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Cts.-time Macro:  Macro-Finance vs HANK

Agents: Heterogenous investor focus
- Net worth distribution (often discrete)

Heterogenous consumer focus
- Net worth distribution (often cts.)

Tradition: Finance (Merton)

PORTFOLIO AND CONSUMPTION CHOICE

DSGE (Woodford)

CONSUMPTION CHOICE

Full/global dynamical system 
- focused on non-linearities 

away from steady state (crisis …)
- Length of recession is stochastic

Transition dynamics back to steady state
- Zero probability shock

- Length of recession is deterministic

Money due to: Risk & financial frictions Price stickiness

Risk: Risk & financial frictions No aggregate risk (in HANK paper)

Price of risk: Idiosyncratic & aggregate risk

Assets: Capital, money, bonds with 
different risk profile
- Risk-return trade-off
- Liquidity-return trade-off
- Flight to safety

All assets are risk-free

- No risk-return trade-off
- Liquidity-return trade-off



Notation: Ito Calculus

▪ Arithmetic Ito Process 𝑑𝑋𝑡 = 𝜇𝑋,𝑡𝑑𝑡 + 𝜎𝑋,𝑡𝑑𝑍𝑡
▪ 𝑋 in the subscript of 𝜇 and 𝜎

▪ 𝜇𝑋,𝑡 and 𝜎𝑋,𝑡 time varying

▪ Geometric Ito Process 𝑑𝑋𝑡 = 𝜇𝑡
𝑋𝑋𝑡𝑑𝑡 + 𝜎𝑡

𝑋𝑋𝑡𝑑𝑍𝑡
▪ 𝑋 in the subscript of 𝜇 and 𝜎

▪ Stock goes up 32% or down 32% over a year. 

256 trading days 
32%

256
= 2%

▪ Note: This is not a general convention.



Basics of Ito Calculus

▪ Ito’s Lemma: (geometric  notation)

𝑑𝑓 𝑋𝑡 = 𝑓′ 𝑋𝑡 𝜇𝑡
𝑋𝑋𝑡𝑑𝑡 +

1

2
𝑓′′ 𝑋𝑡 𝜎𝑡

𝑋𝑋𝑡
2𝑑𝑡 + 𝑓′ 𝑋𝑡 𝜎𝑡

𝑋𝑋𝑡𝑑𝑍𝑡

▪ 𝑢 𝑐 =
𝑐1−𝛾−1

1−𝛾
, 𝑢′ 𝑐 = 𝑐−𝛾 volatility of process 

𝑑𝑐𝑡
−𝛾

𝑐𝑡
−𝛾 is −𝛾𝜎𝑡

𝑐

▪ Ito product rule: stock price × exchange rate
𝑑 𝑋𝑡𝑌𝑡
𝑋𝑡𝑌𝑡

= 𝜇𝑡
𝑋 + 𝜇𝑡

𝑌 + 𝜎𝑡
𝑋𝜎𝑡

𝑌 𝑑𝑡 + 𝜎𝑡
𝑋 + 𝜎𝑡

𝑌 𝑑𝑍𝑡

▪ Ito ratio rule: 
𝑑 𝑋𝑡/𝑌𝑡
𝑋𝑡/𝑌𝑡

= [𝜇𝑡
𝑋 − 𝜇𝑡

𝑌 + 𝜎𝑡
𝑌 𝜎𝑡

𝑌 − 𝜎𝑡
𝑋 ]𝑑𝑡 + 𝜎𝑡

𝑋 − 𝜎𝑡
𝑌 𝑑𝑍𝑡



▪ Choose consumption 𝑐𝑡 𝑡=0
∞ and portfolio weights to 𝜃𝑡 𝑡=0

∞ maximize

𝔼 0
∞
𝑒−𝜌𝑡𝑢 𝑐𝑡 𝑑𝑡 , with 𝑢 𝑐 =

𝑐1−𝛾−1

1−𝛾

▪ Subject to 
▪ Net worth evolution

∀𝑡 > 0: 𝑑𝑛𝑡 = −𝑐𝑡𝑑𝑡 + 𝑛𝑡 𝜃𝑡𝑟𝑡𝑑𝑡 + 1 − 𝜃𝑡 𝑑𝑟𝑡
𝑎

▪ A solvency constraint ∀𝑡 > 0: 𝑛𝑡 ≥ 0
▪ (alternatively, a “no Ponzi condition” leading to identical solution)

▪ Beliefs about
▪ 𝑟𝑡 risk-free rate

▪ 𝑑𝑟𝑡
𝑎 risky asset return process with risk premium of 𝛿𝑡

𝑎

𝑑𝑟𝑡
𝑎 = 𝑟𝑡 + 𝛿𝑡

𝑎 𝑑𝑡 + 𝜎𝑡
𝑎𝑑𝑍𝑡

▪ Agent takes prices/returns as given

Single-agent Consumption-Portfolio Choice



▪ Hamilton-Jacobi-Bellman (HJB) Equation
▪ Continuous-time version of Bellman equation
▪ Requires Markovian formulation with explicit definition of state space
▪ Postulate value function 𝑉(𝑛, 𝜂) as a function of state variable process 𝑑𝜂𝑡/𝜂𝑡

▪ Stochastic Maximum Principle
▪ Conditions that characterize path of optimal solution 

(as opposed to whole value function)
▪ Closer to discrete-time Euler equations than Bellman equation
▪ Does not require Markovian problem structure
▪ Postulate co-state variable 𝜉𝑡

𝑖

▪ Martingale Method
▪ (very general) shortcut for portfolio choice problems
▪ Yields interpretable equations (effectively linear factor pricing equations)
▪ But: tailored to specific problem class (portfolio choice), non-trivial to apply elsewhere
▪ Postulate SDF process 𝑑𝜉𝑡

𝑖/𝜉𝑡
𝑖… 

Stochastic Control Methods in Continuous Time



▪ Choose consumption 𝑐𝑡 𝑡=0
∞ and portfolio weights to 𝜃𝑡 𝑡=0

∞ maximize

𝔼 0
∞
𝑒−𝜌𝑡𝑢 𝑐𝑡 𝑑𝑡 , with 𝑢 𝑐 =

𝑐1−𝛾−1

1−𝛾

▪ Subject to 
▪ Net worth evolution

∀𝑡 > 0: 𝑑𝑛𝑡 = −𝑐𝑡𝑑𝑡 + 𝑛𝑡 𝜃𝑡𝑟𝑡𝑑𝑡 + 1 − 𝜃𝑡 𝑑𝑟𝑡
𝑎

▪ A solvency constraint ∀𝑡 > 0: 𝑛𝑡 ≥ 0
▪ (alternatively, a “no Ponzi condition” leading to identical solution)

▪ Beliefs about
▪ 𝑟𝑡 risk-free rate

▪ 𝑑𝑟𝑡
𝑎 risky asset return process with risk premium of 𝛿𝑡

𝑎

𝑑𝑟𝑡
𝑎 = 𝑟𝑡 + 𝛿𝑡

𝑎 𝑑𝑡 + 𝜎𝑡
𝑎𝑑𝑍𝑡

▪ Agent takes prices/returns as given

Single-agent Consumption-Portfolio Choice



▪ Suppose returns are a function of state variable 𝜂𝑡:

𝑟𝑡 = 𝑟 𝜂𝑡 ,   𝛿𝑡
𝑎 = 𝛿𝑎 𝜂𝑡 ,   𝜎𝑡

𝑎 = 𝜎𝑎 𝜂𝑡
▪ 𝜂𝑡 evolves according to a Markov diffusion process

𝑑𝜂𝑡 = 𝜇𝑡
𝜂
𝜂𝑡 𝜂𝑡𝑑𝑡 + 𝜎𝑡

𝜂
𝜂𝑡 𝜂𝑡𝑑𝑍𝑡

▪ with given initial state 𝜂0

▪ Then decision problem has two state variables:
▪ 𝑛𝑡 controlled state

▪ 𝜂𝑡 external state

▪ For each initial state (𝑛0, 𝜂0) we have a separate decision problem

State Space



▪ 𝜂-evolution (implies 𝜂𝑡 ∈ −1,1 )

𝜇𝜂𝜂 = 𝜇𝜂 = −𝜙𝜂,             𝜎𝜂 𝜂 = 𝜎(1 − 𝜂2)

▪ Asset returns

𝑟 𝜂 = 𝑟0 + 𝑟1𝜂, 𝛿𝑎 𝜂 = 𝛿0 − 𝛿1𝜂,   𝜎𝑎 𝜂 = 𝜎0 − 𝜎1𝜂

▪ With parameters 𝑟0, 𝑟1, 𝛿0, 𝛿1, 𝜎0, 𝜎1 ≥ 0

Example: Functional Forms



▪ Stochastic Version of single-agent consumption-portfolio choice

▪ HJB Differential Equation

▪ Special Cases: 
▪ Constant Returns

▪ Time-varying Returns

1. Hamilton-Jacobi-Bellman (HJB) Equation



▪ X

▪ X

▪ x

Value Function and Principle of Optimality



▪ Z

▪ X

▪ X

▪ x

A Stochastic Version of the HJB Equation: Derivation



▪ Stochastic Version of HJB
𝜌𝑉𝑡𝑑𝑡 = max

𝑐𝑡,𝜃𝑡
{𝑢 𝑐𝑡 𝑑𝑡 + 𝔼[𝑑𝑉𝑡]}

▪ This is an implicit backward stochastic differential equation (BSDE)
for the value process 𝑉𝑡

▪ What does this mean?
▪ Stochastic: equation for the stochastic process 𝑉𝑡 not a deterministic function

▪ Differential equation: relates time differential 𝑑𝑉𝑡 to process value 𝑉𝑡 (& other variables)

▪ Backward: forward-looking equation that must be solved backward in time, 
determines only expected time differential 𝔼[𝑑𝑉𝑡], volatility process is part of solution

▪ Implicit: 𝔼[𝑑𝑉𝑡] is not explicitly solved for, instead part of non-linear expression on 
right-hand side (due to max operator)

A Stochastic Version of the HJB Equation: Interpretation



▪ x

Digression: Alternative Derivation: Time Approximation



▪ Stochastic Version of Single-agent consumption-portfolio choice

▪ HJB Differential Equation

▪ Special Cases: 
▪ Constant Returns

▪ Time-varying returns

1. Hamilton-Jacobi-Bellman (HJB) Equation



▪ Next step: transform stochastic version of HJB 
into a (non-stochastic) differential equation

▪ General idea: use Ito to express 𝔼[𝑑𝑉𝑡] in terms of derivatives of value function 𝑉𝑡

The (Deterministic) HJB Equation



▪ x

Poll: The (Deterministic) HJB Equation



▪ Next step: transform stochastic version of HJB into a (non-stochastic) differentil
equation

▪ General idea: use Ito to express 𝔼[𝑑𝑉𝑡] in terms of derivatives of value function 𝑉𝑡

The (Deterministic) HJB Equation



▪ Next step: transform stochastic version of HJB into a (non-stochastic) differentil
equation

▪ General idea: use Ito to express 𝔼[𝑑𝑉𝑡] in terms of derivatives of value function 𝑉𝑡

The (Deterministic) HJB Equation



▪ N

The (Deterministic) HJB Equation



▪ Stochastic Version of Single-agent consumption-portfolio choice

▪ HJB Differential Equation

▪ Special Cases: 
▪ Constant Returns

▪ Time-varying returns

1. Hamilton-Jacobi-Bellman (HJB) Equation



Special Case: Constant Returns



Solving HJB for Constant Return Case



Full Solution for Constant Return Case



Discussion of Optimal Consumption Choice



▪ x

General Case: Time-varying Returns

Net worth multiplier/investment opportunity



Time-varying Returns: Optimal Consumption and Portfolio



Time-varying Returns: Hedging Demand



▪ When substituting optimal choices into HJB, 𝑛 cancels out and we get ODE for 𝜔 𝜂

▪ One can solve this numerically for the function 𝜔 𝜂

▪ Details will be provided in Lecture 06 (later)

▪ (E.g., solve equivalently for 𝑣 𝜂 ≔ 𝜔 𝜂
1−𝛾

which is a “more linear” (less kinky) ODE.)

Determining Investment Opportunities



Example Solution



▪ Hamilton-Jacobi-Bellman (HJB) Equation
▪ Continuous-time version of Bellman equation
▪ Requires Markovian formulation with explicit definition of state space
▪ Postulate value function 𝑉(𝑛, 𝜂) as a function of state variable process 𝑑𝜂𝑡/𝜂𝑡

▪ Stochastic Maximum Principle
▪ conditions that characterize path of optimal solution 

(as opposed to whole value function)
▪ closer to discrete-time Euler equations than Bellman equation
▪ does not require Markovian problem structure
▪ Postulate co-state variable 𝜉𝑡

𝑖

▪ Martingale Method
▪ (very general) shortcut for portfolio choice problems
▪ yields interpretable equations (effectively linear factor pricing equations)
▪ But: tailored to specific problem class (portfolio choice), non-trivial to apply elsewhere
▪ Postulate SDF process 𝑑𝜉𝑡

𝑖/𝜉𝑡
𝑖… 

Stochastic Control Methods in Continuous Time



Method 2: Stochastic maximum principle

▪ Consider a control problem
𝑑𝑋𝑡 = 𝜇 𝑋𝑡, 𝐴𝑡 𝑑𝑡 + 𝜎 𝑋𝑡, 𝐴𝑡 𝑑𝑍𝑡,

▪ where 𝐴𝑡 are the control and 𝑋𝑡 are states.

▪ and finite-horizon problems with object function

𝐸0 න

0

𝑇

𝑔 𝑡, 𝑋𝑡, 𝐴𝑡 𝑑𝑡 + 𝐺(𝑋𝑇)

▪ where 𝑔 𝑡, 𝑋𝑡 , 𝐴𝑡 is payoff flow.

▪ Instead of solving such an optimization problem directly, 
one can work with 𝑝𝑡, the dynamic Lagrange multiplier on 𝑋𝑡
▪ label 𝑝𝑡 and its volatility 𝑞𝑡 as costates of the system
▪ then optimize the Hamiltonian

𝐻𝑡 = 𝑔 𝑡, 𝑋𝑡 , 𝐴𝑡 + 𝑝𝑡 , 𝜇(𝑋𝑡 , 𝐴𝑡) + 𝑡𝑟 𝑞𝑡
𝑇𝜎 𝑋𝑡 , 𝐴𝑡 .

▪ The stochastic maximum principle: under necessary convexity 
condition, 𝑝𝑡 must satisfy the BSDE

𝑑𝑝𝑡 = −𝐻𝑋 𝑡, 𝑋𝑡, 𝐴𝑡, 𝑝𝑡, 𝑞𝑡 𝑑𝑡 + 𝑞𝑡𝑑𝑍𝑡
with terminal condition 𝑝𝑇 = 𝐺′ 𝑋𝑇 .



Method 2: Stochastic maximum principle

▪ Label co-state  𝜉𝑡
𝑖 and its volatility −𝜍𝑡

𝑖𝜉𝑡
𝑖

▪ Link to HJB: co-state 𝜉𝑡
𝑖 acts like a Lagrange multiplier on the net worth evolution, 

marginal (time-𝑧𝑒𝑟𝑜) utility benefit of giving agent 𝑖 an additional unit of (time 𝑡) wealth, 𝜉𝑡
𝑖 = 𝑒−𝜌𝑡𝑉𝑡

′(𝑛𝑡)

▪ Link to Martingale Method:  we will see later that co-state 𝜉𝑡
𝑖 will be the SDF, −𝜍𝑡

𝑖𝜉𝑡
𝑖 is the (arithmetic) volatility of 𝜉𝑡

𝑖

▪ Hamiltonian

𝐻𝑖 = 𝑒−𝜌𝑡
(𝑐𝑡

𝑖)1−𝛾

1−𝛾
+ 𝜉𝑡

𝑖𝑛𝑡
𝑖𝜇𝑡

𝑛𝑖 − 𝜍𝑡
𝑖𝜉𝑡
𝑖𝑛𝑡

𝑖𝜎𝑡
𝑛𝑖

= 𝑒−𝜌𝑡
(𝑐𝑡

𝑖)1−𝛾

1−𝛾
+ 𝜉𝑡

𝑖 −𝑐𝑡
𝑖 + 𝑛𝑡

𝑖 1 − 𝜃𝑡
𝑖 𝑟𝑡 + 𝛿𝑡

𝑎 + 𝑛𝑡
𝑖𝜃𝑡

𝑖𝑟𝑡 − 𝜍𝑡
𝑖𝑛𝑡

𝑖 1 − 𝜃𝑡
𝑖 𝜎𝑡

𝑟𝑎

w.r.t. 𝜃𝑡
𝑒 , 𝑐𝑡

𝑒 , 𝜄𝑡
𝑒:

𝑒−𝜌𝑡 𝑐𝑡
𝑒 −𝛾 = 𝜉𝑡

𝑒 ,

𝑎−𝜄𝑡
𝑒

𝑞𝑡
+Φ 𝜄𝑡

𝑒 − 𝛿 + 𝜇𝑡
𝑞
+ 𝜎𝜎𝑡

𝑞
− 𝑟𝑡 = 𝜍𝑡

𝑒 𝜎 + 𝜎𝑡
𝑞

Φ′ 𝜄𝑡
𝑒 =

1

𝑞𝑡



Method 2: Stochastic maximum principle

▪ Label co-state  𝜉𝑡
𝑖 and its volatility −𝜍𝑡

𝑖𝜉𝑡
𝑖

▪ Link to HJB: co-state 𝜉𝑡
𝑖 acts like a Lagrange multiplier on the net worth evolution, 

marginal (time-𝑧𝑒𝑟𝑜) utility benefit of giving agent 𝑖 an additional unit of (time 𝑡) wealth, 𝜉𝑡
𝑖 = 𝑒−𝜌𝑡𝑉𝑡

′(𝑛𝑡)

▪ Link to Martingale Method:  we will see later that co-state 𝜉𝑡
𝑖 will be the SDF, −𝜍𝑡

𝑖𝜉𝑡
𝑖 is the (arithmetic) volatility of 𝜉𝑡

𝑖

▪ Hamiltonian

𝐻𝑖 = 𝑒−𝜌𝑡
(𝑐𝑡

𝑖)1−𝛾

1−𝛾
+ 𝜉𝑡

𝑖𝑛𝑡
𝑖𝜇𝑡

𝑛𝑖 − 𝜍𝑡
𝑖𝜉𝑡
𝑖𝑛𝑡

𝑖𝜎𝑡
𝑛𝑖

= 𝑒−𝜌𝑡
(𝑐𝑡

𝑖)1−𝛾

1−𝛾
+ 𝜉𝑡

𝑖 −𝑐𝑡
𝑖 + 𝑛𝑡

𝑖 1 − 𝜃𝑡
𝑖 𝑟𝑡 + 𝛿𝑡

𝑎 + 𝑛𝑡
𝑖𝜃𝑡

𝑖𝑟𝑡 − 𝜍𝑡
𝑖𝑛𝑡

𝑖 1 − 𝜃𝑡
𝑖 𝜎𝑡

𝑟𝑎

▪ FOC w.r.t. 𝜃𝑡
𝑖 , 𝑐𝑡

𝑖 :

𝑒−𝜌𝑡 𝑐𝑡
𝑖 −𝛾

= 𝜉𝑡
𝑖 ,

𝛿𝑡
𝑎 = 𝜍𝑡

𝑖 𝜎 + 𝜎𝑡
𝑞



Method 2: Stochastic maximum principle

▪ Costate equation (additional FOC)

𝑑𝜉𝑡
𝑖 = −

𝜕𝐻𝑖

𝜕𝑛𝑖
𝑑𝑡 − 𝜍𝑡

𝑖𝜉𝑡
𝑖𝑑𝑍𝑡

▪ The drift of 𝜉𝑡
𝑖 is given by

𝜇𝑡
𝜉𝑖
𝜉𝑡
𝑖 = −

𝜕𝐻𝑖

𝜕𝑛𝑖
= −𝜉𝑡

𝑖 1 − 𝜃𝑡
𝑖 𝑟𝑡 + 𝛿𝑡

𝑎 + 𝜃𝑡
𝑖𝑟𝑡 − 𝜍𝑡

𝑖 1 − 𝜃𝑡
𝑖 𝜎𝑡

𝑟𝑎 = −𝑟𝑡𝜉𝑡
𝑖 .

▪ Hence,
𝑑𝜉𝑡

𝑖

𝜉𝑡
𝑖
= −𝑟𝑡𝑑𝑡 − 𝜍𝑡

𝑖𝑑𝑍𝑡

▪ (𝜉𝑡
𝑖 , −𝜍𝑡

𝑖) are indeed SDF and price of risk!

▪ Under log utility

𝜉𝑡
𝑖 = 𝜕𝑛𝑉𝑡

𝑖 =
1

𝜌𝑛𝑡
𝑖
, 𝜍𝑡

𝑖 = 𝜎𝑡
𝑛𝑖

▪ Same result as HJB approach.



▪ Hamilton-Jacobi-Bellman (HJB) Equation
▪ Continuous-time version of Bellman equation
▪ Requires Markovian formulation with explicit definition of state space
▪ Postulate value function 𝑉(𝑛, 𝜂) as a function of state variable process 𝑑𝜂𝑡/𝜂𝑡

▪ Stochastic Maximum Principle
▪ conditions that characterize path of optimal solution 

(as opposed to whole value function)
▪ closer to discrete-time Euler equations than Bellman equation
▪ does not require Markovian problem structure
▪ Postulate co-state variable 𝜉𝑡

𝑖

▪ Martingale Method
▪ (very general) shortcut for portfolio choice problems
▪ yields interpretable equations (effectively linear factor pricing equations)
▪ But: tailored to specific problem class (portfolio choice), non-trivial to apply elsewhere
▪ Postulate SDF process 𝑑𝜉𝑡

𝑖/𝜉𝑡
𝑖… 

Stochastic Control Methods in Continuous Time



Method 3: Martingale Approach – Discrete Time

max
𝑐,𝜽

𝐸𝑡 

𝜏=𝑡

𝑇

1
1+𝜌 𝜏−𝑡𝑢(𝑐𝜏)

s.t. 𝜽𝑡𝒑𝑡 = 𝜽𝑡−1 𝒑𝑡 + 𝒅𝑡 − 𝑐𝑡 for all 𝑡

▪ FOC w.r.t. 𝜃𝑡:  (deviate from optimal at 𝑡 and 𝑡 + 1)

𝜉𝑡𝑝𝑡 = 𝐸𝑡 𝜉𝑡+1(𝑝𝑡+1 + 𝑑𝑡+1)

▪ where 𝜉𝑡 =
1

1+𝜌 𝑡

𝑢′ 𝑐𝑡

𝑢′ 𝑐0
is the (multi-period) stochastic discount factor (SDF) 

▪ If projected on asset span, then pricing kernel 𝜉𝑡
∗

▪ Note: MRSt,𝜏 = 𝜉𝑡+𝜏/𝜉𝑡

▪ Consider portfolio, where one reinvests dividend 𝑑

▪ Portfolio is a self-financing trading strategy, 𝐴, with price, 𝑝𝑡
𝐴

𝜉𝑡𝑝𝑡
𝐴 = 𝐸𝑡 𝜉𝑡+1𝑝𝑡+1

𝐴

▪ Stochastic process, 𝜉𝑡𝑝𝑡
𝐴, is a martingale
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max
𝜽𝑡,𝑐𝑡 𝑡=0

∞
𝐸 න

0

∞

𝑒−𝜌𝑡𝑢 𝑐𝑡 𝑑𝑡

s.t.
𝑑𝑛𝑡

𝑛𝑡
= −

𝑐𝑡

𝑛𝑡
𝑑𝑡 + σ𝑗 𝜃𝑡

𝑗
𝑑𝑟𝑡

𝑗
+ labor income/endow/taxes

𝑛0 given

▪ Portfolio Choice: Martingale Approach
▪ Let 𝑥𝑡

𝐴 be the value of a “self-financing trading strategy”(reinvest dividends)

▪ Theorem: 𝜉𝑡𝑥𝑡
𝐴 follows a Martingale, i.e., drift = 0.

▪ Let 
𝑑𝑥𝑡

𝐴

𝑥𝑡
𝐴 = 𝜇𝑡

𝐴𝑑𝑡 + 𝜎𝑡
𝐴𝑑𝑍𝑡, 

▪ Postulate 
𝑑𝜉𝑡

𝑖

𝜉𝑡
𝑖 = ด𝜇𝑡

𝜉𝑖

−𝑟𝑡
𝑖

𝑑𝑡 + ด𝜎𝑡
𝜉𝑖

−𝜍𝑡
𝑖

𝑑𝑍𝑡

▪ By Ito product rule
𝑑 𝜉𝑡

𝑖𝑥𝑡
𝐴

𝜉𝑡
𝑖𝑥𝑡

𝐴 = −𝑟𝑡
𝑖 + 𝜇𝑡

𝐴 − 𝜍𝑡
𝑖𝜎𝑡

𝐴 𝑑𝑡
=0

+volatility terms

▪ Expected return: 𝜇𝑡
𝐴 = 𝑟𝑡

𝑖 + 𝜍𝑡
𝑖𝜎𝑡

𝐴

▪ For risk-free asset, i.e. 𝜎𝑡
𝐴 = 0: 𝑟𝑡

𝑓
= 𝑟𝑡

𝑖

▪ Excess expected return to risky asset B:         𝜇𝑡
𝐴 − 𝜇𝑡

𝐵 = 𝜍𝑡
𝑖(𝜎𝑡

𝐴 − 𝜎𝑡
𝐵)



▪ 𝜉𝑡 is 𝑒−𝜌𝑡𝑢′ 𝑐𝑡 = 𝑒−𝜌𝑡𝑐𝑡
−𝛾

▪ 𝑑𝑐𝑡 = 𝜇𝑡
𝑐𝑐𝑡𝑑𝑡 + 𝜎𝑡

𝑐𝑐𝑡𝑑𝑍𝑡

▪ Apply Ito’s Lemma
▪ Note: 𝑢′′ = −𝛾𝑐−𝛾−1, 𝑢′′′ = 𝛾(𝛾 + 1)𝑐−𝛾−2

▪
𝑑𝜉𝑡

𝜉𝑡
= −(𝜌 + 𝛾𝜇𝑡

𝑐 −
1

2
𝛾 𝛾 + 1 𝜎𝑡

𝑐 2)

𝑟𝑡
𝑓

𝑑𝑡 − ต𝛾𝜎𝑡
𝑐

𝜍𝑡

𝑑𝑍𝑡

▪ Risk-free rate  𝑟𝑡
𝑓

▪ Price of risk 𝜍𝑡

▪ Aside: With Epstein-Zinn (-Duffie) preferences with EIS 𝜓

▪ 𝑟𝑟 = 𝜌 + 𝜓−1𝜇𝑡
𝑐 −

1

2
𝛾 𝜓−1 + 1 𝜎𝑡

𝑐 2

Remark: What is 𝜉𝑡 for CRRA utility
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▪ Proof 1: Stochastic Maximum Principle (see Handbook chapter)

▪ Proof 2: Intuition (calculus of variation)

remove from optimum Δ at 𝑡1 and add back at 𝑡2

𝑉 𝑛,𝜔, 𝑡 = max
𝜄𝑠,𝜽𝑠,𝑐𝑠 𝑠=𝑡

∞
𝐸𝑡 0

∞
𝑒−𝜌(𝑠−𝑡)𝑢 𝑐𝑠 𝑑𝑠|𝜔𝑡 = 𝜔

▪ s.t. 𝑛𝑡 = 𝑛

𝑒−𝜌𝑡1
𝜕𝑉

𝜕𝑛
𝑛𝑡1
∗ , 𝑥𝑡1 , 𝑡1 𝑥𝑡1

𝐴 = 𝐸𝑡1 𝑒−𝜌𝑡2
𝜕𝑉

𝜕𝑛
𝑛𝑡2
∗ , 𝑥𝑡2 , 𝑡2 𝑥𝑡2

𝐴

▪ See Lecture Notes and Merkel Handout


