Modern Macro, Money, and International Finance

Eco529

Lecture 06: Real Macro Model with Heterogenous Agents CRRA and Epstein-Zin Preferences

Markus K. Brunnermeier

Princeton University

Course Overview

Real Macro-Finance Models with Heterogeneous Agents

- A Simple Real Macro-finance Model
- 2. Endogenous (Price of) Risk Dynamics
- 3. A Model with Jumps due to Sudden Stops/Runs

Money Models

- 1. A Simple Money Model
- 2. Cashless vs. Cash Economy and "The I Theory of Money"
- 3. Welfare Analysis & Optimal Policy
 - 1. Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models

1. International Financial Architecture

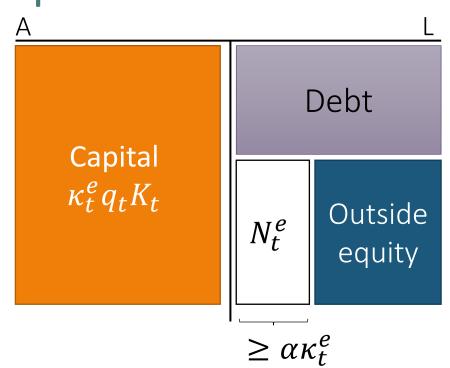
Digital Money

BruSan 2017:

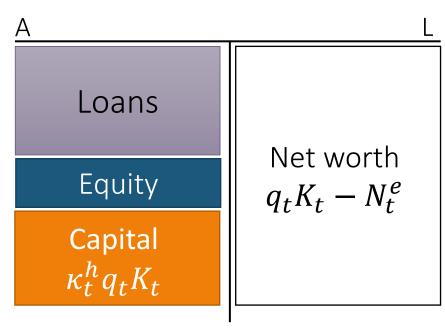
Two Type/Sector Model with Outside Equity Handbook of Macroeconomics,

Lecture Notes, Chatper 3

Expert sector



Household sector



- Skin in the Game Constraint: Experts must hold fraction $\chi_t^e \ge \alpha \kappa_t^e$ of aggregate capital risk with $\alpha \in (0,1)$ $(\chi_t^e > \kappa_t^e$ never happens in equilibrium)
- \blacksquare Return on inside equity N_t can differ from outside equity
 - Issue outside equity at required return from HH
 - In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return

Two Type Model Setup

Expert sector

Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e

$$E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt \right] \qquad \rho^e \ge \rho^h \qquad E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Friction: Can only issue

- Risk-free debt
- Equity, but must hold $\chi_t^e \geq \alpha \kappa_t$

Household sector

- •Consumption rate: c_t^h
- Investment rate: ι_t^e Investment rate: ι_t^h $\frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} = (\Phi(\iota_t^{\tilde{\imath},e}) \delta)dt + \sigma dZ_t + d\Delta_t^{k,e}$ $\frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = (\Phi(\iota_t^{\tilde{\imath},h}) \delta)dt + \sigma dZ_t + d\Delta_t^{k,h}$

$$E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Recursive Epstein-Zin Utility: Separating EIS from Risk Aversion

■ For all $t \ge 0$

$$U_t = \mathbb{E}_t \left[\int_t^{\infty} f(c_s, U_s) ds \right]$$

With the aggregator

$$f(c,U) = \frac{1 - \gamma}{1 - \psi^{-1}} \rho U \left(\left(\frac{c}{((1 - \gamma)\rho U)^{1/(1 - \gamma)}} \right)^{1 - \psi^{-1}} - 1 \right)$$

■ Special Case: EIS $\psi \to 1$

$$f(c, U) = (1 - \gamma)\rho U \left(\log c - \frac{1}{1 - \gamma}\log((1 - \gamma)\rho U)\right)$$

■ Special Case: EIS $\psi = \gamma^{-1} \neq 1$

$$f(c, U) = \frac{c^{1-\gamma}}{1-\gamma} - \rho U \dots U_t = \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho^e t} \frac{(c_s^e)^{1-\gamma}}{1-\gamma} ds \right]$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

3a. CRRA/EZ Value Function

Applies separately for each type of agent

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)
- $V^i(n_t^i; \eta_t, K_t)$ for individuals i
- For CRRA/power utility $u(c_t^i) = \frac{(c_t^i)^{1-\gamma}}{1-\gamma}$ and for EZ
- \Rightarrow increase net worth by factor, optimal c^i for all future states increases by this factor \Rightarrow $\left(\frac{c_t^i}{n_t^i}\right)$ -ratio is invariant in n_t^i
- ⇒ value function can be written as $V^i(n_t^i; \eta_t, K_t) = \frac{1}{\rho^i} \frac{(\omega^i(\eta_t, K_t)n_t^i)^{1-\gamma}}{1-\gamma}$
- ω_t^i Investment opportunity/ "net worth multiplier"
 - $\omega^i(\eta_t, K_t)$ -function turns out to be independent of K_t
 - Change notation from $\omega^i(\pmb{\eta_t}, K_t)$ -function to ω^i_t -process

3b. Value Process $V_t^i = V^i(n_t^i; \eta_t, K_t)$ for CRRA

■ Recall Martingale approach: if x_t is the value of a portfolio with return $\frac{dn_t^i}{n_t^i} + \frac{c_t^i}{n_t^i} dt$, then $\xi_t^i x_t^i$ must be a martingale

$$\frac{d(\xi_t^i n_t^i)}{\xi_t^i n_t^i} = -\frac{c_t^i}{n_t^i} dt + martingale$$

- For CRRA, the SDF is given by $\xi_t^i = e^{-\rho^i t} \frac{\partial V_t^i}{\partial n^i}$
- For our CRRA value function guess $V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma}, \frac{\partial V^i}{\partial n^i} = \frac{1}{\rho^i} \left(\omega^i\right)^{1-\gamma} (n_t^i)^{-\gamma}$
- $\xi_t^i n_t^i = e^{-\rho^i t} \frac{1}{\rho^i} (\omega^i)^{1-\gamma} (n_t^i)^{1-\gamma} = (1-\gamma) e^{-\rho^i t} \underbrace{\frac{1}{\rho^i} \frac{(\omega_t^i n_t^i)^{1-\gamma}}{1-\gamma}}_{V_t^i}$
- $\text{Apply Ito to obtain } \frac{d(\xi_t^i n_t^i)}{\xi_t^i n_t^i} = -\rho^i dt + \frac{dV_t^i}{V_t^i}$
- Hence,

$$\frac{dV_t^i}{V_t^i} = \frac{d(e^{\rho^i t} \xi_t^i n_t^i)}{\xi_t^i n_t^i} = \left(\rho^i - \frac{c_t^i}{n_t^i}\right) dt + martingale$$

• Next, let's compute the drift of $\frac{dV_t^i}{V_t^i}$

3b. Value Process $V_t^i = V^i(n_t^i; \eta_t, K_t)$ for EZ

■ For our **EZ value function** SDF is

$$\xi_t^i = e^{\left(\int_0^t \overline{\partial U}(c_s, V_s)ds\right)} \frac{\partial V_t^i}{\partial n^i}$$

$$\bullet \ \xi_t^i n_t^i = e^{(\int_0^t \frac{\partial f}{\partial U}(c_S, V_S) dS)} \frac{1}{\rho^i} (\omega^i)^{1-\gamma} (n_t^i)^{1-\gamma} = (1-\gamma) e^{(\int_0^t \frac{\partial f}{\partial U}(c_S, V_S) dS)} \underbrace{\frac{1}{\rho^i} \frac{(\omega_t^i n_t^i)^{1-\gamma}}{1-\gamma}}_{V_t^i}$$

Hence,

$$\frac{dV_t^i}{V_t^i} = \frac{d(e^{-\int_0^t \frac{\partial f}{\partial U}(c_s, V_s)ds} \xi_t^i n_t^i)}{\xi_t^i n_t^i} = \left(-\frac{\partial f}{\partial U}(c_s, V_s) - \frac{c_t^i}{n_t^i}\right) dt + martingale$$

Note
$$\frac{\partial f}{\partial U} = \rho^i \frac{\psi^{-1} - \gamma}{1 - \psi^{-1}} \left(\frac{c^{1 - \psi^{-1}}}{\left((1 - \gamma)\rho^i U\right)^{\frac{1 - \psi^{-1}}{1 - \gamma}}} \right) - \rho^i$$

• for
$$\psi \to 1$$
: $\frac{\partial f}{\partial U} = \rho^i ((1 - \gamma^i) \log c^i - \log((1 - \gamma^i)\rho^i U) - \rho^i$

3b. CRRA Value Fcn: De-scale by K_t

- Drift of $\frac{dV_t^i}{V_t^i}$, we could use Ito on $V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma}$, but
 - Poll 10: What could be the problem?
 - a. Net worth n_t is unbounded
 - b. Net worth $n_t(\eta_t)$ and N-multiplier $\omega_t(\eta_t)$ are not differentiable (if $q(\eta_t)$ have a kink).
 - c. N-multiplier is not scale invariant
 - d. Avoids need to compute second derivative q'' anywhere in solution code
 - Answer: b,d

3b. CRRA Value Fcn: De-scale by K_t

- Drift of $\frac{dV_t^i}{V_t^i}$, we could use Ito on $V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma}$, but
 - Poll 11: What could be the problem?
 - a. Net worth n_t is unbounded
 - b. Net worth $n_t(\eta_t)$ and N-multiplier $\omega_t(\eta_t)$ are not differentiable (if $q(\eta_t)$ have a kink).
 - c. N-multiplier is not scale invariant
 - d. Avoids need to compute second derivative q'' anywhere in solution code
 - Answer: b,d
- Change of variable: use v_t^i which is $V_t^i = v_t^i \frac{K_t^{1-\gamma}}{1-\gamma}$
 - Let's de-scale the problem w.r.t. K_t

$$V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma} = \underbrace{\frac{\left(\omega_t^i N_t^i / K_t\right)^{1-\gamma}}{\rho^i}}_{v_t^i :=} \underbrace{\frac{K_t^{1-\gamma}}{1-\gamma}}_{u(K) :=}$$

- define v_t^i (which is twice differentiable in η_t)
- Note that in equilibrium $n^i = N^i$ (all experts/HH are the same)
- lacktriangle State variable K_t is easy to handle due to scale invariance

3b. Value Function Process for CRRA

$$\frac{dV_t^i}{V_t^i} = \frac{d(v_t^i K_t^{1-\gamma})}{v_t^i K_t^{1-\gamma}}$$

By Ito's product rule

$$= \left(\mu_t^{v^i} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)(\sigma^2) + (1 - \gamma)\sigma\sigma_t^{v^i}\right)dt$$

$$+ volatility\ terms$$

- Recall by consumption optimality for CRRA utility $\frac{dV_t^i}{V_t^i} \rho^i dt + \frac{c_t^i}{n_t^i} dt \text{ follows a martingale}$
- Hence, drift above = $\rho^i \frac{c_t^i}{n_t^i}$

Still have to solve for $\mu_t^{v^i}$, $\sigma_t^{v^i}$

Poll 12: Why martingale?

a) Because we can "price" net worth with SDF

b) because ho^i and c_t^i/n_t^i cancel out

3b. Value Function Process for EZ

$$\frac{dV_t^i}{V_t^i} = \frac{d(v_t^i K_t^{1-\gamma})}{v_t^i K_t^{1-\gamma}}$$

By Ito's product rule

$$= \left(\mu_t^{v^i} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)(\sigma^2) + (1 - \gamma)\sigma\sigma_t^{v^i}\right)dt$$

$$+ volatility\ terms$$

■ Recall by consumption optimality for CRRA utility $\frac{dV_t^i}{V_t^i} - \rho^i dt + \frac{c_t^i}{n_t^i} dt \text{ follows a martingale}$

Poll 13: Why martingale?

a) Because we can "price"

net worth with SDF

b) because ρ^i and c_t^i/n_t^i cancel out

■ Hence, drift above $= -\frac{\partial f}{\partial U} \left(c_S, v_t \frac{K_t^{1-\gamma}}{1-\gamma} \right) - \frac{c_t^i}{n_t^i}$ Still have to solve for $\mu_t^{v^i}$, $\sigma_t^{v^i}$

3b. Value Function Process for EZ

$$\frac{dV_t^i}{V_t^i} = \frac{d(v_t^i K_t^{1-\gamma})}{v_t^i K_t^{1-\gamma}}$$

By Ito's product rule

$$= \left(\mu_t^{v^i} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)(\sigma^2) + (1 - \gamma)\sigma\sigma_t^{v^i}\right)dt$$

$$+ volatility terms$$

Recall by consumption optimality for CRRA utility

$$\frac{dV_t^i}{V_t^i} - \rho^i dt + \frac{c_t^i}{n_t^i} dt \text{ follows a martingale}$$

$$\blacksquare \text{ Hence, drift above} = \rho^i - \rho^i \frac{\psi^{-1} - \gamma}{1 - \psi^{-1}} \left(\frac{(c_t/K_t)^{1 - \psi^{-1}}}{(\rho^i v_t)^{\frac{1 - \psi^{-1}}{1 - \gamma}}} - 1 \right) - \frac{c_t^i}{n_t^i} \\ \text{Still have to solve for } \mu_t^{v^i}, \sigma_t^{v^i}$$

3b. CRRA Value Fcn BSDE

- Only conceptual interim solution
 - We will transform it into a PDE in Step 4 below
- From last slide

$$\underbrace{\mu_t^{v^i} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)\sigma^2 + (1 - \gamma)\sigma\sigma_t^{v^i}}_{=:\mu_t^{V^i}} = \rho - \frac{c_t^l}{n_t^i}$$

lacksquare Can solve for $\mu_t^{v^i}$, then v_t^i must follow

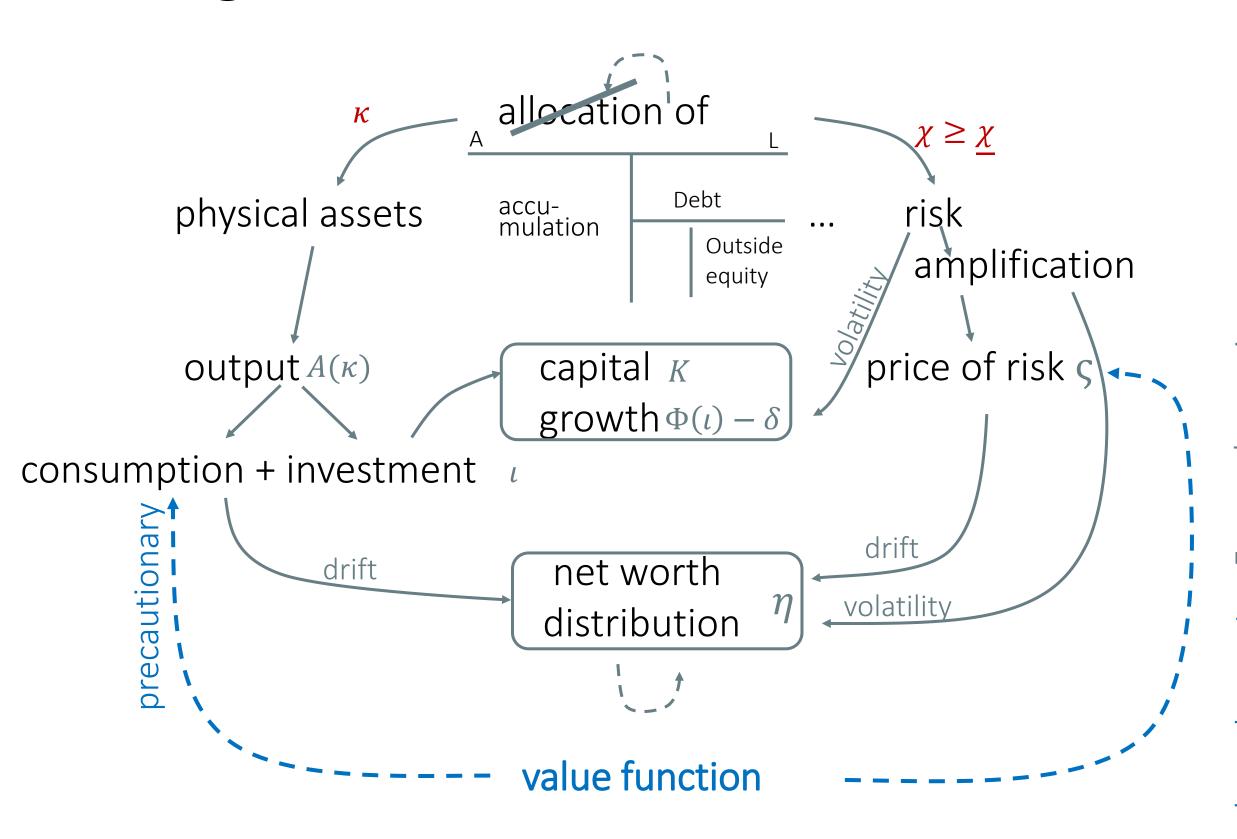
$$\frac{dv_t^i}{v_t^i} = f\left(\eta_t^i, v_t^i, \sigma_t^{v^i}\right) dt + \sigma_t^{v^i} dZ_t$$

with

$$f\left(\eta_{t}^{i}, v_{t}^{i}, \sigma_{t}^{v^{i}}\right) = \rho^{i} - \frac{c_{t}^{i}}{n_{t}^{i}} - (1 - \gamma)(\Phi(\iota_{t}) - \delta) + \frac{1}{2}\gamma(1 - \gamma)(\sigma^{2}) - (1 - \gamma)\sigma\sigma_{t}^{v^{i}}$$

- lacktriangledown Together with terminal condition v_T^i (possibly a constant for 1000 periods ahead), this is a backward stochastic differential equation (BSDE)
- lacksquare A solution consists of processes v^i and σ^{v^i}
- Can use numerical BSDE solution methods (as random objects, so only get simulated paths)
- To solve this via a PDE we also need to get state evolution

The Big Picture



equation Forward equation with expectations Backward

3c. Get ζ s from Value Function Envelop

- $= \text{Recall } V^i(n_t^i; \boldsymbol{\eta_t}, K_t) = \frac{u(\omega^i(\boldsymbol{\eta_t}, K_t)n_t^i)}{\rho^i}$
- For envelop condition $\frac{\partial V_t}{\partial n_t} = \frac{\partial u(c_t)}{\partial c_t}$
 - To obtain $\frac{\partial V^{i}(n_{t}^{i}; \boldsymbol{\eta_{t}}, K_{t})}{\partial n_{t}^{i}} = \frac{(\omega^{i}(\boldsymbol{\eta_{t}}, K_{t}))^{1-\gamma}}{\rho^{i}} \left(n_{t}^{i}\right)^{-\gamma}$ $= \underbrace{\frac{(\omega_{t}^{i}n_{t}^{i}/K_{t})^{1-\gamma}}{\rho^{i}}}_{v_{t}^{i}:=} \left(\frac{K_{t}}{n_{t}^{i}}\right)^{1-\gamma} \left(n_{t}^{i}\right)^{-\gamma},$
 - $\Rightarrow \frac{\partial V_t}{\partial n_t^i} = v_t^i \left(\frac{K_t}{n_t^i}\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma} = (c_t^i)^{-\gamma} = \frac{\partial u(c_t^i)}{\partial c_t^i}$
- In equilibrium $N_t^i=n_t^i$ and $C_t^i=c_t^i$ & using $N_t^i=\eta_t^iq_tK_t$ $\frac{v_t^i}{\eta_t^iq_t}K_t^{-\gamma}=(C_t^i)^{-\gamma}$
- Ito's quotient rule $\sigma_t^{v^i} \sigma_t^{\eta^i} \sigma_t^q \gamma \sigma = -\gamma \sigma_t^{c^i} = -\varsigma_t^i$

3c. Get $\frac{C_t^i}{N^i}$ from Value Function Envelop

- CRRA Envelop condition $v_t^i \left(\frac{K_t}{N_t^i}\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma} = (c_t^i)^{-\gamma}$
- using $K_t/N_t^l = 1/\eta_t^l q_t$

$$\frac{C_t^i}{N_t^i} = \frac{c_t^i}{n_t^i} = \frac{(\eta_t^i q_t)^{1/\gamma - 1}}{(v_t^i)^{1/\gamma}}$$

Aggregate level (two agents case)

$$\frac{C_t}{N_t} = \frac{C_t^e + C_t^h}{N_t^e + N_t^h} = \eta_t^e \frac{C_t^e}{N_t^e} + \eta_t^h \frac{C_t^h}{N_t^h} = \frac{1}{q_t} \left[\left(\frac{\eta_t^e q_t}{v_t^e} \right)^{1/\gamma} + \left(\frac{\eta_t^h q_t}{v_t^h} \right)^{1/\gamma} \right]$$

■ EZ with $\frac{\partial V_t^i}{\partial n^i} = \text{xxx}$, envelop condition becomes $\Rightarrow c_t^i = \left(\rho^i\right)^\psi \omega_t^{1-\psi} n_t$

$$\Rightarrow c_t^i = (\rho^i)^{\psi} \omega_t^{1-\psi} n_t$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{\imath}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

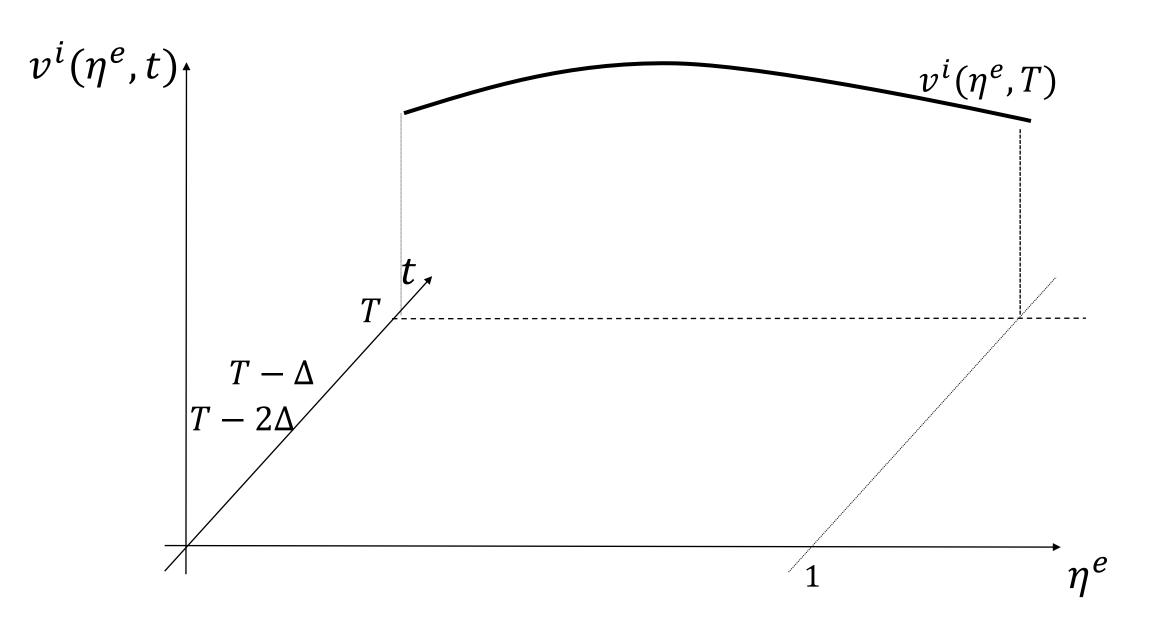
Recall: 2 Ways of Solving ODE

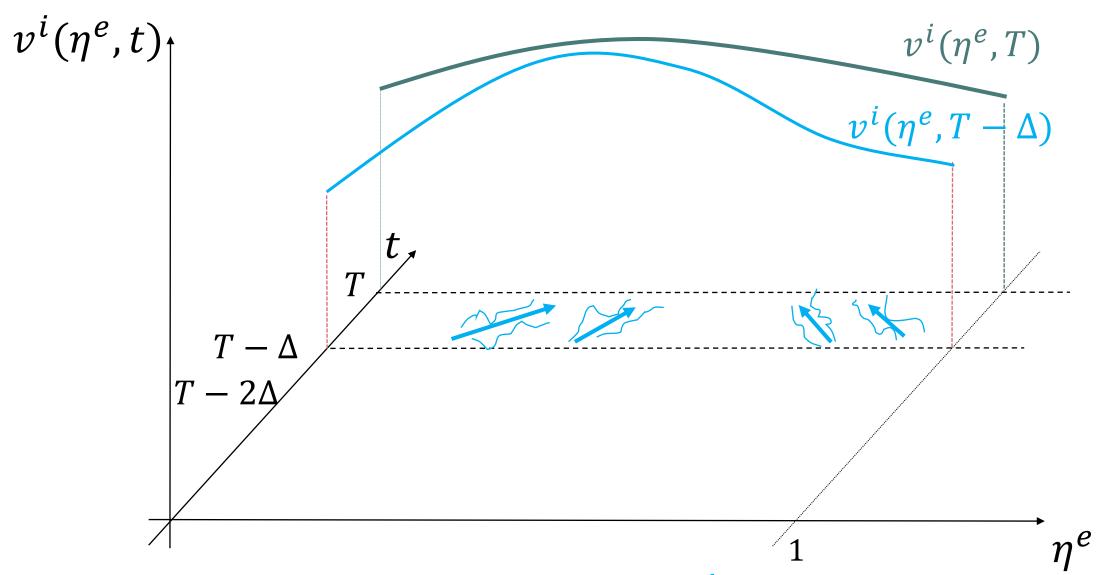
Propose function and iterate

$$q(\eta)$$

■ Start from boundary condition and solve step-by-step $v^e(\eta), v^h(\eta)$ (Newton Method)

- Add time, t, as an additional state variable $v^e(\eta^e, t)$, $v^h(\eta^e, t)$
- Convert BSDE into PDE using Ito's Lemma
- Guess terminal value functions $v^e(\eta^e, T)$ and $v^h(\eta^e, T)$ (far in the future t = T)
- \blacksquare ... and iterate back to t=0
 - In each step use
 - From Step 2: $\mu_t^{v^e} v_t^e$, $\mu_t^{v^h} v_t^h$
 - From Step 3: $\eta_t^e \mu_t^{\eta^e}$ and $\eta_t^e \sigma_t^{\eta^e}$ (η -evolution)
 - Portfolio choice, planners' problem, (static conditions)
 - Market clearing
 - To calculate all terms in these $\mu_{t-\Lambda}^{v^l}v_{t-\Lambda}^i$, $\eta_{t-\Lambda}^e\mu_{t-\Lambda}^{\eta^e}$ and $\eta_{t-\Lambda}^e\sigma_{t-\Lambda}^{\eta^e}$





- Obtain descaled value function $v^i(\eta^e, T \Delta)$
- Repeat previous steps

- Add time, t, as an additional state variable $v^e(\eta^e, t)$, $v^h(\eta^e, t)$
- Convert BSDE into PDE using Ito's Lemma

- Guess terminal value functions $v^e(\eta^e, T)$ and $v^h(\eta^e, T)$ (far in the future t=T)
- \blacksquare ... and iterate back to t=0
 - In each step use
 - From Step 3: $\mu_t^{v^e}v_t^e$, $\mu_t^{v^h}v_t^h$
 - From Step 2: $\eta_t^e \mu_t^{\eta^e}$ and $\eta_t^e \sigma_t^{\eta^e}$ (η -evolution)
 - Portfolio choice, planners' problem, (static conditions)
 - Market clearing
 - lacksquare To calculate all terms in these $\mu^{v^i}_{t-\Delta}v^i_{t-\Delta}$, $\eta^e_{t-\Delta}\mu^{\eta^e}_{t-\Delta}$ and $\eta^e_{t-\Delta}\sigma^{\eta^e}_{t-\Delta}$

Short-hand notation:

 $\partial_x f$ for $\partial f/\partial x$

4a. PDE Value Function Iteration

Postulate $v_t^i = v^i(\eta_t^e, t)$

Short-hand notation: $\partial_x f$ for $\partial f / \partial x$

By Ito's Lemma

That is,

■ Equating with Step 3 (plug in $\mu_t^{v^i}$) \Rightarrow

4a. PDE Value Fcn: Replacing Terms

1. Replace "blue terms" using results from Step 2.

$$\mu_t^{\eta^e} = (1 - \eta_t^e) \left(\varsigma_t^e - \sigma_t^q - \sigma \right) \left(\sigma_t^{\eta^e} - \sigma_t^M \right)$$

$$- (1 - \eta_t^e) \left(\varsigma_t^h - \sigma_t^q - \sigma \right) \left(\sigma_t^{\eta^h} - \sigma_t^M \right) - \left(\frac{\varsigma_t^e}{N_t^e} - \frac{\varsigma_t}{N_t} \right)$$

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \left(\sigma + \sigma_t^q \right)$$

$$\sigma_t^{\eta^h} = -\frac{\eta_t^e}{1 - \eta_t^e} \sigma_t^{\eta^e}$$

2

$$\begin{split} \varsigma_t^e &= -\sigma_t^{v^e} + \sigma_t^{\eta^e} + \sigma_t^q + \gamma \sigma, \quad \varsigma_t^h = -\sigma_t^{v^h} + \sigma_t^{\eta^h} + \sigma_t^q + \gamma \sigma \\ \frac{C_t^i}{N_t^i} &= \frac{(\eta_t^i q_t)^{1/\gamma - 1}}{(v_t^i)^{1/\gamma}} \operatorname{Recall}_{\sigma_t^v \dot{V}_t^i} = (\eta^e \sigma_t^e)^{\partial \eta^{\dot{V}_t^i}} \quad \frac{C_t}{N_t} = \frac{1}{q_t} \left[\left(\frac{\eta_t^e q_t}{v_t^e} \right)^{1/\gamma} + \left(\frac{(1 - \eta_t^e) q_t}{v_t^h} \right)^{1/\gamma} \right] \end{split}$$

3. Replace "red terms" ι_t , σ_t^q , χ_t^e (see below)

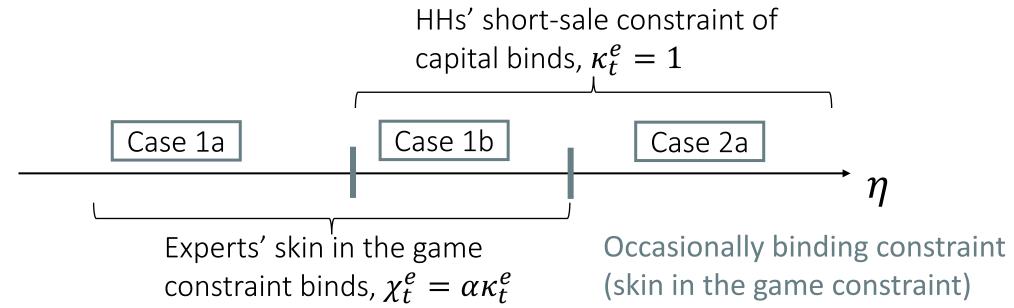
4a. Replacing ι_t

- Recall from optimal re-investment $\Phi'(\iota_t) = 1/q_t$
 - For $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \boxed{\phi \iota = q 1}$

4a. Replacing χ , obtain κ for good mkt clearing

Recall from planner's problem (Step 1b)

Cases	$\chi_t^e \ge \alpha \kappa_t^e$	$\kappa_t^e \leq 1$	$\frac{\left(a^{\pmb{e}}-a^{\pmb{h}}\right)}{q_t} \geq \alpha \left(\varsigma_t^{\pmb{e}}-\varsigma_t^{\pmb{h}}\right) \left(\sigma+\sigma_t^q\right)}{\text{Shift a capital unit to expert}}$ Benefit: LHS Cost: RHS	$(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q) \ge 0$ Required risk premium of experts vs. HH
1a	=	<	=	>
1b	=	=	>	>
2a	>	=	>	=
impossible				



4a. Replacing χ , obtain κ for good mkt clearing

- Need to determine diff in risk premia $(\varsigma_t^e \varsigma_t^h)(\sigma + \sigma_t^q)$:
- Recall

$$\Rightarrow \left(\varsigma_t^e - \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right) = \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e}\right) \eta_t^e \sigma_t^{\eta^e} \left(\sigma + \sigma_t^q\right)$$

$$= \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e}\right) \left(\chi_t^e - \eta_t^e\right) \left(\sigma + \sigma_t^q\right)^2$$

■ Note, since
$$-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1-\eta_t^e)\eta_t^e} > 0$$
,

4a. Replacing χ , obtain κ for good mkt clearing

■ Determination of κ_t

$$(a^e - a^h)/q_t \ge \alpha \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e} \right) (\chi_t^e - \eta_t^e) \left(\sigma + \sigma_t^q \right)^2$$
 with equality if $\kappa_t^e < 1$

■ Determination of χ_t^e

$$\chi_t^e = \max\{\alpha \kappa_t^e, \eta_t^e\}$$

4a. Market Clearing

Output good market

$$(\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t)K_t = C_t$$

... jointly restricts κ_t and q_t

$$\kappa_t a^e + (1 - \kappa_t) a^h - \iota(q_t) = \underbrace{\left(\frac{\eta_t^e q_t}{v_t^e}\right)^{1/\gamma}}_{C_t^e/K_t} + \underbrace{\left(\frac{(1 - \eta_t^e) q_t}{v_t^h}\right)^{1/\gamma}}_{C_t^h/K_t}$$

4a. Market Clearing

Output good market

$$(\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t)K_t = C_t,$$

... jointly restricts κ_t and q_t

 Capital market is taken care off by price taking social planner approach

$$\theta_t^e = \frac{\kappa_t^e q_t K_t}{\eta_t^e q_t K_t}$$

 Risk-free debt market also taken care off by price taking social planner approach (would be cleared by Walras Law anyways)

4a. $\sigma^q(q,q')$

■ Recall from "amplification slide" — Step 2

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e}}$$

$$\sigma^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q)$$

Now all red terms are replaced and we can solve ...

4b. Algorithm – Static Step

- Suppose we know functions $v^e(\eta^e)$, $v^h(\eta)$, have five static conditions:
- $\phi \iota_t = q_t 1$

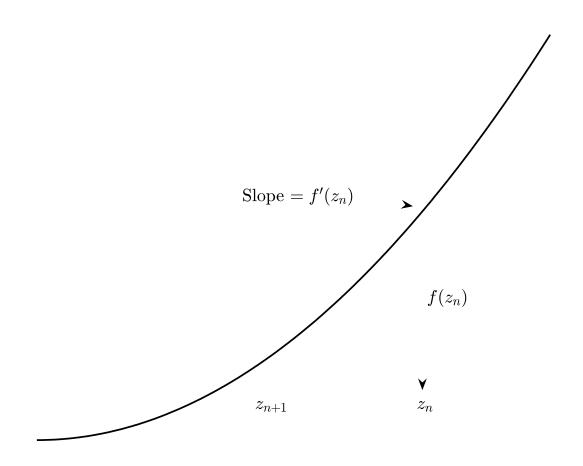
2. Planner condition for
$$\kappa_t^e$$

3. Planner condition for $\chi_t^e = \max\{\alpha \kappa_t^e, \eta_t^e\}$
4. $\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota(q_t) = \left(\frac{\eta_t q_t}{v_t^e}\right)^{1/\gamma} + \left(\frac{(1 - \eta_t) q_t}{v_t^h}\right)^{1/\gamma}$

$$\sigma^q(\eta^e)$$

- 5. $\sigma^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} (\chi_t^e \eta_t^e) (\sigma + \sigma_t^q)$
- Start at q(0), solve to the right, use different procedure for two η -regions depending on κ :
- 1. While $\kappa^e < 1$, solve ODE for $q(\eta^e)$:
 - For given $q(\eta)$, plug optimal investment (1) into (4)
 - Plug planner condition (3) into (2) and (5)
 - Solve ODE using three equilibrium condition (2),(4) and (5) via Newton's method (see next slide)
- When $\kappa = 1$, (2) is no longer informative, since $\kappa^e = 1$, solve (1) and (4) for $q(\eta)$

4b. Aside: Newton's Method

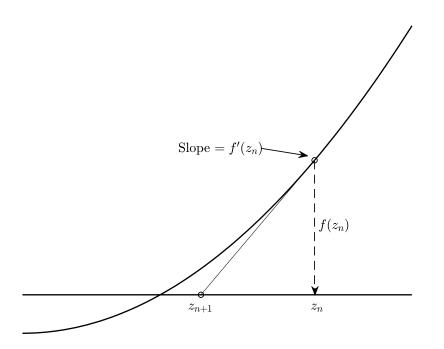


■ Find the root of equation system $F(\mathbf{z}_n) = 0$ via iterative method $\mathbf{z}_{n+1} = \mathbf{z}_n - J_n^{-1} F(\mathbf{z}_n)$

Where J_n is the Jacobian matrix, i.e., $J_{ij} = \partial f_i(\mathbf{z})/\partial z_j$.

- Newton's method does not guarantee global convergence.
- commonly take several-step iteration.

4b. Aside: Newton's Method

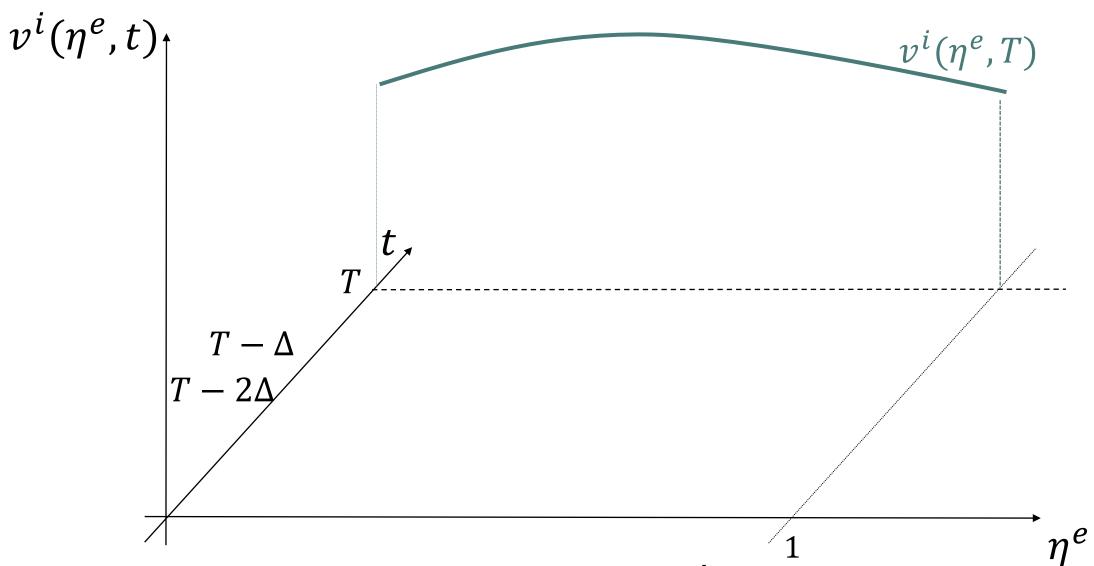


$$m{z}_n = egin{bmatrix} q_t \ \kappa_t^e \ \sigma + \sigma_t^q \end{bmatrix}$$
 ,

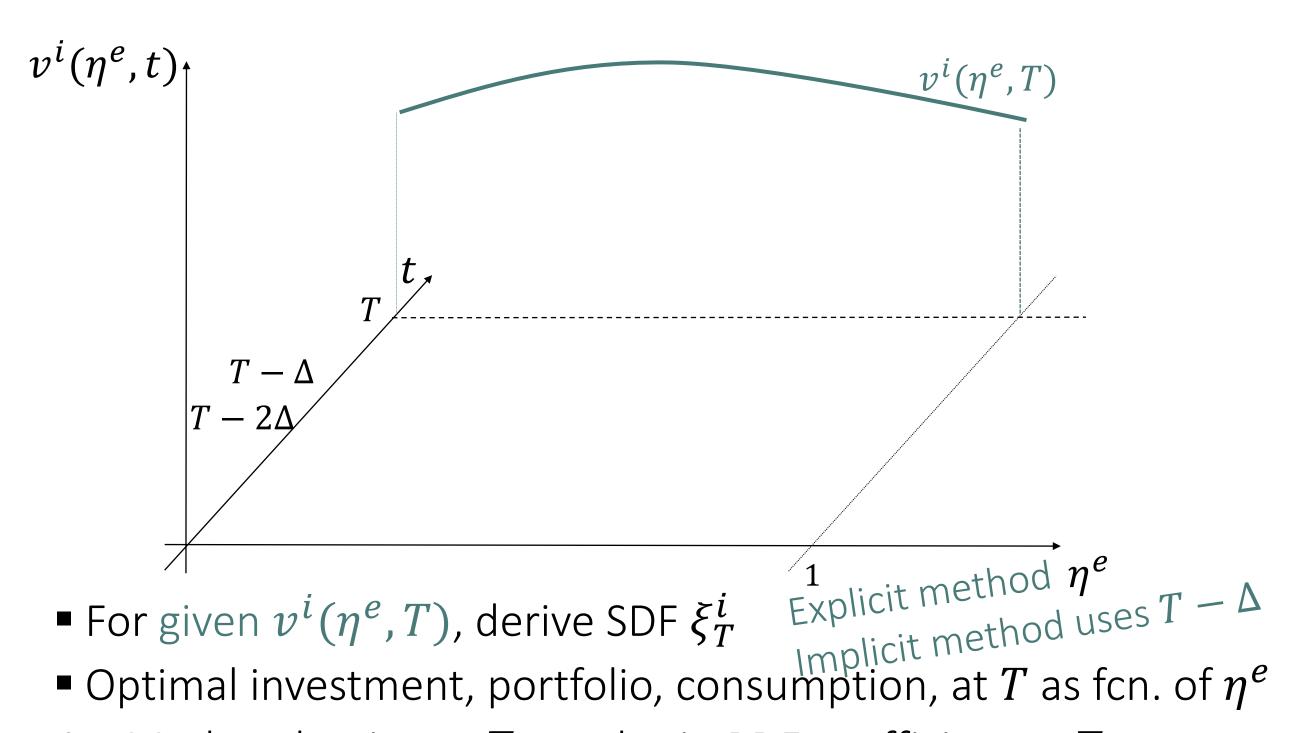
market clearing condtion amplification condition Planner condition for κ_t^e

$$F(\mathbf{z}_n) = \begin{bmatrix} \kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota(q_t) - \left(\frac{\eta_t^e q_t}{v_t^e}\right)^{\frac{1}{\gamma}} - \left(\frac{(1 - \eta_t^e) q_t}{v_t^h}\right)^{\frac{1}{\gamma}} \\ q'(\eta_t^e) (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q) - \sigma^q q(\eta_t^e) \\ \left(a^e - a^h\right) - \alpha q_t \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e) \eta_t^e}\right) (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q)^2 \end{bmatrix}$$

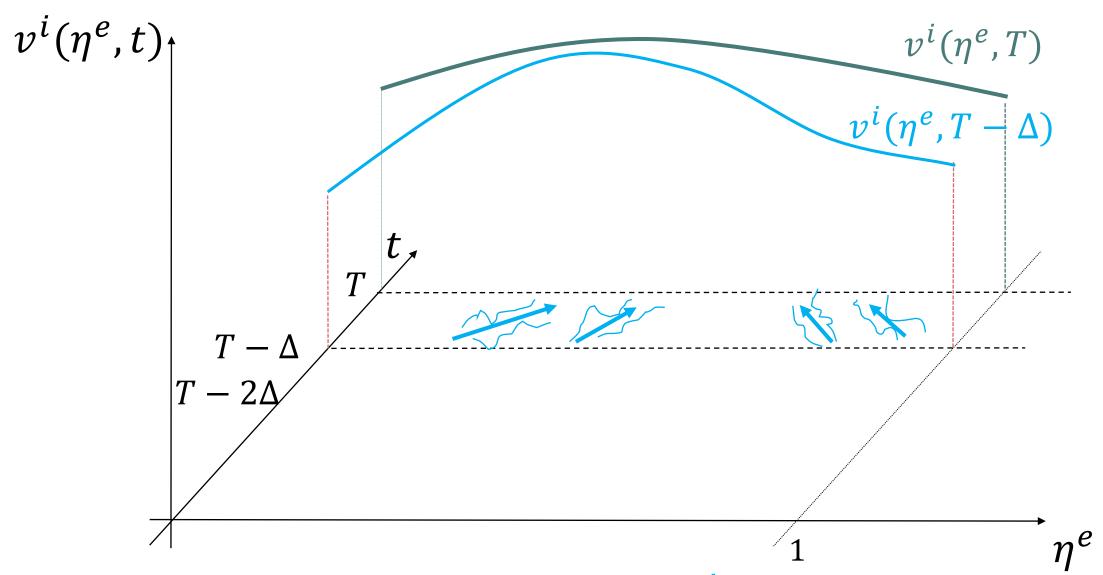
Plug in blue terms from optimal investment and Planner condition for χ^e_t



- For given $v^i(\eta^e, T)$, derive SDF ξ_T^i
- lacktriangle Optimal investment, portfolio, consumption, at T as fcn. of η^e
- 4. Market clearing at T obtain PDE coefficient at T (pretend they are constant between $T \& T \Delta$)



4. Market clearing at T obtain PDE coefficient at T (pretend they are constant between $T \& T - \Delta$)



- Obtain descaled value function $v^i(\eta^e, T \Delta)$
- Repeat previous steps

4b. Pseudocode

- 1. Initialize two terminal functions $v^e(\eta^e, T)$, $v^h(\eta^e, T)$ over η^e -grid $(\eta_1^e, \eta_2^e, \cdots, \eta_n^e)$
- 2. For $t \in \{T, T \Delta t, T 2\Delta t, \cdots 0\}$
 - a. Compute $\partial_{\eta} v_t^i$ by first-order difference
 - b. Start at $\eta_1^e \approx 0$ smallest grid point > 0 (autarky economy), find $q(0,t), \kappa^e(0,t), \sigma^q(0,t)$.
 - c. For $\eta_i^e \in \{\eta_2^e, \eta_3^e, \cdots, \eta_n^e\}$
 - i. If $\kappa^e(\eta_i^e, t) < 1$, solve ODE for $q(\eta_i^e, t)$, $\kappa^e(\eta_i^e, t)$, $\sigma^q(\eta_i^e, t)$ using Newton's method.
 - ii. If $\kappa^e(\eta_i^e,t)=1$, solve ODE for $q(\eta_i^e,t)$ from market clearing equation via Newton's method. Then find $\sigma^q(\eta_i^e,t)$ using amplification function
 - d. Find $\mu^{\eta^e}(\boldsymbol{\eta^e},t), \sigma^{\eta^e}(\boldsymbol{\eta^e},t), \mu^{v^i}(\boldsymbol{\eta^e},t)$.
 - e. Update: obtain $v^e(\eta^e, t \Delta t)$ from $v^e(\eta^e, t)$ via finite difference method (do $\mu_t^v v_t = \partial_t v_t^i + \mu_t^{\eta^e} \eta_t^e (\partial_\eta v_t^i) + \frac{1}{2} \left(\sigma_t^{\eta^e} \eta_t^e \right)^2 (\partial_{\eta\eta} v_t^i)$ for one time-step)

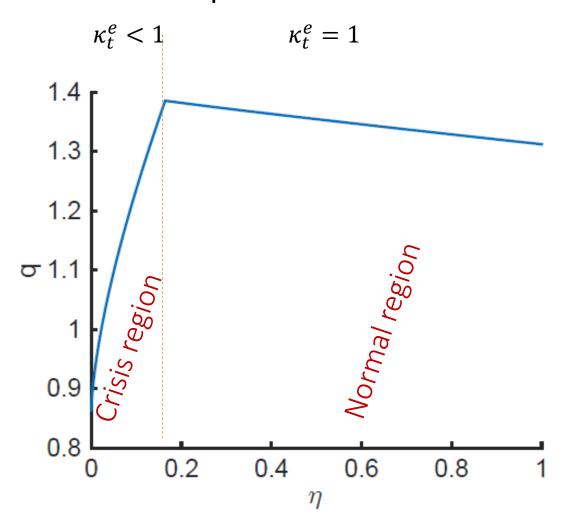
Upwind scheme:
$$\partial_{\eta} f(n,t) = \begin{cases} \frac{f(\eta+1,t)-f(\eta,t)}{\Delta \eta} & \text{for } \mu^{\eta} \eta > 0 \\ \frac{f(\eta,t)-f(\eta-1,t)}{\Delta \eta} & \text{for } \mu^{\eta} \eta < 0 \end{cases}$$
 Implicit scheme: $\partial_{t} f(\eta,t) = \frac{f(\eta,t+1)-f(\eta,t)}{\Delta t}$ 2-order difference: $\partial_{n} f(\eta,t) = \frac{f(\eta,t+1)-f(\eta,t)}{\Delta \eta}$

4b. Pseudocode – further questions

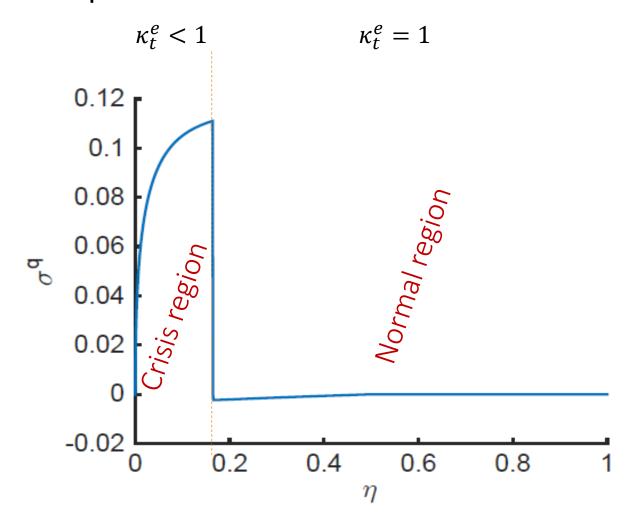
- Is there a boundary condition for $v^i(0)$?
 - Take smallest grid point slightly above 0
 - Boundary condition is only needed if volatility > 0
 - For $v^h(0)$ this is ok, i.e. not an issue
 - For $v^e(0)$ one has to be careful and strictly speaking one has to look at the v^e of a single expert (assuming all other experts have zero net worth)
 - Numerical short-cut, which seems to work: simply set volatility equal to zero and it seems to work
- Do we need specific conditions to ensure that the value function iteration converges?
 - Theoretically we only know these conditions for specific economies (representative agent, complete markets)
 - Here we need it in theory, but if code converges, we are fine.
 - Of course, we did not ensure uniqueness of the equilibrium

Solution

Price of capital



Amplification



Parameters:
$$\rho^e = .06$$
, $\rho^h = .05$, $a^e = .11$, $a^h = .03$, $\delta = .05$, $\sigma = .01$, $\alpha = .50$, $\gamma = 2$, $\phi = 10$