Modern Macro, Money, and International Finance

Eco529

Lecture 05: Endogenous Risk Dynamics in Real Macro Model with Heterogenous Agents

Markus K. Brunnermeier

Princeton University

Course Overview

Real Macro-Finance Models with Heterogeneous Agents

- A Simple Real Macro-finance Model
- 2. Endogenous (Price of) Risk Dynamics
- 3. A Model with Jumps due to Sudden Stops/Runs

Money Models

- 1. A Simple Money Model
- 2. Cashless vs. Cash Economy and "The I Theory of Money"
- 3. Welfare Analysis & Optimal Policy
 - 1. Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models

1. International Financial Architecture

Digital Money

Risk premia, price of risk

- Risk premia = price of risk * (endogenous + exogenous risk)
 - Exogenous risk shock from outside
 - Endogenous risk
 - Amplification: adverse feedback loops
 - Multiple equilibria: Run, Sudden Stops

- Non-linearities are key for financial stability
 - Around vs. away from steady state

Desired Model Properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Endogenous risk and price of risk
 - Fire-sales, liquidity spirals, fat tails
 - Spillovers across assets and agents
 - Market and funding liquidity connection
 - SDF vs. cash-flow news
- Volatility paradox
- (Financial innovation less stable economy)
- ("Net worth trap" double-humped stationary distribution)

Persistence Leads to Dynamic Amplification

- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward grow net worth
 - Backward asset pricing

"Single Shock Critique"

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
 - In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis
- Impulse response vs. volatility dynamics

Endogenous Volatility & Volatility Paradox

Endogenous Risk/Volatility Dynamics in BruSan

Beyond Impulse responses

Input: constant volatility

Output: endogenous risk time-varying volatility

total volatility

 $\sigma^{a} = \sigma^{b} = 0.1$

⇒Precautionary savings

- Role for money/safe asset
 - Later: in Money lecture
- \Rightarrow Nonlinearities in crisis \Rightarrow endogenous fait tails, skewness
- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minksy)

Toolboxes: Technical Innovations

- Occasionally binding equity issuance constraint (in addition to natural borrowing limit due to risk aversion)
- Price setting social planner to find capital and risk allocation
- Change of numeraire
 - Easily incorporate aggregate fluctuations
 - To use martingale methods more broadly
- Newton Method to solve log-utility numerical example

Two Type/Sector Model with Outside Equity Handbook of Macroeconomics,

Lecture Notes, Chatper 3

Expert sector

Household sector

- Skin in the Game Constraint: Experts must hold fraction $\chi_t^e = \frac{\sigma_{N^e,t}}{\sigma_{qK,t}} \ge \alpha \kappa_t^e$ of aggregate capital risk with $\alpha \in (0,1)$ $(\chi_t^e > \kappa_t^e \text{ never happens in equilibrium})$
- \blacksquare Return on inside equity N_t can differ from outside equity
 - Issue outside equity at required return from HH
 - In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return

Financial Frictions and Distortions UPDATE!

- Skin in the game constraint
 - Retain certain fraction of risk
- Incomplete markets
 - "natural" leverage constraint (BruSan)
 - Costly state verification (BGG)

- + Leverage constraints (no "liquidity creation")
 - Exogenous limit

(Bewley/Ayagari)

- Collateral constraints
 - Next period's price (KM) $Rb_t \le q_{t+1}k_t$
 - Next periods volatility (VaR, JG)
 - Current price

Expert sector

Household sector

$$extbf{ extbf{ extb}}}}}}}}}}}}}}}} } \end{\textbf{ extbf{ extbf{\etf{\eta}}}}}}}}}}}}}}}}} } \end{\textbf{ extbf{ extb$$

$$A(\kappa) = \kappa^e a^e + (1 - \kappa^e) a^h$$

Poll 11: Why is it important that households can hold capital?

- a) to capture fire-sales
- b) for households to speculate
- c) to obtain stationary distribution

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$\frac{dk_t^{i,e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e}$$

Household sector

- •Consumption rate: c_t^h
- Investment rate: ι_t^n

$$\frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e} \qquad \frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,h}$$

Physical capital evolution absent market transactions/fire-sales

Expert sector

$$extbf{ extbf{ extb}}}}}}}}}}}}}}}} } \end{\textbf{ extbf{ extbf{\etf{\eta}}}}}}}}}}}}}}}}} } \end{\textbf{ extbf{ extb$$

- Consumption rate: c_t^e

$$\frac{dk_t^{i,e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e}$$

Household sector

- •Consumption rate: c_t^h

Investment rate:
$$l_t^e$$
 Investment rate: l_t^h
$$\frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} = \left(\Phi\left(l_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e}$$

$$\frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = \left(\Phi\left(l_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,h}$$

Poll 13: What are the modeling tricks to obtain stationary distribution?

- a) switching types
- b) agents die, OLG/perpetual youth models (without bequest motive)
- c) different preference discount rates

Expert sector

Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$\frac{dk_t^{i,e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e}$$

$$E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt \right] \qquad \rho^e \ge \rho^h \qquad E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Household sector

- •Consumption rate: c_t^h
- Investment rate: ι_t^n $\frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e} \qquad \frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,h}$

$$E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$\frac{dk_t^{\tilde{i},e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e}$$

$$E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt \right] \qquad \rho^e \ge \rho^h \qquad E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Household sector

- •Consumption rate: c_t^h
- Investment rate: ι_t^h $\frac{dk_t^{\tilde{\imath},e}}{k^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e} \qquad \frac{dk_t^{\tilde{\imath},h}}{k^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,h}$

$$-E_0\left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt\right]$$

Friction: Can only issue

- Risk-free debt
- Equity, but must hold $\chi_t^e \ge \alpha \kappa_t$, i.e. $\theta_t^{e,K} + \theta_t^{e,OE} \ge \alpha \theta_t^{e,K}$

Recall Previous Lecture: HH can't hold capital or equity

Basak-Cuco

Preview of new, extended model

Price of capital

Amplification

Parameters: $\rho^e = .06$, $\rho^h = .05$, $a^e = .11$, $a^h = .03$, $\delta = .05$, $\sigma = .1$, $\alpha = .50$, $\gamma = 2$, $\phi = 10$

Preview $\mu^{\eta^e}(\eta^e)$ & $\sigma^{\eta^e}(\eta^e)$

■ Drift and Volatility of η^e

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice heta + Asset market clearing $\,$ or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" 9
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \big(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\big)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \big(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\big)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int_{-\infty}^{\infty} k_{t,i}^{\tilde{\imath},i} d\tilde{\imath}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = (\Phi(\iota^{\tilde{\imath},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

- Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process
- Capital aggregation:

• Within sector
$$i$$
: $K_t^i \equiv \int k_t^{\tilde{\imath},i} d\tilde{\imath}$

• Across sectors:
$$K_t \equiv \sum_i K_t^i$$

■ Capital share:
$$\kappa_t^i \equiv K_t^i/K_t$$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $N_t \equiv \sum_i N_t^i$
 - Wealth share: $\eta_t^i \equiv N_t^i/N_t$

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = (\Phi(\iota^{\tilde{\imath},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

- Where $\Delta_t^{k,\tilde{\iota},i}$ is the individual cumulative capital purchase process
- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $N_t \equiv \sum_i N_t^i$
 - Wealth share: $\eta_t^i \equiv N_t^i/N_t$
- Value of capital stock: $q_t K_t$

Postulate
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$

Poll 23: How many Brownian motions span prob. space?

- a) one
- b) two
- c) one + number of sectors
- d) two + number of sectors

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \big(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\big)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

Capital aggregation:

• Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$

• Across sectors: $K_t \equiv \sum_i K_t^i$

• Capital share:
$$\kappa_t^i \equiv K_t^i/K_t$$

$$\frac{dK_t}{K_t} = (\Phi(\iota_t^i) - \delta)dt + \sigma dZ_t$$

Net worth aggregation:

• Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$

• Across sectors: $N_t \equiv \sum_i N_t^i$

Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$

• Value of capital stock: $q_t K_t$

Postulate $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$

Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \big(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\big)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 • Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $N_t \equiv \sum_i N_t^i$
 - Wealth share: $\eta_t^l \equiv N_t^l/N_t$
- Value of capital stock: $q_t K_t$

Postulate
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$

Postulate $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$ Postulated SDF-process: $\frac{d\xi_t^i}{\xi_t^i} = \underbrace{\mu_t^\xi}_{=-r_t} dt + \underbrace{\sigma_t^{\xi^i}}_{=-c_t^i} dZ_t \qquad (c \text{ is numeraire})$

- ... from price processes to return processes (using Ito)
 - Use Ito product rule to obtain

(in absence of purchases/sales)

■ Define
$$\check{k}_t^{\tilde{\imath}}$$
: $\frac{d\check{k}_t^{\tilde{\imath},i}}{\check{k}_t^{\tilde{\imath},i}} = \left(\Phi\left(\iota_t^{\tilde{\imath},i}\right) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{\tilde{\imath},i}$ without purchases/sales Dividend yield E[Capital gain rate] = $\frac{d(q_t\check{k}_t^i)}{(q_t\check{k}_t^i)}$

$$dr_t^k \left(\iota_t^{\tilde{\imath},i} \right) = \left(\frac{a^i - \iota_t^i}{q} + \Phi(\iota_t^i) - \delta + \mu_t^q + \sigma \sigma_t^q \right) dt$$

$$+ \left(\sigma + \sigma_t^q \right) dZ_t$$
For aggregate Replace a^i with the properties of the pro

For aggregate capital return, Replace a^i with $A(\kappa)$

■ Postulate SDF-process: (Example: $\xi_t^i = e^{-\rho t} V'(n_t^i)$.)

$$\frac{d\xi_t^i}{\xi_t^i} = -r_t dt - \varsigma_t^i dZ_t$$
Price of risk

Recall discrete time $e^{-r^F} = E[SDF]$

Poll 26: Why does drift of SDF equal risk-free rate

a) no idio risk

$$b) e^{-r^F} = E[SDF] * 1$$

c) no jump in consumption

The Big Picture

equation Forward equation Backward

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1a. Individual Agent Choice of ι

- lacktriangle Choice of ι is static problem (and separable) for each t
- $-\max_{\iota_t^i} dr_t^k(\iota_t^i)$

$$= \max_{\iota_t^i} \left(\frac{\alpha^i - \iota_t^i}{q_t} + \Phi(\iota_t^i) - \delta + \mu^q + \sigma \sigma^q \right)$$

For aggregate capital return, Replace a^i with $A(\kappa)$

- FOC: $\frac{1}{q_t} = \Phi'(\iota_t^i)$ Tobin's q
 - All agents $\iota_t^i = \iota_t \Rightarrow \frac{dK_t}{K_t} = (\Phi(\iota_t) \delta) \ dt + \sigma dZ_t$
 - Special functional form:
 - $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \phi \iota = q 1$
- lacksquare Goods market clearing: $(A(\kappa) \iota_t) K_t = \sum_i C_t^i$.

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" 9
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1b. Individual Agent Choice of $\theta \Rightarrow$ asset/risk allocation

- Approach 1: Portfolio optimization
 - Step 1: Optimization e.g. via Martingale Approach recall: $\mu_t^A = r_t^i + \varsigma_t^i \sigma_t^A$
 - Of experts with outside equity issuance (after plugging in households' outside equity choice)

$$\frac{a^e - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q = \\ r_t + \left[\varsigma_t^e \chi_t^e / \kappa_t^e + \varsigma_t^h (1 - \chi_t^e / \kappa_t^e) \right] (\sigma + \sigma^q) \\ \text{new compared to Basak-Cuoco}$$

Of households' capital choice

$$\frac{a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q \leq r_t + \varsigma_t^h(\sigma + \sigma^q)$$
 with equality if $\kappa_t^e < 1$

- Step 2: Capital market clearing to obtain asset/risk allocation κ_t^e , χ_t^e from portfolio weights θs
- Approach 2: Price-taking Social Planner Approach

Price-Taking Planner's Theorem:

A social planner that takes prices as given chooses a physical asset allocation, κ_t , and risk allocation, χ_t , that coincides with the choices implied by all individuals' portfolio choices.

$$\boldsymbol{\varsigma}_t = \left(\varsigma_t^1, ..., \varsigma_t^I\right)$$

$$\boldsymbol{\chi}_t = \left(\chi_t^1, ..., \chi_t^I\right)$$
 Return on total wealth
$$\boldsymbol{\sigma}(\boldsymbol{\chi}_t) = \left(\boldsymbol{\chi}_t^1 \sigma^N, ..., \boldsymbol{\chi}_t^I \sigma^N\right)$$

Planner's problem

$$\max_{\{\boldsymbol{\kappa}_t, \boldsymbol{\chi}_t\}} E_t [dr_t^N(\kappa_t)] / dt - \varsigma_t \sigma(\boldsymbol{\chi}_t) = dr^F / dt \text{ in equilibrium}$$

subject to friction: $F(\kappa_t, \chi_t) \leq 0$

- Example:
 - 1. $\chi_t = \kappa_t$ (if one holds capital, one has to hold risk)
 - 2. $\chi_t \ge \alpha \kappa_t$ (skin in the game constraint, outside equity up to a limit)

- Sketch of Proof of Theorem
- 1. Fisher Separation Theorem: (delegated portfolio choice by firm)
 - FOC yield the martingale approach solution
 - Each individual agent (i, \tilde{i}) portfolio maximization is equivalent to the maximization problem of a firm

$$\max_{\{\boldsymbol{\theta}^{j,i}\}} E_t \left[dr^{n^{(i,\tilde{i})}} \right] / dt - \varsigma \sigma^{r^n}$$

- - lacktriangle Either bang-bang solution for θs s.t. portfolio constraints bind
 - Or prices/returns/risk premia are s.t. that firm is indifferent
- 2. Aggregate
 - lacktriangle Taking η -weighted sum to obtain return on aggregate wealth
- 3. Use market clearing to relate θ s to κ s & χ s (incl. θ -constraint)

2 Types

 $\theta^{h,K} \geq 0$

- Expert: $\boldsymbol{\theta^e} = (\theta^{e,K}, \theta^{e,OE}, \theta^{e,D})$ for capital, outside equity, debt
 - Restrictions: $\theta^{e,K} \geq 0$, $\theta^{e,OE} \leq 0$, only issue outside equity $\theta^{e,OE} \geq -(1-\alpha)\theta^{e,K}$ skin in the game

maximize

capital θ^k

equity

$$\theta_t^{e,K} E[dr_t^{e,K}]/dt + \theta_t^{e,OE} E[dr_t^{OE}]/dt + \theta_t^{e,D} r_t - \varsigma_t^e (\theta_t^{e,K} + \theta_t^{e,OE}) \sigma^{r^{e,K}}$$

■ Household: $\boldsymbol{\theta^h} = (\theta^{h,K}, \theta^{h,OE}, \theta^{h,D})$ $\theta^{h,OE} \geq 0$

maximize

$$\theta^{h,K}E\left[dr_t^{h,K}\right]/dt + \theta^{h,OE}E\left[dr_t^{OE}\right]/dt + \theta^{h,D}r_t - \varsigma_t^e\left(\theta_t^{h,K} + \theta_t^{h,OE}\right)\sigma^{r^{h,K}}$$

2 Types

• Aggreate η -weighted sum of expert + HH max problem $\eta^e\{...\} + \eta^h\{...\}$

$$\eta^{e}\{\dots\} + \eta^{n}\{\dots\}$$

$$\underbrace{\eta^{e}_{t}\theta^{e,K}_{t}}_{t} E\left[dr^{e,K}_{t}\right]/dt + \underbrace{\eta^{h}_{t}\theta^{hK}_{t}}_{\kappa^{h}_{t}:=} E\left[dr^{h,K}_{t}\right]/dt + \underbrace{\left(\eta^{e}_{t}\theta^{e,OE}_{t} + \eta^{h}_{t}\theta^{h,OE}_{t}\right)}_{=0} E\left[dr^{OE}_{t}\right]/dt + \underbrace{\left(\eta^{e}_{t}\theta^{e,D}_{t} + \eta^{h}_{t}\theta^{h,D}_{t}\right)}_{=0} r_{t}$$

$$-\varsigma^{e}_{t}\underbrace{\eta^{e}_{t}\left(\theta^{e,K}_{t} + \theta^{e,OE}_{t}\right)}_{=:\chi^{e}_{t}} \sigma^{rK}_{t} - \varsigma^{h}_{t}\underbrace{\eta^{h}_{t}\left(\theta^{h,K}_{t} + \theta^{h,OE}_{t}\right)}_{=:\chi^{h}_{t}} \sigma^{rK}_{t}$$

2 Types

• Aggreate η -weighted sum of expert + HH max problem $\eta^e\{\dots\} + \eta^h\{\dots\}$

$$\bullet \underbrace{\eta_t^e \theta_t^{e,K} E[dr_t^{e,K}]/dt + \underbrace{\eta_t^h \theta_t^{hK} E[dr_t^{h,K}]/dt + \underbrace{\left(\eta_t^e \theta_t^{e,OE} + \eta_t^h \theta_t^{h,OE}\right) E[dr_t^{OE}]/dt + \left(\eta_t^e \theta_t^{e,D} + \eta_t^h \theta_t^{h,D}\right) r_t }_{=:\chi_t^e}$$

$$-\varsigma_t^e \underbrace{\eta_t^e \left(\theta_t^{e,K} + \theta_t^{e,OE}\right) \sigma_t^{rK} - \varsigma_t^h \underbrace{\eta_t^h \left(\theta_t^{h,K} + \theta_t^{h,OE}\right) \sigma_t^{rK}}_{=:\chi_t^e} \right) }_{=:\chi_t^e}$$

Poll 36: Why = 0 ?

- a) because marginal benefits = marginal costs at optimum
- b) due to martingale behavior
- c) because outside equity and debt are in zero net supply

1b. *Toolbox:* Price Taking Social Planner ⇒ Asset/Risk Allocation

Translate constraints:

2 Types

$$\mathbf{x}_t^e \leq \kappa_t^e$$
 experts cannot buy outside equity of others only important for the case with idio risk

Price-taking social planers problem

$$\max_{\left\{\kappa_t^e, \kappa_t^h = 1 - \kappa_t^e, \chi_t^e \in \left[\alpha \kappa_t^e, \kappa_t^e\right], \chi_t^h = 1 - \chi_t^e\right\}} \left[\frac{\kappa_t^e a^e + \kappa_t^h a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta\right] - (\varsigma_t^e \chi_t^e + \varsigma_t^h \chi_t^h) \sigma_t^{r^K}$$
 End of Proof. Q.E.D.

- Linear objective (if frictions take form of constraints)
 - Price of risk adjust such that objective becomes flat or
 - Bang-bang solution hitting constraints

1b. *Toolbox:* Price Taking Social Planner ⇒ Asset/Risk Allocation

2 Types

■ Example 1: 2 Types + <u>no</u> outside equity ($\alpha = 1$)

$$\max_{\{\kappa_t^e, \chi_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta \right] - \left(\chi_t^e \varsigma_t^e + (1 - \chi_t^e) \varsigma_t^h \right) \left(\sigma + \sigma_t^q \right)$$

s.t. friction $\chi^e_t = \kappa^e_t$ if no outside equity can be issued

$$FOC_{\chi}: \frac{a^e - a^h}{q_t} = (\varsigma_t^e - \varsigma_t^h) (\sigma + \sigma_t^q)$$

■ May hold only with inequality (\geq), if at constraint $\kappa_t^e=1$

1b. Price Taking Social Planner ⇒ **Asset/Risk Allocation**

Example 2: 2 Types + with outside equity

$$\max_{\{\kappa_t^e, \chi_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta \right] - \left(\chi_t^e \varsigma_t^e + (1 - \chi_t^e) \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right)$$

■
$$FOC_{\chi}$$
: Case 1: $\varsigma_t^e(\sigma + \sigma_t^q) > \varsigma_t^h(\sigma + \sigma_t^q) \Rightarrow \chi_t^e = \alpha \kappa_t^e$
Case 2: $\chi_t^e > \alpha \kappa_t^e$

■ Case 1: plug $\chi_t^e = \alpha \kappa_t^e$ in objective

a.
$$FOC_{\kappa}: \frac{a^e - a^h}{q_t} = \alpha (\varsigma_t^e - \varsigma_t^h) (\sigma + \sigma_t^q) \Rightarrow \kappa_t^e < 1$$

b. $\Rightarrow \kappa_t^e = 1$

■ Case 2:

a.
$$FOC_{\kappa}: \frac{a^e - a^h}{q_t} > 0$$
 $\Rightarrow \kappa_t^e = 1$
b. $= 0 \Rightarrow \kappa_t^e < 1$ impossible

Occasionally binding constraint

(skin in the game constraint)

HHs' short-sale constraint of capital binds, $\kappa_t^e=1$

2 Types

Experts' skin in the game constraint binds, $\chi_t^e = \alpha \kappa_t^e$

1b. Price Taking Social Planner ⇒ **Asset/Risk Allocation**

2 Types

Summarizing previous slide (2 types with outside equity)

Cases	$\chi_t^e \ge \alpha \kappa_t^e$	$\kappa_t^e \leq 1$	$\frac{\left(a^{e}-a^{h}\right)}{q_{t}} \geq \alpha \left(\varsigma_{t}^{e}-\varsigma_{t}^{h}\right) \left(\sigma+\sigma_{t}^{q}\right)$ $\begin{array}{c} \text{Shift a capital unit to expert} \\ \text{Benefit: LHS} \\ \text{Cost: RHS} \end{array}$	$(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q) \ge 0$ Required risk premium of experts vs. HH			
1a	=	<	=	>			
1b	=	=	>	>			
2a	>	=	>	=			
impossible							

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach (previous lecture)
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" 9
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of € in \$ (exchange rate)

$$\frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t$$

■ x_t^A/Y_t value of the self-financing strategy/asset in €

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t} \text{ follows a martingale}$$

Recall
$$\mu_t^A - \mu_t^B = \underbrace{(-\sigma_t^\xi)}_{=\varsigma_t} \underbrace{(\sigma^A - \sigma_t^B)}_{risk}$$

$$\mu_t^{A/Y} - \mu_t^{B/Y} = \underbrace{(-\sigma_t^\xi - \sigma_t^Y)}_{price\ of\ risk} \underbrace{(\sigma^A - \sigma_t^Y - \sigma_t^B + \sigma_t^Y)}_{risk}$$

■ Price of risk $\varsigma^{\text{€}} = \varsigma^{\text{$\$$}} - \sigma^{Y}$

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of € in \$ (exchange rate)

$$\frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t$$

■ x_t^A/Y_t value of the self-financing strategy/asset in €

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t}$$
 follows a martingale

Recall
$$\mu_t^A - \mu_t^B = \underbrace{(-\sigma_t^\xi)}_{=\varsigma_t} \underbrace{(\sigma^A - \sigma_t^B)}_{risk}$$

$$\mu_t^{A/Y} - \mu_t^{B/Y} = \underbrace{(-\sigma_t^\xi - \sigma_t^Y)}_{price\ of\ risk} \underbrace{(\sigma^A - \sigma_t^Y - \sigma_t^B + \sigma_t^Y)}_{risk}$$

- Price of risk $\varsigma^{\text{€}} = \varsigma^{\text{$}} \sigma^{Y}$ Poll 44: Why does the price of risk change, though real risk remains the same a) because risk-free rate might not stay risk-free
 - b) because covariance structure changes

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice heta + Asset market clearing $\,$ or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" 9
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

2. GE: Markov States and Equilibria

Equilibrium is a map

Histories of shocks ------ prices $q_t, \varsigma_t^i, \iota_t^i, \theta_t^i$ $\{\mathbf{Z}_s, s \in [0, t]\}$

net worth distribution

$$\eta_t^e = \frac{N_t^e}{q_t K_t} \in (0,1)$$

net worth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology
- All markets clear
 - Consumption, capital, money, outside equity

2. Law of Motion of Wealth Share η_t

- Method 1: Using Ito's quotation rule $\eta_t^i = N_t^i/(q_t K_t)$
 - $\begin{array}{l} \text{Recall} \\ \frac{dN_t^i}{N_t^i} = r_t dt + \underbrace{\frac{\chi_t^i}{\eta_t^i} (\sigma + \sigma_t^q)}_{risk} \underbrace{\sum_{price\ of}^i}_{price\ of\ risk} dt + \underbrace{\frac{\chi_t^i}{\eta_t^i} (\sigma + \sigma_t^q)}_{t} dZ_t \underbrace{\frac{C_t^i}{N_t^i}}_{t} dt \end{array}$
 - $= \frac{d\eta_t^i}{\eta_t^i} = \dots \text{(lots of algebra)}$
- Method 2: Change of numeraire + Martingale Approach
 - lacktriangle New numeraire: Total wealth in the economy, N_t
 - lacktriangle Apply Martingale Approach for value of i's portfolio
 - Simple algebra to obtain drift of η_t^i : $\mu_t^{\eta^i}$ Note that change of numeraire does not affect ratio η^i !

2. μ^{η} Drift of Wealth Share: Many Types

- New Numeraire
 - "Total net worth" in the economy, N_t (without superscript)
 - Type i's portfolio net worth = net worth share
- Martingale Approach with new numeraire
 - Asset A = i's portfolio return in terms of total wealth,

Asset B (benchmark asset that everyone can hold,
 e.g. risk-free asset or money (in terms of total economy wide wealth as numeraire))

$$r_t^m dt + \sigma_t^m dZ_t$$

Poll 48: Is risk-free asset, risk free in the new numeraire?

a) Yes

No

- Apply our martingale asset pricing formula
 - $\mu_t^A \mu_t^B = \varsigma_t^i (\sigma_t^A \sigma_t^B)$

2. μ^{η} Drift of Wealth Share: Many Types

Asset pricing formula (relative to benchmark asset)

$$\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^m = \left(\varsigma_t^i - \sigma_t^N\right) \left(\sigma_t^{\eta^i} - \sigma_t^m\right)$$
due to change

Add up across types (weighted), in numeraire
 (capital letters without superscripts are aggregates for total economy)

$$\sum_{t'}^{I} \eta_t^{i'} \mu_t^{\eta^{i'}} + \frac{C_t}{N_t} - r_t^m = \sum_{i'} \eta_t^{i'} \left(\varsigma_t^{i'} - \sigma_t^N \right) \left(\sigma_t^{\eta^{i'}} - \sigma_t^m \right)$$

Poll 49: Why = 0?

- a) Because we have stationary distribution
- b) Because η s sum up to 1
- c) Because η s follow martingale

Benchmark asset everyone can trade

$$\sigma_t^m = -\sigma_t^N$$

2. μ^{η} Drift of Wealth Share: 2 Types

Asset pricing formula (relative to benchmark asset)

$$\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^m = \left(\varsigma_t^i - \sigma_t^N\right) \left(\sigma_t^{\eta^i} - \sigma_t^m\right)$$

Add up across types (weighted),
 (capital letters without superscripts are aggregates for total economy)

$$\underbrace{(\eta_t^e \mu_t^{\eta^e} + \eta_t^h \mu_t^{\eta^h})}_{=0} + \underbrace{\frac{C_t}{N_t} - r_t^m}_{=0}$$

$$= \eta_t^e \left(\varsigma_t^e - \sigma_t^N \right) \left(\sigma_t^{\eta^e} - \sigma_t^m \right) + \eta_t^h \left(\varsigma_t^h - \sigma_t^N \right) \left(\sigma_t^{\eta^h} - \sigma_t^m \right)$$

Subtract from each other yield net worth share dynamics

$$\mu_t^{\eta^e} = (1 - \eta_t^e) \left(\varsigma_t^e - \sigma_t^N \right) \left(\sigma_t^{\eta^e} - \sigma_t^m \right) - (1 - \eta_t^e) \left(\varsigma_t^h - \sigma_t^N \right) \left(\sigma_t^{\eta^h} - \sigma_t^m \right)$$
$$- \left(\frac{c_t^e}{N_t^e} - \frac{c_t}{q_t K_t} \right)$$

For benchmark asset: risk-free debt $\sigma_t^m = -\sigma_t^N$

2. σ^{η} Volatility of Wealth Share

- Recall Ito ratio rule (only volatility term)
- Since $\eta_t^e = N_t^e/N_t$,

$$\sigma_t^{\eta^e} = \sigma_t^{N^e} - \sigma_t^{N} = \sigma_t^{N^i} - \sum_{i'} {\eta_t^{i'} \sigma_t^{N^{i'}}} = (1 - \eta_t^i) \sigma_t^{N^i} - \sum_{i = \neq i} {\eta_t^{i^-} \sigma_t^{N^{i^-}}}$$

Note for

$$\sigma_t^{\eta^e} = (1 - \eta_t^e)(\sigma_t^{n^e} - \sigma_t^{n^h}) \qquad \text{Type-net worth is } n^i = N^i$$

$$\sigma_t^{n^e} = \underbrace{\chi_t^e/\eta_t^e}_{=\theta^{e,K}+\theta^{e,OE}} (\sigma + \sigma_t^q) \qquad \qquad \sigma_t^{n^h} = \frac{\chi_t^h}{\eta_t^h} (\sigma + \sigma_t^q) = \frac{1 - \chi_t^e}{1 - \eta_t^e} (\sigma + \sigma_t^q)$$

Hence,

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \ (\sigma + \sigma_t^q)$$

 $\blacksquare \text{ Note also, } \eta^e_t \sigma^{\eta^e}_t + \eta^h_t \sigma^{\eta^h}_t = 0 \Rightarrow \sigma^{\eta^h}_t = -\frac{\eta^e_t}{\eta^h_t} \sigma^{\eta^e}_t = -\frac{\eta^e_t}{1 - \eta^e_t} \sigma^{\eta^e}_t$

2. Amplification Formula: Loss Spiral

Recall

$$\sigma_t^{\eta^e} = \underbrace{\frac{\chi_t^e - \eta_t^e}{\eta_t^e}}_{\text{leverage}} (\sigma + \sigma_t^q)$$

$$lacktriangle$$
 By Ito's Lemma on $q(\eta^e)$ $\sigma_t^q = rac{q'(\eta_t^e)}{q(\eta_t^e)} \eta_t^e \sigma_t^{\eta^e}$

$$\sigma_t^q = \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$$

$$= \underbrace{\frac{q'(\eta_t^e)}{q/\eta_t^e}}_{elasticity}$$

Total volatility

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e \quad \eta_t^e}}$$

- Loss spiral
 - Market illiquidity (price impact elasticity)

2. Amplification Formula: Loss Spiral

Recall

$$\sigma_t^{\eta^e} = \underbrace{\frac{\chi_t^e - \eta_t^e}{\eta_t^e}}_{\text{leverage}} (\sigma + \sigma_t^q)$$

$$lacktriangle$$
 By Ito's Lemma on $q(\eta^e)$ $\sigma_t^q = rac{q'(\eta_t^e)}{q(\eta_t^e)} \eta_t^e \sigma_t^{\eta^e}$

$$\sigma_t^q = \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$$
elasticity

Total volatility

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e \eta_t^e}}$$

Poll 53: Where is the spiral?

- a) Sum of infinite geometric series (denominator)
- b) in q', since with constant price, no spiral

- Loss spiral
 - Market illiquidity (price impact elasticity)

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" 9
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

The Big Picture

equation Forward equation Backward

3a. CRRA Value Function Applies separately for each type of agent

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)
- $V^{i}(n_{t}^{i}; \eta_{t}, K_{t})$ for individuals i
- For CRRA/power utility $u(c_t^i) = \frac{(c_t^i)^{1-\gamma}-1}{1-\gamma}$
- \Rightarrow increase net worth by factor, optimal c^i for all future states increases by this factor $\Rightarrow \left(\frac{c_t^i}{n_t^i}\right)$ -ratio is invariant in n_t^i
- ightharpoonup value function can be written as $V^i(n_t^i; \eta_t, K_t) = \frac{u(\omega^i(\eta_t, K_t)n_t^i)}{\sigma^i}$
- $\bullet \omega_t^i$ Investment opportunity/ "net worth multiplier"
 - $\omega^i(\eta_t, K_t)$ -function turns out to be independent of K_t
 - Change notation from $\omega^i(\eta_t, K_t)$ -function to ω_t^i -process

3a. CRRA Value Function: relate to ω

■ ⇒ value function can be written as $\frac{u(\omega_t^i n_t^i)}{\sigma}$, that is

$$=\frac{1}{\rho^i}\frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}-1}{1-\gamma}=\frac{1}{\rho^i}\frac{\left(\omega_t^i\right)^{1-\gamma}\left(n_t^i\right)^{1-\gamma}-1}{1-\gamma}$$

$$\frac{\partial V}{\partial n^i} = u'(c^i) \text{ by optimal consumption (if no corner solution)}$$

$$\frac{\left(\omega_t^i\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma}}{\rho^i} = (c_t^i)^{-\gamma} \Leftrightarrow \frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma = 1$
 - Consumption choice: $c_t^i = \rho^i n_t^i$
 - ω_t does not matter \Rightarrow income and substitution effect cancel out
 - Portfolio choice: myopic (no Mertonian hedging demand)
 - Volatility of investment of opportunity/net worth multiplier does not matter \Rightarrow Myopic price of risk $\varsigma_t^i = \sigma_t^{n^i} = \sigma_t^{c^i}$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" 9
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

Value functions backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{i}}; \eta, K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

4a. Replacing ι_t

- Recall from optimal re-investment $\Phi'(\iota_t) = 1/q_t$
 - For $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \boxed{\phi \iota = q 1}$

4a. Replacing χ , obtain κ for good mkt clearing

Recall from planner's problem (Step 1b)

Cases	$\chi_t^e \ge \alpha \kappa_t^e$	$\kappa_t^e \leq 1$	$\frac{\left(a^{\pmb{e}}-a^{\pmb{h}}\right)}{q_t} \geq \alpha \left(\varsigma_t^{\pmb{e}}-\varsigma_t^{\pmb{h}}\right) \left(\sigma+\sigma_t^q\right)}{\text{Shift a capital unit to expert}}$ Benefit: LHS Cost: RHS	$(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q) \ge 0$ Required risk premium of experts vs. HH			
1a	=	<	=	>			
1b	=	=	>	>			
2a	>	=	>	=			
impossible							

4a. Replacing χ , obtain κ for good mkt clearing

- Determination of κ_t
 - Based on difference in risk premia $(\varsigma_t^e \varsigma_t^h)(\sigma + \sigma_t^q)$
 - For log utility: $\left(\sigma_t^{n^e} \sigma_t^{n^h}\right) \left(\sigma + \sigma_t^q\right) = \frac{\chi_t^e \eta_t^e}{(1 \eta_t^e)\eta_t^e} \left(\sigma + \sigma_t^q\right)$ $= \text{since } \sigma_t^{\eta^e} = \frac{\chi_t^e \eta_t^e}{\eta_t^e} \left(\sigma + \sigma_t^q\right), \sigma_t^{\eta^h} = -\frac{\eta_t^e}{1 \eta_t^e} \sigma_t^{\eta^e} \text{ and } \sigma_t^{n^e} \sigma_t^{n^h} = \sigma_t^{\eta^e} \sigma_t^{\eta^h}$
 - Hence,

$$(a^e - a^h)/q_t \ge \alpha \frac{\chi_t^e - \eta_t^e}{(1 - \eta_t^e)\eta_t^e} (\sigma + \sigma_t^q)^2$$

with equality if $\kappa_t^e < 1$

■ Determination of χ_t^e

$$\chi_t^e = \max\{\alpha \kappa_t^e, \eta_t^e\}$$

4a. Replacing χ , obtain κ for good mkt clearing

■ Need to determine diff in risk premia $(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q)$:

Recall

for log utility
$$\left(\sigma_t^{n^e} - \sigma_t^{n^h}\right)\left(\sigma + \sigma_t^q\right)$$

diff in price of risk:

$$\zeta_t^e - \zeta_t^h = -\sigma_t^{v^e} + \sigma_t^{v^h} + \frac{\sigma_t^{\eta^e}}{1 - \eta_t^e}$$

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$$

$$\sigma_t^{\eta^h} = -\frac{\eta_t^e}{1 - \eta_t^e} \sigma_t^{\eta^e}$$

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \left(\sigma + \sigma_t^q \right)$$
$$\sigma_t^{\eta^h} = -\frac{\eta_t^e}{1 - \eta_t^e} \sigma_t^{\eta^e}$$

By Ito's lemma

$$\sigma_t^{v^e} = \frac{\partial_{\eta} v_t^e}{v_t^e} \eta_t^e \sigma_t^{\eta^e} \text{ and } \sigma_t^{v^h} = \frac{\partial_{\eta} v_t^h}{v_t^h} \eta_t^e \sigma_t^{\eta^e} \qquad \sigma_t^{n^e} - \sigma_t^{n^h} = \frac{1}{1 - \eta_t^e} \sigma_t^{\eta^e}$$

$$\Rightarrow \left(\varsigma_t^e - \varsigma_t^h\right)\left(\sigma + \sigma_t^q\right) = \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{\left(1 - \eta_t^e\right)\eta_t^e}\right)\eta_t^e \sigma_t^{\eta^e} \left(\sigma + \frac{\sigma_{tq}^{n^e}}{\sigma_t^h}\right) \sigma_t^{n^h} = \frac{\chi_t^e - \eta_t^e}{(1 - \eta_t^e)\eta_t^e} \left(\sigma + \sigma_t^q\right)$$

 $\chi_t^e > \eta_t^e \Leftrightarrow \alpha \kappa_t^e > \eta_t^e$

$$= \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1-\eta_t^e)\eta_t^e}\right) (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q)^2$$

Note, since
$$-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1-\eta_t^e)\eta_t^e} > 0$$
,

4a. Market Clearing

Output good market

$$(\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t)K_t = C_t$$

... jointly restricts κ_t and q_t

$$\left(\kappa_t a^e + (1 - \kappa_t) a^h - \iota(q_t) = q_t \left[\eta_t \rho^e + (1 - \eta_t) \rho^h\right]\right) = \underbrace{\left(\frac{\eta_t^e q_t}{v_t^e}\right)^{1/\gamma}}_{C_t^e/K_t} + \underbrace{\left(\frac{(1 - \eta_t^e) q_t}{v_t^h}\right)^{1/\gamma}}_{C_t^h/K_t}$$

4a. Market Clearing

Output good market

$$\begin{aligned} \left(\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t\right) K_t &= C_t, \\ \kappa_t a^e + (1 - \kappa_t) a^h - \iota(q_t) &= q_t \left[\eta_t \rho^e + (1 - \eta_t) \rho^h\right] \\ & \text{... jointly restricts } \kappa_t \text{ and } q_t \end{aligned}$$

 Capital market is taken care off by price taking social planner approach

$$\theta_t^{e,K} = \frac{\kappa_t^e q_t K_t}{\eta_t^e q_t K_t}$$

 Risk-free debt market also taken care off by price taking social planner approach (would be cleared by Walras Law anyways)

4a. $\sigma^q(q,q')$

■ Recall from "amplification slide" — Step 2

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e) \chi_t^e - \eta_t^e}{q/\eta_t^e \eta_t^e}}$$

$$\sigma^{q} = \frac{q'(\eta_t^e)}{q(\eta_t^e)} (\chi_t^e - \eta_t^e)(\sigma + \sigma_t^q)$$

■ Now all red terms are replaced, and we can solve ...

4b. Algorithm – Static Step

- Suppose we know functions $v^e(\eta^e)$, $v^h(\eta)$, have five static conditions:
- $\phi \iota_t = q_t 1$
- Planner condition for κ_t^e : $(a^e a^h)/q_t \ge \alpha \frac{\chi_t^e \eta_t^e}{(1 \eta_t^e)\eta_t^e} (\sigma + \sigma_t^q)^2$ \Rightarrow Get $q(\eta^e)$, Planner condition for $\chi_t^e = \max\{\alpha \kappa_t^e, \eta_t^e\}$ $\kappa^e(\eta^e)$,
- 4. $\kappa_t^e a^e + (1 \kappa_t^e) a^h \iota(q_t) = q_t [\eta_t \rho^e + (1 \eta_t) \rho^h]$
- 5. $\sigma^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} (\chi_t^e \eta_t^e) (\sigma + \sigma_t^q)$
- Start at q(0), solve to the right, use different procedure for two η regions depending on κ :

 $\sigma^q(\eta^e)$

- 1. While $\kappa^e < 1$, solve ODE for $q(\eta^e)$:
 - For given $q(\eta)$, plug optimal investment (1) into (4)
 - Plug planner condition (3) into (2) and (5)
 - Solve ODE using three equilibrium condition (2),(4) and (5) via Newton's method (see next slide)
- When $\kappa = 1$, (2) is no longer informative, since $\kappa^e = 1$, solve (1) and (4) for $q(\eta)$

4b. Aside: Newton's Method

■ Find the root of equation system $F(\mathbf{z}_n) = 0$ via iterative method $\mathbf{z}_{n+1} = \mathbf{z}_n - J_n^{-1} F(\mathbf{z}_n)$

Where J_n is the Jacobian matrix, i.e., $J_{ij} = \partial f_i(\mathbf{z})/\partial z_j$.

- Newton's method does not guarantee global convergence.
- commonly take several-step iteration.

4b. Aside: Newton's Method

$$m{z}_n = egin{bmatrix} q_t \ \kappa_t^e \ \sigma + \sigma_t^q \end{bmatrix}$$
 ,

$$F(\mathbf{z}_n) = \begin{bmatrix} \kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota(q_t) - q_t [\eta_t \rho^e + (1 - \eta_t) \rho^h] \\ q'(\eta_t^e) (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q) - \sigma^q q(\eta_t^e) \\ (a^e - a^h) - \alpha q_t \frac{\chi_t^e - \eta_t^e}{(1 - \eta_t^e) \eta_t^e} (\sigma + \sigma_t^q)^2 \end{bmatrix}$$

market clearing condtion amplification condition Planner condition for κ_t^e

Solution

Price of capital

Amplification

Parameters: $\rho^e = .06$, $\rho^h = .05$, $a^e = .11$, $a^h = .03$, $\delta = .05$, $\sigma = .1$, $\alpha = .50$, $\gamma = 2$, $\phi = 10$

Volatility Paradox

• Comparative Static w.r.t. $\sigma = .01, .05, .1$

Risk Sharing via Outside Equity

• Comparative Static w.r.t. Risk sharing $\alpha = .1, .2, .5$ (skin the game constraint)

Market Liquidity

■ Comparative static w.r.t. $a^h = .03, -.03, -.09$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

From $\mu^{\eta^e}(\eta^e)$ & $\sigma^{\eta^e}(\eta^e)$ to Stationary Distribution

■ Drift and Volatility of η^e

5. Kolmogorov Forward Equation

• Given an initial distribution $f(\eta,0)=f_0(\eta)$, the density diffusion follows PDE

$$\frac{\partial f(\eta, t)}{\partial t} = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

 "Kolmogorov Forward Equation" is in physics referred to as "Fokker-Planck Equation"

lacktriangledown Corollary: if stationary distribution $f(\eta)$ exists, it satisfies the ODE

$$0 = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
 - c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution

Value functions

- a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
- b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

5. Stationary Distribution

• Stationary distribution of η^e

Poll 78: Is the constraint always (not just occasionally) binding

- a) yes
- b) no, only for some parameters $\rho^e > \rho^h$

5. Stationary Distribution

• Stationary distribution of η^e

Poll 79: What happens for $\rho^e = \rho^h$

- a) experts take over the economy, $\eta \to 1$
- b) there is a steady state at $\eta = \alpha$

region (infeasible)

5. Fan chart and distributional impulse response

- ... the theory to Bank of England's empirical fan charts
- \blacksquare Starts at η_0 , the median of stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 \ dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution

5. Fan chart and distributional impulse response

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 \ dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution

5. Density Diffusion

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock $(dZ_t=-2.32\ dt)$ for a period of $\Delta t=1$.
- Converges back to stationary distribution

5.Density Diffusion Movies

5. Distributional Impulse Response

- Difference between path with and without shock
- Difference converges to zero in the long-run

