{\tilde{i}} + j_t^{n,\tilde{i}} dJ_t^{\tilde{i}}$$

$$\frac{dn_{t}^{\tilde{i}}}{n_{t}^{\tilde{i}}} = \left(-\rho + g + (1 - \vartheta_{t})\frac{a - \iota}{q^{K}}\right)dt + (1 - \vartheta_{t})\tilde{\sigma}dZ_{t}^{\tilde{i}} + j_{t}^{n,\tilde{i}}dJ_{t}^{\tilde{i}}$$
$$\frac{dN_{t}}{N_{t}} = gdt$$

$$\frac{d\eta_t^{\tilde{i}}}{\eta_t^{\tilde{i}}} = \underbrace{(-\rho + (1 - \vartheta_t)\frac{a - \iota}{q^K})}_{-0} dt + (1 - \vartheta_t)\tilde{\sigma}dZ_t^{\tilde{i}} + j_t^{n,\tilde{i}}dJ_t^{\tilde{i}}$$

$$rac{d\eta_t^{ ilde{i}}}{\eta_t^{ ilde{i}}} = (1-artheta) ilde{\sigma}dZ_t^{ ilde{i}} + j_t^{n, ilde{i}}dJ_t^{ ilde{i}}$$

- ullet Set $j_t^{n, ilde{i}}=rac{\eta^*-\eta_t^{ ilde{i}}}{\eta_t^{ ilde{i}}}$
 - KFE (for all $\eta \neq \eta^*$) is given by:

$$0 = rac{(1-artheta)^2 ilde{\sigma}^2}{2} rac{\partial (\eta^2 g(\eta))}{\partial \eta} - \lambda g(\eta)$$

• There is a kink at η^*

Aside 1: Model Extension with idiosyncratic reset jumps

$$rac{d\eta_t^{ ilde{i}}}{\eta_t^{ ilde{i}}} = (1-artheta) ilde{\sigma}dZ_t^{ ilde{i}} + j_t^{n, ilde{i}}dJ_t^{ ilde{i}}$$

- Set $j_t^{n,\widetilde{i}} = rac{\eta^* \eta_t^{\widetilde{i}}}{\eta_t^{\widetilde{i}}}$
- KFE (for all $\eta \neq \eta^*$) is given by:

$$0 = \frac{(1-\vartheta)^2 \tilde{\sigma}^2}{2} \frac{\partial (\eta^2 g(\eta))}{\partial \eta} - \lambda g(\eta)$$

- There is a kink at η^*
- Solution under $\eta^* = 1$:

$$C_1 = C_4 = \frac{2\lambda}{(1-c)^2 \tilde{\sigma}^2 \alpha'}, C_2 = C_3 = 0$$

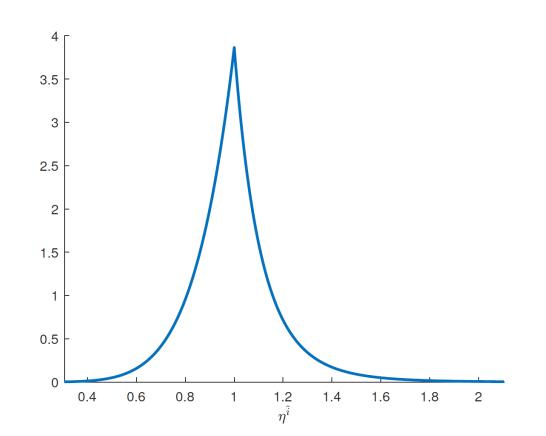
• KFE (for all $\eta \neq \eta^*$) is given by:

$$0=g''(\eta)\eta^2+4g'(\eta)\eta+\left(2-rac{2\lambda}{(1-artheta)^2 ilde{\sigma}^2}
ight)g(\eta)$$

• Euler's equation – has closed-form solutions

$$g(\eta) = C_1 \eta^{lpha_1} + C_2 \eta^{lpha_2} ext{ for } \eta < \eta^*$$
 $g(\eta) = C_3 \eta^{lpha_1} + C_4 \eta^{lpha_2} ext{ for } \eta \geq \eta^*$ $\int_0^\infty g(\eta) d\eta = 1, \qquad \lim_{\eta \to 0} g(\eta) = \lim_{\eta \to \infty} g(\eta) = 0$

• + continuity at η^* , $\alpha_1=\frac{\alpha-3}{2}$, $\alpha_2=-\frac{\alpha+3}{2}$, $\alpha=\sqrt{\frac{8\lambda}{(1-\vartheta)^2\tilde{\sigma}^2}+1}$



Models on Money as Store of Value

\Friction	OLG	Incomplete Markets + idiosyncratic risk	
Risk	deterministic	endowment risk borrowing constraint	return risk Risk tied up with Individual capital
Only money	Samuelson	Bewley	
			"I Theory without I" Brunnermeier-Sannikov
With capital	Diamond	Aiyagari	(AER PP 2016)

Aside 2: BruSan meets Bewley-Huggett-Aiyagari

- $= \max_{c,\theta} \mathbb{E} \int_0^\infty e^{-\rho t} u(c_t) dt$

 - $dr_t^{k,\tilde{\iota}} = r^k dt + \tilde{\sigma}^k dZ_t^{k,\tilde{\iota}}$
 - $dy_t^{k,\tilde{i}} = -\nu y_t^{\tilde{i}} dt + \tilde{\sigma}^{y} dZ_t^{y,\tilde{i}}$

Partial insurance via retrading

■ BruSan:

- $ilde{\sigma}^{\mathcal{Y}} = 0$... retrade capital and safe asset + smooth consumption
- lacktriangle Bewley-Huggett-Aiyagari: $ilde{\sigma}^k = 0$... smooth consumption
 - Risk does not scale with net worth $\Rightarrow \frac{c}{n}$ and portfolio θ depends on net worth

Roadmap

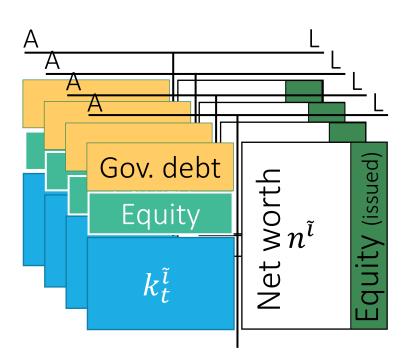
- Intuition for different "Monetary Theories"
- Monetary Model with one sector with constant idiosyncratic risk
 - Safe Asset and Service Flows
 - Bubble (mining) or not
 - 2 Different Asset Pricing Perspectives/SDFs
- Monetary model with time-varying idiosyncratic risk
 - Safe asset has negative CAPM- β
 - Calibration:
 Debt valuation puzzle, Debt Laffer Curve, Flight-to-Safety and Equity excess volatility
- Medium of Exchange Role

Time-varying Idio Risk + Equity Markets + Epstein-Zin

- Equity Market
 - Each citizen \tilde{i} can sell off a fraction $(1-\bar{\chi})$ of capital risk to outside equity holders
 - Return $dr_t^{E,\tilde{\iota}}$
 - Same risk as $dr_t^{K,\tilde{\iota}}$
 - But $\mathbb{E}_t \left[dr_t^{E,\tilde{\iota}} \right] < \mathbb{E}_t \left[dr_t^{K,\tilde{\iota}} \right]$... due to insider premium
 - Prop.: Model equations as before but replace $\tilde{\sigma}$ with $\bar{\chi}\tilde{\sigma}$
- Aggregate risk dZ_t : Heston model (time-yarying idiosyncratic risk)

- Monetary/bond issuing policy: $d\mathcal{B}_t/\mathcal{B}_t = \mu_t^{\mathcal{B}} dt + \sigma_t^{\mathcal{B}} dZ_t$
- Epstein-Zin preferences for calibration (EIS=1)

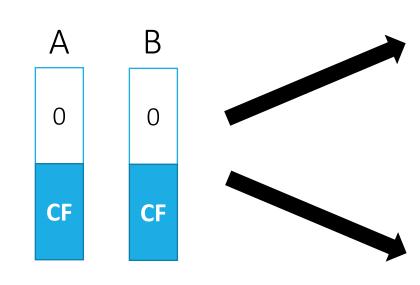
$$V_t^i = E_t \left[\int_t^{\infty} (1 - \gamma) \rho V_s^i \left(\log(c_s^i) - \frac{1}{1 - \gamma} \log\left((1 - \gamma) V_s^i \right) \right) ds \right]$$



What's a Safe Asset? What is its Service Flow?

$$= \frac{\mathcal{B}_t}{\wp_t} = \mathbb{E}_t [PV_{\xi^{**}}(\text{primary surpluses})] + \mathbb{E}_t [PV_{\xi^{**}}(\text{service flow})]$$

- Value come from re-trading
- Insures by partially completing markets



■ Can be "bubbly" = fragile



In recessions:

Risk is higher

- Service flow is more valuable
- Cash flows are lower (depends on fiscal policy)

• • •

Government: Taxes, Bond/Money Supply, Gov. Budget

- $\sigma_t^{\mathcal{B}} \neq 0$ leads to stochastic "seigniorage revenue" (state contingent)
- \blacksquare Relabel tax revenue process to $\frac{d\tau_t}{\tau_t} = \mu_t^\tau dt + \sigma_t^\tau dZ_t$
 - Or should we label s (primary surplus) as a process
- Government budget constraint (BC) [REDEFINE]

$$d\mathcal{B}_{t} - i_{t}\mathcal{B}_{t}dt + \mathcal{D}_{t}K_{t}\underbrace{\left(d\tau_{t} a_{t} - gdt\right)}_{S_{t} := 0} = 0$$
Primary surplus (per K_{t})

Return on Gov. Bond/Money: in output numeraire

$$dr_{t}^{\mathcal{B}} = idt + \underbrace{\frac{d(q_{t}^{\mathcal{B}}K_{t}/\mathcal{B}_{t})}{q_{t}^{\mathcal{B}}K_{t}/\mathcal{B}_{t}}}_{-inflation} = \underbrace{\frac{d(q_{t}^{\mathcal{B}}K_{t})}{q_{t}^{\mathcal{B}}K_{t}}}_{-\mu_{t}^{\mathcal{B}}dt - \sigma_{t}^{\mathcal{B}}dZ_{t} + \sigma_{t}^{\mathcal{B}}\left(\sigma_{t}^{\mathcal{B}} - \sigma - \sigma_{t}^{q,\mathcal{B}}\right)dt$$

2.b+c Alternative iii: Portfolio choice θ (N_t -numeraire)

Total net worth N_t relative to single bond/coin

Asset pricing equation (martingale method)

$$\frac{\mathbb{E}\left[dr_{t}^{\tilde{\eta}^{\tilde{t}}}\right]}{dt} = \check{\rho}_{t} = \left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right) + (\varsigma_{t} - \sigma_{t}^{N})0 + \check{\varsigma}_{t}(1 - \theta_{t})\check{\sigma}$$

$$\frac{\mathbb{E}\left[dr_{t}^{\vartheta/B}\right]}{dt} = \mu_{t}^{\vartheta/B} = \underbrace{\left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right)}_{risk-free\ rate\ in\ N_{t}-numeraire} + \underbrace{\underbrace{\left(\varsigma_{t} - \sigma_{t}^{N}\right)\sigma_{t}^{\vartheta/B}}_{price\ of\ risk}}_{in\ N_{t}-numeraire}$$

2.b+c Alternative iii: Portfolio choice θ (N_t -numeraire)

Total net worth N_t relative to a single bond/coin of money

Asset pricing equation (martingale method)

$$\begin{split} \frac{\mathbb{E}\left[dr_{t}^{\widetilde{\eta}^{\widetilde{t}}}\right]}{dt} &= \widecheck{\rho}_{t} = \left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right) + (\varsigma_{t} - \sigma_{t}^{N})0 + \widecheck{\varsigma}_{t}(1 - \theta_{t})\widetilde{\sigma} \\ \frac{\mathbb{E}\left[dr_{t}^{\vartheta/B}\right]}{dt} &= \mu_{t}^{\vartheta/B} = \underbrace{\left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right)}_{risk-free\ rate\ in\ N_{t}-numeraire} + \underbrace{\underbrace{\left(\varsigma_{t} - \sigma_{t}^{N}\right)\sigma_{t}^{\vartheta/B}}_{price\ of\ risk\ in\ N_{t}-numeraire}}_{free\ rate\ in\ N_{t}-numeraire} \\ \widecheck{\rho}_{t} - \mu_{t}^{\vartheta/B} &= -(\varsigma_{t} - \sigma_{t}^{N})\sigma_{t}^{\vartheta/B} + \widecheck{\varsigma}_{t}(1 - \theta_{t})\widetilde{\sigma} \end{split}$$

- Remark:
 - Value of a single bond/coin in N_t -numeraire

$$\frac{d(\vartheta_t/\mathcal{B}_t)}{\vartheta_t/\mathcal{B}_t} = \mu_t^{\vartheta} + \sigma_t^{\vartheta} dZ_t - \mu_t^{\mathscr{B}} dt - \sigma_t^{\mathscr{B}} dZ_t + \sigma_t^{\mathscr{B}} \left(\sigma_t^{\mathscr{B}} - \sigma_t^{\vartheta}\right) dt$$

$$= \mu_t^{\vartheta/\mathscr{B}} dt + \sigma_t^{\vartheta/\mathscr{B}} dZ_t \text{ (defining return-drift and volatility)}$$

lacktriangle Terms are shifted into risk-free rate in N_t -numeraire, which drop out when differencing

2.b+c Alternative iii: Portfolio choice θ (N_t -numeraire)

Total net worth N_t relative to single bond/coin of money

Asset pricing equation (martingale method)

$$\frac{\mathbb{E}\left[dr_{t}^{\widetilde{\eta}^{\widetilde{t}}}\right]}{dt} = \widecheck{\rho}_{t} = \left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right) + (\varsigma_{t} - \sigma_{t}^{N})0 + \widecheck{\varsigma}_{t}(1 - \theta_{t})\widecheck{\sigma}$$

$$\frac{\mathbb{E}\left[dr_{t}^{\vartheta/B}\right]}{dt} = \mu_{t}^{\vartheta/B} = \underbrace{\left(r_{t}^{f} - (\Phi(\iota_{t}) - \delta) - \mu_{t}^{q^{K} + q^{B}} - \sigma\sigma_{t}^{q^{K} + q^{B}} + \varsigma_{t}\sigma_{t}^{q^{K} + q^{B}}\right)}_{risk-free\ rate\ in\ N_{t}-numeraire} + \underbrace{\underbrace{\left(\varsigma_{t} - \sigma_{t}^{N}\right)\sigma_{t}^{\vartheta/B}}_{price\ of\ risk\ in\ N_{t}-numeraire}}$$

$$\check{\rho}_t - \mu_t^{\vartheta/\mathcal{B}} = -(\varsigma_t - \sigma_t^N)\sigma_t^{\vartheta/\mathcal{B}} + \check{\varsigma}_t(1 - \theta_t)\tilde{\sigma}$$

• Price of Risk: $\varsigma_t = -\sigma_t^v + \sigma_t^{p+q} + \gamma \sigma$, $\tilde{\varsigma}_t = \gamma \tilde{\sigma}_t^n = \gamma (1 - \theta_t) \tilde{\sigma}$

$$\check{\rho}_t - \mu_t^{\vartheta/\mathcal{B}} = (\sigma_t^{\upsilon} - (\gamma - 1)\sigma)\sigma_t^{\vartheta/\mathcal{B}} + \gamma(1 - \theta_t)^2 \tilde{\sigma}^2$$

■ Capital market clearing: $1 - \theta = 1 - \vartheta$

Recall
$$\mu_t^{\vartheta/\mathcal{B}} = \mu_t^{\vartheta} - \mu_t^{\mathcal{B}} + \sigma_t^{\mathcal{B}} (\sigma_t^{\mathcal{B}} - \sigma_t^{\vartheta})$$

$$\sigma_t^{\vartheta/\mathcal{B}} = \sigma_t^{\vartheta} - \sigma_t^{\mathcal{B}}$$

FTPL Equation with Bubble: 2 Perspectives

Replace TEX-file and i should be i\tilde

- Buy and Hold Perspective:

$$\frac{\mathcal{B}_0}{\mathcal{P}_0} = \lim_{T \to \infty} \left(\mathbb{E} \left[\int_0^T \xi_t^i s_t K_t dt \right] + \mathbb{E} \left[\xi_T^i \frac{\mathcal{B}_T}{\mathcal{P}_T} \right] \right)$$

- Bubble is possible: $\lim_{T\to\infty} \mathbb{E}[\bar{\xi}_t \frac{\mathcal{B}_T}{\wp_T}] > 0$ if $r_t^f + \varsigma_t \sigma_t^{q,B} \le g_t$ (on average) $g \check{\mu}^B = \text{discount rate}$
- Dynamic Trading Perspective:
 - Value cash flow from individual bond portfolios, including trading cash flows
 - Integrate over citizens weighted by net worth share η_t^i
 - Bond as part of a dynamic trading strategy

$$\frac{\mathcal{B}_{0}}{\mathcal{P}_{0}} = \mathbb{E}\left[\int_{0}^{\infty} \underbrace{\left(\int \xi_{t}^{i} \eta_{t}^{i} di\right)}_{=\xi_{t}^{**}} s_{t} K_{t} dt\right] + \mathbb{E}\left[\int_{0}^{\infty} \underbrace{\left(\int \xi_{t}^{i} \eta_{t}^{i} di\right)}_{=\xi_{t}^{**}} (\tilde{\sigma}_{t}^{c})^{2} \frac{\mathcal{B}_{t}}{\mathcal{P}_{t}} dt\right]$$

Add math equation (interim step)
Replace TEX-file and i should be i\tilde

- Discount rate $E[dr^{\eta}]/dt = r^f + \tilde{\varsigma}\tilde{\sigma}$
- ξ^i and η^i are negatively correlated \Rightarrow depresses weighted "Quasi-SDF" (higher discount rate)

Numerical Steps

 $\vartheta_t = \vartheta(\tilde{\sigma}_t)$, Ito's formula:

$$d\vartheta_{t} = \underbrace{\left(\mu_{\tilde{\sigma},t}\vartheta'(\tilde{\sigma}) + \frac{\sigma_{\tilde{\sigma},t}^{2}}{2}\vartheta''(\tilde{\sigma})\right)}_{\mu_{t}^{\vartheta}\vartheta_{t}}dt + \sigma_{\tilde{\sigma},t}\vartheta'(\tilde{\sigma})dZ_{t}$$

$$\rho \vartheta(\tilde{\sigma}) = (1 - \vartheta(\tilde{\sigma}))^2 \tilde{\sigma}^2 \vartheta(\tilde{\sigma}) + b(\tilde{\sigma}^{ss} - \tilde{\sigma}) \vartheta'(\tilde{\sigma}) + \frac{\nu^2 \tilde{\sigma}}{2} \vartheta''(\tilde{\sigma})$$

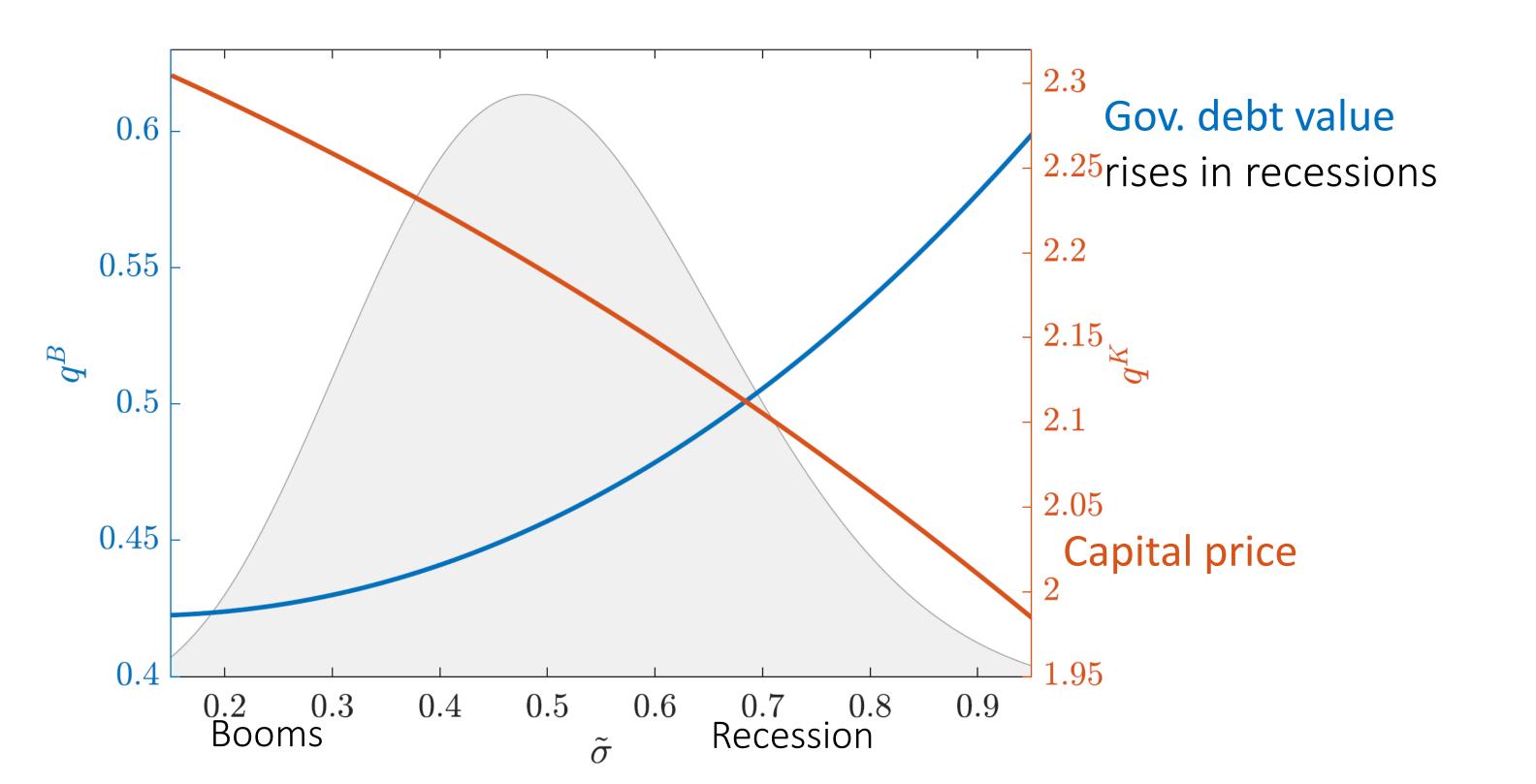
$$\rho \vartheta_t(\tilde{\sigma}) = \partial_t \vartheta_t(\tilde{\sigma}) + (1 - \vartheta_t(\tilde{\sigma}))^2 \tilde{\sigma}^2 \vartheta_t(\tilde{\sigma}) + b(\tilde{\sigma}^{ss} - \tilde{\sigma}) \vartheta'_t(\tilde{\sigma}) + \frac{\nu^2 \tilde{\sigma}}{2} \vartheta''_t(\tilde{\sigma})$$

$$u(v)$$

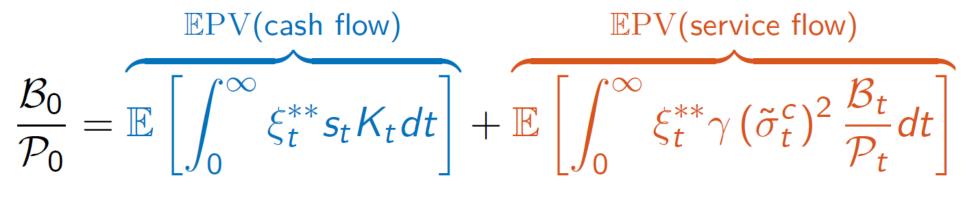
$$Mv$$

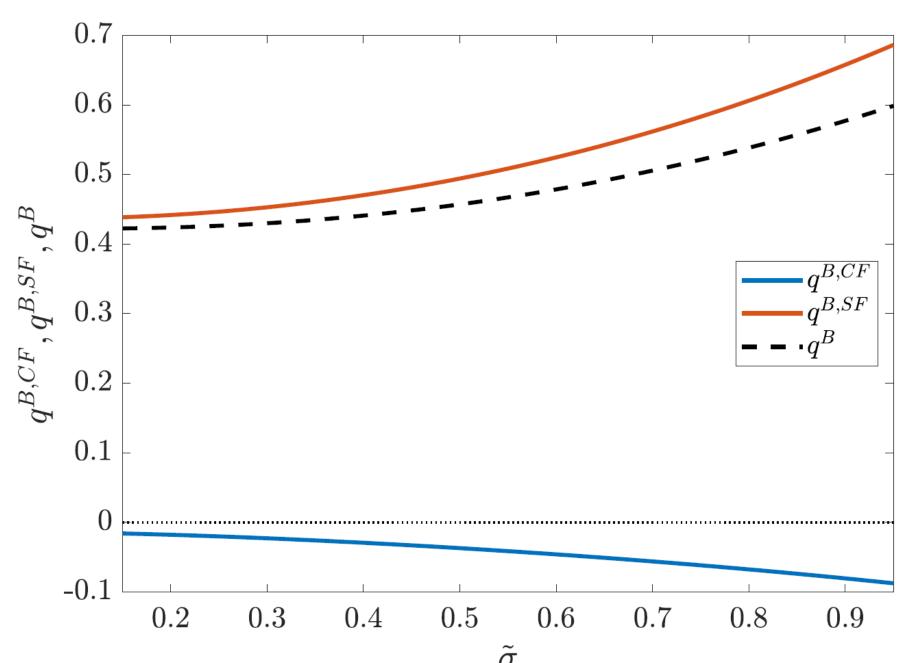
 \blacksquare For $\tilde{\sigma}$ -grid: from 0 to $\tilde{\sigma}$ large enough (look at stationary distribution of $\tilde{\sigma}$)

Bond and Capital Value for time-varying idiosyncratic risk $\widetilde{\sigma}_t$



Dynamic Trading Perspective Decomposition





Calibration

- Exogenous processes:
 - **Recessions** feature high idiosyncratic risk and low consumption
 - $\tilde{\sigma}_t$: Heston (1993) model of stochastic volatility

$$d\tilde{\sigma}_t^2 = -\psi\left(\tilde{\sigma}_t^2 - \left(\tilde{\sigma}^0\right)^2\right)dt - \sigma^{\widetilde{\sigma}}\tilde{\sigma}_t dZ_t$$

$$= a_t : a_t = a(\tilde{\sigma}_t)$$

$$= a_t : \alpha_t = a(\tilde{\sigma}_t)$$
CIR – ensures that $\tilde{\sigma}$ stays positive $\alpha_t = a(\tilde{\sigma}_t)$

- $\mathbf{g}_t = 0$
- Government (bubble-mining policy)

$$\check{\mu}_t^{\mathcal{B}} = \check{\mu}_t^{\mathcal{B},0} + \alpha^{\mathcal{B}} (\tilde{\sigma}_t - \tilde{\sigma}^0)$$

Calibration to US data (1970-2019, period length is one year)

Parameters

parameter	description	value	target		
			external calibration		
$egin{array}{c} ilde{\sigma}^0 \ \psi \ \sigma \ ar{\chi} \end{array}$	$ ilde{\sigma}_t$ stoch. steady state $ ilde{\sigma}_t^2$ mean reversion $ ilde{\sigma}_t^2$ volatility undiversifiable idio. risk	0.54 0.67 0.4 0.3	MLE targeting common idiosyncratic volatility (Herskovic et al. 2018) Heaton, Lucas (1996, 2000, 2001), Angeletos (2007) (range [0.2, 0.6])		
calibration to match model moments					
γ ρ a^0 $\mathcal{B},0$ α^a $\alpha^{\mathcal{B}}$ ϕ	risk aversion time preference a_t stoch. steady state gov. expenditures $\breve{\mu}_t^{\mathcal{B}}$ stoch. steady state a_t slope $\breve{\mu}_t^{\mathcal{B}}$ slope capital adjustment cost	6 0.138 0.63 0.138 0.0023 0.071 0.12 8.5	chosen jointly to match (approximately) - volatility of Y , C , I , S/Y - average C/Y , G/Y , S/Y , I/K , q^KK/Y , q^BK/Y - mean equity premium - equity Sharpe ratio		
other parameters					
δ	depreciation rate	0.055	economic growth rate (ultimately irrelevant for all results)		

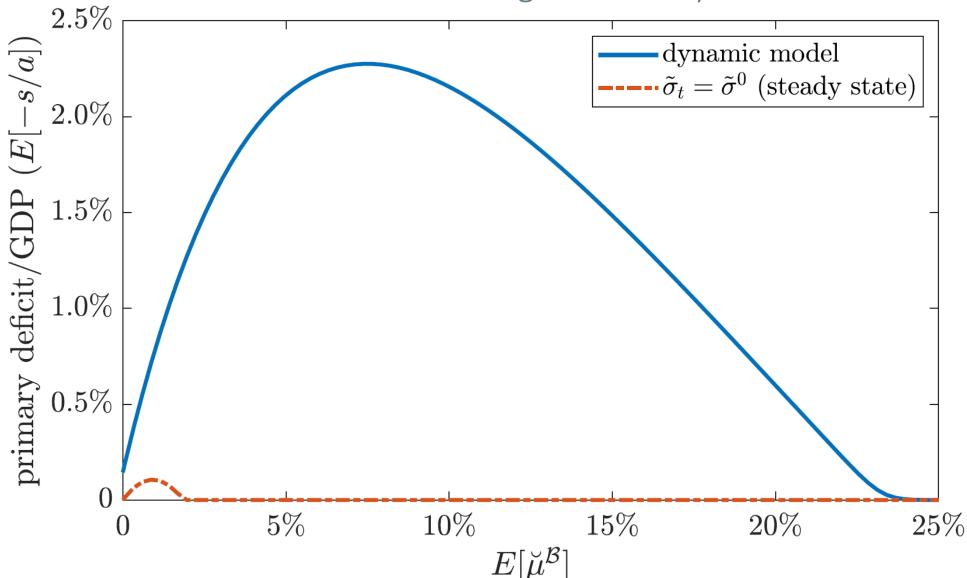
Quantitative Model Fit

moment	description	model	data
	uescription		
$\sigma(Y)$	output volatility	1.3%	1.3%
$\sigma(C)/\sigma(Y)$	relative consumption volatility	0.63	0.64
$\sigma(S/Y)$	surplus volatility	1.1%	1.1%
$\mathbb{E}[S/Y]$	average surplus-output ratio	-0.0004	-0.0005
$\mathbb{E}[q^KK/Y]$	average capital-output ratio	3.48	3.73
$\mathbb{E}[q^BK/Y]$	average debt-output ratio	0.74	0.71
$\mathbb{E}[d\bar{r}^{E}-dr^{B}]$	average (unlevered) equity premium	3.62%	3.40%
$rac{\mathbb{E}[dr^E-dr^{\mathcal{B}}]}{\sigma\Big(dr^E-dr^{\mathcal{B}}\Big)}$	equity sharpe ratio	0.31	0.31

Two Debt Valuation Puzzles

- Properties of US primary surpluses
 - Average surplus ≈ 0
 - \blacksquare Procyclical surplus (> 0 in booms, < 0 in recessions)
- Two valuation puzzles from standard perspective: (Jiang, Lustig, van Nieuwerburgh, Xiaolan, 2019, 2020)
 - 1. "Public Debt Valuation Puzzle"
 - Empirical: E[PV(surpluses)] < 0, yet $\frac{B}{\wp} > 0$
 - Our model: bubble/service flow component overturns results
 - 2. "Gov. Debt Risk Premium Puzzle"
 - \blacksquare Debt should be positive β asset, but market don't price it this way
 - Our model: can be rationalized with countercyclical bubble/service flow

- Issue bonds at a faster rate $\check{\mu}^B$ (esp. in recessions)
 - ⇒ tax precautionary self insurance ⇒ tax rate
 - ⇒ real value of bonds, $\frac{\mathcal{B}}{\wp}$, ↓ ⇒ "tax base"
 - Less so in recession due to flight-to-safety



Sizeable revenue only if Gov. debt has negative β

Service Flow Term, Convenience Yield, Ponzi Scheme

- Ponzi scheme is not feasibly for everyone No Ponzi constraint may be binding
 - Who can run a Ponzi scheme?... assigned by equilibrium selection
 - Likely to government, private entities are subject to solvency constraint
 - ... still there is a Debt Laffer Curve

Service flow

- Convenience yield: relaxes collateral constraint or CIA constraint (money)
 - Traditional measure: BAA-US Treasury spread
- Here: Partially completing markets through retrading
 - Low interest rate (cash flow) asset can be issued by everyone
 Hence, corporate-Treasury spread = 0

exorbitant privilege

Why Does Safe Asset Survive in Presence of ETFs?

- Diversified stock portfolio is free of idiosyncratic risk
 - Trading in stocks (ETF) can also self-insure idiosyncratic risk
 - Good friend in idiosyncratically bad times
- But: poor hedge against aggregate risk, losses value in recessions
 - Positive β
 - Bad friend in aggregate bad times
- Why positive β ? (after all r^f goes down in recessions, lowers discount rate)
 - Equity are claims to capital, but marginal capital holder is insider
 - Insider bears idiosyncratic risk, must be compensated
 - $\tilde{\sigma}_t \uparrow \Rightarrow$ insider premium $E_t[dr_t^K] E_t[dr_t^E] \uparrow \Rightarrow$ payouts to stockholders fall

Stock Market Volatility due to Flight to Safety

"Aggregate Intertemporal Budget Constraint

total (net) wealth
$$\underbrace{q_t^K K_t + q_t^B K_t}_{t} = \mathbb{E}_t \left[\int_t^{\infty} \frac{\int \xi_s^i \eta_s^i di}{\int \xi_t^i \eta_t^i di} c_s ds \right] \quad (*)$$

- Lucas-type models: $q^B=0$ (also $\mathcal{C}_t=\mathcal{Y}_t$, no idiosyncratic risk)
 - Value of equity (Lucas tree) = PV of consumption claim
 - Volatility equity values require volatile RHS of (*)
- This model: even for constant RHS of (*), $q_t^K K_t$ can be volatile due to flight to safety:
 - increase in $\tilde{\sigma}_t$ \Rightarrow Portfolio reallocation from capital to bonds, $q_t^K K_t \downarrow \mathcal{B}_t / \mathcal{D}_t \uparrow$,
- Quantitatively relevant? Yes
 - Excess return volatility
 - 2.9% in equivalent bondless model (s = 0 and no bubble)
 - 12.9% in our model

Loss of Safe Asset Status – Equilibrium selection

- When government debt has a (stationary) bubble, other equilibria possible
 - Stationary no bubble equilibrium
 - Nonstationary equilibria that converge to the no bubble equilibrium
- Implies fragility: bubbles may pop, loss of safe asset status
- Are there policies to prevent a loss of safe asset status?
 - 1. Create a "fundamentally safe asset"
 - lacktriangle Raise (positive) surpluses to generate safe cash flow component $q_t^{B,CF}$
 - If surpluses always exceed a (positive) fraction of total output, no bubble
 - But: gives up revenues from bubble mining
 - 2. Off-equilibrium tax backing
 - Sufficient to (credibly) promise policy 1 off equilibrium
 - See "FTPL with a Bubble"

Roadmap

- Intuition for different "Monetary Theories"
- Monetary Model with one sector with constant idiosyncratic risk
 - Safe Asset and Service Flows
 - Bubble (mining) or not
 - 2 Different Asset Pricing Perspectives/SDFs
- Monetary model with time-varying idiosyncratic risk
 - Safe asset has negative CAPM- β
 - Calibration:
 Debt valuation puzzle, Debt Laffer Curve, Flight-to-Safety and Equity Excess Volatility
- Medium of Exchange Role

ADD "Medium of Exchange" to Store of Value

Fiscal Theory of the Price Level (FTPL)

store of value

SDF is time-varying + Bubble term

ADD

medium of exchange

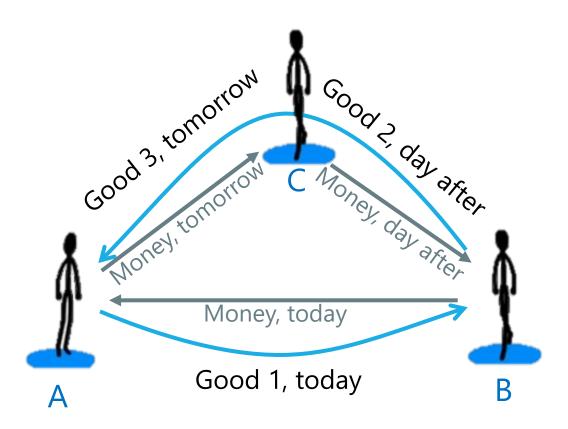
- Cash-in-advance constraint, transaction cost, shopping time model, ...
- $\blacksquare \Rightarrow \Delta i$ (convenience yield)
- Price level is determined by $\mathcal{M}_t v(\cdot) = \wp_t Y_t$

The 4 Roles of Money

- Unit of account
 - Intratemporal: Numeraire
 - Intertemporal: Debt contract

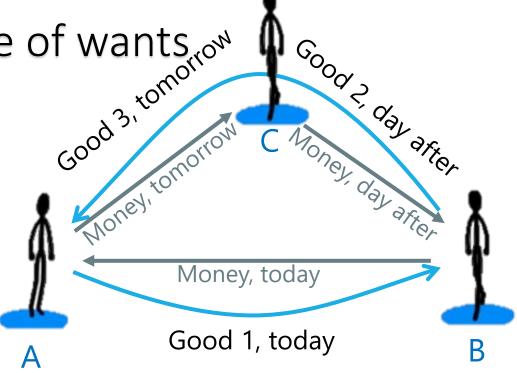
bounded rationality/price stickiness incomplete markets

- Store of value
 - "I Theory of Money without I"
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence



Medium of Exchange – Transaction Role

■ Overcome double-coincidence of wants_{row}



- Quantity equation: $\wp_t T_t = \nu M_t$
 - ν (nu) is velocity (Monetarism: ν exogenous, constant)
 - *T* transactions
 - Consumption
 - New investment production
 - Transaction of physical capital
 - Transaction of financial claims

 $\begin{bmatrix} C \\ \iota K \end{bmatrix}$

 $d\Delta^k$

 $d\theta^{j\notin M}$

produce own machines

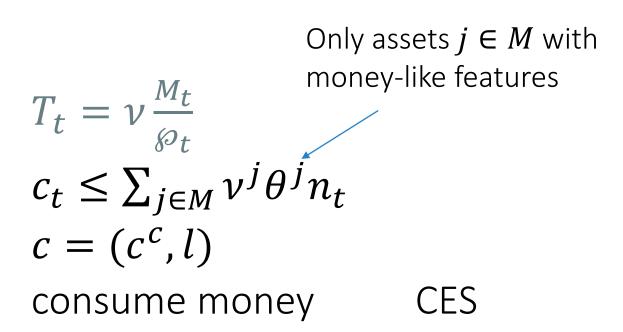
infinite velocity

infinite velocity

Models of Medium of Exchange

- Reduced form models
 - Cash in advance

- Shopping time models
- Money in the utility function
 - New Keynesian Models
 - No satiation point
- New Monetary Economics



For generic setting encompassing all models: see Brunnermeier-Niepelt 2018

Cash in Advance

- Liquidity/cash in advance constraint
 - $c_t \leq \sum_{j \in M} v^j \theta^j n_t$ Lagrange multiplier $\hat{\lambda}_t$
 - Asset $j \in M$ which relaxes liquidity/CIA constraint
- Price of liquid/money asset

Value of money yields
Relaxes constraint extra "liquidity service"

$$q_t^{j \in M} = E_t \left[\frac{\xi_{t+\Delta}}{\xi_t} (x_{t+\Delta} + q_{t+\Delta}^{j \in M}) \right] - \hat{\lambda}_t v^j q_t^{j \in M}$$

$$q_t^{j \in M} = E_t \left[\underbrace{\frac{\xi_{t+\Delta}}{\xi_t} \frac{1}{\underbrace{1 + \hat{\lambda}_t \nu^j}}}_{\Lambda_{t+\Delta}^j / \Lambda_t^j :=} (x_{t+\Delta} + q_{t+\Delta}^j) \right]$$

$$q_t^{j \in M} = \lim_{T \to \infty} \mathbb{E}_t \left[\sum_{\tau=1}^{(T-t)/\Delta} \frac{\xi_{t+\tau\Delta}}{\xi_t} \frac{\Lambda^j_{t+\tau\Delta}}{\Lambda^j_t} x_{t+\tau\Delta} \right] + \lim_{T \to \infty} \mathbb{E}_t \left[\frac{\xi_T}{\xi_t} \frac{\Lambda^j_T}{\Lambda^j_t} q_T \right]$$

As if SDF is multiplied by "liquidity multiplier" (Brunnermeier-Niepelt)

Cash in Advance

- Liquidity/cash in advance constraint
 - $c_t \leq \sum_{j \in M} v^j \theta^j n_t$ Lagrange multiplier $\hat{\lambda}_t$
 - Asset $j \in M$ which relaxes liquidity/CIA constraint

$$q_t^{j \in M} = \lim_{T \to \infty} E_t \left[\int_t^T \frac{\xi_\tau}{\xi_t} \frac{\Lambda^j_\tau}{\Lambda^j_t} x_\tau d\tau \right] + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} \frac{\Lambda^j_\tau}{\Lambda^j_t} q_T \right]$$

- "Money bubble" easier to obtain due to liquidity service
 - lacktriangle Condition absent aggregate risk: $r^M < g$ easier to obtain since $r^M < r^f$
- Stochastic Maximum Principle approach (with constraints)

$$\mu_t^{r,j} = r_t^f + \varsigma_t \sigma_t^{r,j} + \tilde{\varsigma}_t \tilde{\sigma}^{r,j} - \lambda_t \nu_t$$
 where $\lambda_t = \hat{\lambda}_t / V'(n_t)$ (Shadow) risk-free rate of illiquid asset

Add Cash in Advance to BruSan Model

- Return on money (no bonds)
 - Store of value as before
 - Liquidity service (medium of exchange)

$$\frac{E\left[dr_t^M\right]}{dt} = \Phi(\iota_t) - \delta + \mu_t^p + \sigma\sigma_t^p - \mu^M = r_t^f + \varsigma_t(\sigma + \sigma_t^p) - \lambda_t \nu^M$$

In steady state

$$\Phi(\iota) - \delta - \underbrace{\left(\mu^{M} - \lambda \nu^{M}\right)}_{\ddot{\mu}^{M} :=} = r^{f} + \varsigma \sigma$$

- Solving the model as before ...
 - By simply replace μ^M with $\mu^M \lambda_t \nu_t^M$
 - Special case: $\ddot{\mu}^M=0$, i.e. $\mu^M=\lambda \nu^M$, $\gamma=1$ \Rightarrow explicit solution as fcn of $\check{\rho}$
 - Same q^K and q^B as a function of ζ ,
 - But $\check{\rho} \neq \rho$ if CIA constraint binds in steady state, otherwise $\check{\rho} = \rho$
 - 1. Assume it binds, i.e. $\zeta = \nu \vartheta$
 - 2. Recall from slide 21 for $\hat{\mu}^M=0$ and $\gamma=1$, $\vartheta=\frac{\widetilde{\sigma}-\sqrt{\zeta}}{\widetilde{\sigma}}$
 - 3. Equate 1. and 2. to obtain quadratic solution for $\check{\rho}$
 - 1. If $< \rho$, then solution equals $\check{\rho}$
 - 2. If $> \rho$, then $\check{\rho} = \rho$ and hence CIA doesn't bind, $\lambda = 0$, above solution
- "Occasionally" binding CIA constraint (outside of steady state)
- for sufficiently high $\tilde{\sigma}$, store of value (insurance motive) $\Rightarrow \lambda_t = 0$

Add Money in Utility to BruSan Model

- Money in utility function $u(c, M/\wp) = u(c, \theta n)$
- Can be expressed as equality constraint
 - Difference to CIA inequality: No satiation point

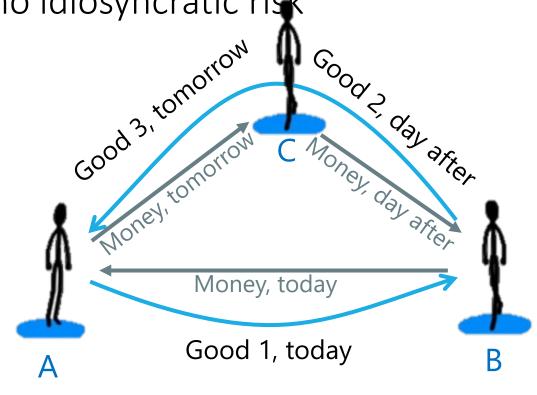
- DiTella add MiU to BruSan 2016 AER PP
 - https://web.stanford.edu/~sditella/Papers/Di_Tella_Liquidity_Traps.pdf

The 4 Roles of Money

- Unit of account
 - Intratemporal: Numeraire
 - Intertemporal: Debt contract

bounded rationality/price stickiness incomplete markets

- Store of value
 - "I Theory of Money without I" Less risky than other "capital" – no idiosyncratic risk
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence of wants problem



- Record keeping device money is memory
 - Virtual ledger

Extra Slides

Related Literature

Safe Asset:

- Gorton-Pennachi (1990), Dang et al (2017), ...
- Brunnermeier et al. (2017), ESBies,
- Equity premium
 - Constantinides-Duffie (1996) imposes "aggregate" transversality condition
- Public Debt Evaluation Puzzles:
 - Jiang et al. (2020,2021)
- Fiscal debt sustainability r vs. g:
 - OLG: Bohn (1995), Samuelson (1958), Diamond (1965), Tirole (1985), Blanchard (2019),
 Martin-Ventura (2018)
 - Incomplete markets: Bewley (1980), Aiyagari-McGrattan (1998), Angeletos (2007)

 No capital Capital is a safe asset (risk-free)

 No debt
 - Bassetto-Cui (2018), Reis (2020)

Deriving FTPL equation (in cts time)

Nominal government budget constraint

$$(\mu_t^{\mathcal{B}}\mathcal{B}_t + \mu_t^{\mathcal{M}}\mathcal{M}_t + \mathcal{D}_t T_t)dt = (i_t \mathcal{B}_t + i_t^m \mathcal{M}_t + \mathcal{D}_t G_t)dt$$

• Multiply by nominal SDF ξ_t/\wp_t , rearrange

$$[(\mu_t^{\mathcal{B}} - i_t) \frac{\xi_t}{\wp_t} \mathcal{B}_t + (\mu_t^{\mathcal{M}} - i_t) \frac{\xi_t}{\wp_t} \mathcal{M}_t] dt = -\xi_t (T_t - G_t - \underbrace{(i_t - i_t^m)}_{\Delta i_t :=} \frac{\mathcal{M}_t}{\wp_t}) dt$$

- Suppose ξ_t/\wp_t prices the nominal bond
 - Then $E_t \left| \frac{d(\xi_t/\wp_t)}{(\xi_t/\wp_t)} \right| = i_t dt$
 - Substitute into above, use product rule, take expectations

$$E_t \left[d \left(\frac{\xi_t}{\wp_t} (\mathcal{B}_t + \mathcal{M}_t) \right) \right] = -E_t \left[\xi_t \left(T_t - G_t - \Delta i_t \frac{\mathcal{M}_t}{\wp_t} \right) dt \right]$$

Hint:

$$d\left(\frac{\xi_t}{\mathcal{P}_t}\mathcal{B}_t\right) = \left(\mu_t^{\mathcal{B}} - i_t\right) \frac{\xi_t}{\mathcal{P}_t} \mathcal{B}_t dt + \frac{\xi_t}{\mathcal{P}_t} \mathcal{B}_t \left(\frac{d\left(\xi_t/\mathcal{P}_t\right)}{\xi_t/\mathcal{P}_t} + i_t dt\right),$$

$$d\left(\frac{\xi_t}{\mathcal{P}_t}\mathcal{M}_t\right) = \left(\mu_t^{\mathcal{M}} - i_t\right) \frac{\xi_t}{\mathcal{P}_t} \mathcal{M}_t dt + \frac{\xi_t}{\mathcal{P}_t} \mathcal{M}_t \left(\frac{d\left(\xi_t/\mathcal{P}_t\right)}{\xi_t/\mathcal{P}_t} + i_t dt\right)$$

In integral form

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{D}_t} = E_t \int_t^{\infty} \frac{\xi_s}{\xi_t} (T_s - G_s) ds + E_t \int_t^{\infty} \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{D}_s} ds + \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{D}_T}$$

Deriving FTPL equation (in cts time)

■ Take limit $T \to \infty$

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{D}_t} = E_t \int_t^{\infty} \frac{\xi_s}{\xi_t} (T_s - G_s) ds + E_t \int_t^{\infty} \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{D}_s} ds + \lim_{T \to \infty} E_t \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{D}_T}$$

Remark 1:

- Literature focuses on settings, in which private-sector transversality eliminates the bubble term
- Here: fiscal theory in setting, in which where transversality does not rule out bubbles

Remark 2:

- The sum of the three limits on the right may not be well-defined mathematically, because they can be infinite with opposite signs
- The limit of the sum may nevertheless exist and be finite
 - This is what matters economically (cannot separately trade the bubble and fundamental components)

3 Forms of Seigniorage

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{D}_t} = E_t \int_t^{\infty} \frac{\xi_s}{\xi_t} (T_s - G_s) ds + E_t \int_t^{\infty} \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{D}_s} ds + \lim_{T \to \infty} E_t \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{D}_T}$$

1. Surprise devaluation

- Irrational expectations
- Small (Hilscher, Raviv, Reis 2014)
 - Inflation options imply likelihood of exceeding 5% of GDP is less than 1%

2. Exploiting liquidity benefits of "narrow" cash

- Only for "narrow" cash that provides medium-of-exchange services
- $\bullet \Delta i = i i^M$
- 0.36 % of GDP, NPV = 20% (at most 30%) of GDP, (Reis 2019)

3. "Money bubble mining"