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Course Overview

Real Macro-Finance Models with Heterogeneous Agents
1. A Simple Real Macro-finance Model

2. Endogenous (Price of) Risk Dynamics

3. A Model with Jumps due to Sudden Stops/Runs

Money Models

1. ASimple Money Model

2. Cashless vs. Cash Economy and “The | Theory of Money”
3. Welfare Analysis & Optimal Policy

1. Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models
1. International Financial Architecture

Digital Money



Risk premia, price of risk

" Risk premia = price of risk * (endogenous + exogenous risk)

" Exogenous risk — shock from outside

" Endogenous risk
= Amplification: adverse feedback loops
= Multiple equilibria: Run, Sudden Stops

" Non-linearities are key for financial stability
" Around vs. away from steady state



Desired Model Properties

" Normal regime: stable around steady state

= Experts are adequately capitalized
» Experts can absorb macro shock

" Endogenous risk and price of risk
" Fire-sales, liquidity spirals, fat tails
= Spillovers across assets and agents
" Market and funding liquidity connection
" SDF vs. cash-flow news

= \/olatility paradox
" (Financial innovation less stable economy)
" (“Net worth trap” double-humped stationary distribution)



Persistence Leads to Dynamic Amplification

m Static amplification occurs because fire-sales of capital
from productive sector to less productive sector depress asset prices

" [mportance of market liquidity of physical capital

" Dynamic amplification occurs because a
temporary shock translates into a
persistent decline in output and asset prices

" Forward grow net worth | | |
= Backward asset pricing _—



“Single Shock Critique”

" Critique: After the shock all agents in the economy
know that the economy will deterministically return to
the steady state.

" | ength of slump is deterministic (and commonly known)
= No safety cushion needed

" |n reality an adverse shock may be followed by additional
adverse shocks

= Build-up extra safety cushion for an additional shock in a crisis

" [mpulse response vs. volatility dynamics



Endogenous Volatility & Volatility Paradox

» Endogenous Risk/Volatility Dynamics in BruSan
" Beyond Impulse responses
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" |nput: constant volatility

= Output: endogenous risk
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Stochastic

=Precautionary savings 004 ondy state
= Role for money/safe asset o L
= [qgter: in Money lecture oo e

= Nonlinearities in crisis = endogenous fait tails, skewness

= \/olatility Paradox

" Low exogenous (measured) volatility leads to
high build-up of (hidden) endogenous volatility (Minksy)



Toolboxes: Technical Innovations

" Occasionally binding equity issuance constraint
(in addition to natural borrowing limit due to risk aversion)

" Price setting social planner to find capital and risk allocation

" Change of numeraire
" Easily incorporate aggregate fluctuations
" To use martingale methods more broadly

" Newton Method to solve log-utility numerical example



BruSan 2017:

Two Type/Sector Model with Outside Equityadbook of Macroeconomics,

Lecture Notes, Chatper 3

" Expert sector Household sector
A L
Capital o Net worth
e quity __nje
K qeKe Ve Outside . qeKp — N¢
t equity C}?pltal
Kt qe Ky
> akg
= Skin in the Game Constraint: i
: N€ t : :
Experts must hold fraction y;f = - > aki of aggregate capital risk
qK,t

with a € (0,1) (xf > k¢ never happens in equilibrium)

" Return on inside equity N; can differ from outside equity
" |ssue outside equity at required return from HH

" |n related model, He and Krishnamurthy 2013 impose that inside and
outside equity have same return



Financial Frictions and Distortions UPDATE!

state 2

® Skin in the game constraint
= Retain certain fraction of risk

Occasionally binding
equity constraint

" Incomplete markets state 1

" “natural” leverage constraint (BruSan)
= Costly state verification (BGG)

" + Leverage constraints

(no “liquidity creation”)

= Exogenous limit (Bewley/Ayagari)

® Collateral constraints

= Next period’s price (KM)
Rby < q¢i1ke
= Next periods volatility (VaR, JG)

= Current price



Two Type Model Setup

Expert sector Household sector
“Output:  yf =a®ki a®=da" wQutput: y! = a"kl

A(K) = ka® + (1 — k)a"

Poll 11: Why is it important that households can hold capital?
a) to capture fire-sales
b) for households to speculate
c) to obtain stationary distribution



Two Type Model Setup

Expert sector Household sector

“Output:  yf =a®ki a®=da" wQutput: y! = a"kl

» Consumption rate: ¢ mConsumption rate: c[‘

- Igg/estment rate: (g 'Iril\}{estment rate: (%

dklé,te = (CD (‘zi:'e) — 5) dt + odZ; + dAIz,f'e dk?,’l = (CID (lz’h) — 6) dt + odZ, + dA’f’h

Physical capital evolution absent market transactions/fire-sales



Two Type Model Setup

Expert sector

" Qutput:  y7f =aki a®=a

» Consumption rate: ¢

" [nvestment rate:  (f

dk}*

e
kt

= (@ () - 8) dt + 0dz, + daf*®

Household sector

=Qutput: yt = ak}

=Consumption rate: ¢

"|nvestment rate: L?

dki’h ih k,h
T = (@ (") - 8)dt + 0dz, + dAy
t

Poll 13: What are the modeling tricks to obtain stationary distribution?

a) switching types

b) agents die, OLG/perpetual youth models (without bequest motive)

c) different preference discount rates



Two Type Model Setup

Expert sector Household sector

“Output:  yf =a®ki a®=da" wQutput: y! = a"kl

» Consumption rate: ¢ mConsumption rate: c[‘

- Igg/estment rate: (g 'Iril\}{estment rate: (%

dklé,te = (CD (‘zi:'e) — 5) dt + odZ; + dAIz,f'e dk?,’l = (CID (lz’h) — 6) dt + odZ, + dA’f’h

®© —pftc)'Y -
u EO[fO e Pt Ct1—y dt] pe = Ph -Eo[fooce—[?ht(czf::)_lyydt]



Two Type Model Setup

Expert sector Household sector

"Output:  yf =a®ki a®=da" wQutput: y! = a"kl

» Consumption rate: ¢ mConsumption rate: c[‘

- Igg/estment rate: (g 'Iril\}{estment rate: (%

dklé,te = (CD (‘zi:'e) — 5) dt + odZ; + dAIz,f'e dk?,’l = (CID (lz’h) — 6) dt + odZ, + dA’f’h

®© —pftc)'Y -
" Lo [fo e~ Pt Ctl_y dt] p°=p" "E, [fOOO e—pht(ctf::)_lyydt]

Friction: Can only issue
" Risk-free debt
HQ,K

= Equity, but must hold yf = ak, i.e. Hf’K + Hte’OE = ab,



Recall Previous Lecture: HH can’t hold capital or equity
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Preview of new, extended model

" Price of capital
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Preview u”7 (n€) & a” (n¢)

= Drift and Volatility of n°

0.05¢

0.04

1 k

“Steady state” 7,

0 0.2 0.4 0.6 0.8 1



Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Joolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice & + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



0. Postulate Aggregates and Processes

" |ndividual capital evolution:
gy N »
= (@) = 8)dt + odZ, + dAg™

~ t
= Where A¥* is the individual cumulative capital purchase process

(c is numeraire)



0. Postulate Aggregates and Processes

" |ndividual capital evolution:
Jic N -
= (@) = 8)dt + odZ, + dAg™

~ s t
= Where A¥* is the individual cumulative capital purchase process
" Capital aggregation:

= Within sector i: Ki= [ kidi

= Across sectors: K: =YK}

= Capital share: ki = K; /K,
dK;

—L = (d(d) —§)dt + odZ,

K

(c is numeraire)



0. Postulate Aggregates and Processes

" |ndividual capital evolution:
gy N »
= (@) = 8)dt + odZ, + dAg™

~ t
= Where A¥* is the individual cumulative capital purchase process

" Capital aggregation:

= Within sector i: Ki= [ kidi

= Across sectors: K: =YK}

= Capital share: ki = K; /K,
dK;

—L = (d(d) —§)dt + odZ,

Kt
" Net worth aggregation: N
= Within sector i: Nt = [ nptdi
= Across sectors: N, = Y; N}
= \Wealth share: nt = N}/N,

(c is numeraire)



0. Postulate Aggregates and Processes

Individual capital evolution:

dké‘ _

kt

= (®(i¥) = §)dt + 0dZ, + dAP™

" Where A'Lf’i’i is the individual cumulative capital purchase process

Capital aggregation:
= \Within sector i:
= Across sectors:

= Capital share:

% = (@(4) -

Net worth aggregation:

= \Within sector i:
= Across sectors:
= \Wealth share:

Ki= [ kidi

Kt =Y, K¢

= K; /K,
S)dt + 0dZ,
Ni = [nptdi
Nt = >; N/

= N¢{/N;

" Value of capital stock: CIth

Postulate

dqe/qe = 1/ dt + o, dZ,

Poll 23: How many Brownian

motions span prob. space?
a) one
b) two
c) one + number of sectors
d) two + number of sectors

(c is numeraire)



0. Postulate Aggregates and Processes

" |ndividual capital evolution:
Ll ~
| dk"zg = (o(:%) — 6)dt + 0dZ, + dAV
" Where A'Lf’i’l is the individual cumulative capital purcﬁhase process
" Capital aggregation: B
= Within sector i: Kl = [ ktdi
= Across sectors: K. =Y, K}
= Capital share: Kl = K} /K, -
dK¢ : 0O
—L = (d(d) —§)dt + odZ, c
K¢ >
" Net worth aggregation: N O
= Within sector i: Nt = [ nptdi ?S
" Across sectors: N =2 N} c
* Wealth share: n: = Nf/N; D
!

" Value of capital stock: q¢K;

Postulate dq:/q; = ugdt + atqut
(c is numeraire)



0. Postulate Aggregates and Processes

" |ndividual capital evolution:
gy N »
= (@) = 8)dt + odZ, + dAg™

~ t
= Where A¥* is the individual cumulative capital purchase process

" Capital aggregation:

= Within sector i: Ki=[k'dr
= Across sectors: K: =YK}
= Capital share: ki = K; /K,
th _ l
e (D(d) — 6)dt + odZ;
" Net worth aggregation: N
= Within sector i: N{ = [ ny'dl
= Across sectors: N, = X, N¢
* Wealth share: n: = Nf/N;
" Value of capital stock: q¢K;
Postulate dq:/q; = ugdt + thdZt
dé; t . .
= Postulated SDF-process: —gf = uf dt + o, dZ; (c is numeraire)
St — —

=—Tt =—¢



0. Postulate Aggregates and Processes

= .. from price processes to return processes (using Ito)

" Jse [to prOdUCt rule to obtain (in absence of purchases/sales)
wp AR i
" Define k{- : Ivcifi = (CI) (Lé’l) — 5) dt + O'dZt / without purchases/sales

‘ Dividend yield E[Capital gain rate]= d(QtZ{ilt)

] (qeke)
i i | |
~ a —1 :
k( L1\ _ t | ( z) . q q
drt (lt ) o - Lt 5 + 'ut + O-O-t dt For aggregate capital return,

q Replace a' with A(k)

+ (o +0)dz,

= Postulate SDF-process: (Example: & = e PtV'(n}).)

dg_git — —Ttdt — (;I’,:dZt
t

Poll 26: Why does drift of SDF equal risk-free rate
a) no idio risk
b)e~"" = E[SDF]*1
c) no jump in consumption

Price of risk
Recall discrete time e = E[SDF]



The Big Picture
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Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)

b. Portfolio choice & + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



1a. Individual Agent Choice of |

" Choice of t is static problem (and separable) for each t

. max drt (Lt)

at — i .
= max FD(il) — 8+ pd + o0
L dt

For aggregate capital return,
Replace a with A(k)

" FOC: — = d'(iL) Tobin’s g

dt
= All agents it = 1, = % = (®(U) —6) dt + odZ,

= Special functional form:
= (1) =%log(qbt+ D=>¢pt=qg—1

= Goods market clearing: (A(x) — 1)K, = Y Ct.



Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution |
a. Transform BSDE for separated value fcn. v*(n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



1b. Individual Agent Choice of ¢ = asset/risk allocation

" Approach 1: Portfolio optimization
= Step 1: Optimization e.g. via Martingale Approach — recall:[uif1 =1l + qéa{‘}

= Of experts with outside equity issuance (after plugging in households’ outside equity
choice)

€e__
~—t+ d@) — S+ ul + o0l =

dt
e + [6fxf/xf + ot (1= x£/xf)](0 +a?)
new compared to Basak-Cuoco

" Of households’ capital choice

Clh—l,t

+®0) —§+ul +o0! <1 + ¢t(o+09)
with equality if k7 < 1
» Step 2: Capital market clearing to obtain asset/risk allocation k7, yf from
portfolio weights Os

dt

" Approach 2: Price-taking Social Planner Approach



1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

" Price-Taking Planner’s Theorem:
A social planner that takes prices as given chooses a

physical asset allocation, k;, and risk allocation, y;, that
coincides with the choices implied by all individuals’

portfolio choices. ¢ =(cl . c])

xe =0k oxb)

, Return on total wealth o(Xt) = (X%UN» ---;X{:UN)
" Planner’s problem

. \
max_E.[dr] (k,)|/dt — ¢.o(xr) =dar/dtin

Kt Xt} equilibrium
subject to friction: F(kg, x¢) < 0
" Example:

1.  x¢ = K¢ (if one holds capital, one has to hold risk)
2. Xt = akg (skinin the game constraint, outside equity up to a limit)




1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

= Sketch of Proof of Theorem
1. Fisher Separation Theorem: (delegated portfolio choice by firm)

=" FOCyield the martingale approach solution

» Each individual agent (i, ) portfolio maximization is
equivalent to the maximization problem of a firm

n(i,’i) . -~
gg}a’li)}( E; [dr ]/dt o

= dr" =Y, 00idri = ¥ 00 E[dri] + X ;67 6TdZ,
is linear in Bs

" Either bang-bang solution for s s.t. portfolio constraints bind

= QOr prices/returns/risk premia are s.t. that firm is indifferent

2. Aggregate
» Taking n-weighted sum to obtain return on aggregate wealth

3. Use market clearing to relate s to ks & ys (incl. 8-constraint)




1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

= Expert: B¢ = (8¢%,0%°E, 92D for capital, outside equity,
debt

= Restrictions: ek >0,
A L gevE <, only issue outside equity
physical 00t > —(1 — a)geX skin in the game

capital 6% | . 0-
equity

maximize
Qf’KE[drte,K]/dt T Hte'OEE[d""tOE]/dt + Qf'DTt — ¢t (HteK + HE'OE)JT&K

oK >0
= Household: 8" = (6K, gMOE ghDy 908 > 0

maximize
OMKE[dr" ] /dt + OMCEE[dn0F]/dt + O7Pr, — cE(81" + 6/+°F )"

2 Types




1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

" Aggreate n-weighted sum of expert + HH max problem 2 Types

ne{..}+n"{..}
. nt eK E[drte K]/dt + 77,'}9 E [drh’K] /dt +
}ct:_ h.
(ne67°F + ! HhOE) E [drtOE] /dt + (nE6;” +nkelP)r,
) =( =0 ]
—cene (67" + 67 ) o — gl (01 + e’wE) o7

e

— Y
— _.h
Xt —x!




1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

" Aggreate n-weighted sum of expert + HH max problem 2 Types
n°{..}+n"{..}
"nf0;" EldrS"]/dt +niort E [d ] /dt +
h.

Kt_
(nt eOF 4 pl HhOE)E[drtOE]/dt+(n

Y

e e(nekK e,0 K h.h{AahK
_Ct nt (Ht + Qt O-t Ht

N e’
A N

=:X? ::Xt

Poll 36: Why = 0 ?

a) because marginal benefits
= marginal costs at optimum

b) due to martingale behavior

c) because outside equity and
debt are in zero net supply




1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

= Translate constraints: 2 Types

" v < ki experts cannot buy outside equity of others

only important for the case with idio risk

e _ ..enék e ne,OF e
"Xt = N0 + N 2 akg
K >—Ki(1-a)

" Price-taking social planers problem

Kkea® + klal — i,
max + @) — 8| = (6Exf +sext)of

k€ xh=1-k8 yeelare k] yt=1-y¢ dt
etk 1ol ]t =1-x End of Proof. Q.E.D.

K

" Linear objective (if frictions take form of constraints)
" Price of risk adjust such that objective becomes flat or
" Bang-bang solution hitting constraints




1b. Toolbox: Price Taking Social Planner = Asset/Risk Allocation

. . 2 Types
" Example 1: 2 Types + no outside equity (a = 1)
e e __.ex-h _ |
may [T ET I ) — 6 - (st + (- 205 + )

s.t. friction yf = k¢ if no outside equity can be issued

e h

— = (st (o + /)

a
'FOCX:

» May hold only with inequality (=), if at constraint kf = 1




1b. Price Taking Social Planner = Asset/Risk Allocation

. . . 2 Types
" Example 2: 2 Types + with outside equity YP
kéa® + (1 —kf)am —,
max + ®@) — 6| — (xfsf + (1 — xE)stt) (o + a)
e XE S ] dt |
" FOC,: Case 1: s¢(c+0l)>c¢Mo+a!)= xf = akf
Case 2: = Xi > akf
» Case 1: plug y§ = akf in objective
q€—gh . a Occasionally binding constraint
d. FOCKZ:q—t = “(Cte — Gt )(U + 0y ) =K <1 (skin in the game constraint)
b. > >k =1 HHs’ short-sale constraint of
" Case 2 capital bindsl, ki =1
at—ah [
a FOC,.: o >0 =>Kki =1 Case 1a Case 1b Case 2a
b. = 0= k7 <1 impossible \ | n

Y
Experts’ skin in the game
constraint binds, yf = akf



1b. Price Taking Social Planner = Asset/Risk Allocation

" Summarizing previous slide (2 types with outside equity)
(sf—¢t)(o+al)=0

1b
23

impossible

Case 1a

(a® -

dt

a")

> a(¢f —¢M) (o + o)

Shift a capital unit to expert

Benefit:
Cost:

HHs’ short-sale constraint of

LHS
RHS

capital binds, k7 =1
|

Required risk premium
of experts vs. HH

Case 1b

Case 2a

Y
Experts’ skin in the game

constraint binds, yf = akf

Y/

Occasionally binding constraint
(skin in the game constraint)

2 Types



Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

" Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



Toolbox 3: Change of Numeraire

= x is a value of a self-financing strategy/asset in $

= Y, price of €in S (exchange rate)
dY,

Y

= x /Y, value of the self-financing strategy/asset in €
A

— X .
e Pu'(c;) YtTt follows a martingale
N " __/ t
=St

Recall uf! — ug = (:021)&0‘4 — of)

s

=Ct risk

Mf/y _‘uf/y — g—af — athgaA —/@’tf— op +/a§/)

price of risk risk

= Price of risk ¢€ = ¢% — g¥




Toolbox 3: Change of Numeraire

= x is a value of a self-financing strategy/asset in $

= Y, price of €in S (exchange rate)

= x /Y, value of the self-financing strategy/asset in €
A
e Pu'(c;) Yt% follows a martingale
~ v — t
=St
Recall uf — ug =( O't)(O' )

s

—qt risk
AlY B/Y

He  — Hg —( Gt )(0 /@/tf_o-l? +%/)

price of risk risk

® Price of risk C€ — §'$ — O'Y Poll 44: Why does the price of risk change, though real risk remains the same
a) because risk-free rate might not stay risk-free
b) because covariance structure changes




Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Joolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



2. GE: Markov States and Equilibria

" Equilibrium is a map

Histories of shocks -------- > prices q,, ¢t i, 0}
{Z;,s €[0,t]}

\ /’

net worth distribution

e _ Nf
— - 1
"t dt Kt (O’ )

net worth share

" All agents maximize utility
" Choose: portfolio, consumption, technology

" All markets clear
" Consumption, capital, money, outside equity



2. Law of Motion of Wealth Share n;

» Method 1: Using Ito’s quotation rule nt = N}/ (q.K;)

= Recall

dN} C}

i : i
— = rpdt + Yral)y ¢ dt+%(o+0,)dZ, — 7 dt
N Nt e Nt N
t ~—————price of t
risk risk
d L
. nnit = ... (lots of algebra)
t

®» Method 2: Change of numeraire + Martingale Approach
" New numeraire: Total wealth in the economy, N;
" Apply Martingale Approach for value of i’s portfolio

. l
» Simple algebra to obtain drift of n;: ,u? |
Note that change of numeraire does not affect ratio n'!




2. 11 Drift of Wealth Share: Many Types

B New Numeraire
= “Total net worth” in the economy, N; (without superscript)
" Type i's portfolio net worth = net worth share

" Martingale Approach with new numeraire
" Asset A = i’s portfolio return in terms of total wealth,

C; i i
(ti | ,u?)dt+az7dZt

Dividend E[capital gains]
yield rate

" Asset B (benchmark asset that everyone can hold,

e.8. risk-free asset or MONEY (in terms of total economy wide wealth as numeraire))

Poll 48: Is risk-free asset
m m )
e dt + oy dZy risk free in the new numeraire?

a) Yes
" Apply our martingale asset pricing formula b) No

ud — uB = cl(gh — o)



2. 11 Drift of Wealth Share: Many Types

" Asset pricing formula (relative to benchmark asset)
i Cf . i
_ N n
it = (g,ﬁ — 0{ )(O‘t — GZ")

n
due to change

He 'Ntl

= Add up across types (weighted), in numeraire
(capital letters without superscripts are aggregates for total economy)

I
./ C' 4
E i’ nt t m _ i’ (i N ( nt m)
Nt Uyt IN e = Ng \ Gt — Ot O, — Ot
t
i/ i/

=0

Poll 49: Why = 0?

a) Because we have stationary distribution
b) Becausenssumuptol

c) Because ns follow martingale

Benchmark asset everyone can trade
ot = —gY



2. 11 Drift of Wealth Share: 2 Types

" Asset pricing formula (relative to benchmark asset) For benchmark asset: risk-free debt
ni G N[ S
m __ A m
He INi Tt _(gt_o-t)(a-t _Ut)
t

" Add up across types (weighted),

(capital letters without superscripts are aggregates for total economy)

Ct

m
— 7T
N, °t

(ﬂtlit +77t.ut )+
=0

= ¢ (58 — o) (GZ’e — GZ’”) +nf (st — ol (U?h - UZ")

" Subtract from each other yield net worth share dynamics

e € n
Wl = A=)t — o) (o o) = 1 =) (st = at') (o7 — ot")

Nf  q¢K¢




2. o'l Volatility of Wealth Share

" Recall Ito ratio rule (only volatility term)

= Since ny = N /N;,

n¢ _ _NE€ i~ _NU
O, = Ot _Ut — Zm — 7’It) Znt Ot

1~ #1
" Note for
e e h Change in notation [n 2 type setting
O'Zl — (1 — 7’]?)(0‘31 —_ O'g" ) Type-net worth is n* = Nt
h e
né e /..e q nh _ Xt q 1—-x¢ q
o; = o+o o, ==—F%|\0+0, )= g+a0o
t xe/me o ( ¢) t ,7{;( t) 1_,75( t)
—peKygeOFE
Hence,
e
,X ~1¢
o] =22 (6 + 0))
n¢
h ;:l e e e e
e
= Note also, 77{30;7 + n?cﬁ =0 = 027 = —n—tap = nteay

nt 1-n¢



2. Amplification Formula: Loss Spiral

e e_.,¢€ —
= Recall o, = them (o +a.)
‘,t_/
leverage
/ e e
" By Ito’s Lemma on g(n°¢) atq = C;((:%)nfaf
; _
g 9 ME) xi —nt q
O = e e (O- T Ot )
qa/me N
elastvicity
" Total volatility
q __ o)
N AP
a/mg  ng
" | 0ss spiral

= Market illiquidity (price impact elasticity)



2. Amplification Formula: Loss Spiral

e e_.,¢€ —

= Recall o, = them (o +a.)

‘,t_/
leverage -
/ e e
" By Ito’s Lemma on g(n°¢) atq = C;((:%)nfaf
; _
g 9 ME) xi —nt q
O = e e (O- T Ot )
qa/me N
elastvicity

" Total volatility

g + O'q _ o Poll 53: Where is the spiral?
1_61’(779)(?—77? a) Sum of infinite geometric series (denominator)
q /775 77? b)in q', since with constant price, no spiral
" | 0ss spiral

= Market illiquidity (price impact elasticity)



Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Joolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

o, Separating value on. V(i n, ) into v (n'/n')'
c.  Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



The Big Picture

/7 ~

aMgi)n"of

"/A

physical assets

/

output A(x)

7\

consumption + investment

1 Nz)_(

_ Debt .
?T]CSI%tion . risk
Outside . ]
equity ~/ amplification
7\
Y
: $
capital k

growth®() — 6

J price of risk ¢\« _

L

drift

( net worth

>t
o |
S | drift
'4:| ->
|
S
Ly
O\
\

- e e s s .

| distribution

T]J _Volatility

——————_—

\

~_———__—

Backward equation Forward equation

with expectations



3a. CRRA Value FunCtiOn Applies separately for each type of agent

" Martingale Approach: works best in endowment economy

" Here: mix Martingale approach with value function (envelop condition)

= Vi(nk;n,, K,) for individuals i

i " iy _ (D1
For CRRA/power utility u(ct) i
= increase net worth by factor, optimal ct for all future states increases
l .
by this factor = (%)—ratio is invariant in ng
t
_ _ C . u a)i(n K )ni
" = value function can be written as V‘(n%; N, Kt) = ( pti : t)

= ol Investment opportunity/ “net worth multiplier”
= w'(n,, K,)-function turns out to be independent of K,
= Change notation from w! (1, K;)-function to wi-process



3a. CRRA Value Function: relate to w

u(a),l:n,‘;)

p

. N1-Y 1=y, \1-Y
1 (wfnl) -1 g (wf) (nf) -1

p 1-y p 1-y

= = value function can be written as ~thatis

oV

6n11 oy
l

R

= u'(c) by optimal consumption (if no corner solution)

& = (VY (T

kTL J

" Forlog utilityy =1
» Consumption choice: ¢; = p'n;
" w; does not matter = income and substitution effect cancel out

» Portfolio choice: myopic (no Mertonian hedging demand)

= Volatility of investment of opportunity/net worth lmultlpller
does not matter = Myopic price of risk ¢; = ¢/ = af



Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Joolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b.
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a.
b

5. KFE: Stationary distribution, Fan charts



4a. Replacing (;

= Recall from optimal re-investment ®'(¢,) = 1/q;
= For ®(1) = %log(qbt +1)=[pt=qg—1




4a. Replacing v, obtain k for good mkt clearing

" Recall from planner’s problem (Step 1b)

(a® — a™)

e _.h q
> a(sf —¢t)(o + o/ (st —st)(o+a') =0

e Shift a capital unit to expert . . .
. Required risk premium

senefit: LA of experts vs. HH

Cost:  RHS P |
1a = < = >
1b = = > >
2a > = > =
impossible

HHs’ short-sale constraint of
capital binds, k7 =1
)

Case 1la Case 1b Case 2a

n

v
Experts’ skin in the game Occasionally binding constraint
constraint binds, yf = aky (skin in the game constraint)




4a. Replacing v, obtain « for good mkt clearing

" Determination of k;

® Based on difference in risk premia (gt — Gt )(0 + Gf)

" For log utility: (at - ol ) (a + th) = (1 %) (0 + atq)
= =since 0276 = X_?n—eﬂ? (6 +al),0/ n" "; 0276 and o/ — gV" = 0278 — a,?h
" Hence,
4 ] )
e h Xt _nt ( +O'q)
a® —a')/q;= «a
R (S BT
with equality if kf < 1
. _/
» Determination of y¢
(- R
Xt = maxiax¢,n;}
- ,




4a. Replacing v, obtain « for good mkt clearing

" Need to determine diff in risk premia (gf — g‘{?)(a + atq):

= Recall for log utility (agle - Ut”h) (0 - atq)

vé > nt o aré > nt

n® _ — q
O-t - e ( +O_t)
Ur;
h T]? e
n" _ n
e h 1 ne
o' —ol' = o
1—-net
e e
h Xt — Nt
— ot o+o
(1 —nd)ng (040




4a. Market Clearing

" Qutput good market
(Kfae + (1 - Kf)ah - tt)Kt — Ct

.. jointly restricts k; and g;
r )

kea® + (1 —k)a" —i(q,) = CIt[’?tPe + (1 — nt)ph]
\_ _J




4a. Market Clearing

= Qutput good market
(Kfae + (1 — Kf)ah — l‘t)Kt — Ctl
kea® + (1 —xpa —u(qy) = q¢ [nep® + (1 —n)p"]
... jointly restricts k; and g;

" Capital market is taken care off by price taking social
planner approach

" Risk-free debt market also taken care off by price taking

social planner approach
(would be cleared by Walras Law anyways)



4a.09(q,q")

" Recall from “amplification slide” — Step 2

o+ ol = °
© _a'g) xE —
a/mg N
(" / e )
q' (n¢)
01 = ——=(xf —nf)(o + )
\_ q(nt) )

" Now all red terms are replaced, and we can solve ...



4b. Algorithm — Static Step

= Suppose we know functions v¢(n¢), v*(n) , have five static conditions:

1. ¢[t = ¢ — 1
2. Planner condition for (ae — ah)/th a > (0 + o, ) = Get
ST a(®),
3. Planner condition for y; = maX{aKf,r]f} ] ke (n°),
4. xga® + (1=-x)a" —u(q.) = qe[nep® + (1 =ne)p"] a9(n°)
_ a'(nf)
5. 07 =405 (f — D) (0 + o) _

= Start at q(0), solve to the right, use different procedure for two 1 regions depending on k

1.  While k¢ < 1, solve ODE for g(n°):
» For given q(n), plug optimal investment (1) into (4)
= Plug planner condition (3) into (2) and (5)
= Solve ODE using three equilibrium condition (2),(4) and (5) via Newton’s method

(see next slide)

2. Whenk =1, (2)is no longer informative, since k® = 1, solve (1) and (4) for gq(n)



4b. Aside: Newton’s Method

» Find the root of equation system F(z,,) = 0 via iterative method
Zpn+1 = Zn _]7;1F(Zn)

Where [, is the Jacobian matrix, i.e., J;; = 0f;(2)/0z;.

" Newton’s method does not guarantee global convergence.

= commonly take several-step iteration.



4b. Aside: Newton’s Method

dt
e

z,=| K& |,

0+0tq

wia+ (1 - xpat =) — [Utpe t(- Tlt)ph]_ 'market clearing condtion
F(z,) = q (ng)(xs — 775)(0' + O'tq) — UqCI(’??) amplification condition
n

" Planner condition for k7
a® —a")—«a o + o, ' '
( )~ aa ( ne)n : ( )

Plug in blue terms from optimal investment and Planner condition for y¢



Solution

" Price of capital

147

1.3}

1.2}

o1.1F

1F

0.9

0.8

ki <1 1
-
- o
IS c°
& <
g I
9 &
9 o)
S =
0 0.2 04 0.6 0.8

Amplification

Parameters: p¢ = .06, p" = .05,a® =.11,a" = .03,
0=.050=.1,a=.50,y=2,¢=10

ki <1 ki =1
-
9
&
S =
& ©
& &
O o
"y <
)
0 0.2 04 0.6 0.8



Volatility Paradox

= Comparative Static w.r.t. o0 =.01,.05,.1

1.6
e 0.06 } /
14t 0.05
004}
oc12t -
L 0.03}
0.02 t
’
0.01

D-E‘ . . . : 1 ﬂ i s
. 0.2 0.3 0.4 0.5

1 - - 1

0.15¢
0.04 7 Ve
d d
0.1} 0.03 }
b =, 0.02
0.05

n - - ‘ - - n



Risk Sharing via Outside Equity

= Comparative Static w.r.t. Risk sharinga = .1,.2, .5
(skin the game constraint)

16
N D_[}? -
(4l 0.06 }
0.05 }
o 1.2 = 0.04
© 0.03}
1 0.02 }
0.01
0.8 ; : : 0
0 01 02 03 04 05
n
0.3} 0.05
0.25 0.04 } /
0.2
l:r':. / ?? 0.03 /
0151 =0.02| /
0.1
0.01
0.05 | } \ﬁr
o LL - oP—————
0 01 02 03 04 05 0 01 02 03 04 05

n



Market Liquidity

» Comparative static w.rt. a* = .0

1.5

.I
=)

0.5

0

0.1

0.08 }
~ 0.06
© 0.04}

0.02}

0 0.1 0.2 0.3
n

0.4

0.08 |

0.06

n

=, 0.04 |

L

0.02}

0.4

3,—.03,—.09




Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Joolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



From ,u”e(ne) & o (n¢) to Stationary Distribution

= Drift and Volatility of n°

0.05 ¢ n°® = ak®
0.04
0.03
“Steady state” n”,
= 0.02
0.01
D ————
-0.01 . . . . . . . . . .
02 04 ; 06 08 1 02 04 06 08 1
HHs" short-sale constraint of HHs’ shcj??rt—sale constraint of
capital binds, kf = 1 capital binds, kf = 1
3 Q 3 3 Q S
& J L2 & W Lo
o | § I 8 | 8 § I 8 |

(
) -
\ v ; n \ v
Experts’ skin in the game Experts’ skin in the game
constraint binds, y§ = akf donstraint binds, y§ = akf

J




5. Kolmogorov Forward Equation

» Given an initial distribution f(n,0) = f,(n),
the density diffusion follows PDE

ofm, ) _ dlf(m,Hulm]  19°[f(n,t)a* ()]
ot on . on?
» “Kolmogorov Forward Equation” is in physics referred to as

“Fokker-Planck Equation”

= Corollary: if stationary distribution f(n) exists, it satisfies the
ODE

o — _Of,Oum] | 10°[f(n,)o*@)]
B on 2 an?




Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Joolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v (n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. vt (n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



5. Stationary Distribution

= Stationary distribution of n¢

e e

n° = ak

| |

Experts’ skin in the game Perfect risk-sharing
constraint binds yf = akyf region (infeasible)

Poll 78: Is the constraint always (not just occasionally) binding
a) yes
b) no, only for some parameters p¢ > p"



5. Stationary Distribution

= Stationary distribution of n¢

n¢ = ax®
[ [
L
=
TIG
\ \
Y Y
Experts’ skin in the game Perfect risk-sharing
constraint binds yf = akyf region (infeasible)

Poll 79: What happens for p€ = p"
a) experts take over the economy, n = 1
b) there is a steady state atn = «



5. Fan chart and distributional impulse response

" ... the theory to Bank of England’s empirical fan charts

= Starts at 1y, the median of stationary distribution

= Simulate a shock at 1% quantile of original Brownian
shock (dZ; = —2.32 dt) for a period of At = 1.

" Converges back to stationary distribution

0.5 n

0.45 -

0.35 - |

Median State

I
-10 0 25 50 75 100



5. Fan chart and distributional impulse response

®m Starts at stationary distribution

" Simulate a shock at 1% quantile of original Brownian
shock (dZ; = —2.32 dt) for a period of At = 1.

" Converges back to stationary distribution

0.5 1
1
1
1




5. Density Diffusion

® Starts at stationary distribution

" Simulate a shock at 1% quantile of original Brownian shock
(dZ; = —2.32 dt) for a period of At = 1.

" Converges back to stationary distribution

18

15

12 +

St ry Period
e Shocked Distribution Shock Period
s Stationary Distribution Transitional Period
e Shocked D 1
20 - Stat Di

15

10

Density f(n", )

0.1

0.6 0.7 0.8 0.9 1 — 200 o ' "'



5.Density Diffusion Movies
















5. Distributional Impulse Response

" Difference between path with and without shock
= Difference converges to zero in the long-run

0.01

Shock |

-0.01 -

Median State

_002 I I I
-10 0 25 50 75 100

Time ¢
o= 0.15
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