Modern Macro, Money, and

International Finance

Eco529
Lecture 06: Real Macro Model with Heterogenous Agents

CRRA and Epstein-Zin Preferences

Markus K. Brunnermeier
Princeton University



Course Overview

Real Macro-Finance Models with Heterogeneous Agents
1. A Simple Real Macro-finance Model

2. Endogenous (Price of) Risk Dynamics

3. A Model with Jumps due to Sudden Stops/Runs

Money Models

1. A Simple Money Model

2. Cashless vs. Cash Economy and “The | Theory of Money”
3. Welfare Analysis & Optimal Policy

1. Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models
1. International Financial Architecture

Digital Money



BruSan 2017;

Two Type/Sector Model with Outside Equityadbook of Macroeconomics,

Lecture Notes, Chatper 3
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A
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= Skin in the Game Constraint:
Experts must hold fraction yf = aki of aggregate capital risk
with a € (0,1) (xf > K7 never happens in equilibrium)

" Return on inside equity N; can differ from outside equity

" [ssue outside equity at required return from HH

" n related model, He and Krishnamurthy 2013 impose that inside and
outside equity have same return



Two Type Model Setup

Expert sector

" Qutput:  yf =afki af =

= Consumption rate: ¢
" [nvestment rate:  (f

dki,e Le ke
ki,e = (q)(tt’ ) T 5)dt + O-dZt + dAt’
t

e\1—
= Eolf, e "t Ldt] ot =p

1=y

Friction: Can only issue
" Risk-free debt
= Equity, but must hold y7 = ak;

a

Household sector

=Qutput: y = a*kl}

=Consumption rate: ¢t

" |nvestment rate: L?

k" Lh e,k
P = (q)(‘t' ) — 5)dt + odZ, + dA;
t

ny1-
"Ly [fooo e =Pt ]

1=y



Recursive Epstein-Zin Utility: Separating EIS from Risk Aversion

s Forallt = 0

Ug = E; f f(cs, Us)ds
Ut _

= \With the aggregator

1—y c 1-1p~1
,U) = U —1
f(c,U) 1 _ 1/1_1'0 ((((1—)/),0U)1/(1_y)) )

" Special Case: EISY — 1
flc,U)=(1—-y)pU (logc
= Special Case: EISY =yt # 1

1=y

fleU) =1

T ylog((l — V)PU))

pU ..U, = IEt[ftooe_pet (€)Y 4]

1=y



Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v'(n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. v(n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



3a . CRRA/EZ Va I ue Fu nCtiOn Applies separately for each type of agent

= Martingale Approach: works best in endowment economy

" Here: mix Martingale approach with value function (envelop condition)

= Vi (nk;m,, K,) for individuals i

1-y
» For CRRA/power utility u(ct) (Ct) > and for EZ

= increase net worth by factor, opt|mal ct for all future states increases by

[
this factor = (C

) ratio Is invariant in nt
ng

1 (w'(ny, Kt)nt)
p 1-y

= = value function can be written as IV'* (nt, N¢, Kt) =

. a),‘; Investment opportunity/ “net worth multiplier”
= w'(n,, K;)-function turns out to be independent of K,
= Change notation from w'(n,, K;)-function to wi-process



3b. Value Process Vti = V"(n,f.; n:, K;) for CRRA

= Recall I\/Iartingale approach' if x; is the value of a portfolio

. dn
with return ; e + nt dt, then EExtmust be a martingale
t t

d(&int !
S t) —Ldt + martingale

Eing ng
= For CRRA, the SDF is given by &} = e™P 't gztl
.1 (wind v 1-y,
= For our CRRA value function guess I/} = = tl_ty )5 = ;( O b)Y

 ginb = et 2 (o) T ()T = (1 e ;(‘”tft)y

N— —

Vt‘

= Apply Ito to obtam
ft Ve

" Hence,

dvi  d(ef'tEint c
lt = (e “Siny = (p‘ — —t> dt + martingale
Ve $eny n

. dav,
= Next, let’s compute the drift ofv—f
t



3b. Value Process V! = Vi(nt;n,, K,) for EZ

= For our EZ value function SDF is

E _ e(ftaf(cs Vs)ds) th
L onit

. taf
m fént — e(fo (CS Vs)ds) 1 ( )1 y(’l’lt)l V = (1 )/)e (Cs Vs)ds) 1 (wtnt)

pt 1y
A
" Hence,
. taf
dvi  d(e JoaulesVds gipi af c
— = = (CS,VS)—— dt + martingale
Vi Elnl ng

_ of : l/J_l—)/ Cl—l/)_l :
Note 5 = ¢ w( . 1"”_1)_pl
(a-ypiv) *7

. fOFl/J—>1 —p((l ]/)logcl—log((l y)pU) p



3b. CRRA Value Fcn: De-scale by K;

. av}
= Drift of —,
v,

t
= Poll 10: What could be the problem?

a. Net worthn; is unbounded

b.  Net worthny;(n;) and N-multiplier w;(n:) are not differentiable
(if g(n¢) have a kink).

c.  N-multiplier is not scale invariant
d.  Avoids need to compute second derivative q'" anywhere in solution code
= Answer: b,d

1 (0fnd) "

we could use Ito on Vi = = , but
p-  1-y



3b. CRRA Value Fcn: De-scale by K;

. av}
= Drift of —,
v,

t
= Poll 11: What could be the problem?

a. Net worthn; is unbounded

b.  Net worthny;(n;) and N-multiplier w;(n:) are not differentiable
(if g(n¢) have a kink).

c.  N-multiplier is not scale invariant
d.  Avoids need to compute second derivative q'" anywhere in solution code
= Answer: b,d

1 (0fnd) "

we could use Ito on Vi = = , but
p-  1-y

1-y
K¢
1-y

= Change of variable: use v} which is V} = v}

" |et’s de-scale the problem w.rt. K;

i L(oind) ™" (wiNi/K) T KT
ot 1-y Pt 1-y

U%:: ’LL(K) =

= define v} (which is twice differentiable in n,)
= Note that in equilibrium n* = Nt (all experts/HH are the same)

= State variable K; is easy to handle due to scale invariance



3b. Value Function Process for CRRA

avi  d(vik,;™")
Vi vk

" By [to’s product rule

l 1 i
= (u’t’ + (1= =8) =5y =y)(@*) + (1 = y)od! )dt

+ volatility terms

Poll 12: Why martingale?

" Recall by consumptlon optimality for CRRA utility a) Because we can “price”
AVl c net worth .W/'th SDF
L — ptdt + =L dt follows a martingale b) because p* and ct/my
Vi nt cancel out
. i C
= Hence, drift above = pt — = P

nt Still have to solve for uf , o/



3b. Value Function Process for EZ

avi  d(vik, ™)
v/ viK, "

" By [to’s product rule

l 1 i
= (u’t’ + (1= =8) =5y =y)(@*) + (1 = y)od! )dt

+ volatility terms

Poll 13: Why martingale?

" Recall by consumptlon optimality for CRRA utility a) Because we can “price”
dVl cl net worth .W/'th SQF |
L — ptdt + =L dt follows a martingale b) because p* and ct /n;
Vi nt cancel out
. of K,V o
" Hence, drift above = — —| ¢, V¢ 2 Si i
ouU 1-y nt Still have to solve for u; , oy



3b. Value Function Process for EZ

avi  d(vik;™")
Vi viK, "

" By |to’s product rule

[ 1 [
= (u}? + (1 =pY)(PQ) —6) — 5)/(1 —y)(@6%) + (1 —y)oo? ) dt

+ volatility terms

" Recall by consumptlon optimality for CRRA utility

th

—Lt — pldt + % % dt follows 2 martingale
Vi ng
1—y~1
= Hence, drift above = p' — p‘ L —= (Ct/Kt)l_lp_l 1) — & o
(pivy) 17 Stt|I| have to solve for uf , af



3b. CRRA Value Fcn BSDE

" Only conceptual interim solution
" We will transform it into a PDE in Step 4 below

® From last slide |
i 1 i Cl

ue + A =y)(@U) —8) -5y - Va2 + (1 —y)ool =p-— n—’i

— _ t

Ly
=:Uf

L .
= Can solve for ¢, then v¢ must follow

dv; L ;
Ut
with |
i i vl i Ct 1 > Vi
f (77t, V¢, Oy ) =p — i (1—=y)(DP(y) —6) + EY(l -1 (6% - (1 -y)oa}
t

= Together with terminal condition v% (possibly a constant for 1000 periods ahead),
this is a backward stochastic differential equation (BSDE)

. . 4 l
= A solution consists of processes v and ¥
= Can use numerical BSDE solution methods (as random objects, so only get simulated paths)

= To solve this via a PDE we also need to get state evolution



The Big Picture

7 ~

|
aﬂo&ﬁ%n'of
L N =X

"/A

physical assets — accu L2 risk
Outside . :
equity 2 ampllflCatIOﬂ
7

output A(x) /[ capital x J price of risk ¢\«-
/ growth®() — 6

consumption + investment

>4
© drift
G! wﬁ (" networth -
=3 | distribution '] ity
§ ‘\ : $
Q. \ ‘\_/
\
\\s ° //
——————— value function N

Backward equation Forward equation

with expectations



3c. Get ¢s from Value Function Envelop
K,) = u(w' (0 Ke)nt)

= Recall Vi(ni; n;,

p
_ oV Ju(c
= For envelop condition a_nt = a(c 2
C t
. ovi(nkmeK ‘e K)YY 1 iN—Y
= To obtain ( t'ih t) _ (0" (e it)) (Tl%)
ony P - .
_ (wini/k) " (K (ni)™
P \m o
i
1_
IV i (Kt i\~ in—y _ ou(ct
S — — —_— — — :
an,l: vt (n%) (nt (Ct) acé
" In equilibrium N} = n; and C} = ¢; & using Nf = n;{q:K;
i
Yt Y i\—
't 1Y — (chY
niqe ¢t (Ce)
't g i

] . l .
= |to’s quotient rule o — ¢! — o —yo = —yof = —¢]



3c. Get % from Value Function Envelop

1=y .
» CRRA Envelop condition vy (flt) (n%) = (c;)7Y

t
" Using Kt/Ntl = 1/7hltCIt |
G _ ¢t _ (g /"

Ny ng (Vt)l/y
" Aggregate level (two agents case)
1
Ce _ CE+CE e C¢ nhC_th:i U /y, neqe
N, ne+nt Tene TN T g\ Toe S\ vf

" EZ with thl =XXX envelop condition becomes
on l/) 1 l/)
=t =(p') w




Solving MacroModels Step-by-Step

0. Postulate aggregates, price processes & obtain return processes

1. Forgiven C/N-ratio and SDF processes foreachi finance block
a. Realinvestmentt + Goods market clearing (static)
= Toolbox 1: Martingale Approach, HJB vs. Stochastic Maximum Principle Approach

b. Portfolio choice 8 + Asset market clearing or
Asset allocation k & risk allocation y

= Toolbox 2: “price-taking social planner approach” — Fisher separation theorem

C.

= Toolbox 3: Change in numeraire to total wealth (including SDF)
2. Evolution of state variable n (and K) forward equation
3. Value functions backward equation

a. Value fcn. as fen. of individual investment opportunities w
m Special cases: log-utility, constant investment opportunities

b. Separating value fcn. Vi(ni; n, K) into v'(n)u(K)
c. Derive C/N-ratio and ¢ price of risk

4. Numerical model solution

a. Transform BSDE for separated value fcn. v(n) into PDE
b. Solve PDE via value function iteration

5. KFE: Stationary distribution, Fan charts



Recall: 2 Ways of Solving ODE

= Propose function and iterate q(n)

= Start from boundary condition and solve step-by-step v¢(n), v*(n)
(Newton Method)



4. Value function Iteration - Big picture

" Add time, t, as an additional state variable ve(ne,t), v (e, t)

" Convert BSDE into PDE using Ito’s Lemma
e e 1 e 2
o uPv = 0,vf +niuy Oyve +5(mEol ) Oy
h e 1 e 2
= uf vl =0 +771,€.u? 5,71]? +E(771?0-Z7 ) annv?

= Guess terminal value functions v¢(n¢,T) and v*(n¢, T)
(far in the futuret = T)

m anditerate backtot = 0

" |n each step use

h
= From Step 2: u? ve, u¥ vh

e e
= From Step 3: nfu, andnfa,’ (n-evolution)
» Portfolio choice, planners’ problem, (static conditions)
= Market clearing

| i . e e
» To calculate all terms in these u? vt » né ul . andné .o .



4. Value Function Iteration — Big Picture

i e,t“ O
Vo — E—

___________________________________________________________________________




4. Value Function Iteration — Big Picture

v'(n®,T)
/\\
v'(n® T — A)

__________________________________________________________________________

Ui(ne» t)“

A - |

7
= Obtain descaled value function v'(n¢, T — A)
" Repeat previous steps



4. Value function Iteration - Big picture

= Add time, t, as an additional state variable ve(ne, ), v* (e, t)

= Convert BSDE into PDE using [to’s Lemma Short-hand notation:

n d,.f fordf /ox

e e 1 e 2
o uPvE = 0vf + gy 0yve +5(nfoy ) Oyyve

h e 1 e 2
e @l = 0l + gl vl + 2 (nfal”) Byt
= Guess terminal value functions v¢(n¢,T) and v*(n¢, T)
(far in the futuret =T)

" anditerate backtot =0

" |n each step use

h
* From Step 3: u¥ v¢, u? vl

e e
= From Step 2: p¢u, and néa, (n-evolution)

» Portfolio choice, planners’ problem, (static conditions)

" Market clearing

_ i : e e
= To calculate all terms in these uf_avi_a, NE_al;_x and N_pa,



4a. PDE Value Function Iteration

I — ,l(ne Short-hand notation:
= Postulate vy = v*(n¢, t) 0. f for Of /dx

" By Ito’s Lemma

2
N

' e 776 i 1( e n€ [ e 178 i
dvi  Itve+t(mTuy )an”t+§(77t0t ) OnnVt - (Mo, )Oyve
Vt Ut Vi
" That is,

i . . e . 1 e 2 .

s ufvi = 0wi+ (ouf Doyvi +5 (nel) Oyt
] . e .
= ol v = (°] ) Opv

= Equating with Step 3 (plug in u?' )=

[ _ e e . J. e\ 4 \
0. v + (neu? + (1 = y)onia, )6,7125 T 5(7750;7 ) a_nnvé
| 1 . CF .
- (pl — (= P)(@() — 8) +5y(1 - y)az) vi — vl
\_ nt -




4a. PDE Value Fcn: Replacing Terms

-

\_

. e e . 1 e\ 2 )
Orve + (neu? + (1 —y)anio, )anvf'? + 5(77?027 ) L
. 1 . Ct .
= (p‘ —A=9@0) =8 + 5y - 7)02) vi — —v
ng J

1. Replace “blue terms” using results from Step 2.

e

ul =@ =n9)(sf —ol —a) (o]

\—~/

n" _ =
~(1 =) (¢ = o/ = 0) (g, — 0t _(Nf_Nt)

e e__ne h
o] = 2= (o +0]) a;
Nt
2.
e __ € n¢ q h _
(¢ = —0y +0, +0, tY0, « Ct = —0¢
. . O‘s\’ei\ \Qtt
Ci _ (g1 VW 300 . 1
VLT T it WO £ Ov =
N} (vh)1/y ae® | i P Ne Qe
o v

3. Replace “red terms” g, atq,)({? (see below)

M
C{ Ct
ng . ne
eO-t




4a. Replacing (;

= Recall from optimal re-investment ®'(i,) = 1/q;
" For ®(1) = %log(cpt +1)=(pi=qg—1




4a. Replacing v, obtain k for good mkt clearing

" Recall from planner’s problem (Step 1b)

M > a(¢f —¢M) (o + o) (¢ = C?)(J + atq) >0
dt Ezir]:te?itc-apilflﬂsumt to expert required risk bremium
Cost:  RHS of experts vs. HH
la = < _ S
1b = — S g
23 > = S _
impossible

HHs’ short-sale constraint of
capital binds, kf =1
\

Case 1la Case 1b Case 2a

n

Y
Experts’ skin in the game Occasionally binding constraint
constraint binds, y{ = akf (skin in the game constraint)




4a. Replacing v, obtain k for good mkt clearing

" Need to determine ditf in risk premia (qt — Gt )(0 + o, )

" Recall
ne
[ : : e h o
= diff in price of risk: ¢ —ct=—0! +o}f A - tne
St
) pe _ OVt o 7° ph_ vl o
" By Ito’s lemma o =777th and gy = 7 Nt 0y
t t

e h
anvt | a,,vt | 1

vé vl (1-n@)ng

= Note, since



4a. Replacing v, obtain k for good mkt clearing

" Determination of k;

-
(a® —a")/q:= a (—

e

e
V¢

\_

_|_

h

n
Uy

with equality if k7 < 1

_|_

1

(1 —n{nt

)(Xf ~19)(o + 0%’

~

v

» Determination of y;

-

Xe = max{ax¢,ng}




4a. Market Clearing

" Qutput good market

(ic{fae + (1 —k8)a" — tt)Kt = C,;

.. jointly restricts k; and q;

-
kea® + (1 —k)a" —i(q,) =

-

(

1/y
R
vy

J

Ce /K¢




4a. Market Clearing

= Qutput good market
(K{fae + (1 —k8)a" — Lt)Kt = C,,

... jointly restricts k; and g

" Capital market is taken care off by price taking social
planner approach

m Risk-free debt market also taken care off by price taking

social planner approach
(would be cleared by Walras Law anyways)



4a.09(q,q")

" Recall from “amplification slide” — Step 2

0+0q = o
t 1 q' (M) xi —ng
) — q/ni  ng .
CI’ N¢
o1 = %) (x¢ —n$)(o + o,
. qd\N¢ )

" Now all red terms are replaced and we can solve ...



4b. Algorithm — Static Step

= Suppose we know functions v¢(n¢), v"(n) , have five static conditions:

1. ¢u=q—1
2. Planner condition for k¢ = Geet
3. Planner condition for y; = max{alcfl,/nte} y - ge(?ngs
14 _ 14 ,
4 Kgat+ (- rpat —ig) = (1) 4 (%) 5 (r°)
t t

5. o1 2((::'?)) (xf —n¢)(o + ) -

= Start at g(0), solve to the right, use different procedure for two n-regions depending on k:

1. While k¢ < 1, solve ODE for q(n°):
» For given q(n), plug optimal investment (1) into (4)

= Plug planner condition (3) into (2) and (5)
= Solve ODE using three equilibrium condition (2),(4) and (5) via Newton’s method (see next slide)

2. Whenk =1, (2) is no longer informative, since k® = 1, solve (1) and (4) for q(n)



4b. Aside: Newton’s Method

» Find the root of equation system F(z,,) = 0 via iterative method
Zn+1 = Zn _jﬁlF(Zn)

Where J, is the Jacobian matrix, i.e., J;; = df;(2)/0z;.

" Newton’s method does not guarantee global convergence.

= commonly take several-step iteration.



4b. Aside: Newton’s Method

q; 'market clearing condtion|
e amplification condition
z, =| Kt
n ql’ Planner condition for Ky
e - -
T I I
e 1—n€
kfa® + (1 —kf)a™ —i(q,) — (”ii“)y — (( :;f)q':)y
t t
Fzn) = a' M) 0f =)o +a) = alqmf)
0,v8 v 1 2
a® —a) —a (—"t+"t+ ) ¢ —n8)(o + o,
_( ) Qt vf vgz (1_77?)77? (Xt nt)( t) |

Plug in blue terms from optimal investment and Planner condition for y§




4. Value Function Iteration — Big Picture

vi(ne, t)y — %T)
7

___________________________________________________________________________

e

m FOr given Ui(ne, T), derive SDF 6'}
= Optimal investment, portfolio, consumption, at T as fcn. of n®
4. Market clearingatT  obtain PDE coefficient at T

(pretend they are constant between T & T — A)



4. Value Function Iteration — Big Picture

Ul'(T]e’ t)“ / \vl(ne’T)
7

___________________________________________________________________________

/

1 ‘ d= e
_ . . : : me’(ho n
®» For given v'(n®,T), derive SDF & Exp\\\sgt method Us

" Optimal investment, portfolio, consurﬁ\ption, at T as fcn. of n°
4. Market clearingatT  obtain PDE coefficientat T

(pretend they are constant between T & T — A)

es T — B



4. Value Function Iteration — Big Picture

v'(n®,T)
/\\
v'(n® T — A)

__________________________________________________________________________

Ui(ne» t)“

A - |

7
= Obtain descaled value function v'(n¢, T — A)
" Repeat previous steps



4b. Pseudocode

1. Initialize two terminal functions v¢(n¢,T), v"*(n¢, T) over né-grid (n¢,ns, ---nt)
2. Forte€{T, T —At, T — 2At,--- 0}
a. Compute an,f by first-order difference
b. Startatn{ = 0 smallest grid point > 0 (autarky economy), find q(0, t), k€(0,t),c9(0,t).
c. Forni € {n3,ns - na}
. Ifk®(i,t) <1, solve ODE for q(n;, t), k¢(n;,t),dq(n;, t) using Newton’s method.

i. Ifx®(ni,t) =1, solve ODE for q(n{, t) from market clearing equation via Newton’s method.
Then find a9(n;, t) using amplification function

d.  Find u"° (e, £), 0" (@°, £), 1" @, 1).
e. Update: obtain v¢(n®,t — At) from v¢(n®, t) via finite difference method

. e . e 2 .
(do ufvy = 0vf + 1, ng (Opve) + % (027 77{:’) (Opyve) for one time-step)
( _
Upwind [+ 1'27 AVIZ u >0 Implicit scheme: d;f(n,t) =
scheme: Onf(n,£) =5 fn,t) —f(n—1,¢t)
\ An

f(n;t+1)—f(77;t)

At

for T <0 2-order difference: 0, f(n,t) = f("+1)_?£7§’)73+f(’7‘1)




4b. Pseudocode — further questions

= |s there a boundary condition for v*(0)?
" Take smallest grid point — slightly above 0

" Boundary condition is only needed if volatility > 0
= For v"(0) this is ok, i.e. not an issue

* For v¢(0) one has to be careful and strictly speaking one has to look
at the v° of a single expert (assuming all other experts have zero net worth)

= Numerical short-cut, which seems to work:
simply set volatility equal to zero and it seems to work

" Do we need specific conditions to ensure that the
value function iteration converges?

" Theoretically we only know these conditions for specific
economies (representative agent, complete markets)

" Here we need it in theory, but if code converges, we are fine.
= Of course, we did not ensure uniqueness of the equilibrium



Solution

" Price of capital

ki <1 ki =1
14 ¢
13}
12}
1.1 S
o - .
. Q ~
O &
1Y & =
o (o]
09}.5 &
; ~ @)
S =
0.8 : : : :
0 02 04 06 08

n

Amplification

Parameters: p¢ = .06, p" = .05,a® =.11,a" = .03,
0 =.050=.01,a=.50,y=2,¢ =10

ki <1 ki =1
-
9
Qo
S <
Y, ©
g &
2 O
2 <
)
0 0.2 0.4 0.6 0.8



