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Cts.-time Macro: Macro-Finance vs HANK

Agents: Heterogenous investor focus | Heterogenous consumer focus
- Net worth distribution (often discrete) | - Net worth distribution (often cts.)
Tradition: Finance (Merton) DSGE (Woodford)
[PORTFOLIO AND CONSUMPTION CHOICE ] [CONSUMPTION CHOICE ]
Full/global dynamical system Transition dynamics back to steady state
- focused on non-linearities - Zero probability shock
away from steady state (crisis ...)
- Length of recession is stochastic - Length of recession is deterministic
Money due to: Risk & financial frictions Price stickiness
Risk: Risk & financial frictions No aggregate risk (in HANK paper)
Price of risk: ldiosyncratic & aggregate risk
Assets: Capital, money, bonds with All assets are risk-free
different risk profile
- Risk-return trade-off - No risk-return trade-off
- Liquidity-return trade-off - Liquidity-return trade-off

- Flight to safety



Notation: Ito Calculus

= Arithmetic Ito Process dX; = uy (dt + oy ;dZ,;
" X in the subscript of uand o
" Uy + and gy ¢ time varying

= Geometric Ito Process dX; = uf X, dt + o7 X, dZ,
" X in the subscript of uand o
» Stock goes up 32% or down 32% over a year.

. 32% _ g
256 trading days NeT 2%

" Note: This is not a general convention.



Basics of I1to Calculus

" [to’s Lemma: (geometric notation)
1
df Xe) = f'Xpui X dt + Ef”(Xt)(UtXXt)Zdt + f'(Xp)of X dZ,

_ . dc, V.
r—— u'(c) =c77 volatility of process C_ty s —yoy
t

cl=v-1

" u(c) =

" [to product rule: stock price X exchange rate
d(XcYe)

Xt

= ¥+l + o¥al)dt + (o + a1)dz,

® |to ratio rule:

d(X¢/Y:)
tr "t/ _ [.Ug( _ﬂf + o'tY(o'g/ — O'tX)]dt + (O'tX — O{)dZt
Xt/Yt




Single-agent Consumption-Portfolio Choice

» Choose consumption {c;};~, and portfolio weights to {6; };~, maximize

: “‘OOO e_ptu(ct)dt] ~with u(c) —

cl=vV-1

1=y
= Subject to

= Net worth evolution
Vt > 0:dn; = —cidt + ng |01 dt + (1 — 6,)drf]
" Asolvency constraint Ve > 0: ny = 0
" (alternatively, a “no Ponzi condition” leading to identical solution)
" Beliefs about
" 1¢ risk-free rate

» drf risky asset return process with risk premium of &7
drf = (ry + 68)dt + oldZ;

= Agent takes prices/returns as given



Stochastic Control Methods in Continuous Time

" Hamilton-Jacobi-Bellman (HJB) Equation
= Continuous-time version of Bellman equation
" Requires Markovian formulation with explicit definition of state space
" Postulate value function V(n,n) as a function of state variable process dn;/n;

" Stochastic Maximum Principle

= Conditions that characterize path of optimal solution
(as opposed to whole value function)

" Closer to discrete-time Euler equations than Bellman equation
" Does not require Markovian problem structure
» Postulate co-state variable &;

" Martingale Method
= (very general) shortcut for portfolio choice problems
" Yields interpretable equations (effectively linear factor pricing equations)
" But: tailored to specific problem class (portfolio choice), non-trivial to apply elsewhere
= Postulate SDF process d&}/é&L...



Single-agent Consumption-Portfolio Choice

» Choose consumption {c;};~, and portfolio weights to {6; };~, maximize
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cl=vV-1

1=y
= Subject to

= Net worth evolution
Vt > 0:dn; = —cidt + ng |01 dt + (1 — 6,)drf]
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State Space

" Suppose returns are a function of state variable n;:

re =1(My), 6 =8%(.), o = %)
" 1, evolves according to a Markov diffusion process
dne = pu MOnedt + o (n)nedZ,

" with given initial state n

" Then decision problem has two state variables:

" n, controlled state
" 1, external state

" For each initial state (ng, o) we have a separate decision problem



Example: Functional Forms

¢
=) =
< S

) . . . 0 . . |

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
1 y
= p-evolution (impliesn; € (—1,1))
um =y = —¢n, o, () = a(1—1n%)

® Asset returns
rm) =r°+rhy, 6%(m) =6° -6, a*(m) =0d° —oa'n
= With parameters r%, 11,89 6%, 6%, 61 > 0



1. Hamilton-Jacobi-Bellman (HJB) Equation

" Stochastic Version of single-agent consumption-portfolio choice
= HJB Differential Equation

" Special Cases:
= Constant Returns
= Time-varying Returns



Value Function and Principle of Optimality

" Notation:

o A(n,n): set of admissible choices {c;, 0;}:2, given the initial conditions ng = n, ng = 7
o At (n,n): set of policies {c;,0;}/_, over [0, T] that have admissible extensions to [0, 0o),
{Cf? Qt}?io = «4(”»77)

m Define the value function of the decision problem

V)= max E UOOO eﬂfu(ct)dt]

{Cf,gt}?io GA(H,?’}

" It is easy to see that V satisfies the Bellman principle of optimality: for all T > 0

-
Vi(n,n) = max E {/ e tu(cy)dt +e P! \/(nT,nT)}
{Ct,Qt}tT:OGAT(n,n) 0

(where nt depends on the choice {c;, 0;}/_, over [0, T]).



A Stochastic Version of the HJB Equation: Derivation

= With V; := V(n¢, m:), can write principle of optimality as

- i
0= max v / e Ptu(cy)dt +e TV —
{ct,0t} o€ AT (no,m0) 0 _

s By the product rule

T T
e_pTVT — Vo = —,0/ e PtV,dt +/ e PtdV,
0 0

s Combine with previous equation

. i
0= max E / e " ((u(ce) — pVy) dt + e PtdV
{ce,0e}o€AT(n0m0)  LJ0O ( t t t)_

® Divide by T, take limit T \,0:

(literally this yields the following equation only for t = 0, but we can shift time to arbitrary initial time due to Markovian nature of problem)

thdt — max(u(ct)dt -+ Et [th])

Ct,gt




A Stochastic Version of the HJB Equation: Interpretation

= Stochastic Version of HJB
pV.dt = max {u(c;)dt + E[dV;]}

Ct,0¢

" This is an implicit backward stochastic differential equation (BSDE)
for the value process V;

= \What does this mean?

" Stochastic: equation for the stochastic process V; not a deterministic function
= Differential equation: relates time differential dV; to process value V; (& other variables)

" Backward: forward-looking equation that must be solved backward in time,
determines only expected time differential E[dV;], volatility process is part of solution

= Implicit:  [E[dV;] is not explicitly solved for, instead part of non-linear expression on
right-hand side (due to max operator)



Digression: Alternative Derivation: Time Approximation

" Usual way of writing discrete time Bellman equation (5 := e™*)

V(ntv nt) — max(u(ct) + BIE; [V (nt—l—lv 77t—|—1)])

ijgt

More generally with generic period lentgh At > 0 (5 (At) := e PA1):

V(ne.me) = ma@x (u(ce)At + B(At)Es [V (nerae Ne+at)])

Ct,Ut

Subtract S(At)V(ng, n¢) from both sides

1 _i(tAt) V(ne,ne) At = Igﬂ,]a@):(U(Ct)At + B (A Ee [V (neae erar) = V(e 1))

Taking the limit At — 0 yields again

pV (ne,me)dt = max(u(c)dt + E¢ [d (V (ne,m:))])

Ct,@t



1. Hamilton-Jacobi-Bellman (HJB) Equation

" Stochastic Version of Single-agent consumption-portfolio choice
= HJB Differential Equation

" Special Cases:
= Constant Returns
= Time-varying returns



The (Deterministic) HIB Equation

" Next step: transform stochastic version of HJB
into a (non-stochastic) differential equation

" General idea: use Ito to express [E|dV; ] in terms of derivatives of value function V;



Poll: The (Deterministic) HIB Equation

= which of the following is the correct? [recall the definition V; = V/(n¢, n:)]
(a) E: [dVi] = (OnV(neyme) in,e + Oy V(Ney M) o 1) dt

(b) E: [th] — (an V(nt, Ur)un,t + 877 V(nn nt)ﬂm,t

% (8””\/(”?7 77t)0n ¢ + Onn V(ne,me) oy, t) )dt
(¢) E: [dVi] = (&;V(nt, Ne)pn.e + On V(Ne, M) o 2

% (GnnV(nt 77r)0n e+ O V(ne,me) o 05 ¢ 4 Oy V (e, m)%’tan,t) )dt
(d) E: [dVi] = (GnV(nt, Ne)pn.t + On V(Ne, M) o 2

1
E (ann V(nt 77t)0'n ¢+ afrm V(nt 'r]t) O, t) + 87){7 \/(I"If7 nf)avj,to-n,t) dt



The (Deterministic) HIB Equation

" Next step: transform stochastic version of HJB into a (non-stochastic) differential

equation

" General idea: use Ito to express [E; [dV;] in terms of derivatives of value function V

Here, Vi = V/(ns, m¢), so we can write

Ct,@t

/Othf — MaxXx (U(Ct) =+ an V(nt? 771“)/“47,1“ + 8?} V(nta nt)/fﬂr),t

(annV(”ram)Uﬁ,t

1
2

arm V(nta 771“)

2
O-fr),t

)

ar)n V(nt; nt)o_fr),to_n,t) dt



The (Deterministic) HIB Equation

" Next step: transform stochastic version of HJB into a (non-stochastic) differential

equation

" General idea: use lto to express

“+ [dV4] in terms of derivatives of value function V

Here, Vi = V/(ns, m¢), so we can write

Ct,@t

/Othf — MaxXx (U(Ct) =+ 8!7 V(nt? 771“)/“47,1“ + 8?} V(nta nt)/fﬂr),t

1
2

(ann V(nrym)gﬁat annv(nt;nt)o-%’t) afm‘l V(ntant)o-fr),to-n,t) dt

For this problem, drifts and volatilities are

fine = —C¢ + ne (r(ne) + (1 —0¢)07 () fne =ty (7t)
On,t = ”t(l — 91:)(78 (77t) On,t = On (77t)



The (Deterministic) HIB Equation

® Combining the previous equation and dropping dt and time subscripts yields

/OV(”ﬂ?) — m?X(U(C) — Oy V(”ﬂ?)c)

+ max (an V(n,n)n(r(n)+ (1—0)"(n))
1 a
+ (30mVn.0n(3 = 0)0 (1) + 24 V() (1)) a3 = ) (m)

+ 67, V(n, 77)/,677 (77) an %ar)’r) V(na 77) (O-’f] (77))2

This is a nonlinear partial differential equation (PDE) for V/(n,n)

Note: nonlinearity enters through the max operators



1. Hamilton-Jacobi-Bellman (HJB) Equation

" Stochastic Version of Single-agent consumption-portfolio choice
= HJB Differential Equation

" Special Cases:
= Constant Returns
= Time-varying returns



Special Case: Constant Returns

Let's first assume that returns are constant: ry = r, 07 =07, 0f = o?

Can then drop 7) state from the problem and write the HIB as

pV(n) = max (u(c) — V'(n)c) +max (V’(n)n (r+(1—20)6%) + %V”(n)n2 ((1— 9)03)2)

To solve this equation, first solve the maximization problems:
e optimal consumption choice: marginal utility of consumption = marginal value of wealth

u'(c) = V'(n)
e optimal portfolio choice: Merton portfolio weight
V" (n)n o
1-0=|- / P
V'(n) (o2)

Remarks: .
e this has a flavor of mean-variance portfolio choice: —% s the relative risk aversion

coefficient of V (locally at n), 67 is the excess return and (o°)° is the risky asset’s variance



Solving HJB for Constant Return Case

We could now plug optimal choices into HJB and solve the resulting ODE numerically

Instead for this problem: guess functional form and solve analytically

Guess: V(n) = ”((’;") with some constant w > 0

Plugging into HJB equation:
o v =1 (log utility):

Iogw+|/og/—logp+|/og/nl+1(rl ! (5a>2)

p 2y \0o?

o v # 1.

(M”V_ 1/7,,1-1 w(w”)l/(. _ , 1 /(o 2 (W”)l/(
=, = yp W //p - (1 7)(+2f}/( ))

o
In both cases, n cancels out, thus verifying our guess (we can then solve for w)



Full Solution for Constant Return Case

Value function:

Optimal choices:
1 0°
Y (03)2

1 —6(n) =

Value function constant w (for v # 1):

Y

~11 1 /52\*\\ "
W =p 11’7 —|\r=—p+— =
Y op 27 \0o




Discussion of Optimal Consumption Choice

ce/me = 0wt

@ Reaction of ¢/n to investment opportunities w depends on EIS 9 :=1/7:

1) < 1 better investment opportunities = consumption T, savings |
1) > 1 better investment opportunities = consumption |, savings T
1) = 1 consumption-wealth ratio independent of investment opportunities

@ Why this ambiguous relationship? Two effects:
@ income effect:

@ improved investment opportunities w make investor effectively richer
@ investor responds by increasing consumption in all periods

© substitution effect:

@ improved investment opportunities w make savings more attractive
@ to benefit from them, investor reduces consumption now to get more consumption later

) < 1 substitution effect weak (consumption smoothing desire), income effect dominates
) > 1 investor less averse against temporal variation in comsumption, substitution effect dominates



General Case: Time-varying Returns

" Recall the HJB equation in the general case:

pV(n,n) = m?X(U(C) — 0,V (n,n)c)

+ max (8.*1 V(n,mn(r(n)+(1—06)5°(n))
1 5 a
+ (§8nn V(n,n)n(l —0)o° (n) + IynV(n,n)oy (W)) n(l—0)o (77))

+ 87) V(n,, ﬁ)un (?7) + %87777 V(na 77) (0_77 (77))2

Solution method 1: solve this two-dimensional PDE for V numerically
Solution method 2: guess V/(n,n) = “(WJ(O”)”) and reduce to one-dimensional ODE for w(n)

Net worth multiplier/investment opportunity



Time-varying Returns: Optimal Consumption and Portfolio

Optimal consumption choice (after using guess from previous slide):

c(n,n) = pM 7 (w(n) 7 n

— as for constant returns, but now investment opportunities w(n) are state-dependent

Optimal portfolio choice (after using guess from previous slide):

w' (1)

L~ 0(nn) - 1 6%(n) l—q/man(ﬁ)ga(ﬁ)
@)y (02 ()’
N e’
myopic demand hedging demand

— additional hedging demand term that depends on covariance 0“o? of investment
opportunities with asset return



Time-varying Returns: Hedging Demand

w'(n)

1 49(n) 1 — v o0 (777("7)(73(77)
1—0 (na 77) — 2 T

V(e () 7 (07 (n))?

myopic\aemand hedging?:jemand

@ Why should variation in future investment opportunities be relevant for portfolio choice?

Two opposing motives:
@ if investment opportunities are good, it is valuable to have many resources available
— invest in assets that pay off in states in which investment opportunities are good
@ if investment opportunities are bad, that's a bad time for the investor and additional wealth
Is valuable
— invest in assets that pay off in states in which investment opportunities are bad

@ Which of the two dominates depends on ~:

v < 1 investor not very risk averse, prefers to have resources available when it is profitable to invest
v > 1 Investor sufficiently risk averse to want to hedge against bad times

v =1 the two forces cancel out, investor acts myopically

@ Remark: a very conservative investor (v — o0) only cares about the hedging component



Determining Investment Opportunities

= \When substituting optimal choices into HJB, n cancels out and we get ODE for w(n)
= One can solve this numerically for the function w(n)

" Details will be provided in Lecture 06 (later)

= (E.g., solve equivalently for v(n) := (a)(n))l_y which is a “more linear” (less kinky) ODE.)



Example Solution

%108 . . . %1073
1.8 - o}
16 | 388
8.6
1.4
-1 05 0 0.5 1 -1 05 0 0.5 1

—
w

o
N

o
—

o

-0.5 0 0.5 1
Y

|
—

-1 -0.5 0 0.5 1
Ui

1 — 6 (solid), myopic demand (dashed)

parameters: p = 0.02,v =5, =0.2,0 = 0.1,r° = 0.02, r* = 0.01,4° = 0.3,5* = 0.03,0° =0.15,06' = 0.1



Stochastic Control Methods in Continuous Time

" Hamilton-Jacobi-Bellman (HJB) Equation
= Continuous-time version of Bellman equation
" Requires Markovian formulation with explicit definition of state space
" Postulate value function V(n,n) as a function of state variable process dn;/n;

" Stochastic Maximum Principle

" conditions that characterize path of optimal solution
(as opposed to whole value function)

" closer to discrete-time Euler equations than Bellman equation
" does not require Markovian problem structure
» Postulate co-state variable &;

" Martingale Method
= (very general) shortcut for portfolio choice problems
= vields interpretable equations (effectively linear factor pricing equations)
" But: tailored to specific problem class (portfolio choice), non-trivial to apply elsewhere
= Postulate SDF process d&}/é&L...



Method 2: Stochastic maximum principle

" Consider a control problem
dX; = p(X, Apdt + o(X¢, Ap)dZy,

" where A; are the control and X; are states.

" and finite-horizon pro_bITems with object function

Eg fg(t,Xt,At)dt + G (X7)

0
= where g(t, X;, A;) is payoff flow.

" |[nstead of solving such an optimization problem directly,
one can work with p¢, the dynamic Lagrange multiplier on X;

" |abel p; and its volatility g; as costates of the system
" then optimize the Hamiltonian

He = g(t, Xe, A) + (Do, u(Xe, Ap)) + trigf o (X, Ap).

" The stochastic maximum principle: under necessary convexity
condition, p; must satisfy the BSDE

dp; = —Hx(t, X¢, Ae, Pt q)dt + qpdZ,
with terminal condition pr = G'(X7).




Method 2: Stochastic maximum principle

" | abel co-state E{ﬁ and its volatility —q{ffﬁ

" Link to HIB: co-state E{ﬁ acts like a Lagrange multiplier on the net worth evolution, |
marginal (time-zero) utility benefit of giving agent i an additional unit of (time t) wealth, & = e P'V/(n,)

= Link to Martingale Method: we will see later that co-state & will be the SDF, —¢t&} is the (arithmetic) volatility of &
" Hamiltonian

i —pt @OV | aiioni igii nd
H =e — + §Nlly — §e$eNe Oy

+ Et[—ct + nt(l — t)(rt +88) + ntbir, — g{lnﬁ(l — eg)ag‘“]



Method 2: Stochastic maximum principle

" | abel co-state E{ﬁ and its volatility —q{ffﬁ

" Link to HIB: co-state E{ﬁ acts like a Lagrange multiplier on the net worth evolution, |
marginal (time-zero) utility benefit of giving agent i an additional unit of (time t) wealth, & = e P'V/(n,)

= Link to Martingale Method: we will see later that co-state & will be the SDF, —¢t&} is the (arithmetic) volatility of &
" Hamiltonian

] IN1—Y .. ; .. ;

i _ —pt (c) i..0, nt ici i nt
H' = e P ——+ ey — ¢iéingoy
+ Et[—ct + nt(l — t)(rt +88) + ntbir, — g{lnﬁ(l — eg)ag‘“]
" FOCw.rt. 6, c; :

P (ch) T =
of = gt(a + o, )



Method 2: Stochastic maximum principle

" Costate equation (additional FOC)

dé; =
" The drift of Ef is given by

i . H . : . . < .a .
pe & = = = =&l[(1 - 0)(re + 68) + 0ir — 6i(1 = 68)o!"] = —1:él.

Hi

" Hence,

dé} .
_g.t — —Ttdt - CédZt

l
t

» (&}, —cl) are indeed SDF and price of risk!
" Under log utility

. . 1 .
$¢ = 0nVy = pni ) Gt = Ot
t

= Same result as HIB approach.



Stochastic Control Methods in Continuous Time

" Hamilton-Jacobi-Bellman (HJB) Equation
= Continuous-time version of Bellman equation
" Requires Markovian formulation with explicit definition of state space
" Postulate value function V(n,n) as a function of state variable process dn;/n;

" Stochastic Maximum Principle

" conditions that characterize path of optimal solution
(as opposed to whole value function)

" closer to discrete-time Euler equations than Bellman equation
" does not require Markovian problem structure
» Postulate co-state variable &;

" Martingale Method
= (very general) shortcut for portfolio choice problems
= vields interpretable equations (effectively linear factor pricing equations)
" But: tailored to specific problem class (portfolio choice), non-trivial to apply elsewhere
= Postulate SDF process d&}/é&L...



Method 3: Martingale Approach — Discrete Time

[T
Mgy e Z EISEC

st.Ops =0,_ 1(pt +d,) —c, forallt

= FOC w.rt. Hti (deviate from optimal att and t + 1)
$eDe = Eeléev1(Prer + desr)]

1 u'(cp) .
(1+p)t u'(co)
» |f projected on asset span, then pricing kernel &/

" Note: MRSy = $e40/$t

" where & = is the (multi-period) stochastic discount factor (SDF)

= Consider portfolio, where one reinvests dividend d

= Portfolio is a self-financing trading strategy, A, with price, p{f‘
A _ A
$epf = Eel&ev1pivql

= Stochastic process, &, pf*, is a martingale



Method 3: Martingale Approach — Cts. Time

max Ef e Plu(c,)dt
0.

d {Bt,Ct}t 0
s.t. % =—= “tdt + Z 0/ drt + labor mcome/endow/taxes
t t
ng given

. Portfolio Choice: Martingale Approach
= Let x{! be the value of a “self-financing trading strategy” (reinvest dividends)

= Theorem: &.x#* follows a Martingale, i.e., drift = 0.

" et dxxj = pfdt + of*dZ,,
t
i i
= Postulate dit —,uf dt + o, dZ,
Et \—V-J !
—T¢ Y
" By [to product rule
d(EixA _
(;;xt) = (—rt‘ + uf — clof )dt +volatility terms
t*t ~
=0
= Expected return'[,l,lz4 =17 + C,%O'qu]
= For risk-free asset, i.e. of* = 0: rtf = rt'

* Excess expected return to risky asset B: ud —uf = cl(cf — o)



Remark: What is ¢; for CRRA utility

=& ise Pu'(c,) = e P’
. dCt — ,ngCtdt + O-tCCtdZt

" Apply Ito’s Lemma
" Note:u” = —yc™ V" hu" =y(y + 1)c7"7

d 1
¢ B = —(p+yuf — 3y + D)D)t — yof dZ,

f Ct
T

= Risk-free rate rtf

" Price of risk ¢

" Aside: With Epstein-Zinn (-Duffie) preferences with EIS 1
1T =p T =Sy + D(of)’



Method 3: Martingale Approach — Cts. Time

" Proof 1: Stochastic Maximum Principle (see Handbook chapter)

= Proof 2: Intuition (calculus of variation)

remove from optimum A at t; and add back at ¢,

_ X —p(s—t _
Vin w,t) = {LS,(SE?S;-;tEtUO e POy (cy)ds|wy = w)

"stn,=n

aV ' aV
—pt * A _ —pt * A
e P4 P (ntl,xtl,tl)xtl = Et1 e Fr2 P (ntz,xtz,tz)xtz

m See Lecture Notes and Merkel Handout



