Modern Macro, Money, and International Finance Eco529 Lecture 07: Kolmogorov Forward Equation

Markus K. Brunnermeier Princeton University

Toolboxes

- Stationary distribution
- Impulse Response Fan charts
- Evolution of cross-sectional distribution

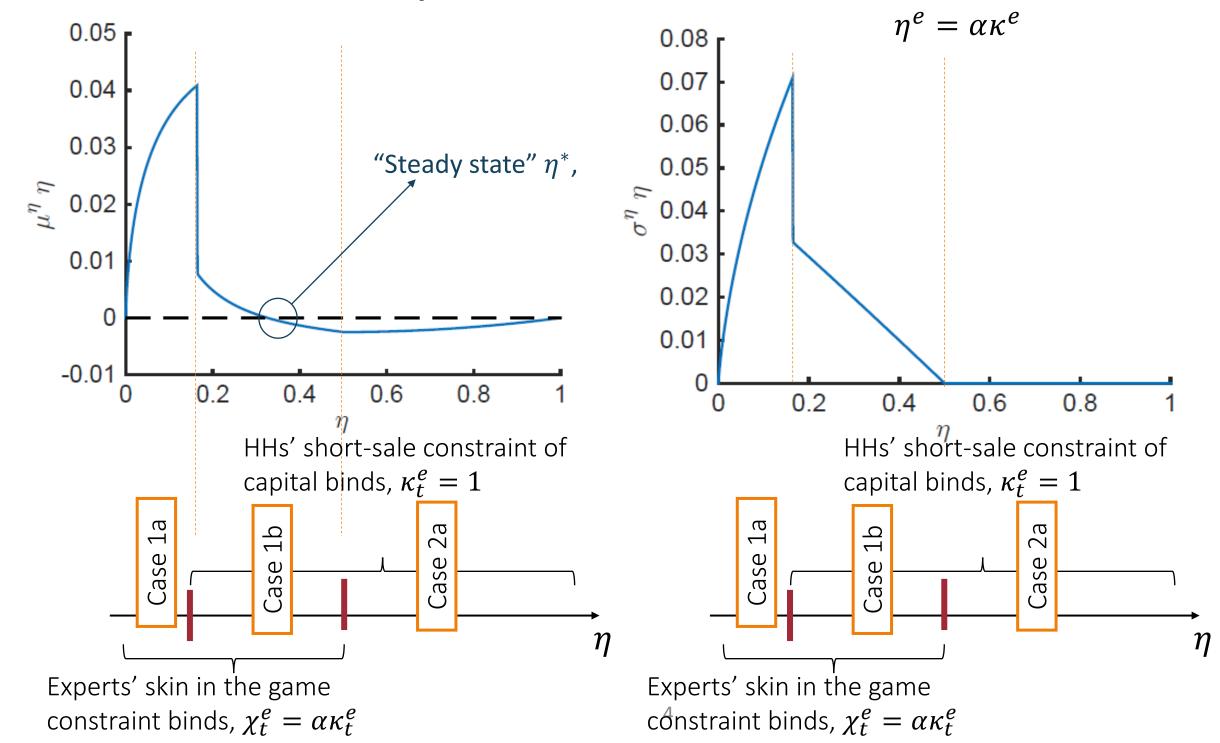
Solving MacroModels Step-by-Step

- Postulate aggregates, price processes & obtain return processes 0.
- For given C/N-ratio and SDF processes for each *i* finance block 1.
 - Real investment ι + Goods market clearing *(static)* a.
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- Evolution of state variable η (and K) 2.
- Value functions 3.
 - Value fcn. as fcn. of individual investment opportunities ω а.
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{i}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
 - Derive C/N-ratio and ς price of risk С.
- Numerical model solution 4.
 - a. Transform BSDE for separated value fcn. $v^{i}(\eta)$ into PDE
 - Solve PDE via value function iteration b.
- KFE: Stationary distribution, Fan charts 5.

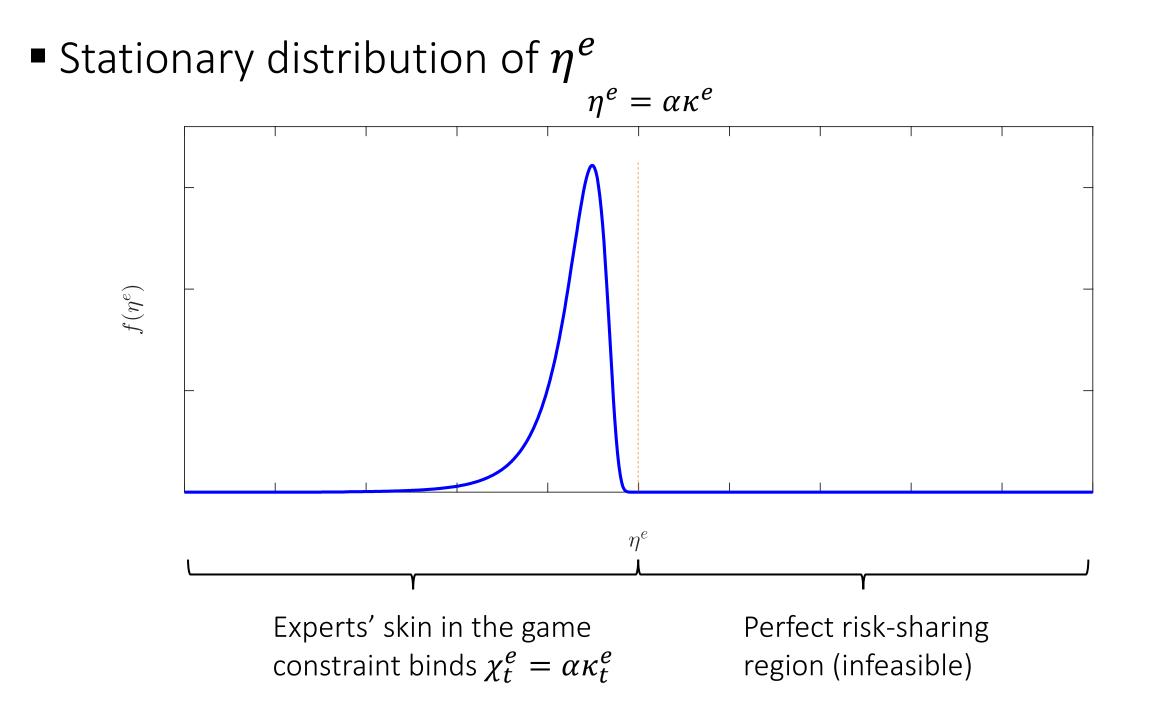
forward equation backward equation

5. From $\mu^{\eta^e}(\eta^e)$ & $\sigma^{\eta^e}(\eta^e)$ to Stationary Distribution

• Drift and Volatility of η^e



5. Preview: Stationary Distribution



5. Kolmogorov Forward Equation

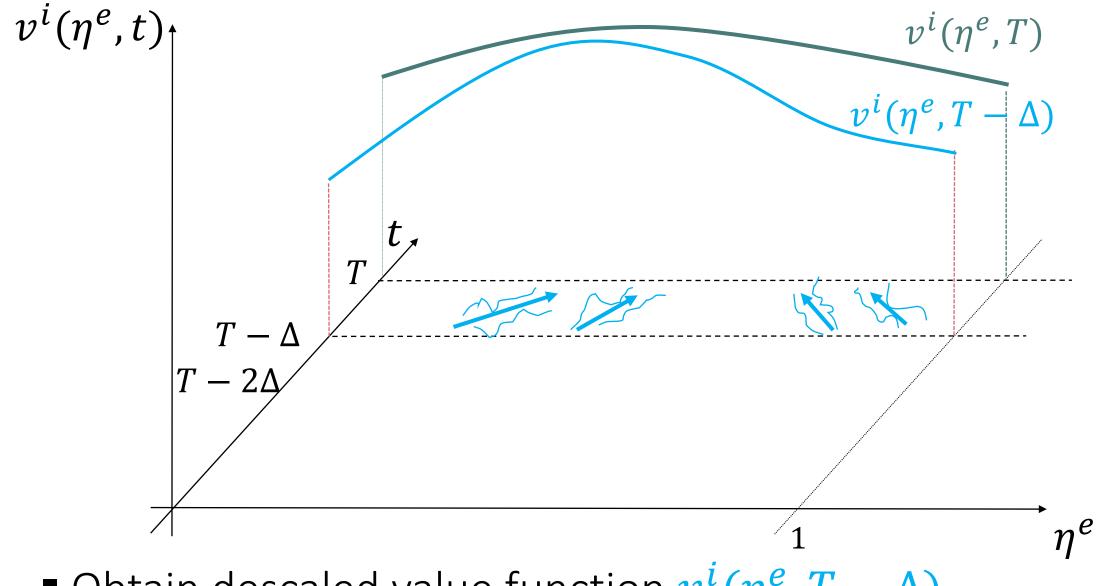
• Given an initial distribution $f(\eta, 0) = f_0(\eta)$, the density diffusion follows parabolic PDE

$$\frac{\partial f(\eta, t)}{\partial t} = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

"Kolmogorov Forward Equation" is in physics referred to as "Fokker-Planck Equation"

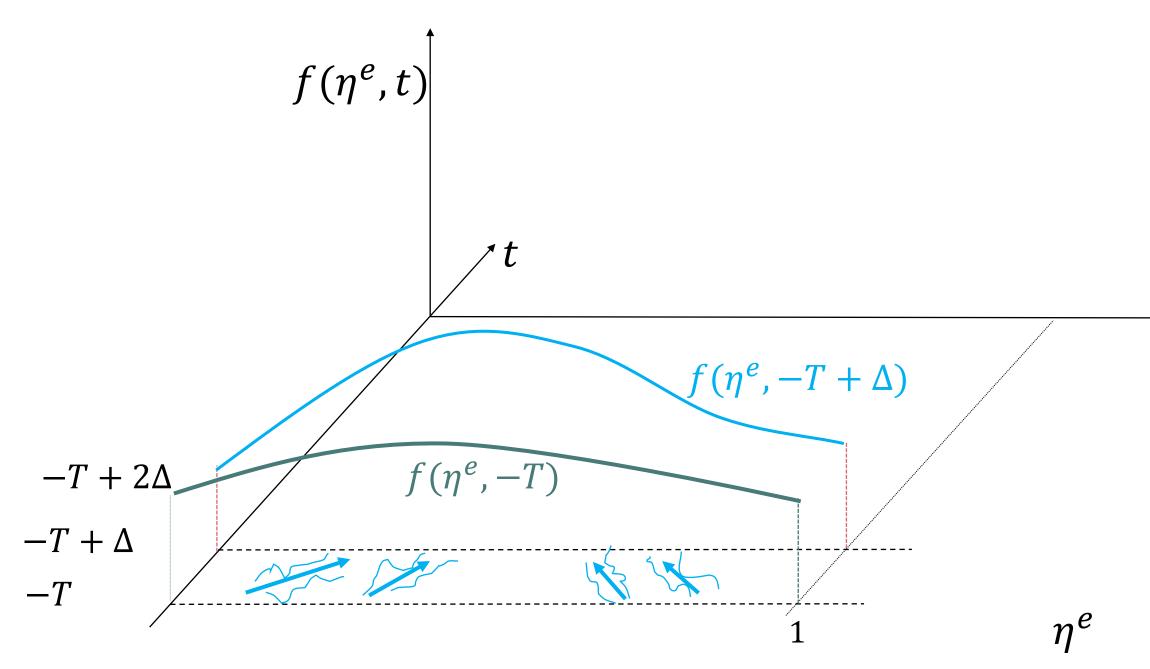
• Corollary: if stationary distribution $f(\eta)$ exists, it satisfies the ODE $0 = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial n} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial n^2}$

Recall: 4. Value Function Backwards Iteration



- Obtain descaled value function $v^i(\eta^e, T \Delta)$
- Repeat previous steps

5. Forward Iteration ... from past to the present



- Obtain descaled density function $f(\eta^e, -T + \Delta)$
- Repeat previous steps

5. Density Diffusion

• Given an initial distribution $f(\eta, 0) = f_0(\eta)$, the density diffusion follows parabolic PDE

$$\frac{\partial f(\eta, t)}{\partial t} = -\frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\mu(\eta)]}{\partial \eta^2}$$

- Simpler than value function:
 - Inear PDE, if $\mu(\eta)$ and $\sigma(\eta)$ are known functions that do not depend on $f(\cdot)$

$\frac{\sigma^2(\eta)}{\sigma^2(\eta)}$

5. Stationary Distribution

- Iterate time-dependent KFE until convergence
- Simpler methods since linear

 $\mu(\eta)$ and $\sigma(\eta)$ are known functions that do not depend on $f(\cdot)$)

- Discretize stationary KFE to obtain linear equation system
- Complication: no unique solution (if f_{∞} is a solution, so is αf_{∞} for any $\alpha \in \mathbb{R}$)
 - Method 1:

Determine the whole nullspace of the equation's matrix and then find a vector in the nullspace that satisfies the normalization condition

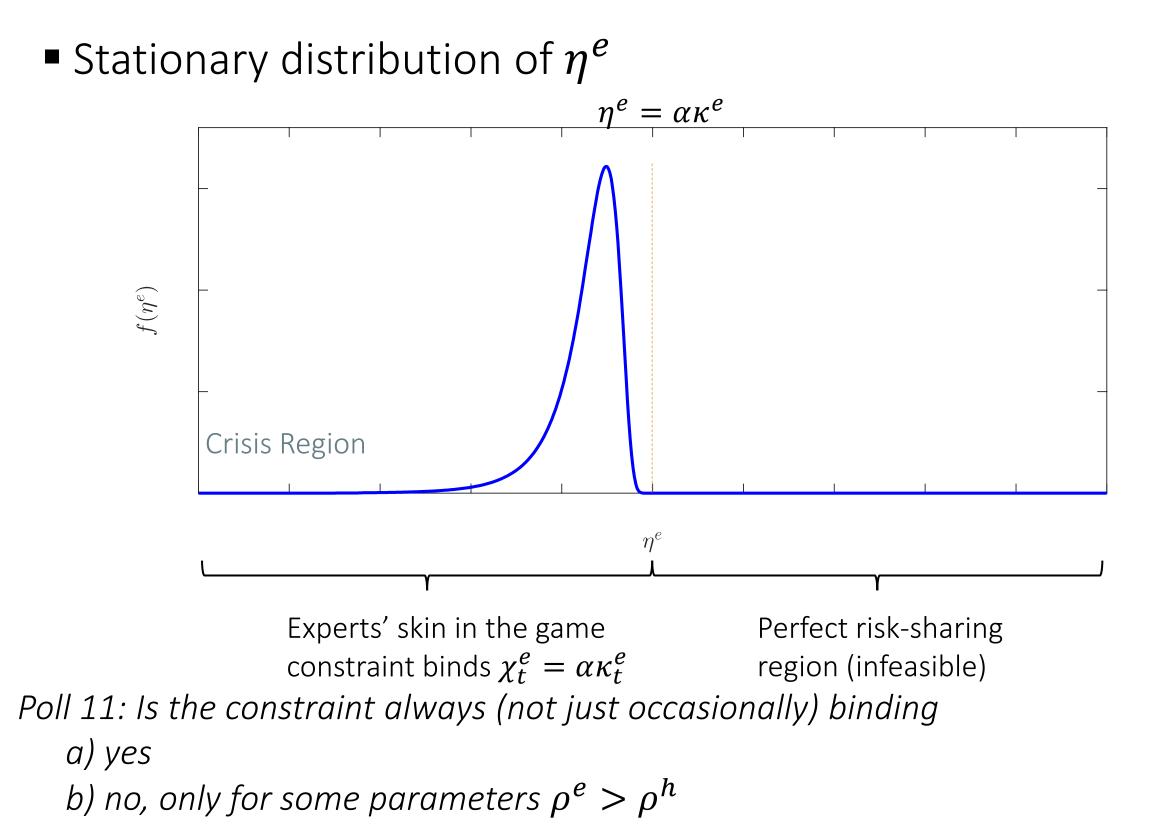
Method 2:

Add the normalization condition as a separate linear equation to the system. ⇒ matrix is not longer square matrix make it a square matrix again

 drop redundant equation (i.e. maintaining full rank of matrix) or regression

)) For any $\alpha \in \mathbb{R}$)

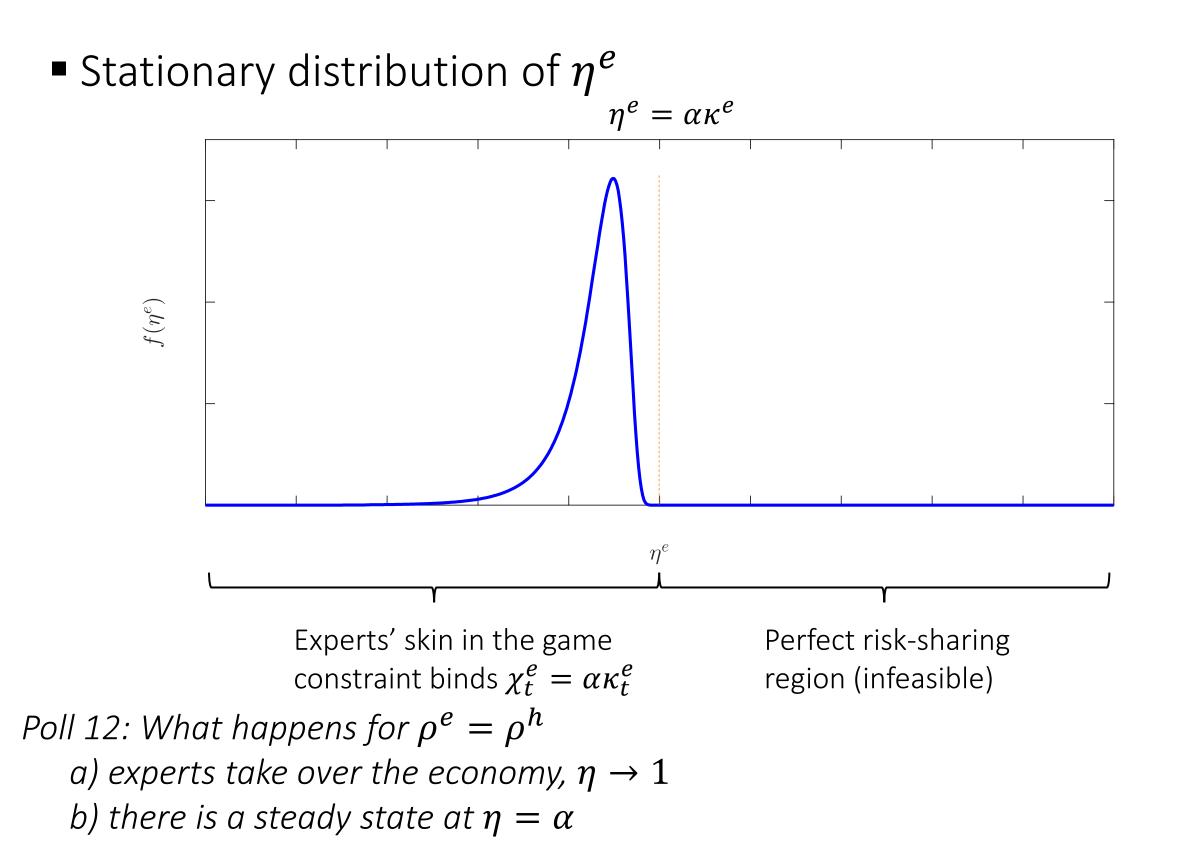
5. Stationary Distribution



Crisis region is a tail event

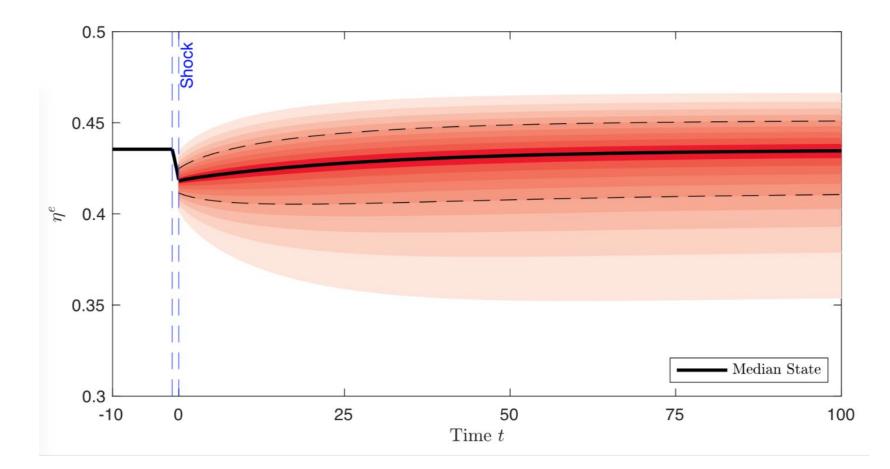
- Interest action happens there
- Simulation method based on stationary distribution does not focus sufficiently on it

5. Stationary Distribution



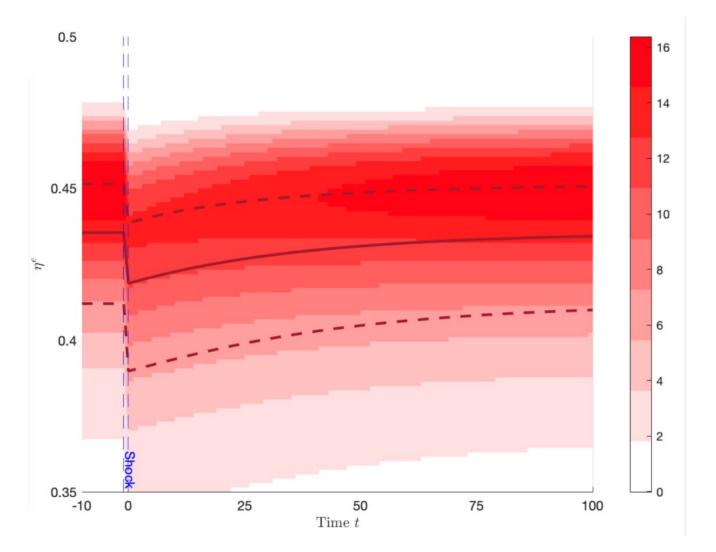
5. Fan chart and distributional impulse response

- In the theory to Bank of England's empirical fan charts
- Starts at η_0 , the median of stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution



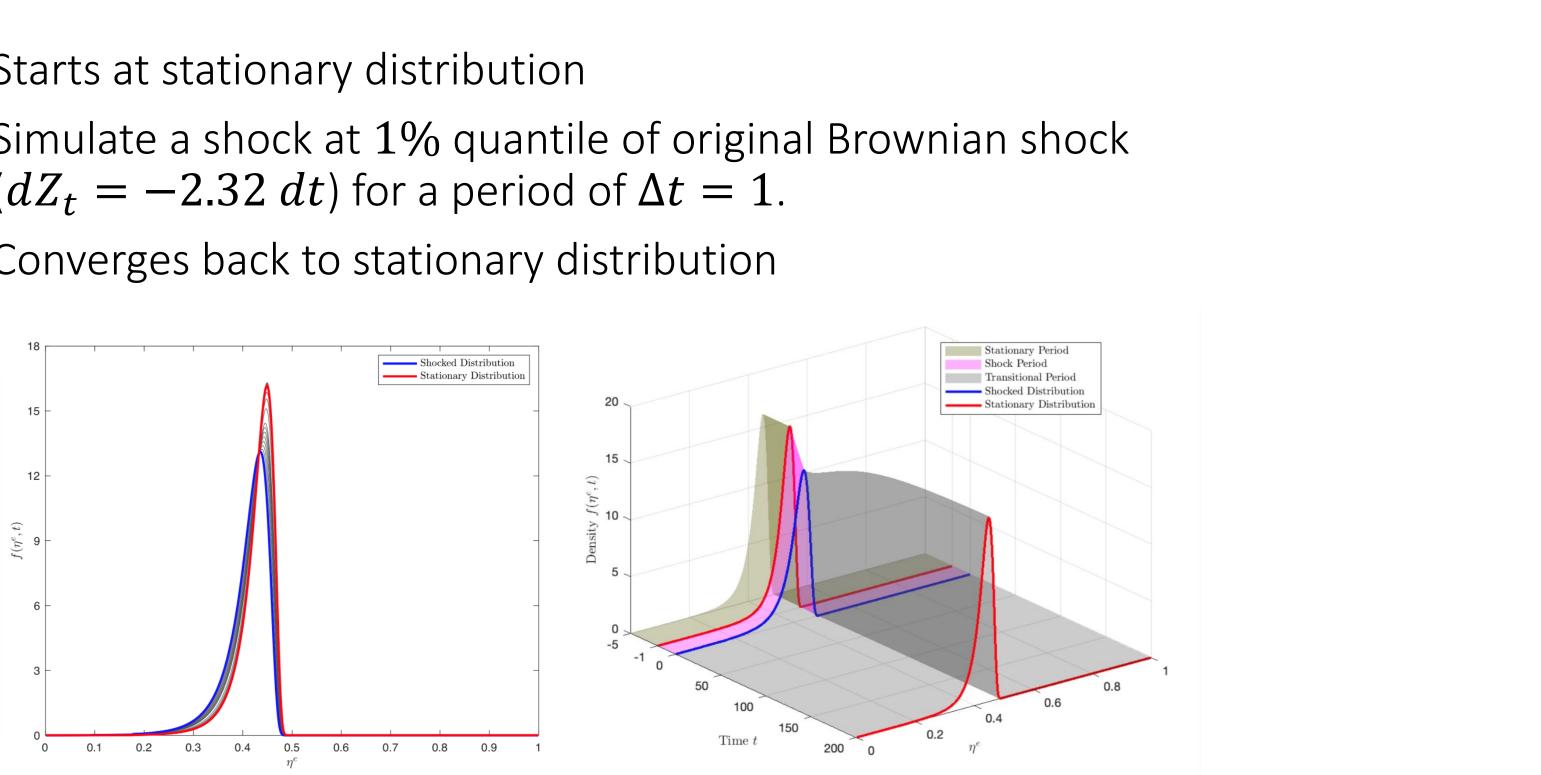
5. Fan chart and distributional impulse response

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution

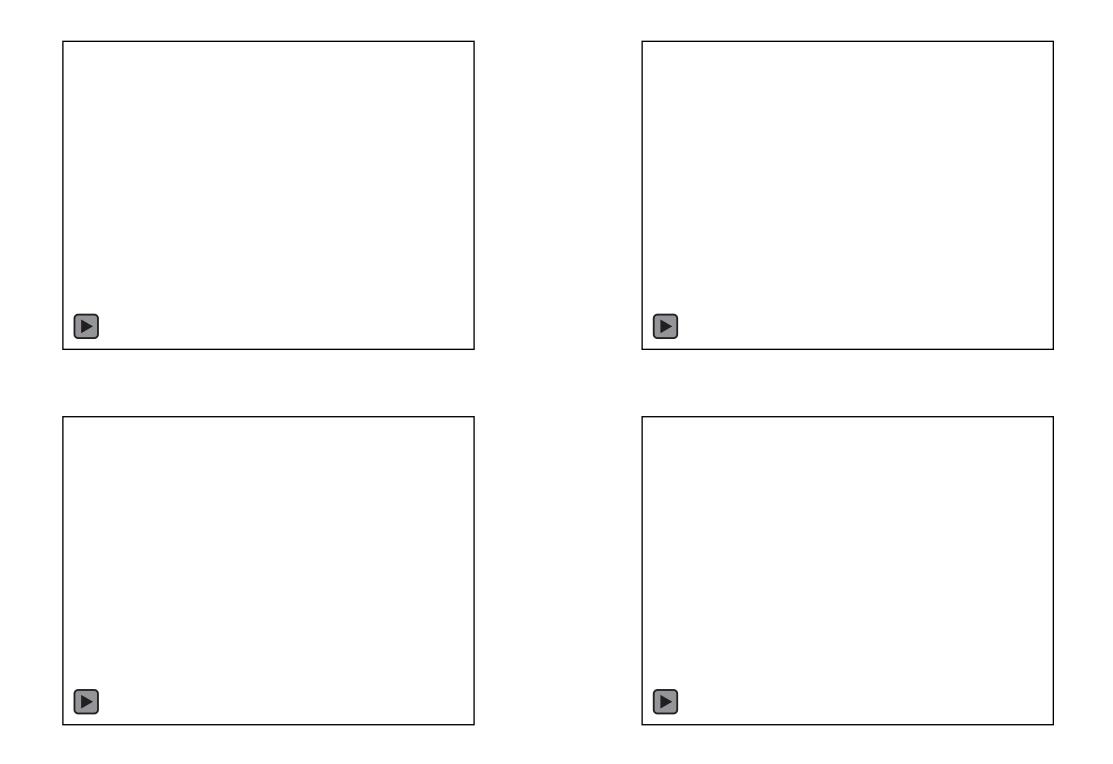


5. Density Diffusion

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock $(dZ_t = -2.32 dt)$ for a period of $\Delta t = 1$.
- Converges back to stationary distribution



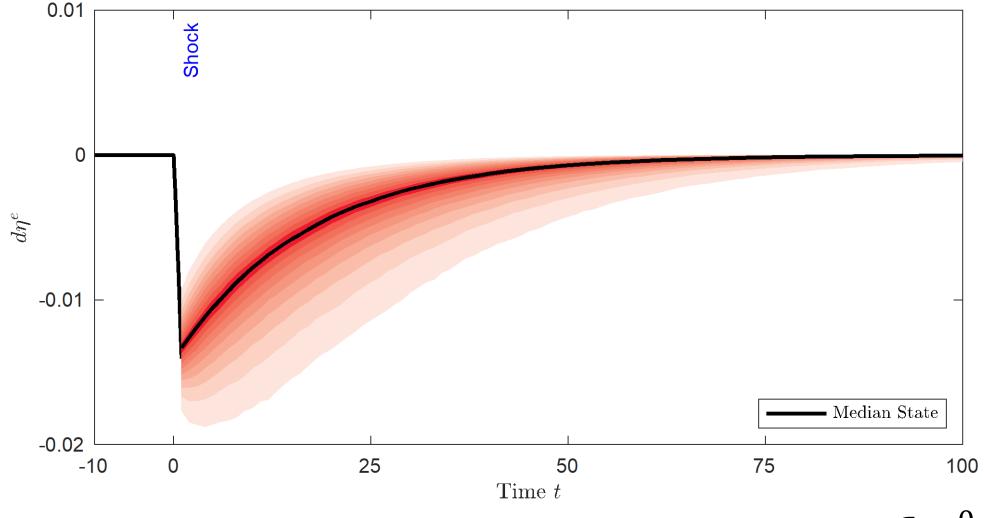
5.Density Diffusion Movies



16

5. Distributional Impulse Response

- Difference between path with and without shock
- Difference converges to zero in the long-run



 $\sigma = 0.15$

The 3 Roles of KFE

- So far, KFE characterizes the
 - 1. Stationary probability distribution
 - 2. Density evolution of the system (distribution impulse ffan charts
 - Markov process maps probabilistic predictions for the initial state η_0 (i.e. density f_0) into probabilistic prediction for state η_t (i.e. density $f(\cdot, t)$)
- KFE as
 - **3.** State equation (e.g. in Aiyagari-type models) describes the evolution of the cross-sectional distribution of net worth across a continuum of households (not the evolution of probability).
 - Mathematically identical (similar with jumps)
- In BruSan with 2 (finite) types: KFE takes on role 2. and 3.
 - With infinite types (like in Aiyagari/HANK models): infinite-dimensional object that summarizes cross-sectional wealth distribution = density evolution is governed by KFE

Toolboxes

- Stationary distribution
- Impulse Response Fan charts
- Evolution of cross-sectional distribution