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Abstract

This paper incorporates a bubble term in the standard Fiscal Theory of the Price Level
equation to explain why countries with persistently negative primary surpluses can have a
positively valued currency and low inflation. It also provides two illustrative models with
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growth rate. The government can “mine” the bubble by perpetually rolling over its debt.
Despite the bubble, the price level remains determined provided government policy cred-
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Figure 1: Japanese primary surplus 1960–2017

1 Introduction

What is the relationship between the market value and fundamental value of government
debt? While most economic models imply equality of the two, in the data there seems to be
a disconnect between these values for many countries. The fundamental value of government
debt is the expected discounted stream of future primary surpluses – the difference between the
government revenues and expenditures excluding interest payments. The Fiscal Theory of the
Price Level (FTPL) links government debt valuation and sustainability to the determination of
the price level and inflation. It argues that the price level is determined by equating the ratio
of the nominal value of government debt and the price level to the fundamental value of debt.
Absent government default, a decline in the expected future primary surpluses lowers the real
value of debt by increasing the price level, i.e. higher inflation.

Empirically, for the United States, Jiang et al. (2019) suggest that the price of U.S. Treasury
debt significantly exceeds the present value of primary surpluses. For Japan, the FTPL appears
to be at odds with the data even more dramatically. The fact that since the 1960s Japan’s primary
surpluses were mostly negative (see Figure 1) and with no positive primary surplus in sight
does not square with the decade-long depressed inflation. This is even more puzzling as the
Bank of Japan has left no stone unturned to boost inflation closer to 2%.

In this paper, we revisit the key debt valuation equation underlying the FTPL and argue
that including the typically ignored bubble term reconciles the theory with the experience of
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countries such as the U.S. and Japan. Indeed, we show that the transversality condition is often
insufficient to rule out a bubble on the aggregate economy, refuting the usual justification to
simply dismiss the bubble term. While most of our conclusions apply to government debt
valuation more generally, we adopt a FTPL perspective since it avoids conceptual issues that
arise when bubbles are possible1 and it is well-suited to address the key issue of equilibrium
multiplicity in the presence of bubbles.

Our analysis also provides a new perspective on debt sustainability analysis. On the one
hand, the bubble creates additional, albeit limited, fiscal space, but on the other, it exposes
government debt to a possible bursting of the bubble. Credible and scalable (backup) fiscal
space is needed off-equilibrium to fend off such an event.

When can a bubble term emerge? An equilibrium with a bubble can emerge whenever the
real interest rate is persistently below the growth rate of the economy, i.e., whenever r ≤ g. It
is well known that this can be the case in overlapping generations models (Samuelson 1958),
models of perpetual youth (Blanchard 1985), and incomplete market models with uninsurable
idiosyncratic risk à la Bewley (1980). In this paper we spell out the details of the FTPL with a
bubble in two simple illustrative models. The first is a version of the Blanchard (1985) model.
The second is a simple Bewley-type model based on Brunnermeier and Sannikov (2016a,b) in
which r ≤ g arises naturally due to precautionary savings demand when agents can invest in
both physical capital and government bonds. In the perpetual youth model, government debt
allows a transfer of resources from future to current generations. In the uninsurable idiosyn-
cratic risk model, government debt takes on the role of a safe asset which allows citizens to
partially insure their idiosyncratic risk.

Even if a bubble can exist, why should we select an equilibrium with a public debt bubble?
Why not the bubbleless equilibrium or equilibria with bubbles on other assets, say on corporate
bonds or crypto assets? Are there policies that implement the public debt bubble as the unique
equilibrium? To answer these questions we expand the FTPL uniqueness reasoning to a setting
with a bubble and show how fiscal policy cannot only determine the price level but also select
a unique bubble equilibrium. The required fiscal policy provides fiscal backing of the debt. But
importantly, such backing is merely required off-equilibrium. If the off-equilibrium backing is
credible, the government can simultaneously enjoy a bubble on its debt in equilibrium and rule
out bubbles on other assets.

Our uniqueness argument suggests an approach to debt sustainability analysis that differs
from the traditional one. A bubble on government debt permits the government to worry less
about fiscal capacity in equilibrium, but raises the question how the government can prevent

1Conventional theories interpret the debt valuation equation as an “intertemporal government budget con-
straint”. A bubble term raises the question how exactly this equation constrains government policy. Treating the
equation instead as an equilibrium condition, as in the FTPL, sidesteps the issue.
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fragility from multiple equilibria. Credible fiscal backing rests on “backup fiscal capacity”, the
political ability and willingness to adjust policy off-equilibrium and raise additional surpluses
when markets lose faith in the government’s liabilities. Debt sustainability analysis should
include the evaluation of such “backup fiscal capacity” to fend off bubble bursts and jumps.

The issue of credibility is particularly pressing when there can be bubbles on other assets.
Ruling out the no-bubble equilibrium merely requires a small amount of fiscal backing arbi-
trarily far in the future. But ruling out bubbles on other assets requires more aggressive off-
equilibrium fiscal policies. In the context of our models, we formally analyze credibility of
the off-equilibrium backing by relaxing the assumption of perfect commitment. That analysis
yields a sharp prediction. When fiscal policy cannot commit to off-equilibrium tax hikes, it is
still able to eliminate both the no bubble equilibrium and all bubbles on assets whose supply
grows at a faster rate than the government’s bond growth rate along the desired equilibrium
path. But it is no longer able to eliminate bubbles on assets whose supply grows at a slower
rate.

We also discuss alternative policies that are specifically directed at preventing certain bub-
bles on assets other than government debt. Such policies include insolvency laws that rule out
private Ponzi schemes and holding restrictions or taxation of specific assets. When most or all
assets in the economy are liabilities of entities subject to insolvency laws, these laws are gener-
ally effective in ruling out alternative bubble equilibria. Crypto assets such as bitcoin are not
affected by insolvency laws, and hence additional regulation of these assets may be required to
prevent bubbles on them and to preserve debt sustainability when backup fiscal capacity is in
question. Our paper thus provides a new rationale for the regulation of crypto assets.

Besides raising the question of uniqueness and bubble fragility, a public debt bubble has also
beneficial implications for debt sustainability: the debt bubble represents a fiscal resource. By
“printing” bonds, the government imposes an inflation tax that reduces the return on the bonds.
Since government bonds are a bubble, the government in a sense “mines a bubble” to generate
seigniorage revenue. This seigniorage revenue can be used to finance government expenditures
without ever having to raise extra taxes. There is a limit to bubble mining seigniorage, however.
As more aggressive bubble mining reduces the attractiveness of government bonds as a store
of value, private agents try to substitute away into other assets or reduce their total savings. As
with traditional inflation taxes, bubble mining can erode the tax base. A Laffer curve emerges.

We also study optimal debt issuance policy. A positive rate of bubble mining with perpetu-
ally negative primary fiscal surpluses can be the optimal policy prescription, since bubble min-
ing discourages bond holdings and boosts physical capital investments and thereby economic
growth. Importantly, the optimal debt issuance policy only corrects for pecuniary externalities
but it never reacts to the size of or need for public expenditures. The main takeaway is that
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welfare-maximizing policy should rely on taxes, not bubble mining, as the marginal funding
source for (additional) public expenditures.

Literature. This paper contributes to the FTPL literature and its antecedent on the importance
of fiscal arrangements in monetary economies (e.g. Sargent and Wallace, 1981). Classic refer-
ences for the FTPL are Leeper (1991), Sims (1994), and Woodford (1995). For more comprehen-
sive treatments see Leeper and Leith (2016) and a recent book draft by Cochrane (2021). That
literature considers bubble-free environments. An exception is Bassetto and Cui (2018) who
study the validity of the FTPL in low interest rate environments.2 Our contribution differs to
theirs in two ways. First, they focus exclusively on price determinacy and do not discuss the ex-
istence of a bubble and its implication for the government budget. Second, using a model that
does feature the possibility of a bubble, a dynamically inefficient OLG setting, they conclude
that the FTPL breaks down while we show in Section 6 how fiscal price level determination can
succeed in the presence of a bubble.

Our paper is also related to an extensive literature on rational bubbles (e.g. Caballero and
Krishnamurthy (2006), Farhi and Tirole (2012), Martin and Ventura (2012, 2016), Miao and Wang
(2012, 2018), Asriyan et al. (2021)). Recent survey papers include Miao (2014) and Martin and
Ventura (2018). A common theme in this literature is the existence of bubbles on assets issued
by private agents and how these bubbles alleviate financial frictions. In contrast, our paper
emphasizes bubbles on government debt and how such bubbles generate fiscal space. Closest
to our discussion of equilibrium uniqueness is Asriyan et al. (2021) who show that monetary
policy can select a unique equilibrium path for bubbly money and the price level out of a given
pre-selected set of equilibria that are constrained by a “market psychology” that determines
the evolution of private bubbles. By connecting the uniqueness question with the FTPL, we
derive results that are considerably more far-reaching: using off-equilibrium fiscal backing,
fiscal policy can select a unique equilibrium out of the set of all possible equilibria.3

Our uniqueness argument also relates to papers that seek to rule out hyperinflationary equi-
libria in models of fiat money. Wallace (1981), Obstfeld and Rogoff (1983) and Tirole (1985) show
how policy interventions such as partial commodity backing or reserve requirements can ensure
equilibrium uniqueness in models with money in the utility function or with bubbly money, re-
spectively. Our off-equilibrium fiscal policy utilizes a similar idea, but we address the broader
question how the policy can eliminate all alternative equilibria, including those with (station-

2Like Bassetto and Cui (2018), Farmer and Zabczyk (2020) also study the FTPL in an OLG model and conclude
that the FTPL is unable to resolve equilibrium multiplicity. However, their result is based on indeterminancy in
the underlying real model that is not directly related to either bubble multiplicity or indeterminacy of nominal
valuations.

3Thus, our proposed policy effectively determines the “market psychology” that is pre-selected by Asriyan et al.
(2021).

5



ary) bubbles on other assets than government debt.4 In addition, we also investigate when such
policies remain credible under imperfect commitment.

The possibility to run perpetual deficits through bubble mining relates our paper to a smaller
literature on debt rollovers in overlapping generations economies that goes back to the classic
contribution of Diamond (1965). The subsequent literature discusses primarily the relationship
between debt rollovers and dynamic inefficiency (e.g. Ball et al., 1998; Blanchard and Weil, 2001).
More recently, Blanchard (2019) uses model simulations to study the cost of public debt when
safe interest rates are low but the economy is dynamically efficient, and concludes that public
debt may have no fiscal cost.5 Brumm et al. (2021) dispute Blanchard (2019)’s conclusion by
presenting four settings in which public debt expansion is not the ideal policy to overcome the
fundamental frictions causing the low interest rate. Methodologically, this literature does not
established a link to bubbles,6 but considers the dynamic stability properties of the debt-to-gdp
ratio. While Diamond (1965)’s original example represents a case of bubble mining, the con-
nection to bubbles and bubble mining is less clear-cut in the subsequent literature, particularly
the dynamically efficient examples, as stochastic simulations often stipulate the imposition of a
tax on paths in which debt rollovers fail. In contrast, our paper highlights that the possibility
of perpetual deficits is neither related to intergenerational transfers nor to dynamic inefficiency,
but to the possibility of public debt bubbles. In our analytically tractable (dynamically efficient)
examples, we provide the precise conditions for the possibility of public debt bubbles, delin-
eate the limits of bubble mining, and characterize optimal bubble mining policy. Our FTPL
focus also allows us to make progress on the question of how policy can prevent coordination
on adverse alternative equilibria, an issue that Blanchard (2019) recognizes as important, but
ultimately ignores.

This paper abstracts from aggregate risk and then bubbles can exist if the risk-free rate r is
below the economic growth rate g, consistent with the empirical evidence. However, r < g does
not necessarily imply the existence of bubbles in all models. It has been known at least since
Bohn (1995) that aggregate risk can drive down the risk-free rate, yet the standard (bubble-
free) debt valuation equation may continue to hold because the correct risk-adjusted rate for
government debt differs from the risk-free rate. More recently, Barro (2021) and Mehrotra and
Sergeyev (2021) provide examples in which disaster risk drives down r below g but markets are

4In Wallace (1981) and Obstfeld and Rogoff (1983), money is by assumption the only possible store of value
and medium of exchange, respectively. Tirole (1985) does allow for bubbles on alternative assets, but his reserve
requirement does not ensure uniqueness (it only eliminates asymptotically bubble-free equilibria).

5For empirical evidence on dynamic (in)efficiency, compare Abel et al. (1989) and Geerolf (2013). For additional
evidence on the related question of the relationship between interest rates and growth rates, see also Lian et al. (2020)
and Blanchard (2019)’s paper itself.

6In the OLG context, it has long been known (e.g. Tirole, 1985) that the allocational properties of Diamond’s
public debt policy can equivalently be achieved when there are bubbles (on any asset) in the economy. However, in
our reading of the literature, the fact that the fiscal authority can perpetually roll over its debt precisely when there
is a public debt bubble, has not been widely appreciated.
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complete and thus bubbles cannot exist. In our view, the evidence is nevertheless in favor of
the bubble interpretation. For one, in their empirical estimates, Jiang et al. (2019) find a large
gap between the value of debt and the value of a claim to primary surpluses. That gap can
be interpreted as an estimate of a positive bubble component. In addition, while aggregate risk
affects discount rates, Brunnermeier et al. (2021a) point out that when government debt is a safe
asset (negative β), as has been historically the case for advanced economies such as the U.S., it
would command an even lower risk-adjusted interest rate which makes bubbles more likely.7

Since circulation of a previous draft, some recent papers have taken up and extended the
core insights from our paper. Like this paper, Reis (2021) emphasizes the bubble as a fiscal
resource that has implications for debt sustainability, but his focus is on the interaction with
other policies while we focus on FTPL aspects and optimal bubble mining. Brunnermeier et al.
(2021a) add aggregate risk to the example model presented in Section 3.2 to develop a safe asset
theory of government debt. Kocherlakota (2021) studies a bubble on government debt caused
by tail risk. Kocherlakota (2022) and Li and Merkel (2020) study monetary and fiscal policy in
New Keynesian models with government debt bubbles and show that monetary policy may be
inferior to fiscal policy in stabilizing inflation and the output gap. The uniqueness argument
based on fiscal backing made in this paper serves as a theoretical underpinning for the (often
implicit) equilibrium selection made in all of these papers.

The goverment debt valuation equation in models with transaction benefits of money can
always be written without the usual flow seigniorage term by discounting at the appropriate
money rate, see e.g. Cochrane (2021, Section 6.4.6). If the convenience yield on money is suffi-
ciently large, government debt appears to have a bubble in the resulting equation. This paper is
not about the transaction benefits of money, but about bubbles that arise even under marginal
utility discounting.8

2 The Debt Valuation Equation with a Bubble

In this section, we derive the key valuation equation of the FTPL in a generic partial equilib-
rium setting. We then discuss under which conditions this equation can possibly have a bubble
term that has previously been ignored in the literature. To conclude, we mention the possible
sources of seigniorage consistent with the equation. In the remaining sections of the paper,
we elaborate more on these points in the context of two fully worked out examples in general
equilibrium.

7To the extent that rare disasters represent a Peso problem, the disaster stories of Barro (2021) and Mehrotra and
Sergeyev (2021) can, however, also be made consistent with these facts.

8This difference is economically important, because the additional fiscal space a government gains from a public
debt bubble is unrelated to empirically observable convenience yields as Brunnermeier et al. (2021a) point out.
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2.1 Revisiting the Derivation of the Key FTPL Equation

The derivation of the debt valuation equation underlying the FTPL starts with the govern-
ment flow budget constraint. In discrete time, this constraint is given by

Bt +Mt + PtTt = (1 + it−1)Bt−1 +
(
1 + im

t−1
)
Mt−1 + PtGt,

where Bt is the nominal face value of outstanding government bonds, Mt is the nominal quan-
tity of money in circulation, Pt is the price level, Tt are (real) taxes, Gt is (real) government
spending, and it, im

t are the nominal interest rates paid on bonds and money, respectively. im
t

can be smaller than it if money provides transaction services. If ξt is a real stochastic discount
factor (SDF) process that prices government bonds, then 1 = Et

[
ξt+1/ξt · Pt/Pt+1 (1 + it)

]
.

Using this property, dividing the government budget constraint by Pt and rearranging yields

Bt−1 +Mt−1

Pt
(1 + it−1) = Tt − Gt +

∆it−1 :=︷ ︸︸ ︷(
it−1 − im

t−1
)Mt−1

Pt
+ Et

[
ξt+1

ξt
(1 + it)

Bt +Mt

Pt+1

]
.

Iterating this forward until period T implies

Bt−1 +Mt−1

Pt
(1 + it−1) = Et

[
T

∑
s=t

ξs

ξt
(Ts − Gs)

]
+ Et

[
T

∑
s=t

ξs

ξt
∆is−1

Ms−1

Ps

]
+ Et

[
ξT

ξt

BT +MT

PT

]
.

Up to this point, we have merely rearranged and iterated the government budget constraint
and assumed that there is some SDF process ξt that prices government bonds in equilibrium.
The literature now typically proceeds by invoking a private-sector transversality condition to
eliminate the discounted terminal value of government debt when passing to the limit T → ∞.
In this paper, we focus on environments where the transversality condition does not eliminate
the terminal value in the limit. When taking the limit T → ∞, we therefore arrive at the more
general equation9

Bt−1 +Mt−1

Pt
(1 + it−1) = Et

[
∞

∑
s=t

ξs

ξt
(Ts − Gs)

]
︸ ︷︷ ︸

PV of primary surpluses

+ Et

[
∞

∑
s=t

ξs

ξt
∆is−1

Ms−1

Ps

]
︸ ︷︷ ︸

PV of future transaction services

+ lim
T→∞

Et

[
ξT

ξt

BT +MT

PT

]
︸ ︷︷ ︸

bubble

.

Relative to the standard valuation equation, this equation contains an additional bubble

9Mathematically, the sum of the three limits in the decomposition below may not be well-defined, even if the
limit of the sum is. In this case, the right-hand side should be interpreted as the limit of the sum. For instance, this
can happen if the bubble term is ∞, but the present value of surpluses is −∞. While this may seem a pathological
case, it can make sense economically because the bubble and surpluses are not separately tradeable, but necessarily
bundled together to one asset: government debt. As long as the value of this asset is well-defined and finite, infinite
subcomponents do not imply arbitrage opportunities or infinite utility.
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term. That term does not vanish in the limit if government debt has a bubble component. More
generally, for any asset, we say that the asset has a bubble component if its market value exceeds
its fundamental value. We define the fundamental value as the discounted present value of the
asset’s cash flows where cash flows are discounted using the SDF ξ generated by the marginal
utility of the marginal holder of the asset.10

From now on, we switch to continuous time in order to make our formal arguments more
elegant. The continuous-time version of the last equation is given by11

Bt +Mt

Pt
= Et

[∫ ∞

t

ξs

ξt
(Ts − Gs) ds

]
+ Et

[∫ ∞

t

ξs

ξt
∆is

Ms

Ps
ds
]
+ lim

T→∞
Et

[
ξT

ξt

BT +MT

PT

]
. (1)

This equation for the real value of government debt holds in any monetary model. While most
conventional monetary models treat this equation as an intertemporal government budget con-
straint that holds on- and off-equilibrium, in the FTPL it is an equilibrium condition that helps
determining the price level.

2.2 When Can a Bubble Exist?

Equation (1) differs from the standard fiscal theory only by the presence of an additional
bubble term. When can this bubble term be nonzero? Well-known examples are bubbles in OLG
(Samuelson 1958) and perpetual youth (Blanchard 1985) models. In Section 3.1, we analyze a
simple version of the latter model. In Section 3.2, we present another example with incomplete
idiosyncratic risk sharing. Here, we make some generic points that apply across models.

For tractability, let us focus on environments with a stationary debt-to-GDP ratio and no
aggregate risk. In this case, the real value of government debt is

BT +MT

PT
=

Bt +Mt

Pt
eg(T−t),

where g is the growth rate of the economy, and ξT/ξt = e−r f (T−t) with r f denoting the real
risk-free rate. By substituting these expressions into equation (1), we see that the bubble term
does not vanish in the limit if r f ≤ g. More generally, the correct risk-adjusted discount rate
compensating for the real risk inherent in BT+MT

PT
must be used instead of the risk-free rate to

determine whether a bubble is possible.12

For any agent with recursive isoelastic utility (which includes CRRA utility) that is marginal

10Note that the primary surpluses are precisely the cash flows that a holder of the total public debt stock receives.
11A formal derivation can be found in Appendix A.1.
12Bohn (1995) provides an example of a stochastic economy in which r f < g but no bubbles can exist.
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in the market for government debt, the risk-free rate is13

r f = ρ + ψ−1µc −
γ
(

1 + ψ−1
)

2
∥σc∥2, (2)

where ρ > 0 is the agent’s time preference rate, γ is the relative risk aversion coefficient, ψ is
the EIS, µc is the growth rate of agent-specific consumption, and σc is a vector or relative risk
exposures of agent-specific consumption to Brownian risk factors.14 ∥ · ∥ denotes the standard
Euclidean norm. This equation is linked to the growth rate of the economy through individ-
ual consumption growth µc. For example, in a representative agent economy with a balanced
growth path µc = g.

Equation (2) suggests two reasons the growth rate may exceed the risk-free rate. First, ex-
pected consumption growth of individuals may be misaligned with aggregate growth, so that
a higher growth rate g may not imply higher individual consumption growth µc. This is the
case, for example, in OLG or perpetual youth models with population growth. We present a
model of this type in Section 3.1. Second, large individual risk exposure (large ∥σc∥2) or risk
aversion (large γ) may depress the risk-free rate through the last term in equation (2) and offset
any positive effects of growth g on r f through ψ−1µc.15 We provide an example of this type in
Section 3.2. Importantly, the main insights we derive from our two models do not depend on
the precise channel through which a bubble can be sustained. These insights would equally
apply to other environments in which a bubble term in equation (1) is possible.

The possibility of r f ≤ g is not merely a theoretical curiosity. Historically, real interest rates
on government bonds of advanced economies have mostly been below the growth rate. Even
Abel et al. (1989), who are often cited as providing evidence against the existence of rational
bubbles, report that the safe interest rate r f is smaller than g. With the more recent decline in
r f , as stressed by Blanchard (2019), the evidence for r f < g has become more clear-cut. See also
Geerolf (2013) and Lian et al. (2020).

In a large class of canonical general equilibrium models, transversality conditions prevent
the possibility of r f ≤ g that leads to a bubble. This is regularly true for complete-market mod-
els with long-lived agents. However, many interesting incomplete market models do permit
bubbles. The transversality condition has less bite in these models, because individual bond
holdings matter for transversality, while it is the aggregate bond value that enters equation (1).

13This equation assumes environments with non-stochastic investment opportunities.
14Here, we assume that all risk takes the form of Brownian risk. The intuition derived from the argument is

unaltered if more general sources of consumption risk are permitted.
15In addition, bubble existence in this second case regularly requires idiosyncratic risk, i.e., the individual con-

sumption growth volatility must differ from its aggregate counterpart. The reason is that in the presence of aggre-
gate risk, the risk-free rate is not the correct comparison rate in the bubble existence condition. The correct rate
adds a risk premium for aggregate risk on top of r f that can offset the aggregate risk component in the last term of
equation (2).
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Individual bond holdings can have different properties than the aggregate bond stock because
agents find it optimal to trade the bonds in order to partially complete the market. For example,
individual bond holdings may grow at a lower rate or have higher risk than the aggregate bond
stock. Then, individual transversality conditions can hold, yet the bubble term in (1) cannot
be ruled out. Our two illustrative models presented in Section 3 cover these two cases. In the
context of these models, we discuss the transversality condition in Section 4

2.3 Three Forms of Seigniorage

Equation (1) suggests three forms of seigniorage, which here we define simply as govern-
ment spending that is not backed by offsetting future taxes. The first takes the form of a dilution
of private claims to future primary surpluses through surprise devaluations of existing govern-
ment debt or money.16 Under rational expectations, this cannot be a regular source of revenue
for governments. For the U.S., Hilscher et al. (2014) assess the possibility of future surprise
devaluation based on option-implied (risk-neutral) probabilities and conclude that this form of
seigniorage is perceived to be a negligible source of revenue. The likelihood of a devaluation
exceeding 5% of GDP is less than 1%.

A second form of seigniorage comes from exploiting the liquidity benefits (convenience
yield) of “narrow” money (M in equation (1)). This form of seigniorage can only be extracted
from the portion of government debt that takes the form of “narrow” money and provides liq-
uidity services. It depends on the interest rate differential ∆i = i − im between illiquid and
liquid government debt. It is small if either that differential is small or if the stock of “narrow”
money is only a small part of total government debt.17 This form of seigniorage is not an im-
portant funding source for advanced economies. For example, in the U.S., Reis (2019) reports
a flow revenue of approximately 0.36% of GDP and estimates a present value of ≈ 20% and, at
most, 30% of GDP. Moreover, in the future the ∆i term is likely to decline, because central banks
pay interest on reserves and as money becomes more digitalized, its velocity rises.

Besides these standard forms of seigniorage, equation (1) suggests a third form of seignior-
age that has remained unexplored in prior work and is the focus of this paper. The government
can “mine” the bubble by using its outstanding government debt to run an ever-expanding
Ponzi scheme: letting the stock of government debt grow generates a steady revenue flow that
does not have to be paid for by future taxes as long as a bubble term is present in equation (1).

16Without long-term debt as in equation (1) such dilution must work through a sudden surprise inflation (an
unexpected upward jump in Pt). In a more realistic setting with long-term debt, news of higher inflation going
forward would have similar effects and work through bond prices instead of the general price level.

17In reality, one has to distinguish between reserves, whose quantity is nonnegligible, but which pay interest and
have therefore a small ∆it, and cash, which has a much larger ∆it, but whose quantity is almost negligible relative
to the overall stock of government debt.
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Unlike a surprise dilution through inflation, dilution of the bubble value is feasible even if it is
fully expected by the private sector. This form of seigniorage is arguably larger than the offi-
cially measured seigniorage from growing narrow money M because all revenue from growing
B +M is relevant for bubble mining.

3 Two Models with a Bubble

There are several model structures in which rational bubbles can exist and thus the bubble
term in equation (1) does not necessarily disappear. We illustrate this in two simple examples.
Each contains one of the two mechanisms discussed in Section 2.2 through which the risk-free
rate (2) can fall below the growth rate.

In the first model, a bubble can be sustained by the difference between the individual and
the aggregate consumption growth rates. That model is a very simple version of the perpetual
youth model (Blanchard, 1985). Government debt may circulate as a bubble because it facilitates
trade between the current and not yet born future generations.

In the second model, a bubble can be generated through incomplete idiosyncratic risk shar-
ing. That model is a streamlined version of Brunnermeier and Sannikov (2016a) without banks.18

Government debt may circulate as a bubble because bond trading allows agents to self-insure
against idiosyncratic shocks.

For simplicity, we abstract in both models from the presence of additional “narrow” money
that yields transaction benefits.19

In this section, we set up both models and briefly outline their solution. We then discuss
bubble existence, bubble mining policies, and price level determinations for both models si-
multaneously in the following Sections 4 to 6. A more formal derivation of the model solutions
is presented in Appendix A.2.

3.1 Example I: Perpetual Youth

Environment. At each time t, there is a continuum of households indexed by i ∈ [0, Lt], where
Lt is the population mass at time t. We assume that population grows at a constant rate g > 0,

18The model version without banks has previously been analyzed in Brunnermeier and Sannikov (2016b) and Di
Tella (2020). These papers frame the model as a model of money. Here, we add fiscal policy and reinterpret money
as bonds. The bond interpretation is also adopted in the safe asset framework of Brunnermeier et al. (2021a).

19Other than adding an additional source of seigniorage, including transaction benefits into the analysis does not
substantially alter our conclusions. For the FTPL with transaction benefits but no bubble, see, e.g., Sims (2019).
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dLt = gLtdt. For simplicity, we abstract from death, so that all households are infinitely lived.20

Households i ∈ [0, Lt] alive at time t have logarithmic preferences

Vi
t := E

[∫ ∞

t
e−ρ(s−t) log ci

sds
]

with discount rate ρ.

Each household i born at a time t0 > 0 is endowed at birth with one unit of human capital,
ki

t0
= 1. Human capital depreciates over time at a constant rate δ ≥ 0, dki

t = −δki
t dt, and ki

t

units of human capital produce an output flow of aki
tdt (“labor income”).

Denote by Kt :=
∫ Lt

0 ki
tdi the aggregate quantity of human capital in the economy. We choose

initial conditions such that human capital per capita Kt/Lt is constant over time.21 Then, Kt also
grows at the constant rate g.

The key friction in the model is that agents are not able to trade with yet unborn generations.
Instead, they can only enter financial contracts with other agents currently alive.

Besides households, there is a government that funds government spending, imposes taxes
on labor income, and issues nominal bonds. The government has an exogenous need for real
spending gKtdt, where g is a model parameter.22 The government levies proportional labor
income taxes (subsidies, if negative) τt on households. Outstanding government debt has a
nominal face value of Bt and pays nominal interest it. Bt follows a continuous process dBt =

µB
t Btdt, where the growth rate µB

t is a policy choice of the government. In short, the government
chooses the policy instruments τt, it, µB

t as functions of histories of prices taking g as given and
subject to the nominal budget constraint23,24

bond growth in excess of payouts︷ ︸︸ ︷(
µB

t − it

)
︸ ︷︷ ︸

=:µ̆B
t

Bt +

(nominal) primary surpluses︷ ︸︸ ︷
Pt (τta − g)︸ ︷︷ ︸

=:st

Kt = 0, (3)

20At the expense of additional notation, one could easily assume a positive, but constant, death rate, provided
there are annuity markets that insure against idiosyncratic death risk. See Blanchard (1985) for details. Other than
simplifying notation, abstracting from death also stresses that an infinite lifespan does not preclude the existence of
bubbles.

21Formally, the relevant condition is K0/L0 =
g

g+δ . This can be shown easily by computing the time derivative of
Kt/Lt.

22Making spending proportional to total human capital Kt is equivalent to making spending proportional to pop-
ulation size Lt because Kt/Lt is constant.

23Letting policy depend on histories of endogenous price paths is common in the FTPL literature to discuss what
happens off-equilibrium.

24At this point, we do not impose additional restrictions on government policy, including whether policy is char-
acterized by monetary dominance or fiscal dominance, as the choice of the policy regime is irrelevant for most of
our results. We do make more restrictive assumptions in Section 6 where we explain how to adjust the fiscal theory
arguments for price level determination based on fiscal dominance if government debt has a bubble component.
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where Pt denotes the price level as in Section 2.

The model is closed by the aggregate resource constraint

Ct + gKt = aKt, (4)

where Ct :=
∫ Lt

0 ci
tdi is aggregate consumption.

Household Problem. Let bi
t the (real) value of bond holdings of household i. Bond holdings

satisfy the accumulation equation

dbi
t =

(
r f

t bi
t + (1 − τt) aki

t − ci
t

)
dt, (5)

where, as in Section 2, r f
t denotes the real risk-free rate, which equals the return on bonds in

this model. The household chooses consumption {ci
s}s≥t to maximize utility Vi

t subject to the
evolution of human capital and bond holdings (5) and subject to a standard no Ponzi condition.

In the appendix, we show that optimal consumption satisfies the familiar log-utility permanent-
income consumption rule

ci
t = ρ

(
bi

t + qK
t ki

t

)
, (6)

where qK
t is the shadow price of human capital. It is determined by the condition that the value

of human capital must equal the present value of future after-tax labor income,

qK
t ki

t =
∫ ∞

t
e−
∫ s

t r f
s′ds′(1 − τs)aki

sds. (7)

Together with a standard transversality condition (to be discussed in Section 4), conditions
(6) and (7) fully determine the optimal choices of each individual agent i.

Equilibrium. In this model, any equilibrium can be fully characterized by determining two
“prices”, the shadow value of human capital qK

t and the nominal price level Pt. Instead of
working with the price level directly, it is more convenient to use the transformation qB

t := Bt/Pt
Kt

,
which is the ratio of the real value of government debt to total human capital in the economy.25

Total private net wealth consists of bond wealth, qB
t Kt, and human capital wealth, qK

t Kt.

The optimal consumption rule (6) implies that total wealth must be proportional to aggre-

25It is more convenient to work with this normalized version of the inverse price level 1/Pt because the latter
depends on the scale of the economy and the nominal quantity of outstanding bonds in equilibrium, whereas qB

t
does not.
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gate consumption,26

qB
t + qK

t =
a − g

ρ
.

To characterize the equilibrium, we therefore need to determine the share of total wealth that is
due to bond wealth. We denote this share by ϑt:

ϑt :=
qB

t

qB
t + qK

t
.

The equilibrium behavior of ϑt itself can be derived by combining the Fisher equation for
the bond return r f

t with the government budget constraint (3) and the human capital valuation
equation (7). The former equation is in this model

r f
t = it − πt = it − µB

t︸ ︷︷ ︸
=−µ̆B

t

+g + µ
q,B
t , (8)

where inflation πt := Ṗt/Pt depends on the nominal bond growth rate, µB
t , the growth rate

of the economy, g, and the appreciation of the normalized real bond price (qB
t ), µ

q,B
t := q̇B

t /qB
t .

Notice that equation (8) defines the growth in debt in excess of the amount used to pay nominal
interest, µ̆B

t . This quantity is related to seigniorage.

We combine these equilibrium conditions in the appendix and show that ϑt is characterized
by the equation

ϑt =
∫ ∞

t
e−ρs

(
(1 − ϑs)

(
δ + g

)
− µ̆B

s

)
ϑsds. (9)

This equation relates the current bond wealth share ϑt positively to the future flow (1 − ϑs)(δ +

g). Note that g + δ is the gap between aggregate and individual human capital growth. Bonds
trading is more beneficial as this gap increases. The equation also relates ϑt negatively to the
expected future path of µ̆B

t , which measures the dilution of the claims of existing bond holders
through the issuance of new bonds.

Steady-State Equilibria. We now focus on government policies that hold µ̆B and τ constant
over time and consider steady-state equilibria with constant qB and qK – and thus constant ϑ.
All such equilibria must solve equation (9) with constant ϑ. One can show that there is at most
one steady-state equilibrium in which bonds have positive value. It is given by

ϑ = 1 − ρ + µ̆B

δ + g
.

26The following equation also makes use of the aggregate resource constraint (4).
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That formula describes a valid equilibrium if both the value of human capital and the value of
bonds are positive. This is the case if and only if

δ + g > ρ + µ̆B .

We make this parameter assumption from now on and focus exclusively on this “monetary
steady state” with a positive value of government bonds. We also remark that there is always
a second steady-state equilibrium, in which bonds have no value, qB = ϑ = 0,27 and there
are many additional non-stationary equilibria. However, we show in Section 6 that a simple
off-equilibrium modification to the fiscal policy rule can select the monetary steady state as the
unique equilibrium.

3.2 Example II: Uninsurable Idiosyncratic Risk

Environment. There is a continuum of households indexed by i ∈ [0, 1]. All households have
identical logarithmic preferences

Vi
0 := E

[∫ ∞

0
e−ρt log ci

tdt
]

with discount rate ρ.

Each agent operates one firm that produces an output flow aki
tdt, where ki

t is the (physical)
capital input chosen by the firm. Absent market transactions of capital, capital of firm i evolves
according to

dki
t

ki
t
=

(
Φ
(

ιit

)
− δ

)
dt + σ̃dZ̃i

t,

where ιitk
i
tdt are physical investment expenditures of firm i (in output goods), Φ is a concave

function that captures adjustment costs in capital accumulation, δ is the depreciation rate, and
Z̃i is an agent-specific Brownian motion that is i.i.d. across agents i. Z̃i introduces firm-specific
idiosyncratic risk. To obtain simple closed-form expressions, we choose the functional form
Φ (ι) = 1

ϕ log
(
1 + ϕι

)
with adjustment cost parameter ϕ ≥ 0 for the investment technology.

The key friction in the model is that agents are not able to share idiosyncratic risk. While
they are allowed to trade physical capital and risk-free assets, they cannot write financial con-
tracts contingent on individual Z̃i histories. As a consequence, all agents have to bear the id-
iosyncratic risk inherent in their physical capital holdings.

As in Section 3.1, there is also a government that funds government spending, imposes taxes

27In that equilibrium, the price level is infinite, P = ∞, and the government does not raise any primary surpluses,
τa = g.

16



on firms, and issues nominal government bonds. With Kt :=
∫

ki
tdi denoting the aggregate cap-

ital stock, the government flow budget constraint is precisely as in the perpetual youth model
(equation (3)).

The aggregate resource constraint in this model is

Ct + gKt + It = aKt, (10)

where, compared to Section 3.1 (equation (4)), here output can also be used for physical invest-
ment, It :=

∫
ιitk

i
tdi.

Price Processes and Returns. We use notation in complete analogy to Section 3.1. Let qK
t be the

market price of a single unit of physical capital and let qB
t := Bt/Pt

Kt
be the ratio of the real value of

government debt to total capital in the economy. As before, we define ϑt := qB
t /(qB

t + qK
t ) as the

share of total wealth that is due to bond wealth. We denote by µ
q,B
t := q̇B

t /qB
t and µ

q,K
t := q̇K

t /qK
t

the instantaneous growth rates of qB
t and qK

t , respectively.

Households can trade two assets in positive net supply (if qB
t ̸= 0), bonds and capital. As-

sume that in equilibrium ιt = ιit for all i (to be verified below) so that aggregate capital grows
deterministically at rate gt = Φ(ιt)− δ. Then, the return on bonds is

drBt =
(
−µ̆B

t + Φ(ιt)− δ + µ
q,B
t

)
dt (11)

in full analogy to equation (8). The return on agent i’s capital is

drK,i
t

(
ιit

)
=

(
(1 − τt) a − ιit

qK
t

+ Φ
(

ιit

)
− δ + µ

q,K
t

)
dt + σ̃dZ̃i

t.

The expected capital return consists of the after-tax dividend yield, (1−τt)a−ιit
qK

t
, and the capital

gains rate, Φ
(

ιit

)
− δ + µ

q,K
t . Capital returns are risky due to the presence of idiosyncratic risk

σ̃dZ̃i
t.

Household Problem and Equilibrium. The household problem is analogous to the one pre-
sented in Section 3.1 with the exception that agents now also choose the capital investment rate
ιit and the share of wealth θi

t invested in bonds as opposed to capital. We relegate the details of
this problem to the appendix. The first-order conditions for the three choices are

qK
t =

1

Φ′
(

ιit

) , Tobin’s q

ci
t = ρni

t, permanent income consumption
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a − g− ιt

qK
t

− µϑ
t − µ̆B

t
1 − ϑt

=
(

1 − θi
t

)
σ̃2, Merton portfolio

where ni
t denotes the net worth of agent i, which consists of both capital and bond holdings,

and µϑ
t := ϑ̇t/ϑt is the growth rate of the bond wealth share ϑt. Relative to Section 3.1, only

the second condition is identical. The first condition is entirely new. It captures the optimal
physical investment choice.28 The third condition (portfolio choice) replaces condition (7), the
valuation equation for nontraded human capital in Section 3.1. It equates the excess return on
capital with the required risk premium

(
1 − θi

t

)
σ̃2 for bearing idiosyncratic risk.29

As in Section 3.1, the optimal consumption rule implies that total wealth is proportional to
total consumption. The difference here is that total consumption is no longer a fixed proportion
of aggregate capital but depends on the endogenous reinvestment choice ιt. Nevertheless, one
can show that asset prices qB

t and qK
t and the investment rate ιt are still simple functions of ϑt,

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ
,

qB
t = ϑt

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

so that, again, the equilibrium is determined uniquely up to the dynamics of the bond wealth
share ϑt. Similar to Section 3.1, ϑt must solve a valuation equation

ϑt =
∫ ∞

t
e−ρs

(
(1 − ϑs)

2 σ̃2 − µ̆B
s

)
ϑsds (12)

that relates the current bond wealth share ϑt positively to expected future “services” (1 − ϑs)
2 σ̃2

and negatively to future bond dilution µ̆B
t . Equation (12) is structurally identical to equation (9)

in the perpetual youth model. The only difference is that services are now derived from self-
insurance against idiosyncratic risk and thus related to the magnitude of risk σ̃ the agents are
exposed to.

Steady-State Equilibria. We consider again steady-state equilibria with constant policy choices
µ̆B and τ and constant (scaled) asset prices qB and qK. As in Section 3.1, there is at most one
steady state equilibrium in which bonds have positive value.30 In that “monetary steady state”,

28In particular, because all agents face the same capital price qK
t , they all choose the same investment rate ιit,

verifying our previous assumption.
29Government spending g enters that third equation because we have used the government budget constraint (3)

to substitute out taxes.
30There are again a non-monetary steady state with qB = 0 and many nonstationary equilibria. As for the per-

petual youth model, all these additional equilibria can be ruled out by a modification of the fiscal policy rule (see
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if it exists, the bond wealth share is

ϑ =
σ̃ −

√
ρ + µ̆B

σ̃

and the remaining equilibrium quantities are given by

ι =

√
ρ + µ̆B (a − g)− ρσ̃√

ρ + µ̆B + ϕρσ̃
, qB =

(
σ̃ −

√
ρ + µ̆B

) (
1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

, qK =

√
ρ + µ̆B (1 + ϕ (a − g)

)√
ρ + µ̆B + ϕρσ̃

.

These formulas describe a valid equilibrium only if idiosyncratic risk is sufficiently large,

σ̃2 > ρ + µ̆B .

In what follows, we always make this assumption.

4 Transversality Condition and Existence of a Bubble

In both models, government debt can have value even in the absence of primary surpluses
(µ̆B ≥ 0) because it has a bubble component. In the perpetual youth model, it provides a store
of value which allows agents to exchange some of their present labor income for a claim to the
labor income of future generations. In the idiosyncratic risk model, bonds are the only store
of value that is free of idiosyncratic risk and thus allow agents to self-insure against their risk
exposures. In this section, we discuss why the private-sector transversality condition may not
rule out the existence of a bubble despite the infinite lifespan of all agents. The key insight is
that a bubble can exist because agents do not buy and hold government bonds, but optimally
trade them. Such trading makes their individual bond portfolios look very different from the
aggregate bond stock.

For each individual agent, a transversality condition for bond holdings,

lim
T→∞

E
[
ξ i

Tbi
T

]
= 0,

is necessary for an optimal choice. Here, as in Section 2, ξ i
t := e−ρ(t−t0) 1

ci
t

denotes the SDF process

of agent i.31 The transversality condition appears to suggest that it should not be possible
to have a nonzero bubble term in the debt valuation equation (1). However, this argument
overlooks that individual bond wealth bi

T that enters the transversality condition differs from
the aggregate value of bonds BT/PT that enters the valuation equation.

Section 6).
31t0 denotes the birth time of agent i in the perpetual youth model and is simply set to zero in the idiosyncratic

risk model.
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In the perpetual youth model, this is the case because agents’ optimal savings decision leads
them to eventually decumulate their bond holdings to support additional consumption. Bond
decumulation at the individual level is sustainable without a reduction in the aggregate value
of bonds because agents can pass bonds on to newly born generations.

In the idiosyncratic risk model, the aggregate bond stock BT/PT evolves deterministically,
yet individual bond wealth bi

T is optimally chosen to be stochastic because agents constantly
rebalance their portfolios in response to idiosyncratic shocks. Agents thus discount bi

t at a risk-
adjusted rate that takes into account their idiosyncratic risk. As idiosyncratic risk cancels out
in the aggregate, when valuing a fixed fraction of the outstanding bond stock, as in the debt
valuation equation (1), the relevant discount rate from the perspective of all agents is instead
the risk-free rate.

Formally, we have in both models ci
t = ρ(bi

t + qKki
t) and qKki

t ≥ 0, so that

E
[
ξ i

Tbi
T

]
= e−ρ(T−t0)

1
ρ

E

[
bi

T

bi
T + qKki

T

]
≤ 1

ρ
e−ρ(T−t0) → 0 (T → ∞)

and thus the individual transversality condition is clearly satisfied in the equilibria determined
in Sections 3.1 and 3.2. Yet, when determining agent i’s time t0 valuation of the entire govern-
ment bond stock at time T, we obtain (up to a scaling constant)

E

[
ξ i

T

∫
bj

Tdj
]
= E

[
ξ i

TqBKT

]
= e−r f (T−t0)qBKT = e(g−r f )(T−t0)qBKt0

and the latter expression does not converge to zero, if r f ≤ g.

The difference in the two equations is the presence of the dj-integral. In the perpetual youth
model, that integral runs over an expanding interval [0, Lt] of agents, so that aggregate bond
wealth can grow at a rate g, even though each individual integrand bj

T grows (asymptotically)
only at the lower rate g − µ̆B − ρ. When the risk-free rate is in between the two growth rates, a
bubble can exist, yet individual transversality conditions are satisfied.

In the idiosyncratic risk model, the integral is over a fixed interval [0, 1], so the (expected)
growth rates of aggregate bond and individual bond wealth must be identical. Instead, the
integral averages out idiosyncratic shocks and changes the risk characteristics relative to the
individual integrands. All individual integrands bi

T have idiosyncratic risk that is negatively
correlated with agent i’s SDF ξ i

t. The effective discount rate in the individual transversality con-
dition therefore contains a covariance term (risk premium) that raises the discount rate above
r f . For the total bond stock, idiosyncratic risk averages out and discounting happens at the
risk-free rate.

Nothing in the model prevents the bubble existence condition r f ≤ g. Indeed, the growth
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rate of the economy equals the (human or physical) capital growth rate g and the risk-free rate
equals the return on bonds. By equations (8) or (11), respectively

r f = g − µ̆B . (13)

Consequently, r f ≤ g, if and only if µ̆B ≥ 0. A nonnegative value of µ̆B is consistent with the
existence condition of a monetary equilibrium if the specific reason that generates bond savings
demand in the models is sufficiently strong relative to the time preference rate. In the perpetual
youth model, this is the case if δ + g ≥ ρ, i.e. if population growth (g) and/or the decay rate in
individual life-cycle labor income (δ) are sufficiently large. In the idiosyncratic risk model, this
is the case if σ̃2 ≥ ρ, i.e. if idiosyncratic risk is sufficiently large.

5 Mining the Bubble

In this section, we show how the government can mine a bubble, i.e. finance government
expenditures without ever raising taxes for them. We also discuss limits to bubble mining,
under which circumstances bubble mining is inflationary, and optimal bubble mining policy.

5.1 The Bubble as a Fiscal Resource

Primary surplus is defined as Tt − Gt = τaKt − gKt =: sKt. Due to our assumptions on fiscal
policy, it grows at the same rate as Kt. From the government budget constraint (3), s = −µ̆BqB.
Hence, in our two models, the fiscal theory equation (1) reduces to32

qBK0 = lim
T→∞

∫ T

0
e−(r f −g)tsK0dt︸ ︷︷ ︸
=:PVS0,T

+e−(r f −g)TqBK0

.

Provided qB > 0, equation (13) implies precisely three cases:

1. s > 0, µ̆B < 0: then r f > g, PVS0,∞ > 0 and a bubble cannot exist. This is the “conven-
tional” situation considered in the literature.

2. s = µ̆B = 0: then r f = g, PVS0,∞ = 0 and there is a finite positive bubble whose value
exactly equals qBK0 and grows over time at the growth rate/risk-free rate.

3. s < 0, µ̆B > 0: then r f < g and thus the integral PVS0,T converges to −∞ as T → ∞. Yet,
qB is still positive, which is only possible if there is an offsetting infinite positive bubble.

32Since the models do not include “narrow” money, there is no ∆i term.
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These infinite values do not violate any no-arbitrage condition and are also not otherwise
economically problematic, since the bubble cannot be traded separately from the claim to
surpluses. Both are necessarily bundled in the form of government bonds. As long as
Bt
Pt

= qBKt is determined and finite in equilibrium, the model remains economically and
mathematically sensible despite the infinite values in the decomposition of the value of
government bonds.

In all three cases, the (possible) presence of a bubble represents a fiscal resource that grants the
government some extra leeway. Clearly in case 3, the government can run a perpetual deficit,
“mine the bubble” and never has to raise taxes to fully fund all government expenditures. In
case 2, the existence of the bubble is beneficial, because the value of government debt is positive
– allowing agents to transfer resources across generations or self-insure against risk – despite
the fact that the present value of primary surpluses is zero. Even in case 1, government debt
is more sustainable since an unexpected drop of primary surpluses to zero results in a bubble
instead of a total collapse of the value of debt.

5.2 The Bubble Mining Laffer Curve

In case 3 above, the bubble can become arbitrarily large. Does this mean that the government
faces no budget constraint and can expand spending without limits? The answer must of course
be no as real resources are still finite. Considering present value relationships can be misleading
when r f ≤ g. Instead, it is instructive to look at flow quantities.

Specifically, primary deficits per unit of capital are given by

−s = µ̆BqB.

The first factor, µ̆B
t , represents the rate of bubble mining: revenue raised by bond issuance that is

not distributed to bond holders in the form of interest payments. If it is positive, the claim of old
bond holders is diluted by the issuance of new bonds, i.e., a positive µ̆B effectively represents a
tax on existing bond holders.

The second factor, qB, is the tax base, the real value of existing debt (per unit of capital). If
this was unaffected by µ̆B , then the government could indeed generate arbitrarily large deficits
by bubble mining. However, in both our examples, private agents react do the dilution of their
claims by reducing bond demand. Thus, the tax base qB reacts negatively to an increase in µ̆B .
A standard Laffer curve intuition emerges.
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Figure 2: Typical shapes of Laffer curves for perpetual youth (blue) and idiosyncratic risk model (red).
The figure has been created with parameters ρ = g = δ = 0.02, g/a = 0.2, ϕ = 1, and σ̃ to generate an
identical peak for the idiosyncratic risk model (σ̃ ≈ 0.29).

We can see the reaction of qB to µ̆B explicitly from our closed-form solutions:

qB =


(δ+g−ρ−µ̆B)(a−g)

ρ(δ+g)
, perpetual youth(

σ̃−
√

ρ+µ̆B
)
(1+ϕ(a−g))√

ρ+µ̆B+ϕρσ̃
, idiosyncratic risk

.

This equation reveals two possible reasons how higher deficits may decrease qB. First, there
is a direct effect from increasing µ̆B . This emerges because higher debt growth makes bond
savings less attractive, reduces bond demand, and thereby lowers the fraction ϑ of wealth that
originates from bond wealth. If additional deficits are used to lower the output tax rate τ, this is
the only effect. However, if additional deficits are used to fund government spending by raising
g, qB decreases further due to the presence of the term a − g. This second effect is a consequence
of the resource constraint ((4) or (10)): when the government claims a larger share of output,
consumption has to decline, which lowers all asset values symmetrically.33

Figure 2 provides an illustration of the typical shape of the Laffer curves in the two models.
The assumption in Figure 2 is that g remains unchanged, so that larger deficits imply smaller
output taxes. For both models, the Laffer curve has a typical inverted-u shape. In the perpetual
youth model, the Laffer curve is represented by a parabola, while, for identical ρ, the Laffer
curve in the idiosyncratic risk model is typically flatter (or wider) because µ̆B enters qB through
a square root term.

33This intuition breaks down for ϕ = 0 in the idiosyncratic risk model, as then agents can convert existing capital
goods freely into consumption goods and instead the growth rate is reduced.
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Towards the right end of the Laffer curves, the mineable deficit becomes zero at finite rates
of bubble mining µ̆B . At these values, the bubble existence inequalities determined in Section 3
no longer hold.34 A bubble may disappear if it is mined too aggressively.

5.3 Bubble Mining and Inflation

Is bubble mining inflationary? Not necessarily. Among steady-state policies the answer
depends on how the government mines the bubble, by issuing more debt or paying less interest,
and on the impact of policy on economic growth.

Specifically, by the Fisher equation, inflation in our models is

π = i − r f = i + µ̆B − g.

For a given nominal interest rate i, there is a direct inflationary effect from an increase in bubble
mining µ̆B . Higher bubble mining at a given interest rate requires the government to grow its
debt at a larger rate µB . When the growth rate is exogenously given, as in the perpetual youth
example, then this is the only effect. But in general, there could be an additional indirect effect
that operates through the growth rate g. This is the case in the idiosyncratic risk model: bubble
mining decreases the attractiveness of bonds, making the agents want to hold more physical
capital, which stimulates real investment and increases the steady-state growth rate g.35 This
latter effect tends to be deflationary.

When the growth rate is endogenous, an increase in µ̆B may therefore in principle lower
the µ̆B − g term and thus inflation. However, this is unlikely to be the case for any realistic
calibration of our idiosyncratic risk model: the effect on growth g is largest without capital
adjustment costs (ϕ = 0) and then

dg
dµ̆B =

dι

dµ̆B =
1
2

ρ

ρ + µ̆B
1

1 − ϑ
.

For µ̆B ≥ 0, this derivative can only be larger than 1 if ϑ > 1/2, that is if the majority of private
wealth is bond wealth. Despite the recent rise in the levels of public debt throughout advanced
economies, this condition is unlikely to be satisfied in the foreseeable future. The most plausible
situation is therefore the one in which the direct effect dominates the indirect growth effect.

34Reis (2021) derives expressions for the maximum deficity-debt ratio in the context of a related model and calls
this the fiscal capacity of the economy. In our terminology, his “fiscal capacity” precisely corresponds to the rates of
bubble mining µ̆B at the right end point of the Laffer curve.

35This presumes that revenues from bubble mining are used to lower the output tax rate τ and government con-
sumption gKt is kept constant. If instead bubble mining revenues are used to increase g, then the effect on the
economic growth rate g is ambiguous as a larger g tends to decrease both private consumption and private invest-
ment.
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Thus, for a fixed nominal interest rate i, an increase in bubble mining is inflationary.

The government can also offset the inflationary effect of bubble mining further by lowering
the interest rate i. This is possible whenever there is no binding lower bound on nominal interest
rates. If i fully offsets the rise in µ̆B , so that i + µ̆B = µB is unaffected, then only the indirect
deflationary effect due to higher growth remains. By using the policy tools of debt growth and
interest rate in the right proportion, the government can increase bubble mining in an inflation-
neutral way.

Note, however, that the previous discussion solely centers on the steady-state inflation rate
as a result of a steady-state level of bubble mining µ̆B . If the government was to announce more
aggressive bubble mining going forward, government debt would become less attractive and
its real value would have to fall, as we have seen in our Laffer curve discussion. This is brought
about in equilibrium by an inflationary upward jump in the price level.36

5.4 Optimal Bubble Mining

Even if bubble mining is possible, is it ever socially optimal for the government to engage in
mining? In this subsection, we characterize the optimal policy and draw two key conclusions:

First, a bubble in settings with frictions facilitates trade along certain dimensions – between
generations or in response to idiosyncratic shocks – and mining the bubble inhibits these ben-
eficial trades. Optimal policy therefore only calls for a positive rate of bubble mining, µ̆B > 0,
if pecuniary externalities generate an equilibrium bubble that is “too large”. Such a situation is
never possible in the perpetual youth example, but can arise in the idiosyncratic risk example
because the bubble crowds out real investment ιt. The optimal policy there balances a trade-off
between growth and risk sharing and may call for a positive rate of bubble mining, µ̆B > 0, if
idiosyncratic risk is sufficiently large.

Second, the optimal degree of bubble mining is independent of the government spending
need g. This implies that, under the optimal policy, any additional government spending is
optimally funded by raising taxes, not by bubble mining. This conclusion holds in both models.

We limit our formal analysis here to the idiosyncratic risk model, as its welfare implications
are richer and less well-known. A brief welfare analysis in the perpetual youth example can be
found in Appendix A.4.

36If we were to add price stickiness to the model, this initial price level jump would translate into a transition
period of larger inflation. See e.g. Li and Merkel (2020) for a closely related model with sticky prices.
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Figure 3: Optimal policy versus no policy (µ̆B = 0) in the idiosyncratic risk model for ϕ = 0
as a function of σ̃/

√
ρ. The left panel depicts the nominal wealth share ϑ, the right panel the

associated bubble mining policy µ̆B normalized by the time-preference rate ρ.

Formally, expected utility of an agent with initial wealth share ηi
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(14)

For arbitrary Pareto weights, a social planner would like to manipulate ϑt period by period
to maximize the integrand in the second line.38 The first term in the integrand is utility from
consumption a − g − ιt, which is increasing in ϑt because a higher ϑt depresses investment
and leaves more resources for consumption. The second term is proportional to the endoge-
nous component Φ (ιt) of the growth rate, which is decreasing in ϑt. The last term represents
the reduction of utility due to idiosyncratic risk. Higher ϑt reduces residual consumption risk
(1 − ϑt) σ̃ and thereby increases this term.39

While ϑt is not a policy instrument, the government can effectively choose ϑt directly by

37We provide a derivation of this equation in Appendix A.3.
38This is the case because the second line is the same for all agents i, whereas the first line depends only on initial

conditions that cannot be affected by bubble mining policy.
39Representing the objective in this way highlights similarities to the classic analysis of the optimal quantity of

debt by Aiyagari and McGrattan (1998). In their framework, a larger value of government debt increases liquidity
by effectively relaxing borrowing constraints, but reduces the quantity of capital. Here, a larger debt wealth share
directly improves risk sharing (even in the absence of borrowing constraints) but reduces the growth rate of capital
and output.
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adjusting µ̆B
t . We show in the appendix that there is a unique optimal solution ϑopt for ϑt, which

is time-invariant, depends only on ρ, σ̃, and ϕ, and is strictly increasing in idiosyncratic risk σ̃.
Figure 3 depicts this optimal nominal wealth share ϑ and the bubble mining rate µ̆B required
to implement it as a function of idiosyncratic risk.40 It also compares the optimal policy to
the competitive equilibrium without policy intervention (µ̆B = 0). Relative to that benchmark,
optimal policy backs the value of government debt by primary surpluses (negative µ̆B) if risk
is low. In these cases, the bubble created by market forces is too small (for σ̃ >

√
ρ) or even

absent (for σ̃ ≤ √
ρ) and risk-sharing is suboptimal. If risk is high, market forces generate a

bubble that is too large. Optimal policy then runs deficits (positive µ̆B) and funds government
expenditures out of the bubble to encourage higher real investment and growth.

Market forces may fail to generate a bubble that achieves the optimal trade-off between
growth and risk sharing. Inefficiencies are possible due to pecuniary externalities with respect
to agents’ portfolio choices because agents take returns as given when making these choices,
yet their collective choice affects the risk-free rate and risk-premium on capital.41 On one hand,
a greater portfolio allocation to bonds discourages real investment ι in the economy, which in
turn affects the real return on all assets through the growth term in the risk-free rate. This force
tends to generate too much bond demand, a too high ϑ and thus under-investment in capital.
On the other hand, a greater allocation to bonds increases the total value of bonds and thus
reduces the residual (proportional) idiosyncratic consumption risk (1− ϑ)σ̃ that each agent has
to bear.42 This in turn affects asset returns through the precautionary motive in the risk-free rate
and through the risk premium on capital. This second force tends to generate too little bond
demand, a too low ϑ and thus over-investment in capital.

It is instructive, however, that the optimal value ϑopt for ϑ is independent of the government
spending need g. Because g does not appear in equation (12) either, then also the optimal degree
of bubble mining µ̆B to implement ϑ = ϑopt must be independent of g. While the government
could increase µ̆B in response to an (unanticipated) increase in g in order to fund the additional
spending, this is never optimal.43 The optimal policy should rely on taxes as the marginal
funding source for additional government spending.

The reason for this result is that when government spending g increases, the government
must transfer a larger fraction of current output away from the private sector to itself. Taxing

40The figure assumes no capital adjustment cost, ϕ = 0. It looks qualitatively identical for ϕ ∈ (0, ∞).
41These pecuniary externalities have been previously identified by Brunnermeier and Sannikov (2016b) and Di

Tella (2020) in closely related frameworks.
42Specifically, higher bond prices benefit the bond-selling agents: those who suffered idiosyncratic losses and who

have higher marginal utilities, on average.
43g is here a model parameter and thus any change in g must by construction be an unanticipated change in

government spending. However, this fact is irrelevant for our conclusion. We would obtain the same result if we
were to add government spending shocks to the model (including transitory changes that mean-revert in the long
run).
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current output is the most direct way of achieving this and does not distort the portfolio choice
between capital and bonds.44 In contrast, funding additional spending by increasing primary
deficits and bubble mining dilutes the bubble at a faster rate and thereby distorts agents’ portfo-
lio choice in favor of larger capital holdings. Because the pecuniary externalities just discussed
do not depend on either the level of government spending gKt or total output left for private
uses (a− g)Kt, the optimal portfolio distortion induced by µ̆B is also independent of these quan-
tities.45

In our models, government spending gKt is exogenously given and does not provide any
utility to agents. We remark, that all the results in this subsection would equally apply if agents
derived additively separable utility from public spending and also gt was a policy choice.

6 Price Level Determination and Equilibrium Uniqueness

A core theme in the FTPL literature is the question of price level determinacy, i.e. whether
across the set of possible equilibria, there is a unique prediction for the price level. In many
model environments, including ours, price level determinacy requires the equilibrium itself to
be unique.

Uniqueness is not a purely technical issue but of economic importance. Price level determi-
nacy has always been a concern in monetary economics, ultimately because an indeterminate
price level casts doubt on the ability of government policy to control inflation. In the presence
of a bubble, the uniqueness question becomes an even bigger concern. If there is multiplicity,
then a bubble on government debt is an inherently fragile arrangement. Markets could coor-
dinate any time on a different equilibrium, the government would lose the bubble on its debt
and would either have to replace its value with a larger fundamental value by raising surpluses
or accept an inflationary collapse of its currency (or default). Mining a bubble could then be a
very risky proposition because it would expose the government’s debt to sunspot revaluations
that would have to be met with large and sudden fiscal corrections. In contrast, if there is a
policy that can select a unique equilibrium with a bubble, then a bubble can in fact be a stable
arrangement that is not threatened by shifts in market beliefs.

In Section 6.1, we show how fiscal policy can both determine the price level and ensure a

44Similarly, in the perpetual youth example, it does not distort the inter-generational resource transfer, which is
ultimately about how future output left for private uses is split across individuals.

45The size of the pecuniary externalities does depends on the aggregate consumption-wealth ratio which equals
the time preference rate ρ in our model with log utility. Admittedly, this is a somewhat knife-edge case that only
holds for unit EIS. For general EIS, the aggregate consumption-wealth ratio depends on the growth rate of the
economy, which in turn is increasing in output left for private uses a − g per unit of capital. Nevertheless, our result
represents an important benchmark case and the broader point that optimal bubble mining only adjusts to correct
pecuniary externalities remains valid also for EIS ̸= 1.
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stable bubble value that remains attached to government debt. We first briefly revisit the con-
ventional FTPL arguments and then discuss how the possible presence of a bubble complicates
the situation. We ultimately conclude that fiscal price level determination as studied in the FTPL
literature still works in the presence of a bubble, albeit the details of how to implement such a
policy have to be adapted. In Sections 6.2–6.4, we analyze under which conditions fiscal price
level determination remains credible in the absence of perfect commitment and how alternative
policies can facilitate the equilibrium selection.

6.1 Fiscal Policy as an Equilibrium Selection Device

In the standard FTPL without a bubble, the story of price level determination is often told
by starting from the key equation (1) (without a bubble) and interpreting it as an asset pricing
equation. A holder of the total stock of government debt who absorbs all new issuances in
the future receives as a cash flow in each period precisely the stream of primary surpluses.
Like the value of a stock is determined by the present value of its future dividends, the value
of government debt should thus be determined by the present value of its future cash flows,
the primary surpluses. Because the nominal price level is the relative price between nominal
bonds and consumption goods, this is the correct “asset price” that must adjust to clear the
bond market.46 If fiscal policy ensures that the present value of primary surpluses is unique,
then precisely one value of debt and thus one price level is consistent with the (bubble-free)
debt valuation equation (1), which is the main reason why this is the key equation of the theory.
In most of the simpler models considered in the FTPL literature, a policy that commits to an
exogenous sequence of primary surpluses can accomplish this task, but this specific feature is
not a critical ingredient to the FTPL argument for determinacy.

In the presence of a bubble, the previous intuition breaks down because the size of the bub-
ble is not determined by the present value identity itself. There is, however, an alternative in-
tuition about the economic mechanism behind the FTPL that centers on goods market clearing
and wealth effects and that remains fully operational when bubbles are possible.47 A larger real
value of government bonds, holding taxes constant, means bonds represent more net wealth for
the private sector, which increases consumption demand through a wealth effect. The equilib-
rium price level is the price level at which consumption demand equals consumption supply.

However, this mechanism can generally not ensure a unique prediction for the price level in
an environment with bubbles. Goods market clearing only determines the size of aggregate net
wealth consisting of the pre-tax value of (human or physical) capital and the aggregate bubble,

46To be precise, the price level is the relative price between a maturing bond and consumption goods, while there
are additional bond prices for longer-term bonds that depend on the term structure of nominal rates.

47This alternative intuition is in fact the original economic story told by Woodford (1995).
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the sum of all bubble values in the economy. Even if the value of capital is given, there is no
economic force that suggests that the residual, the aggregate bubble, must be attached to gov-
ernment debt. There could be bubble components on other assets, so that government debt has
a smaller bubble component and a lower value. In addition, also the value of capital wealth is
not given as the alternative nonmonetary equilibrium without a bubble shows. In this equilib-
rium, the value of capital wealth is larger because the absence of the trading benefits derived
from the bubble depresses discount rates. Goods market clearing therefore at best imposes an
upper bound on the value of government debt, but it does not pin it down uniquely.

Based on this reasoning, one may be tempted to conclude that in an environment with bub-
bles, fiscal policy is generally unable to select a unique equilibrium and thereby pin down the
price level. This is the conclusion of Bassetto and Cui (2018) in the context of a closely related
dynamically inefficient OLG model. They study constant tax policies that are not contingent on
the price level and conclude that “the FTPL breaks down in [their] OLG economy” (p. 13).48

In contrast to their conclusion, we show in the remainder of this section how fiscal price level
determination can succeed even in the presence of bubbles.49 Our argument proceeds in three
steps. We first consider positive surplus policies that eliminate all bubbles, including on govern-
ment debt, and thus restore the standard fiscal theory intuition. By construction, such policies
are unable to deliver uniqueness in the presence of an equilibrium bubble. However, we show
in a second and third step that the elimination of all bubbles can be used as an “off-equilibrium
threat” to select a unique bubble equilibrium. The second step focuses on eliminating equilibria
that are asymptotically bubble-free whereas the third step discusses under which conditions
the same policy specification can also eliminate bubbles on assets other than government debt.
Relative to the conclusion of Bassetto and Cui (2018), our analysis highlights the importance of
contingent policy that raises surpluses off-equilibrium to deliver fiscal price level determination
in the presence of bubbles.

Positive Surplus Policies and Elimination of All Bubbles. We start by observing that wealth
effects limit the total value of private-sector net wealth by an upper bound proportional to
available resources. Any bubble (on any asset) represents net wealth, so that the aggregate
bubble value cannot persistently outgrow the economy. As a consequence, the expected long-
horizon growth rate of the bubble component on any asset cannot exceed the growth rate of
the economy, g, and therefore no bubble on any asset can exist in an equilibrium that features
r f > g in the long run.

48Bassetto and Cui (2018) do not discuss the possibility of bubbles explicitly. But it is our interpretation that their
result is ultimately due to bubble multiplicity in their framework.

49Throughout, we limit attention to equilibria that are deterministic and feature absolutely continuous price paths.
The same economic intuition also works to rule out non-time-continuous equilibria and equilibria driven by sunspot
noise. However, in these cases, additional technical complications arise that make the mathematical arguments
considerably more involved.
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More precisely, a sufficient condition for the absence of bubbles is

lim
T→∞

E [ξTYT] = 0, (15)

where YT denotes aggregate output at time T. If output growth and the risk-free rate are con-
stant, then this condition is equivalent to r f > g.

We have seen in both of our models that any monetary steady state that features a constant
and positive surplus-capital ratio s > 0 has the property r f > g. We now argue that if the
government commits to such a positive surplus policy by choosing50

τt =
s + g

a
, µ̆B

t = − s
qB

t
, (16)

any equilibrium consistent with this policy specification must satisfy condition (15) and, thus,
no bubbles can exist.

The economic intuition for this result is very simple. If r f ≤ g, at least on average, then the
present value of primary surpluses would be infinite and government debt would have infinite
value.51 Indeed, we have the inequality

B0

P0
≥ E

[∫ ∞

0
ξtsKtdt

]
=

s
a

E

[∫ ∞

0
ξtYtdt

]
.

If condition (15) is violated, then the integral on the right does not converge and thus B0/P0 =

∞. However, then also total net wealth must be infinite in contradiction to our previous argu-
ment that wealth effects bound the ratio of total net wealth to output from above.52 Therefore,
condition (15) must be satisfied in any equilibrium under this policy.

The previous argument implies that a positive surplus policy is inconsistent with bubbles.
The equilibrium is then indeed unique:

Proposition 1. If government policy is specified by (16) with s ∈ (0, a − g],53 then there is a unique
equilibrium. That equilibrium coincides with a monetary steady state and the initial price level P0 is
uniquely determined.

Some additional technical details are necessary to show that there is not just no scope for
bubbles but the equilibrium is indeed unique. We relegate them to Appendix A.5.2.

50This is always consistent with the government’s flow budget constraint (3) and thus a feasible policy specifica-
tion after any price history.

51A possible bubble component can only increase the value of debt.
52Total net wealth at t = 0 is at least B0/P′ + qK

t Kt (and possibly larger if other assets have bubble components).
While higher taxes depress the second component, qK

t Kt, that component always remains positive for τ < 1, such
that an infinitely large value of debt is not offset by an infinitely large present value of future taxes.

53We impose the additional upper bound a − g to ensure that taxes τt do not exceed 1.
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We remark that for the previous argument to work, it is crucial that the process of taxation
to back government debt generates net wealth for the private sector. Otherwise, there would be
no reason why the total value of debt has to be bounded because any positive wealth effect from
higher debt would be offset by a negative wealth effect from the additional tax liability. This is
not the case in our models because Ricardian equivalence does not apply to proportional output
taxes in either model.54 Backing of debt with surpluses would fail to select a unique bubble-
free equilibrium if the government used taxes that are consistent with Ricardian equivalence
and thus failed to generate net wealth.55

Uniqueness with an Equilibrium Bubble. We now discuss how government policy can select
a unique equilibrium with a bubble under the assumption that a bubble can only be on government
debt. We discuss bubbles on other assets below. Even under this assumption, the equilibrium is
not necessarily unique as the bubble on government debt can take multiple values.

The steady state equilibria with a bubble derived in Section 3 are consistent, for example,
with a policy that fixes µ̆B ≥ 0 at a constant level and adjusts taxes τt such that the govern-
ment budget constraint (3) holds after any price history.56 We have seen that the same policy
is also consistent with a second steady-state equilibrium in which government bonds have no
value, qB = ϑ = 0. In addition, there is a continuum of nonstationary equilibria. We show in
Appendix A.5.1 that there is a one-to-one relationship between model equilibria and paths for
the bond wealth share ϑt that are contained in [0, 1] and solve the ordinary differential equation
(ODE)

ϑ̇t =
(

ρ + µ̆B
t − f (1 − ϑt)

)
ϑt (17)

where f is a strictly increasing function (for positive arguments) given by

f (x) =

x
(
δ + g

)
, perpetual youth model

x2σ̃2, idiosyncratic risk model
.

Equation (17) can be obtained by taking the time derivative in equation (9) for model I and in
equation (12) for model II. We can therefore study the set of all equilibria by analyzing ODE (17).

54In the perpetual youth model, taxation of future generations implies that the value of debt exceeds the present
value of taxes for the currently alive. In the idiosyncratic risk model, individual tax liabilities are contingent on
individual idiosyncratic shock histories, so that individuals discount their future tax liability at a higher rate than
the risk-free rate.

55In both models, this would be the case if surpluses were raised exclusively by imposing lump-sum taxes on the
currently alive agents.

56We have opted not to choose the opposite specification where τ is constant and µ̆B
t adjusts to make the gov-

ernment budget constraint hold because this is only a valid policy specification if τ ≥ g/a. For τ < g/a, there are
histories of prices in which no value of µ̆B

t is consistent with equation (3) (e.g. P = ∞). Also, the Laffer curves dis-
cussed in Section 5 implies that even if fixing constant deficits was a feasible choice, it would not uniquely determine
the equilibrium.
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With constant µ̆B ≥ 0, there is a continuum of solution paths for ϑ that remain inside the
interval [0, 1]. This continuum can be indexed by the initial value ϑ0 ∈ [0, ϑ∗], where ϑ∗ denotes
the monetary steady-state level of ϑ. For any initial value but the right endpoint, ϑ asymp-
totically converges to 0.57 Conversely, if for some reason agents expected that the equilibrium
value of ϑ could never fall below a positive threshold ϑ > 0, then all equilibria but the monetary
steady state ϑ0 = ϑ∗ could be ruled out.

These considerations suggest a simple off-equilibrium modification of the fiscal policy rule
to achieve equilibrium uniqueness: fix an arbitrary threshold 0 < ϑ ≤ ϑ∗ and, whenever ϑt

falls below ϑ, switch from a constant debt growth rule (constant µ̆B) to a positive surplus rule
as discussed previously for as long as ϑt < ϑ.58 This works because, as we have shown pre-
viously, the positive surplus rule implies a unique equilibrium with a positive value of debt.
Furthermore, an expectation of the regime change cannot become self-fulfilling: the value of
debt under the positive surplus rule is so large that ϑt > ϑ∗ ≥ ϑ and thus the threshold criterion
would be violated if the positive surplus policy was permanently in place.

By analyzing an appropriately modified version of ODE (17), we show in Appendix A.5.3
that this threshold policy indeed succeeds in selecting a unique equilibrium. Any mathematical
solution to this ODE with ϑ0 < ϑ∗ would eventually lead to ϑt < 0, which is inconsistent with
an equilibrium solution. This is the case because a low bond valuation can only be consistent
with the positive surpluses expected for ϑ < ϑ if agents expect bond valuations to fall even
further at a speed that would imply ϑt < 0 at a finite time t.

Proposition 2. Under the threshold policy discussed in this section, there is a unique equilibrium for
any threshold ϑ ∈ (0, ϑ∗]. The unique equilibrium does not depend on ϑ and satisfies ϑt = ϑ∗ for all t.

We emphasize again that our policy rule modifies fiscal policy only off-equilibrium. Along
the equilibrium path, the government is free to choose any rate of bubble mining µ̆B , effectively
selecting the monetary steady state we have analyzed so far.59

Bubbles on Other Assets. We now remove the assumption that only government debt can
have a bubble. Instead, we allow for any intrinsically worthless asset in limited supply to have
a bubble component.60 Our main result is that the same threshold policy as studied previously

57This is implied by the fact that the right-hand side of equation (17) is negative for all ϑt ∈ (0, ϑ∗).
58The proposed modification is reminiscent of Obstfeld and Rogoff (1983), who show how an off-equilibrium com-

modity backing of money can rule out hyperinflationary equilibria in models of money as a medium of exchange.
However, there are some differences here that become apparent below, see footnote 59.

59 This is an important difference to the Obstfeld and Rogoff (1983) policy that requires the government to hold
the stock of commodity backing in equilibrium. While the required backing can be arbitrarily small if only a bubble
on government debt is permitted, we will show next that in the presence of other possible bubbles, the backing may
have to be “large”. The equivalent Obstfeld and Rogoff (1983) policy would reduce to full commodity backing in
that case and eliminate all bubbles in equilibirum.

60We limit the formal discussion to bubbles on intrinsically worthless assets, but the economic points apply more
broadly, see Section 6.3.
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can rule out bubbles on other assets, too, if either the supply of these assets grows sufficiently
fast or the taxation threshold ϑ is tight, i.e. ϑ = ϑ∗.

To see this, we extend our models by adding an intrinsically worthless additional asset
that can potentially also have a bubble component61 – for concreteness called cryptocoin. To
keep matters simple, we assume that the nominal supply of cryptocoins grows at a constant
exogenous rate µ̆C ≥ 0 and that, if the inequality is strict, newly generated cryptocoins are
produced by capital. Under this assumption, seigniorage from cryptocoin growth accrues to
capital owners symmetrically to how bubble mining by the government leads to lower capital
taxes (for given g). We denote by qC

t Kt the real value of the stock of cryptocoins and define in
analogy to before the shares ϑB

t := qB
t /
(

qB
t + qC

t + qK
t

)
, ϑC

t := qC
t /
(

qB
t + qC

t + qK
t

)
, and ϑ̂t :=

ϑB
t + ϑC

t of total wealth that is due to bond wealth, cryptocoin wealth, and the combination of
the two, respectively. With this notation, clearly ϑB

t ≤ ϑ̂t. We can solve these augmented models
as before.62 The key result is that there is a one-to-one relationship between model equilibria
and time paths t 7→ (ϑB

t , ϑ̂t) satisfying 0 ≤ ϑB
t ≤ ϑ̂t ≤ 1 and the two ODEs

˙̂ϑt =

(
ρ − f

(
1 − ϑ̂t

))
ϑ̂t + µ̆B

t ϑB
t + µ̆CϑC

t , (18)

ϑ̇B
t =

(
ρ − f

(
1 − ϑ̂t

))
ϑB

t + µ̆B
t ϑB

t , (19)

where the function f is the same as in equation (17) above.

The structure of equation (19) is sufficiently similar to that of equation (17) that we can rule
out any solution paths for ϑB that ever fall below the threshold ϑ by the same argument as
previously: if ϑB ever fell below ϑ, then this low valuation of bonds would only be consistent
with the positive surplus policy if agents expected ϑB to fall below 0 in finite time. However,
such an expectation is not consistent with any equilibrium.

Thus, all equilibrium solution paths must satisfy ϑB
t ≥ ϑ at all times. Whether this is suffi-

cient to also rule out cryptocoin bubbles, i.e. equilibria with ϑC
t > 0, depends on the threshold

ϑ and the growth rate of cryptocoins:

First, if the threshold is tight, ϑ = ϑ∗, then there is no “space” for a bubble on cryptocoins: if
ϑ̂t > ϑB

t ≥ ϑ∗, one can show that equation (18) implies that ϑ̂t must grow without bounds and
can therefore not be a valid equilibrium path.

Second, even if ϑ < ϑ∗, the policy still succeeds in eliminating cryptocoin bubbles if the
supply growth rate of the latter is larger than the desired bubble mining rate in equilibrium,
µ̆C > µ̆B . The reason is that the dilution rate of cryptocoins then exceeds that of government

61It is without loss of generality to consider only a single additional asset as we could always combine the portfolio
of all potential bubble assets in the economy into a single asset.

62We provide details in Appendix A.6.
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bonds. By no arbitrage, households are only willing to hold cryptocoins if they expect them
to appreciate in value relative to government bonds over time. Because the aggregate bubble
is bounded (relative to the size of the economy), this is only possible if ϑB

t shrinks over time,
precisely as in the equilibria that lead to the no bubble equilibrium. As above, any positive
lower bound ϑ on ϑB

t makes such price paths inconsistent with a perfect foresight equilibrium.

In the remaining case, ϑ < ϑ∗ and µ̆C ≤ µ̆B , one can show that there are multiple solution
pairs (ϑ, ϑ̂) to equations (18) and (19) that satisfy 0 ≤ ϑt ≤ ϑ̂t ≤ 1. In this case, the policy fails
to select a unique equilibrium. In total, we obtain the following proposition.

Proposition 3. Under the threshold policy discussed in this section, all equilibria have the property that
ϑB

t ≥ ϑ for all t. If ϑ = ϑ∗ or µ̆C > µ̆B , the equilibrium is unique and satisfies ϑB
t = ϑ̂t = ϑ∗ for all t.

We remark that the distinction between µ̆C > µ̆B and µ̆C ≤ µ̆B affects the nature of the off-
equilibrium backing considerably. In the former case, any threshold ϑ works. Any promise of
arbitrarily small surpluses arbitrarily far in the future is sufficient to rule out all equilibria but
the one featuring a stationary public debt bubble. In the latter case, only ϑ = ϑ∗ works. The
fiscal authority must start raising surpluses immediately in response to any drop of the value
of debt below its equilibrium value.

6.2 Imperfect Commitment

The previous results assume that the government can perfectly commit to any policy that
is fully contingent on realized price histories. We now ask when off-equilibrium fiscal backing
is credible if the government has a social welfare objective and imperfect commitment power.
Because a positive rate of bubble mining can only be optimal in the idiosyncratic risk model
(compare Section 5.4), we restrict attention here to that model.

We make the following modification to the setup of our augmented model with two poten-
tial bubbles. We replace the single infinite-horizon government by a sequence of governments,
each with a finite term of office T > 0. Government j ∈ {0, 1, . . . } chooses the policy variables
it, µB

t , τt subject to the budget constraint (3) for periods t ∈ [jT, (j + 1)T), but takes the policy
choices at other times (made by other governments j′ ̸= j) as given and cannot commit to react
to policies chosen by previous governments. All governments maximize the same social wel-
fare function which is given by some weighted average of individual agent utilities as stated in
equation (14).

We describe the details of the modified setup in Appendix A.8. Effectively, each government
j takes prices qB

(j+1)T, qC
(j+1)T, qK

(j+1)T at the end of its tenure as given and chooses an optimal
(Ramsey) policy path over [jT, (j+ 1)T) that implies price paths for qB

t , qC
t , qK

t in the competitive
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equilibrium of our model over that time interval.63 An equilibrium in this policy game consists
of a set of price paths {qB

t , qC
t , qK

t }∞
t=0 and policies {it, µB

t , τt}∞
t=0 such that (1) the sequences cor-

respond to a competitive equilibrium of the augmented model with two bubbles and (2) for
each j, the policy sequence restricted to the interval [jT, (j + 1)T) is optimal for government j
conditional on terminal prices qB

(j+1)T, qC
(j+1)T, qK

(j+1)T.

We assume that model parameters are such that in the setting of Section 5.4, a positive rate
of bubble mining is optimal and denote that rate by µ̆∗. We denote by ϑ∗ the optimal value of ϑ

corresponding to that policy (ϑ∗ = ϑopt in the notation of Section 5.4). With these assumptions
and definitions, we can formulate our main result, which characterizes the possible values of
government bonds in the equilibria of the policy game:64

Proposition 4. Any equilibrium of the policy game features a positive aggregate bubble with ϑ̂t ≥ ϑ∗.
In addition:

(i) If µ̆C > µ̆∗, the equilibrium is unique and features ϑ̂t = ϑB
t = ϑ∗.

(ii) If µ̆C ≤ µ̆∗, there exists an equilibrium for any initial value ϑB
0 ∈ [0, ϑ∗].

We prove this result in Appendix A.8. There are two key takeaways from this proposition.
First, even under imperfect commitment, fiscal policy always eliminates the no bubble equilib-
rium. Second, equilibria with bubbles on cryptocoins can only be ruled out in case (i), i.e. if the
growth rate of cryptocoins exceeds the optimal bubble mining rate µ̆∗ in the equilibrium with
a stationary public debt bubble (and no other bubbles). Otherwise, equilibria with arbitarily
small public debt bubbles cannot be ruled out. Selecting a unique equilibrium under imperfect
commitment fails in precisely the cases in which the switching threshold ϑ has to be tight in the
results under perfect commitment presented in the previous subsection.

To gain intuition for the result, we first explain why commitment is not required to elimi-
nate the no bubble equilibrium. In many standard models, there is a basic time-inconsistency
problem of nominal debt: a government would prefer to inflate away pre-existing nominal li-
abilities in order to avoid current and future distortionary taxes necessary to repay the debt.
Key to this argument is that the taxes required to support additional debt are welfare-reducing.
But this is not the problem here. Even though debt is funded by distortionary capital taxes that
reduce growth, a larger value of government debt can nevertheless be beneficial because it im-
proves risk sharing (compare Section 5.4). If the total value of safe assets such as government
bonds is sufficiently small, each finite-horizon government has incentives to raise taxes during

63Once terminal prices over the finite time interval have been fixed, there is no scope for multiplicity anymore.
Each policy path over the interval is associated with a unique equilibrium.

64As in the previous subsection, we continue to restrict attention to deterministic equilibria with absolutely con-
tinuous asset price paths.
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its own term of office to create more safe assets and improve risk sharing. Commitment power
is thus not needed to eliminate equilibria in which the total value of safe assets is too small. This
explains why the no bubble equilibrium can be ruled out even under limited commitment.

Importantly, however, it is the total value of safe assets ((qB
t + qC

t )Kt) not the value of public
debt (qB

t Kt) that is relevant for risk sharing. For a sufficiently large cryptocoin bubble, safe
assets are abundant and the marginal welfare impact of additional (tax-funded) debt becomes
negative. In this case, the standard intuition is restored: a government would prefer not to
honor the full outstanding real value of its nominal liabilities.

The question is thus whether in equilibrium, a sufficiently large cryptocoin bubble can pro-
vide a substitute for government debt as a safe asset. The answer is yes if the growth rate of
cryptocoins is sufficiently low, but it is no otherwise. If µ̆C > µ̆∗, cryptocoins are diluted at a
faster rate than the optimal bubble mining rate, so that, unless cryptocoins are worthless, the
aggregate bubble must be suboptimally small, at least in some future period. In such a fu-
ture period, the government in charge would have incentives to raise taxes in order to create
additional safe assets (through government debt). These incentives to tax by some future gov-
ernment implement a form of off-equilibrium fiscal backing that eliminates cryptocoin bubbles
in the first place.

6.3 Remark: Bubbles on Private Assets and Ponzi Schemes

We have logically attached the bubble on other assets to a separate intrinsically worthless
asset in exogenous supply. However, there is no economic difference if instead we considered
one of the following alternative arrangements.

First, bubbles could be attached to long-lived liabilities issued by households in the model.
These liabilities neither need to be intrinsically worthless, nor in exogenous supply. If, for ex-
ample, a private household issued a perpetuity with a positive fundamental value, there could
be an additional bubble component attached to it and the household may be able to create ad-
ditional bubbles when issuing more perpetuities. Whether this is possible is ultimately a matter
of coordination of market beliefs and thus depends on the equilibrium selection. If other agents
are only willing to buy such a bond at a price that does not exceed the present value of future
coupon payments, then bubble creation fails and the agent has to pay back in present value ex-
actly what she has borrowed. However, when rational bubbles are possible, then other agents
could coordinate on an equilibrium in which they are willing to pay more for the bond than the
present value of coupon payments in the expectation that they can pass it on to others at a high
price in the future.

However, we can in such cases always logically split the assets into a bubble-free asset and
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an intrinsically worthless asset and simply select an equilibrium in which the two are always
effectively held as a bundle. Therefore, any policy that rules out intrinsically worthless bubbles
ultimately also rules out bubbles on assets issued by private agents.

Second, the benefits of issuing a bubbly asset can be generated in an alternative way without
issuing long-lived liabilities. We have defined a bubble as a situation in which the market value
of an asset exceeds its fundamental value and this works only for long-lived assets. However,
the economic equivalent of issuing a bubbly asset can also be achieved through a Ponzi scheme,
a chain of debt issuance that is perpetually grown and rolled over such that the present value
of time-T debt liabilities does not converge to zero as the horizon T approaches infinity. Unlike
issuing a long-lived asset with a bubble, each individual debt claim in this chain can have finite
maturity and be priced according to its fundamental value and thus not have a bubble com-
ponent. Yet, when the totality of all debt claims is considered as a bundle, the Ponzi scheme
represents a bubble because the present value of payouts to debt holders falls short of the total
value of debt issued. An agent able to run a Ponzi schemes can effectively mine this bubble by
growing such “Ponzi debt” at a faster rate.

Formally, the ability of private households to run Ponzi schemes would require that markets
do not enforce a strict no Ponzi condition on individual agents as we have assumed so far. If the
market does not impose a strict no Ponzi condition on agent i, agent i’s transversality condition
becomes E0ξ i

Tbi
T → −bp,i

0 < 0, where bp,i
0 is the present value of bubble mining (“Ponzi wealth”)

that the market permits the agent in a given equilibrium. The equilibrium allocation is then
equivalent to the one of a model in which the agent issues a long-lived bubble asset of value bp,i

0

at time 0, so that bp,i
0 is included in the agent’s measured (bond) wealth bi

0 and the agent faces a
strict no Ponzi condition lim infT→∞ E0ξ i

Tbi
T ≥ 0.

Because equilibria with private Ponzi schemes and private bubble issuance are equivalent,
policies that rule out bubbles on private assets also eliminate equilibria featuring private Ponzi
schemes. This is in particular true for the off-equilibrium fiscal policy analyzed in Sections 6.1
and 6.2.

Importantly, private agents could not resort to a similar equilibrium selection policy as the
government to force the bubble onto their liabilities. While the government can use taxation to
raise surpluses that grow proportionally with the economy, private households in our models
are unable to generate resources that grow in lockstep with the economy and thus provide off-
equilibrium backing to their liabilities in the same way as the government. In the perpetual
youth example, the output share of each individual agent decays over time as more and more
other agents are born. In the idiosyncratic risk example, there are some states in which an agent
has experienced many negative shocks and become arbitrarily poor relative to the size of the
economy. Beyond these models, both channels are arguably present in reality and restrict, for
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example, the ability of private corporations to implement an off-equilibrium selection policy in
their favor.

6.4 Alternative Policies

Fiscal policy is not the only policy that can rule out bubbles on other assets. We briefly
discuss here how other policies, insolvency law, restrictions on certain assets, and financial
repression, can facilitate the equilibrium selection.

Insolvency Law. Institutional rules such as insolvency laws can effectively impose no Ponzi
conditions on private agents through the legal system. If effective, such rules can rule out all
Ponzi scheme run by private agents, so that at most the government is able to run a Ponzi
scheme.

While effective to eliminate Ponzi schemes, such rules do not directly rule out bubbles on
long-lived assets. However, because most assets in reality are not long-lived, eliminating Ponzi
schemes goes a long way in narrowing down the possibilities for alternative bubbles.

In addition, insolvency law can indirectly affect the viability of bubbles on long-lived assets
that are liabilities of firms subject to insolvency law such as stocks. If the claims of holders of
these assets are wiped out in bankruptcy, then the institutional environment triggers a forced
bubble burst in any bankruptcy event.65 To the extent that all firms face some background
bankruptcy risk, bubbles on their long-lived liabilities are harder to sustain because their re-
quired return conditional on no bankruptcy must rise to compensate investors for the bubble
burst in bankruptcy.66

Restrictions on Specific Assets. Specific asset classes (of long-lived assets) can also be tar-
geted directly by legal restrictions to prevent bubbles on them. This is particularly relevant for
cryptoassets that are not liabilities of entities affected by insolvency law and thus not affected
by considerations in the previous paragraph.

For example, the government could impose a tax on holding such asset. In our model, a tax
on cryptocoins whose tax revenues are used to lower output taxes would have the same effect
as a higher exogenous growth rate µ̆C . A sufficiently high tax can therefore drive the effective
µ̆C above µ̆∗ and thereby ensure that off-equilibrium fiscal backing remains credible.

Alternatively, a government could also impose trading restrictions on long-lived assets that
could support a bubble. Because the ultimate economic value of a bubble results from enabling

65Specifically, it is important that a bankruptcy also inhibits the continued trading of the fundamentally worthless
claims post-bankruptcy. This is, e.g., the case if the claims only exist in digital accounts and are deleted in bankruptcy.

66This is effectively very similar to a larger dilution rate due to supply growth of the asset. Thus off-equilibrium
fiscal backing is more credible against such bubbles.

39



beneficial trades (compare Section 4), bubbles on illiquid assets are less likely or even outright
impossible.

Financial Repression. Instead of making bubbles on other specific assets more difficult, fi-
nancial repression tools such as reserve and liquidity requirements seek to support the demand
for government liabilities relative to other assets. Formally, they make B more like M in equa-
tion (1) and open up a spread ∆i between bonds and cryptocoins. If conducted on a sufficiently
large scale, such policies can even drive r f (the illiquid rate) above g and eliminate bubbles, yet
keep the government’s funding costs r f − ∆i low, so that the government still enjoys the same
advantages as with a bubble.67

7 Conclusion and Lessons for Debt Sustainability Analysis

This paper integrates the typically ignored bubble term in the FTPL, which is necessary to
explain low inflation in countries with persistently negative primary surpluses. We conclude
with some lessons for debt sustainability analysis. Applying these lessons to assess debt sus-
tainability of specific countries appears an interesting avenue for future research.

The traditional concern of debt sustainability analysis is the ability of a government to gen-
erate the future primary surpluses necessary to back its outstanding debt obligations (in equi-
librium). A public debt bubble opens up the possibility that debt may be sustainable even in
the absence of such future surpluses. Whether it is, requires an analysis of the bubble. There
are two aspects to be considered.

First, debt sustainability analysis should attempt to quantify the fiscal space created by the
bubble (in equilibrium). This can be done, for example, by determining the maximum debt
level that can be supported in the absence of any primary surpluses or by mapping out the
Laffer curve. To do so, one has to determine not only the size of the bubble for the policy
regime in place, but also how the bubble reacts to changes in policy. An example of such an
exercise is carried out by Brunnermeier et al. (2021a) who extend the idiosyncratic risk example
provided in this paper, calibrate it to U.S. data, and quantify the Laffer curve.

Second, debt sustainability analysis should assess stability of the bubble by considering the
defenses in place to prevent coordination to other equilibria. The primary defense discussed
in this paper is (contingent) fiscal policy. Just like traditional debt sustainability analysis, as-
sessing the stability of the bubble thus starts with an assessment of the government’s capacity
to generate future primary surpluses. However, the emphasis shifts from the capacity to raise
actual future surpluses in equilibrium to backup capacity, the mere ability and credibility to do

67See e.g. Di Tella (2020) and Merkel (2020) for frameworks similar to our idiosyncratic risk model in which
monetary frictions may crowd out bubbles.
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so off-equilibrium. Backup capacity may by limited, for example, by actual limits to taxation,
by imperfect commitment, or by political frictions. In addition to analyzing backup fiscal capac-
ity, the stability of the public debt bubble can be assessed by identifying other potential assets
to which the bubble could jump and the policies in place to prevent such bubble jumps (e.g.
insolvency law, regulation of crypto assets). Going beyond the closed economy framework of
this paper, this analysis should also consider foreign assets such as foreign government debt as
competing stores of value that may carry a bubble. Some important policy considerations in the
international case are explored in Brunnermeier et al. (2021b).
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A Appendix

A.1 Derivation of the Continuous-time Fiscal Theory Equation (Equation (1))

As in the discrete-time case, the derivation of the fiscal theory equation starts with the gov-
ernment flow budget constraint, which here is

(
µB

t Bt + µM
t Mt + PtTt

)
dt = (itBt + im

t Mt + PtGt) dt,

where Bt, Mt, Tt, Gt, it and im
t have the same meaning as in the main text and µB

t , µM
t are the

growth rates of nominal bonds and money, respectively.68 Multiplying the budget constraint
by the nominal SDF ξt/Pt and rearranging yields((

µB
t − it

) ξt

Pt
Bt +

(
µM

t − it

) ξt

Pt
Mt

)
dt = −ξt

(
(Tt − Gt) + ∆it

Mt

Pt

)
dt. (20)

Next, Ito’s product rule implies

d
(

ξt

Pt
Bt

)
=
(

µB
t − it

) ξt

Pt
Btdt +

ξt

Pt
Bt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
,

d
(

ξt

Pt
Mt

)
=
(

µM
t − it

) ξt

Pt
Mtdt +

ξt

Pt
Mt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
.

Solving these last two equations for
(

µB
t − it

)
ξt
P tBtdt and

(
µM

t − it

)
ξt
Pt
Mtdt, respectively, and

substituting the results into equation (20) yields (after rearranging)

d
(

ξt

Pt
(Bt +Mt)

)
= −ξt

(
Pt (Tt − Gt) + ∆itMt

)
dt + ξt

Bt +Mt

Pt

(
d (ξt/Pt)

ξt/Pt
+ itdt

)
,

or in integral form

ξT
BT +MT

PT
− ξt

Bt +Mt

Pt
= −

∫ T

t
ξs (Ts − Gs) ds−

∫ T

t
ξs∆is

Ms

Ps
ds+

∫ T

t
ξs
Bs +Ms

Ps

(
d (ξs/Ps)

ξs/Ps
+ isdt

)
.

Up to this point, we have merely rearranged and integrated the government budget constraint.
To derive the fiscal theory equation, the literature proceeds by using two equilibrium condi-
tions. First, if the nominal SDF ξ/P prices the government bonds, then its expected rate of
change must be the negative of the nominal interest rate. Then, the last stochastic integral on

68Here we abstract from long-term bonds and the possibility of taxes, spending, and adjustments in B and M
that are not absolutely continuous over time (e.g., lumpy adjustments in response to a Poisson shock). Such ele-
ments could be easily added, but require more complicated notation without generating additional insights for our
purposes.

45



the right must be a martingale and disappears when taking conditional time-t expectations
Et[·]. Second, a private-sector transversality condition is invoked to eliminate a terminal value
of government debt when passing to the limit T → ∞. We perform the first operation, but do
not want to restrict attention to environments where transversality can rule out a nonzero dis-
counted terminal value. When taking the limit T → ∞, we therefore arrive at the more general
equation (1).

A.2 Omitted Details in Section 3

In this section, we present some additional formal details about the two example models
and their solution.

A.2.1 Example I: Perpetual Youth

Details on the Household Problem. The HJB equation for household i’s problem is

ρVt

(
bi

t, ki
t

)
− ∂tVt

(
bi

t, ki
t

)
= max

ci

log ci + ∂bVt

(
bi

t, ki
t

) (
r f

t bi
t + (1 − τt) aki

t − ci
)
+ ∂kVt

(
bi

t, ki
t

) (
−δki

t

).

This is a standard consumption-savings problem, so we conjecture a functional form Vt

(
bi, ki

)
=

αt +
1
ρ log

(
bi + qK

t ki
)

for the value function, where αt and qK
t depend on (aggregate) investment

opportunities, but not on individual state variables bi and ki. We verify this conjecture below.

Substituting the functional form guess into the HJB equation yields

ραt + log
(

bi + qK
t ki
)
− α̇t −

1
ρ

q̇K
t ki

bi + qK
t ki = max

ci

log ci − 1
ρ

1
bi + qK

t ki ci


+

1
ρ

1
bi + qK

t ki

(
r f

t bi + (1 − τt) aki − δqK
t ki
)

. (21)

The first-order condition for the maximization with respect to ci is

0 =
1
ci −

1

ρ
(

bi + qK
t ki
) ,

which immediately implies the consumption rule (6) stated in the main text.

Substituting the optimal consumption choice into equation (21) and canceling and rearrang-
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ing terms impliesραt − α̇t + 1 − log ρ − r f
t
ρ

 bi +

((
ραt − α̇t + 1 − log ρ

)
qK

t − (1 − τt) a − δqK
t + q̇K

t
ρ

)
ki = 0.

(22)

Clearly, the functional form guess can only be correct if equation (22) is satisfied for all states
(bi, ki). But that means in particular that αt and qK

t must satisfy the two equations

ραt − α̇t + 1 − log ρ =
r f

t
ρ

, (23)

ραt − α̇t + 1 − log ρ =
(1 − τt) a − δqK

t + q̇K
t

ρqK
t

, (24)

that are obtained by setting either bi or ki to zero in equation (22). Conversely, if there are func-
tions αt and qK

t that satisfy equations (23) and (24), then clearly also (22) holds for all (bi, ki) (and
all times t) and because (22) is equivalent to the original HJB equation (21), also that equation
must then hold for all (bi, ki) (and all times t). To verify the conjectured functional form for V,
it is thus sufficient to show that αt, qK

t satisfying (23) and (24) do indeed exist.

Equation (23) is a linear ordinary differential equation (ODE) in αt. The general solution for
this ODE is

αt = βeρt +
∫ ∞

t
e−ρ(s−t)

1 − log ρ − r f
s

ρ

 ds,

where β ∈ R is an integration constant. This solution is well-defined as long as the given risk-
free rate path r f

t is sufficiently regular (e.g., continuous and bounded). Thus, a solution to (23)
does indeed exist and with the specific choice β = 0, the resulting HJB solution function Vt also
satisfies a transversality condition (which is necessary for optimality).

Next, combine equations (23) and (24) to substitute out the αt-dependent terms, which yields
the ODE

r f
t
ρ

=
(1 − τt) a − δqK

t + q̇K
t

ρqK
t

for qK
t . Rearranging implies the equation

q̇K
t = − (1 − τt) a +

(
r f

t + δ
)

qK
t , (25)

which is a differential version of equation (7) in the main text. To derive the latter equation, use
ki

s = ki
te
−δ(s−t) and thus

e−
∫ s

t r f
s′ds′qK

s ki
s = e−

∫ s
t

(
r f

s′+δ
)

ds′qK
s ki

t.
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Taking the time-derivative of the product on the right yields

d
(

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
s

)
= −

(
r f

s + δ
)

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
s ds + e−

∫ s
t

(
r f

s′+δ
)

ds′ q̇K
s ds,

so that

d
(

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
s ki

t

)
ds

= e−
∫ s

t

(
r f

s′+δ
)

ds′
(

q̇K
s −

(
r f

s + δ
)

qK
s

)
︸ ︷︷ ︸

=−(1−τs)a by (25)

ki
t.

Integrating both sides over s ∈ [t, T] yields

e−
∫ s

t

(
r f

s′+δ
)

ds′qK
T ki

t − qK
t ki

t = −
∫ T

t
e−
∫ s

t

(
r f

s′+δ
)

ds′
(1 − τs)aki

tds

= −
∫ T

t
e−
∫ s

t r f
s′ds′(1 − τs)aki

sds

Rearranging and taking the limit T → ∞ implies equation (7).

Derivation of Equation (9). We use the notation

µ
q,B
t :=

q̇B
t

qB
t

, µ
q,K
t :=

q̇K
t

qK
t

, µϑ
t :=

ϑ̇t

ϑt
.

These definitions are unproblematic as long as the denominator expressions are different from
zero, that is as long as both bonds and human capital have positive value in equilibrium. By
definition of ϑt, we have µϑ

t = (1 − ϑt)
(

µ
q,B
t − µ

q,K
t

)
.

We first divide equation (25) by qK
t and then plug in the risk-free rate expression from equa-

tion (8) in the main text. The resulting equation is

µ
q,K
t = − (1 − τt)

a
qK

t
− µ̆B

t + g + µ
q,B
t + δ.

Next, the government budget constraint (3) implies τta = g− µ̆B
t qB

t and we have

qB
t = ϑt

a − g

ρ
, qK

t = (1 − ϑt)
a − g

ρ
.

Substituting these expressions into the previous equation and rearranging yields

µ
q,K
t − µ

q,B
t = − ρ

1 − ϑt
− µ̆B

t
1 − ϑt

+ g + δ

and thus
µϑ

t = ρ + µ̆B
t − (1 − ϑt)

(
g + δ

)
.
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This is a backward equation for ϑt that has been derived under the assumption that bonds
have a positive value (qB

t > 0 ⇔ ϑt > 0). In particular, in these cases multiplying the equation
by ϑt represents an equivalence transformation. Furthermore, if ϑt = 0, then no arbitrage re-
quires also ϑ̇t = 0; otherwise, agents could earn an infinite risk-free return from investing into
bonds. Consequently, the ODE

ϑ̇t =
(

ρ + µ̆B
t − (1 − ϑt)

(
δ + g

))
ϑt (26)

must hold along any equilibrium path, regardless of whether bonds have positive value or not.

Equation (26) is the differential version of equation (9) stated in the main text. The latter
equation can be derived from (26) by appropriate time integration along the same lines as the
FTPL equation from the flow budget constraint (see Appendix A.1) and equation (7) from equa-
tion (25) (see household problem above). For this reason, we omit the proof here.

Steady-State Equilibria. In steady state, equation (26) simplifies to(
ρ + µ̆B − (1 − ϑ)

(
δ + g

))
ϑ = 0.

This is a second-order polynomial and has precisely two solutions, ϑ = 0 and ϑ = 1 − ρ+µ̆B

δ+g .
Only the latter solution can be associated with a positive value of government bonds, qB

t > 0,
and it is if and only if

1 >
ρ + µ̆B

δ + g
.

A.2.2 Example II: Uninsurable Idiosyncratic Risk

Details on the Household Problem. Because agents can freely adjust portfolios at each time
instant in this model, the household problem can be written in terms of a single state variable,
net worth ni

t = qK
t ki

t + bi
t. As in the main text, let θi

t := bi
t/ni

t denote the fraction of net worth
invested into bonds. Then net worth evolves according to

dni
t

ni
t
= − ci

t

ni
t
dt + drBt +

(
1 − θi

t

)(
drK,i

t

(
ιit

)
− drBt

)
, (27)

where returns drBt and drK,i
t

(
ιit

)
are as stated in the main text.

The household chooses consumption ci
t, real investment ιit, and the portfolio share θi

t to
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maximize utility Vi
0 subject to (27). The HJB equation for this problem is69

ρVt

(
ni
)
− ∂tVt

(
ni
)
= max

ci ,θi ,ιi

log ci + V′
t

(
ni
) −ci + ni

drBt
dt

+
(

1 − θi
) =

Et

[
drK,i

t (ιit)
]

dt − drBt
dt︷ ︸︸ ︷(

a − g− ιi

qK
t

+ Φ
(

ιi
)
− Φ(ιt)−

µϑ
t − µ̆B

t
1 − ϑt

)
+

1
2

V′′
t

(
ni
) (

ni
)2 (

1 − θi
)2

σ̃2

.

This is a standard consumption-portfolio-choice problem, so we conjecture again a func-
tional form Vt

(
ni
)
= αt +

1
ρ log ni

t for the value function, where as for the previous model, αt

depends on (aggregate) investment opportunities, but not on individual net worth ni.

Substituting this guess into the HJB equation yields

ραt + log
(

ni
)
− α̇t = max

ci

(
log ci − ci

ρni

)

+
1
ρ

max
θi ,ιi

(1 − θi
)( a − g− ιi

qK
t

+ Φ
(

ιi
)
− Φ(ιt)−

µϑ
t − µ̆B

t
1 − ϑt

)−

(
1 − θi

)2
σ̃2

2


+

1
ρ

drBt
dt

. (28)

The first-order conditions for the maximization with respect to ci, ιi and 1 − θi are

0 =
1
ci −

1
ρni ,

0 =
1 − θi

ρ

(
Φ′(ιi)− 1

qK
t

)

0 =

(
a − g− ιi

qK
t

+ Φ
(

ιi
)
− Φ(ιt)−

µϑ
t − µ̆B

t
1 − ϑt

)−
(

1 − θi
)

σ̃2

These three equations immediately imply the three conditions stated in the main text.

Expressing qB, qK, ι in Terms of ϑ. Combining the aggregate resource constraint (10) with the
optimal consumption rule (aggregated over all agents) relates total wealth to total consumption
in each period,

qB
t + qK

t =
1
ρ

Ct/Kt =
a − g− ιt

ρ
.

69Here, we have used the government budget constraint (3) to eliminate τta in the return on capital.
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Divide both equations by qK
t , use 1 − ϑt =

qK
t

qB
t +qk

t
on the left-hand side and qK

t = 1
Φ′(ιt)

= 1 + ϕιt

on the right hand side to obtain an equation that relates ϑt to the investment rate ιt:

1
1 − ϑt

=
a − g− ιt

1 + ϕιt
.

Solving for ιt yields

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ

and substituting that equation into qK
t = 1 + ϕιt and qB

t = ϑt
1−ϑt

qK
t implies

qB
t = ϑt

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
.

Derivation of Equation (12). Bond market clearing and the fact that all households choose the
same θi

t imply θi
t = ϑt and substituting this and into the first-order condition for θi yields

a − g− ιt

qK
t

− µϑ
t − µ̆B

t
1 − ϑt

= (1 − ϑt) σ̃2.

Now use a−g−ιt
qK

t
= ρ

1−ϑt
, multiply by 1 − ϑt and solve for µϑ

t :

µϑ
t = ρ + µ̆B

t − (1 − ϑt)
2 σ̃2.

As in the perpetual youth model, this is a backward equation for ϑt that has been derived under
the assumption that bonds have a positive value (ϑt > 0). By the same arguments as there, the
equivalent ODE

ϑ̇t =
(

ρ + µ̆B
t − (1 − ϑt)

2 σ̃2
)

ϑt (29)

remains valid on all equilibrium paths, even if ϑt = 0. As before, this is the differential version
of the integral equation (12) stated in the main text and the latter can be easily derived from the
former by time integration.

Steady-State Equilibria. In steady state, equation (29) simplifies to(
ρ + µ̆B

t − (1 − ϑt)
2 σ̃2

)
ϑt = 0.

This is a third-order polynomial and has precisely three solutions, ϑ = 0 and ϑ = 1 ±
√

ρ+µ̆B

σ̃ .
The solution with ϑ = 0 is associated with worthless government bonds, qB = 0. The solution
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with “+” has always the property ϑ > 1 and would therefore imply either a negative capital
price (if qB > 0) or a negative value of government bonds. Both cases violate free disposal and
therefore this solution cannot be a valid equilibrium.

The remaining solution ϑ = 1 −
√

ρ+µ̆B

σ̃ can be a valid equilibrium solution if it is nonneg-
ative. If it is even positive, then the associated equilibrium features a positive value of bonds.
This is the case if and only if

σ̃ >
√

ρ + µ̆B .

A.3 Omitted Details in Section 5.4

Derivation of Equation (14). Because all agents consume the same constant fraction ρ of their
wealth, the consumption share ci

t/Ct of agent i at time t must equal the agent’s wealth share ηi
t.

We can therefore write, using the aggregate resource constraint 10,

ci
t = ηi

tCt = ηi
t (a − g− ιt)Kt.

Thus, expected utility of agent i is given by

E

[∫ ∞

0
e−ρt log ci

tdt
]
= E

[∫ ∞

0
e−ρt

(
log ηi

t + log (a − g− ιt) + log Kt

)
dt
]

. (30)

To compute the integrals in equation (30), note that if

dxt

xt
= µx

t dt + σ̃x
t dZ̃t,

then

E

[∫ ∞

0
e−ρt log xtdt

]
=

log x0

ρ
+ E

∫ ∞

0
e−ρt µx

t −
(
σ̃x

t
)2 /2

ρ
dt

 . (31)

This follows from a simple calculation:

∫ ∞

0
e−ρt (log xt − log x0

)
dt =

∫ ∞

0
e−ρt

∫ t

0
d log xsdt

=
∫ ∞

0
e−ρt

(∫ t

0
µx

s ds +
∫ t

0
σ̃x

t dZ̃s −
1
2

∫ t

0
(σ̃x

t )
2 ds
)

dt

=
∫ ∞

0

∫ ∞

s
e−ρtdt

(
µx

s −
1
2
(σ̃x

t )
2
)

ds +
∫ ∞

0
e−ρt

∫ t

0
σ̃x

t dZ̃sdt

=
∫ ∞

0
e−ρs µx

s −
(
σ̃x

t
)2 /2

ρ
ds +

∫ ∞

0
e−ρt

∫ t

0
σ̃x

t dZ̃sdt.
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When taking expectations, the second term disappears because it is a martingale. Thus, we
obtain formula (31).

To apply formula (31), we need to determine dKt
Kt

and dηi
t

ηi
t

. We know that

dKt

Kt
=
(
Φ(ιt)− δ

)
dt. (32)

For ηi
t, we have

dηi
t

ηi
t
=

dni
t

ni
t
− dq̄t

q̄t
− dKt

Kt

=

(
−ρdt + drBt + (1 − ϑt)

(
drK,i

t (ιt)− drBt
))

− µ
q̄
t dt −

(
Φ(ιt)− δ

)
dt

=
(
−ρ − µ̆B

t + µϑ
t

)
dt + (1 − ϑt)

(
a − g− ιt

qK
t

+
µ̆B

t − µϑ
t

1 − ϑt

)
dt + (1 − ϑt) σ̃dZ̃i

t

=

(
−ρ + (1 − ϑt)

ρ

1 − ϑt

)
dt + (1 − ϑt) σ̃dZ̃i

t

= (1 − ϑt) σ̃dZ̃i
t (33)

where q̄t := qB
t + qK

t and µ
q̄
t := ˙̄qt

q̄t
. Here, the third line uses the return expressions and the

government budget constraint (3) and the fourth line the aggregate resource constraint (10).

Equations (32) and (33) together with formula (31) allow us to compute the integrals in (30):

E

[∫ ∞

0
e−ρt log ηi

tdt
]
=

log ηi
0

ρ
− 1

2ρ
E

[∫ ∞

0
e−ρt (1 − ϑt)

2 σ̃2dt
]

,

E

[∫ ∞

t0

e−ρt log Ktdt
]
=

log K0

ρ
+ E

[∫ ∞

0
e−ρt

(
Φ(ιt)− δ

)
ρ

dt

]
.

Consequently,

E

[∫ ∞

t0

e−ρt log ci
tdt
]
=

log ηi
0 + log K0

ρ

+ E

∫ ∞

0
e−ρt

(
log (a − g− ιt) +

(
Φ(ιt)− δ

)
ρ

− (1 − ϑt)
2 σ̃2

2ρ

)
dt


After substituting ιt as a function of ϑt (as stated in Section 3.2) and the functional form Φ(ι) =
1
ϕ log

(
1 + ϕι

)
, we obtain equation (14).
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Existence, Uniqueness and Properties of ϑopt. Taking first order conditions for maximizing
the time-t integrand in equation (14) with respect to ϑt implies

(1 − ϑt)
3 σ̃2 + ϕρ (1 − ϑt)

2 σ̃2 + ρ (1 − ϑt)− ρ = 0. (34)

This is a third-order polynomial equation in 1 − ϑt and has thus precisely three complex so-
lutions. Because the coefficients on all monomials of positive order are nonnegative and the
constant coefficient is negative, standard results on polynomial roots imply that precisely one
of these complex solutions is real and that solution must be positive. Consequently, there is a
unique real number ϑopt < 1 such that 1 − ϑopt satisfies the first-order condition.70 It is also
easy to see that ϑopt > 0 as otherwise the positive-sign terms in equation (34) would exceed
the negative-sign term in absolute value. Therefore, there is a unique optimal ϑopt ∈ (0, 1) that
maximizes the time-t integrand in equation (14) with respect to ϑt. Because the coefficients in
equation (34) just depend on the parameters σ̃, ρ and ϕ, so does ϑopt. By the implicit function
theorem, ϑopt must be strictly increasing in σ̃.

A.4 Welfare and Optimal Bubble Mining in the Perpetual Youth Example

In this appendix, we briefly outline the welfare analysis for the perpetual youth model. We
start by computing the expected utility of a single agent i born at time t0(i):

E

[∫ ∞

t0(i)
e−ρt log ci

tdt

]
= e−ρt0(i)

Xi
t0(i)

+ log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ
(35)

with

Xi
t =

log (1 − ϑ) , t > 0

log ηi
0 + log K0, t = 0

where ηi
0 :=

(
bi

0 + qK
0 ki

0

)
/
(
(qB

0 + qK
0 )K0

)
is the initial wealth share at time t = 0 of an agent i

that is already alive at that time.

The derivation of equation (35) proceeds in analogy to the derivation of equation (14) for the
idiosyncratic risk model: we use the consumption rule and the aggregate resource constraint to
write

ci
t = ηi

t (a − g)Kt,

70The objective is not generally concave, but this first-order condition nevertheless always corresponds to a global
maximum as can be readily verified by studying its asymptotic properties as 1 − ϑ → ∞ and 1 − ϑ → 0.
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then decompose

E

[∫ ∞

t0(i)
e−ρt log ci

tdt

]
=
∫ ∞

t0(i)
e−ρt

(
log ηi

t + log (a − g) + log Kt

)
dt

and then compute the three integrals separately using a version of formula (31):71

∫ ∞

t0(i)
e−ρt log ηi

tdt = e−ρt0(i)

 log ηt0(i) −
∫ ∞

t0(i)
e−ρ(t−t0(i)) (1 − ϑt) dt ·

(
δ + g

)
ρ

 ,

∫ ∞

t0(i)
e−ρt log (a − g) dt = e−ρt0(i) log (a − g)

ρ
,∫ ∞

t0(i)
e−ρt log Ktdt = e−ρt0(i)

log Kt0(i) + g/ρ

ρ
.

Combining terms, imposing a steady state, and using the definition Xi
t0(i)

:= log
(

ηi
t0(i)

Kt0(i)

)
and the fact that for t0(i) > 0, bi

t0(i)
= 0 and thus

ηi
t0(i)Kt0(i) =

bi
t0(i)

+ qK
t0(i)

kt0(i)

qB
t0(i)

+ qK
t0(i)

= 1 − ϑt0 ,

we obtain equation (35).

Next, let λ(i) denote some weighting function with the properties
∫ ∞

0 λ(i)di < ∞ and λ(i) ≥
0 for all i and consider the social welfare function

W :=
∫ ∞

0
λ(i)E

[∫ ∞

t0(i)
e−ρt log ci

tdt

]
di

Using equation (35), we can write this as

W =
∫ ∞

0
λ(i)e−ρt0(i)

Xi
t0(i)

+ log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ
di

=
1
ρ

∫ ∞

0
λ(i)e−ρt0(i)Xi

t0(i)di +
∫ ∞

0
λ(i)e−ρt0(i)di ·

log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ

=
1
ρ

∫ L0

0
λ(i)e−ρt0(i)

(
log ηi

0 + log K0

)
di +

1
ρ

∫ ∞

L0

λ(i)e−ρt0(i) log (1 − ϑ) di

+ Λ ·
log (a − g) +

(
ϑg − (1 − ϑ) δ

)
/ρ

ρ

71Note that dηi
t/ηi

t = − (1 − ϑt)
(
δ + g

)
dt, as a simple calculation shows.
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=
1
ρ

∫ L0

0
λ(i)e−ρt0(i)

(
log ηi

0 + log K0

)
di︸ ︷︷ ︸

=:W0

+Λ · log (1 − ϑ)

ρ
+ Λ ·

log (a − g) +
(
ϑg − (1 − ϑ) δ

)
/ρ

ρ
,

where in the last line, the constant W0 does not depend on ϑ and we define

Λ :=
∫ ∞

L0

λ(i)e−ρt0(i)di

Λ :=
∫ ∞

0
λ(i)e−ρt0(i)di

which are the total discounted welfare weights attached to all future generations and to all
generations, respectively.

A planner with this welfare objective would therefore like to manipulate ϑ to maximize the
sum of the last two terms in the expression for W. The first of these terms captures the share
of total output added by newborns that they consume themselves. This is decreasing in ϑ as
a larger value of bonds means that newborns without financial wealth transfer a larger share
of their labor income to previously existing generations as they gradually redeem those gen-
erations’ bond holdings. This first term is multiplied by Λ because only newborn agents after
the initial time are negatively affected. The second term is increasing in ϑ as a larger value of
bonds allows for more inter-generational wealth transfer and thereby increases the consump-
tion growth rate of all agents. This second term is multiplied by Λ because consumption growth
of all generations is affected equally.

The first-order condition for maximizing W with respect to ϑ is

Λ
1

1 − ϑopt = Λ
g + δ

ρ
⇒ ϑopt = 1 − Λ

Λ
ρ

g + δ
.

Thus, there is a unique optimal solution ϑopt that is strictly decreasing in ρ and strictly increasing
in g + δ.

The interpretation of this optimal policy prescription is straightforward when comparing
ϑopt to the competitive equilibrium value of ϑ in the monetary steady state, ϑ = 1 − ρ+µ̆B

δ+g . In
the special case that the planner does not care about existing generations, Λ = Λ, the inter-
generational resource transfer generated by the bubble in the competitive equilibrium without
policy intervention is optimal. The size of the bubble is thus constrained efficient. It optimally
trades off the lower initial value of consumption for newborns with the higher consumption
growth rate that results from a larger bubble value. Therefore, zero primary surpluses and no
bubble mining, µ̆B = 0, implement the optimal policy in this case.

Whenever the planner does care about the generation initially alive, Λ > Λ, then she desires
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to transfer additional resources from future generations to initial generations than in the bench-
mark case where Λ = Λ. This requires increasing the value of debt (lowering ϑ) and taxing
future generations. Therefore, the government optimally runs positive primary surpluses and
uses these surpluses to back its debt, µ̆B < 0, instead of mining the bubble. Consequently, a
positive rate of bubble mining (µ̆B > 0) is never optimal in this model.

As in the idiosyncratic risk model, the optimal value of ϑopt is independent of the govern-
ment spending need g and g does also not appear in equation (26), so that also the degree of
bubble mining µ̆B required to implement ϑ = ϑopt must be independent of g. The reason for
this result is similar to the idiosyncratic risk model: when government spending g increases, the
government must transfer a larger fraction of current output away from the private sector to it-
self and taxing current output is the most direct way that does not distort the inter-generational
resource transfers. In contrast, funding additional spending by increasing primary deficits (and
bubble mining) dilutes the bubble at a faster rate and lowers the interest rate. This increases not
just the resources available to the government today, but also increases the initial consumption
level of future newborn agents at the expense of consumption growth for all agents. As the
optimal trade-off between initial consumption and consumption growth is independent of the
aggregate level of private consumption Ct = (a − g)Kt, the optimal distortion induced by µ̆B

should also be independent of the government spending need.

A.5 Uniqueness in the Model without Alternative Bubbly Assets

In this appendix, we present the left-out technical steps and proofs necessary to establish
the uniqueness results stated in Section 6.1 in the absence of bubbles on assets other than gov-
ernment bonds. We present the extension with such bubbles in Appendix A.6 and defer the
proof of uniqueness results in the presence of such bubbles (in particular, Proposition 3) to Ap-
pendix A.7.

As stated in footnote 49, we restrict attention throughout to equilibria that are deterministic
in aggregate variables and feature absolutely continuous price paths. In addition, we impose
as a (purely technical) regularity condition on government policy that the ratio s̄t := st

qB
t +qK

t
of

primary surpluses to total wealth must be a bounded and measurable function t 7→ s̄t along
any equilibrium path. The precise nature of this additional assumption is of no relevance for
any of the proofs below. But some regularity condition is required for all mathematical objects
to be well-defined.
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A.5.1 A Technical Lemma

We start with a technical lemma that reduces the study of model equilibria to the study of
solution paths t 7→ ϑt to the ODE (17) stated in the main text. The basic idea behind that lemma
is that knowing the relative price ϑt is sufficient to recover the remaining equilibrium quantities
whereas any equilibrium implies a relative price ϑt that must solve the ODE.

For technical reasons that concern the boundary case ϑt = 0 (when bonds have no value),
we write ODE (17) in a slightly different, but equivalent form in the following lemma.72

Lemma 1. An absolutely continuous function [0, ∞) → R, t 7→ ϑt corresponds to a (unique) model
equilibrium for some government policy, if and only if

(i) 0 ≤ ϑt ≤ 1 for all t ≥ 0;

(ii) there is a (bounded and measurable) function [0, ∞) → R, t 7→ s̄t satisfying s̄t ≥ 0 whenever
ϑt = 0 such that ϑ solves the ODE

ϑ̇t =
(
ρ − f (1 − ϑt)

)
ϑt − s̄t (36)

where the function f is as defined in Section 6.1 of the main text.

We remark that the quantity s̄t corresponds to the ratio of primary surpluses to total wealth
in equilibrium. Whenever ϑt > 0, the identity s̄t = µ̆B

t ϑt holds.

Proof of Lemma 1. The proof that any equilibrium path for ϑ must satisfy conditions (i) and (ii)
is straightforward. Condition (i) follows from the definition ϑt = qB

t /(qB
t + qK

t ) and the fact
that qB

t , qK
t ≥ 0. The latter fact is an implication of free disposal of both capital and bonds

in the idiosyncratic risk model. In the perpetual youth model, free disposal of bonds only
implies qB

t ≥ 0, while qK
t ≥ 0 follows directly from equation (7). Condition (ii) has already

been shown for both models in Appendix A.2: as shown there, equation (26) is necessary for
an equilibrium in the perpetual youth model and equation (29) is necessary for an equilibrium
in the idiosyncratic risk model. Both equations are equivalent to ODE (36). The additional
restriction on policy, s̄t ≥ 0 whenever ϑt = 0 follows from our requirement that any government
policy must be consistent with the government budget constraint.73

The proof of the opposite direction is conceptually also straightforward, but quite lengthy
as one needs to construct all equilibrium quantities from the ϑ path alone. We provide this

72That the two are equivalent is a direct consequence of the government flow budget constraint (3).
73Economically, when the market is unwilling to absorb any bond issuances at a positive price, the government

lacks the means to finance primary deficits.
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proof explicitly only for the idiosyncratic risk model. The proof for the perpetual youth model
is largely identical, but simpler as there are fewer conditions to be verified.

It is to show that any solution ϑ : [0, ∞) → [0, 1] to (36) corresponds to a unique equilibrium
of the model. For any such function, define ι, qB, and qK consistent with the expressions given
in the main text, i.e.,

ιt =
(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ
,

qB
t = ϑt

1 + ϕ (a − g)

1 − ϑt + ϕρ
,

qK
t = (1 − ϑt)

1 + ϕ (a − g)

1 − ϑt + ϕρ
.

Because ϑt ∈ [0, 1] at all times, qB
t , qK

t ≥ 0, so these expressions are consistent with free disposal
of both bonds and capital. We now verify that ιt, qB

t , qK
t and θt := ϑt satisfy all household choice

conditions and the aggregate resource constraint.

One immediately verifies that ιt and qK
t satisfy households’ optimal investment choice con-

dition, qK
t = 1

Φ′(ιt)
= 1 + ϕιt. In addition, total wealth of all households is

(
qB

t + qK
t

)
Kt and

because individual consumption demand ci
t = ρni

t implies an aggregate consumption demand
of Ct = ρ

(
qB

t + qK
t

)
Kt, we obtain

Ct + gKt + ιtKt =

(
ρ
(

qB
t + qK

t

)
+ g+ ιt

)
Kt

=

(
ρ

1 + ϕ (a − g)

1 − ϑt + ϕρ
+ g+

(1 − ϑt) (a − g)− ρ

1 − ϑt + ϕρ

)
Kt

=

( ϕρ

1 − ϑt + ϕρ
+

(1 − ϑt)

1 − ϑt + ϕρ

)
(a − g) + g

Kt

= aKt,

so this equilibrium candidate satisfies the aggregate resource constraint (10).

It is left to show that for the asset prices qB and qK, agents’ bond portfolio share θt = ϑt is
consistent with their optimal choice condition for θt. We consider two cases:

1. If ϑt > 0, then equation (36) (that ϑ satisfies by assumption) is equivalent to µϑ
t = ρ +

µ̆B
t − (1 − ϑt)

2 σ̃2. This is because then s̄t = µ̆B
t ϑt by the government budget constraint (3).

Rearranging the latter equation and using θt = ϑt yields

1 − θt =
1
σ̃2

ρ + µ̆B
t − µϑ

t
1 − ϑt

. (37)
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Next, by definition of ιt and qK
t

a − g− ιt

qK
t

=
(a − g)

(
1 − ϑt + ϕρ

)
− (1 − ϑt) (a − g) + ρ

(1 − ϑt)
(
1 + ϕ (a − g)

)
=

(
1 + ϕ (a − g)

)
ρ

(1 − ϑt)
(
1 + ϕ (a − g)

) =
ρ

1 − ϑt
,

and substituting this into equation (37) yields

1 − θt =
1
σ̃2

(
a − g− ιt

qK
t

− µϑ − µ̆B
t

1 − ϑt

)
,

which is precisely households’ first-order condition with respect to θt as stated in the main
text.

2. If ϑt = 0, then qB
t = 0, hence bonds have no value and the return on bonds is not well-

defined. Consequently, the household portfolio choice condition as stated in the main text
is not directly applicable. Instead, households demand a finite quantity of bonds (which
is consistent with equilibrium and θt = 0), if and only if q̇B

t ≤ 0, i.e., the value of bonds is
expected to remain nonpositive in the infinitesimal future. Because qB

s ≥ 0 for all s, this
condition reduces here to q̇B

t = 0 ⇔ ϑ̇t = 0. We therefore have to show that ϑt = 0 implies
ϑ̇t = 0.

The latter follows immediately from conditions (i) and (ii) in the lemma. ϑt = 0 means
s̄t ≥ 0 and so by ODE (36), ϑ̇t ≤ 0. If this was holding with strict inequality, ϑ would
have to be negative at some times and violate condition (i). Consequently, it must be that
ϑ̇t = 0.

A.5.2 Omitted Steps in Proof of Proposition 1

We have already shown in the main text that the policy (16) with s > 0 is inconsistent with
equilibrium bubbles on any asset. It is therefore without loss of generality (w.l.o.g.) to complete
the proof of Proposition 1 within the context of this baseline model that allows for bubbles at
most on government bonds, but not on any other asset.

By Lemma 1, it remains to be shown that there is a unique solution path ϑt that is consistent
with both the policy specification (16) and ODE (36) and remains within the interval [0, 1] at all
times.
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Under this specific policy, ODE (36) can be written as

ϑ̇t =
(
ρ − f (1 − ϑt)

)
ϑt − sh(1 − ϑt) (38)

where h is a (weakly) increasing function given by

h(x) =


ρ

a−g , perpetual youth model
x+ϕρ

1+ϕ(a−g)
, idiosyncratic risk model

. (39)

In addition, the values of h (for positive arguments) are always positive and bounded away
from zero.

It is sufficient to show that the right-hand side of equation (38) crosses zero at precisely one
value for ϑt ∈ [0, 1], is negative below that value and positive above it.74 If ρ − f (1 − ϑt) < 0
and ϑt ≥ 0, then the right-hand side of (38) is negative. In addition, monotonicity of f implies
that also ρ − f (1 − ϑ) for any other ϑ ∈ [0, ϑt], so that the right-hand side remains negative for
lower values of ϑt. Instead, if ρ − f (1 − ϑt) ≥ 0, then the monotonicity properties of f and h
imply that the right-hand side of (38) is strictly increasing (and so ρ − f (1 − ϑ) ≥ 0 also for
values ϑ ≥ ϑt). Finally, the right-hand side of (38) is continuous, negative for ϑt = 0 (because h
is positive) and nonnegative for ϑt = 1,75 such that, by the intermediate value theorem, it must
cross 0 at some value ϑt ∈ (0, 1].

A.5.3 Proof of Proposition 2

By Lemma 1, we need to show that ϑt = ϑ∗ is the only solution to ODE (36) that is consistent
with the specified threshold policy and contained in the interval [0, 1]. The threshold policy
described in the text is formally given by

τt =


−µ̆BqB

t +g
a , ϑt ≥ ϑ

s+g
a , ϑt < ϑ

, µ̆B
t =

µ̆B , ϑt ≥ ϑ

− s
qB

t
, ϑt < ϑ

,

where µ̆B ≥ 0 and s > 0 are given constants.76

74Then, all mathematical solutions that start at a different value than that steady state value drift off to values
below 0 or above 1 in finite time and can thus not correspond to valid equilibria.

75If ϑt = 1, then f (1 − ϑt) = 0 and
sh(1 − ϑt) ≤ (a − g)h(0) ≤ ρ,

where the first inequality follows from the assumption s ≤ a− g. Combining these results implies that the right-hand
side of (38) must be nonnegative.

76We remark that the proof below also works if we do not assume µ̆B ≥ 0. However, in this case s must be larger
than the (positive) equilibrium surplus generated by the policy if ϑt = ϑ∗ at all times.
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Under this policy, ODE (36) can be written as77

ϑ̇t =


(

ρ − f (1 − ϑt) + µ̆B
)

ϑt, ϑt ≥ ϑ(
ρ − f (1 − ϑt)

)
ϑt − sh (1 − ϑt) , ϑt < ϑ

,

where h is a strictly positive function that has been defined in in the proof of Proposition 1
(equation (39)).

By definition, ϑ∗ is the unique solution to the equation

ρ − f (1 − ϑ) + µ̆B = 0.

Because the left-hand side of this equation is strictly increasing in ϑ, it must be negative for any
ϑ < ϑ∗ and positive for any ϑ > ϑ∗. In addition, because µ̆B ≥ 0 by assumption, we can also
conclude that ρ − f (1 − ϑ) < 0 if ϑ < ϑ∗.

The previous considerations together with sh(1 − ϑt) > 0 allow us to make the following
conclusions about the ODE stated previously: (1) ϑt = ϑ∗ ⇒ ϑ̇t = 0, (2) ϑt ∈ (ϑ∗, 1] ⇒ ϑ̇t > 0,
(3) ϑt ∈ [0, ϑ∗) ⇒ ϑ̇t < 0. Conclusion (1) implies that ϑt = ϑ∗ is a solution that always remains
inside the interval [0, 1]. Conclusion (2) implies that any solution that is ever above ϑ∗ must be
larger than 1 within a finite time and can thus not be contained in [0, 1]. Conclusion (3) implies,
symmetrically, that any solution that is ever below ϑ∗ must turn negative within a finite time
and can thus also not be contained in [0, 1]. Consequently, ϑt = ϑ∗ is the unique solution that
satisfies 0 ≤ ϑt ≤ 1 for all t.

A.6 Model Extension with Bubbles on Other Assets

The setup is as outlined in Section 6. We start by imposing on households the additional
constraint that they have to invest a fraction xt of their (bond) savings bi

t into government bonds
and a fraction 1− xt into the other bubble asset, where xt is exogenously given. It is then easy to
see that the household problem is precisely as in Section 3.1 for the perpetual youth model and
as in Section 3.2 for the idiosyncratic risk model, except that bi

t denotes savings in the bubble
portfolio (whereas before we set xt ≡ 1).

In addition, also the model solution is precisely as before with two exceptions:

First, we have to replace everywhere qB
t with qB

t + qC
t and ϑt with ϑ̂t as only the total bubble

77Recall s̄t = stϑt/qB
t = (τta − g)ϑt/qB

t .
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portfolio matters, not its individual components. In particular, we now obtain the equations

qB
t + qC

t = ϑ̂t
a − g

ρ
,

qK
t =

(
1 − ϑ̂t

) a − g

ρ

for qB
t + qC

t and qK
t in the perpetual youth model and the equations

ιt =
(1 − ϑ̂t) (a − g)− ρ

1 − ϑ̂t + ϕρ
,

qB
t + qC

t = ϑ̂t
1 + ϕ (a − g)

1 − ϑ̂t + ϕρ
,

qK
t =

(
1 − ϑ̂t

) 1 + ϕ (a − g)

1 − ϑ̂t + ϕρ
.

for ιt, qB
t + qC

t , and qK
t in the idiosyncratic risk model. In both cases, the individual components

qB
t and qC

t can be recovered from the relationship

qB
t = xt(qB

t + qC
t )

that is determined by the exogenous portfolio split xt.

Second, the solution procedure that resulted in the valuation equation for ϑt in the main text
has to take into account that the effective dilution rate of the bubble depends no longer just on
µ̆B

t , but on both growth rates, µ̆B
t and µ̆C , as well as on the exogenous portfolio split xt. It is easy

to see that the correct return dr̂Bt on the bubble portfolio that replaces drBt in the baseline models
must be

dr̂Bt =

(
gt + xtµ

q,B
t + (1 − xt)µ

q,C
t −

(
xtµ̆

B
t + (1 − xt)µ̆

C
))

dt,

Effectively, µ̆B in the baseline models is replaced with xtµ̆
B
t + (1− xt)µ̆C and µ

q,B
t in the baseline

model is replaced with xtµ
q,B
t + (1 − xt)µ

q,C
t , the geometric drift of qB

t + qC
t . As a consequence,

the derivation of the ODE for ϑ̂t changes relative to the baseline models:

1. For the perpetual youth model, when equating the return of the bubble portfolio with the
risk-free rate, dr̂Bt = r f

t dt, we obtain

r f
t = g + xtµ

q,B
t + (1 − xt)µ

q,C
t −

(
xtµ̆

B
t + (1 − xt)µ̆

C
)

instead of equation (8).
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2. For the idiosyncratic risk model, the portfolio choice first-order condition becomes

a − g− ιt

qK
t

−
µϑ̂

t −
(

xtµ̆
B
t + (1 − xt)µ̆C

)
1 − ϑt

=
(

1 − θi
t

)
σ̃2

instead of the condition stated in Section 3.2.

In both cases, the only difference is that the drift of qB
t or ϑt is replaced with the one of qB

t + qC
t

or ϑ̂t, respectively and that µ̆B
t is replaced with xtµ̆

B
t + (1 − xt)µ̆C . Otherwise, the derivation of

µϑ̂
t proceeds precisely as in the baseline models (there for µϑ

t ) and thus the result must be

µϑ̂
t = ρ + xtµ̆

B
t + (1 − xt)µ̆

C − f (1 − ϑt) .

Using qB
t = xt(qB

t + qC
t ), qC

t = (1 − xt)(qB
t + qC

t ), this implies equation (18) stated in the main
text.

In sum, the restricted model with the additional constraint on household portfolios has pre-
cisely the same equations as the baseline model, except that ϑt is replaced with ϑ̂t, qB

t with
qB

t + qC
t , and µ̆B

t with xtµ̆
B
t + (1 − xt)µ̆C . Therefore, any theoretical proposition about the base-

line model holds equally also for the restricted model for any exogenous xt ∈ (0, 1]. This in-
cludes Lemma 1, so that a time path ϑ̂t corresponds to a (unique) equilibrium of the restricted
model if and only if it solves equation (18) (for a suitable policy) and satisfies 0 ≤ ϑ̂t ≤ 1 for all
t.

The results in the previous paragraph remain true in particular if we choose for xt the pro-
cess qB

t /(qB
t + qC

t ) that arises endogenously in the actual model where the portfolio choice be-
tween the two bubble assets is not constrained.78 Then, there is an additional no-arbitrage
condition between the two bubble assets because both assets must earn the risk-free rate for the
household to be indifferent between the two.79 One way to write this condition is as drBt = dr̂Bt ,
which is equivalent to

g +
qB

t

qB
t + qC

t
µ

q,B
t +

qC
t

qB
t + qC

t
µ

q,C
t − qB

t

qB
t + qC

t
µ̆B

t +
qC

t

qB
t + qC

t
µ̆C = g + µ

q,B
t − µ̆B

t

⇔ qB
t

qB
t + qC

t
µ

q,B
t +

qC
t

qB
t + qC

t
µ

q,C
t − µ

q̄
t︸ ︷︷ ︸

=µϑ̂
t

+
ϑC

t

ϑ̂t

(
µ̆B

t − µ̆C
)
= µ

q,B
t − µ

q̄
t︸ ︷︷ ︸

=µϑ,B
t

78This is simply, because if xt happens to be the process qB
t /(qB

t + qC
t ) from the actual model, then the constrained

portfolio choice is already unconstrained optimal and imposing the constraint becomes redundant.
79This statement remains true even if we allow for stochastic “bubble fluctuations” between the two assets. The

reason is that the aggregate bubble portfolio has a return dr̂Bt that is free of any risk, thus agents are perfectly hedged
against such “bubble fluctuations” and, at the margin, require a zero risk premium for holding these risks.
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where q̄t := qB
t + qC

t + qK
t and µ

q̄
t := ˙̄qt

q̄t
. Solving for µϑ,B

t and multiplying by ϑB
t yields

ϑ̇B
t =

ϑB
t

ϑ̂t

(
˙̂ϑt + ϑC

t

(
µ̆B

t − µ̆C
))

,

which, after using equation (18) to eliminate ˙̂ϑt, is equivalent to equation (19) in the main text.
This implies that equation (19) is necessary for any model equilibrium in the actual (unre-
stricted) model. It is also clearly the case that 0 ≤ ϑB

t ≤ ϑ̂t ≤ 1 for all t.

Conversely, if we have time paths ϑB
t , ϑ̂t with 0 ≤ ϑB

t ≤ ϑ̂t ≤ 1 for all t that satisfy equations
(18) and (19), then the previous arguments show that (a) there is an (unique) equilibrium of the
restricted model with xt := ϑt/ϑ̂t such that ϑ̂t = (qB

t + qC
t )/(q

B
t + qC

t + qK
t ) in equilibrium, (b)

for qB
t := ϑt/ϑ̂t(qB

t + qC
t ), the return on government bonds drBt as defined by equation (11)80

satisfies the no-arbitrage condition drBt = dr̂Bt ,81 and (c) both government bonds and the other
bubble asset have a nonnegative value at all times (due to 0 ≤ qB

t ≤ qB
t + qC

t ). Consequently, the
equilibrium of the restricted model for xt = ϑt/ϑ̂t is even an equilibrium of the actual, unre-
stricted, model, as the no arbitrage condition ensures that agents are willing to hold a fraction xt

of the bubble portfolio in government debt and due to nonnegative valuations, there is no devi-
ation strategy that relies on disposing certain assets (or accumulating them indefinitely, which
is equivalent).

To sum up, the following version of Lemma 1 holds in the extended model. Like in Lemma 1,
we use a slight reformulation of the ODEs (18) and (19) and replace the policy variable µ̆B

t with
s̃t := st/q̄t − µ̆CϑB

t . One immediately checks with the help of the government flow budget
constraint (3) that the two formulations are equivalent.82

Lemma 2. Absolutely continuous functions ϑ, ϑ̂ : [0, ∞) → R correspond to a (unique) model equilib-
rium of the extended model with bubbles on cryptocoins for some government policy, if and only if

(i) 0 ≤ ϑB
t ≤ ϑ̂t ≤ 1 for all t ≥ 0;

(ii) there is a (bounded and measurable) function [0, ∞) → R, t 7→ s̃t satisfying s̃t ≥ 0 whenever
ϑt = 0 such that ϑ and ϑ̂ solve the two ODEs

˙̂ϑt =

(
ρ + µ̆C − f

(
1 − ϑ̂t

))
ϑ̂t − s̃t (40)

ϑ̇B
t =

(
ρ + µ̆C − f

(
1 − ϑ̂t

))
ϑB

t − s̃t (41)

80This is the equation for the idiosyncratic risk model. For the perpetual youth model, one simply replaces Φ(ιt)−
δ with g.

81This follows immediately from the derivation of (19) above, as all transformations have been equivalence trans-
formations.

82Specifically, the government budget constraint implies s̃t =
(

µ̆B
t − µ̆C

)
ϑB

t .
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where the function f is as defined in Section 6.1 of the main text.

A.7 Proof of Proposition 3

We start by remarking that for the threshold policy discussed in the main text, the ODEs (40)
and (41) can be written as

˙̂ϑt =


(

ρ − f
(

1 − ϑ̂t

))
ϑ̂t + µ̆C

(
ϑ̂t − ϑB

t

)
+ µ̆BϑB

t , ϑt ≥ ϑ(
ρ − f

(
1 − ϑ̂t

))
ϑ̂t + µ̆C

(
ϑ̂t − ϑB

t

)
− sh

(
1 − ϑ̂t

)
, ϑt < ϑ

, (42)

ϑ̇B
t =


(

ρ − f
(

1 − ϑ̂t

))
ϑB

t + µ̆BϑB
t , ϑt ≥ ϑ(

ρ − f
(

1 − ϑ̂t

))
ϑB

t − sh
(

1 − ϑ̂t

)
, ϑt < ϑ

. (43)

where the function h is as defined in the proof of Proposition 1 (equation (39)). Important here
is only that h is positive, bounded away from zero, and weakly increasing.

The proof of the first part of the proposition proceeds in two lemmas that exclude certain
paths for ϑ̂t and ϑB

t as valid equilibrium paths. Throughout the proof, we repeatedly make us
of the following simple fact about ODEs: if the right-hand side of an ODE for a function xt is
continuous in xt, strictly negative for all xt ∈ [0, x), and strictly positive for all xt ∈ (x, 1], then
all solution paths with xt < x for some t reach 0 in finite time and all solution paths with xt > x̄
for some t reach 1 in finite time.83

We start with a lemma that excludes a special case as a possible equilibrium candidate and
thereby helps simplify the remaining proof. In the following, let ϑ0 denote the unique solution
to the equation f (1 − ϑ) = ρ.

Lemma 3. Any solution (ϑ̂, ϑB) to ODEs (42) and (43) such that 0 ≤ ϑB
t ≤ ϑ̂t ≤ 1 for all t cannot

simultaneously satisfy the following three inequalities for any time t:

ϑB
t < ϑ, ϑ̂t ≥ ϑ0, ˙̂ϑt > 0.

Proof. The proof of this result relies on showing that if all three inequalities hold at some time
t0 then necessarily also ˙̂ϑt ≥ ˙̂ϑt0 > 0 for all t ≥ t0 and thus ϑ̂t must exceed 1 in finite time.

83The proof of this simple fact is omitted, but the basic idea is that close to the boundaries, ẋt is bounded away
from zero and thus boundaries must be reached in finite time as opposed to asymptotically.
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By equation (42), for all t

˙̂ϑt ≥
(

ρ − f
(

1 − ϑ̂t

))
ϑ̂t − sh

(
1 − ϑ̂t

)
︸ ︷︷ ︸

=:F(ϑ̂t)

+µ̆CϑC
t

where ϑC
t := ϑ̂t − ϑB

t . Whenever ϑB
t < ϑ, then the inequality even holds with equality. This is in

particular the case for t = t0.

Note that F is a strictly increasing function on the interval [ϑ0, 1], so if ϑ̂t ≥ ϑ̂t0 , then F(ϑ̂t) ≥
F(ϑ̂t0). In addition, if ϑ̂t ≥ ϑ̂t0 ≥ ϑ0, then ρ + µ̆C − f

(
1 − ϑ̂t

)
≥ 0 and thus ϑC

t is nondecreasing

over time.84

From these considerations, it is straightforward to establish for all t ≥ t0

˙̂ϑt ≥ F(ϑ̂t) + µ̆CϑC
t ≥ F(ϑ̂t0) + µ̆CϑC

t0
= ϑ̇t0 > 0.

This completes the proof of the lemma.

Lemma 4. Any solution (ϑ̂, ϑB) to ODEs (42) and (43) such that 0 ≤ ϑB
t ≤ ϑ̂t ≤ 1 for all t satisfies

ϑB
t ∈ [ϑ, ϑ∗] for all t.

Proof. We first show that if ϑB
t < ϑ for any time t, then the solution cannot always be contained

inside the interval [0, 1]. Specifically, we restrict attention w.l.o.g. to solutions that never satisfy
all three inequalities in Lemma 3 and show that 0 ≤ ϑB

t < ϑ implies ϑ̇B
t < 0. Consequently, ϑB

t

must then reach 0 in finite time and cannot be nonnegative for all t.

To show this, we assume ϑB
t < ϑ and distinguish two cases:

1. If ϑ̂t ≤ ϑ0, then
(

ρ − f
(

1 − ϑ̂t

))
ϑB

t ≤ 0 and hence

ϑ̇B
t =

(
ρ − f

(
1 − ϑ̂t

))
ϑB

t − sh
(

1 − ϑ̂t

)
≤ −sh

(
1 − ϑ̂t

)
< 0

2. If ϑ̂t > ϑ0, then in particular ϑ̂t > ϑB
t because, by assumption, ϑB

t < ϑ but ϑ ≤ ϑ∗ ≤ ϑ0. In

addition, ϑ̂t > ϑ0 also implies
(

ρ − f
(

1 − ϑ̂t

))
ϑB

t > 0. Consequently,

ϑ̇B
t =

(
ρ − f

(
1 − ϑ̂t

))
ϑB

t − sh
(

1 − ϑ̂t

)
84ϑ̇C

t =

(
ρ + µ̆C − f

(
1 − ϑ̂t

))
ϑC

t .
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<

(
ρ − f

(
1 − ϑ̂t

))
ϑ̂t + µ̆C

(
ϑ̂t − ϑB

t

)
− sh

(
1 − ϑ̂t

)
= ˙̂ϑt

Now, by assumption not all inequalities in Lemma 3 are simultaneously satisfied, so that
necessarily ˙̂ϑ ≤ 0. Combining this with the previous inequality yields ϑ̇B

t < 0.

Thus, in any case ϑB
t < ϑ implies ϑ̇B

t < 0. This concludes the proof of ϑB
t ≥ ϑ.

For the proof of ϑB
t ≤ ϑ∗, suppose otherwise that ϑ∗ < ϑB

t . Then also ϑ̂t ≥ ϑB
t > ϑ∗ and

thus ϑ̇B
t =

(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑB

t > 0. Such a solution would thus have to exceed 1 in finite

time.

Together with the result from Lemma 2, the previous lemma completes the proof of the first
part of Proposition 3. For the remaining part, we treat the cases ϑ = ϑ∗ and µ̆C > µ̆B separately:

The result for the former case follows easily from Lemma 4. If ϑ = ϑ∗, then that lemma
implies the inequality chain

ϑ∗ = ϑ ≤ ϑB
t ≤ ϑ∗

for any solution path ϑB to ODE (43) that remains contained in [0, 1] at all times. By Lemma 2,
any equilibrium path for ϑB must have this property. Consequently, ϑB

t = ϑ∗ is the only possible
equilibrium path. Then, in particular ϑ̇B

t = 0 and ODE (43) also implies ϑ̂t = ϑ∗. It is also clear
that ϑB

t = ϑ̂t = ϑ∗ is indeed a valid equilibrium.

We now consider the case µ̆C > µ̆B . For the remainder of this appendix, we restrict attention
to this case and show that also then necessarily ϑB

t = ϑ̂t = ϑ∗ in any equilibrium.

We first note that under the assumptions ϑB
t ≥ ϑ (w.l.o.g. by Lemma 4) and µ̆C > µ̆B , any

equilibrium path for ϑ̂ must satisfy the inequality ϑ̂t ≤ ϑ∗ for all t and with strict inequality
whenever ϑB

t < ϑ̂t. To see this, note that

˙̂ϑt =

(
ρ − f

(
1 − ϑ̂t

))
ϑ̂t + µ̆C

(
ϑ̂t − ϑB

t

)
+ µ̆BϑB

t

=

(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑ̂t +

(
µ̆C − µ̆B

) (
ϑ̂t − ϑB

t

)
.

If ϑ̂t ≥ ϑ∗ and either this holds even with strict inequality or the additional condition ϑB
t < ϑ̂t

holds, then clearly ˙̂ϑt > 0. Consequently, ϑ̂t would grow larger than 1 in finite time, contradict-
ing Lemma 2.

Now, ϑ̂t ≤ ϑ∗ implies (still assuming w.l.o.g. ϑB
t ≥ ϑ > 0)

ϑ̇B
t =

(
ρ + µ̆B − f

(
1 − ϑ̂t

))
ϑB

t ≤ 0
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and with strict inequality whenever ϑ̂t < ϑ∗.

But that means that only ϑB
t = ϑ̂t = ϑ∗ is a possible equilibrium solution. If the second

equation holds only with (strict) inequality, then by the previous results ϑ̇B
t < 0 and thus ϑB

t

decays below ϑ in finite time, contradicting to Lemma 4. If instead the first equation holds
only with (strict) inequality, then by the previous results also the second must hold with strict
inequality and thus the same argument applies.

This completes the proof of Proposition 3.

A.8 Uniqueness under Imperfect Commitment

In this Appendix, we provide a more detailed formal description of the policy game outlined
in Section 6.2 and prove Proposition 4.

A.8.1 The Policy Game

We have described asset prices in the main text by the three variables qB
t , qC

t , qK
t and policies

by the three variables it, µB
t , τt. However, Lemma 2 reveals that it is sufficient to consider the

two relative price paths ϑB
t and ϑ̂t and the policy choice is effectively the one-dimensional choice

of s̃t with the constraint s̃t ≥ 0 if ϑB
t = 0. As this saves on notation, we formulate the policy

game in terms of these transformed variables instead of working with the original variables as
in the main text.

Problem of a Government. Our assumption is that governments do not react directly to the
policy choices of previous governments.85 As a consequence, each government j takes the ter-
minal asset values ϑB

(j+1)T, ϑ̂(j+1)T as given because actions of future governments (that will
ultimately determine these values) are not directly impacted by government j’s actions.

It is sufficient to describe the problem of government j = 0 in more detail. The problem of
governments j > 0 is identical with the only difference that time has to be shifted to the right
by jT time units.

Government j = 0 takes terminal asset values 0 ≤ ϑB
T ≤ ϑ̂T ≤ 1 as given and makes a policy

choice for {s̃t}t∈[0,T) in order to control the price dynamics of ϑB and ϑ̂ over [0, T) in line with
ODEs (40) and (41). As in Lemma 2, the policy {s̃t}t∈[0,T) must satisfy the constraint s̃t ≥ 0
whenever ϑB

t = 0. Also in line with Lemma 2, we only admit policies that lead to valuation

85This assumption rules out “strange” equilibria in which each government does something seemingly suboptimal
out of the fear of punishment by the subsequent government. The subsequent government in turn is compelled to
punish by a threat of even fiercer punishment by governments following it. Such additional “strange” equilibria
may exist for sufficiently small T by folk theorem logic, but they are of no interest for our purposes.
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paths satisfying ϑ̂t ≤ 1 for all t ∈ [0, T], as otherwise the resulting solution to ODE (40) would
not correspond to a valid competitive equilibrium of the underlying model.86

Because each path for s̄ (that is bounded and measurable) implies a unique solution for ϑB

and ϑ̂ (given terminal values), there is no gain from requiring that a policy must be specified
as a full function from observed histories of prices as we have previously done. Instead, it is
sufficient to think about the government’s problem as a Ramsey problem, i.e. choosing a time
path of the policy variable that is actually followed conditional on terminal asset values being
ϑB

T and ϑ̂T.

A strategy of government j = 0 is therefore a function that maps pairs of terminal asset
values (ϑB

T , ϑ̂T) satisfying 0 ≤ ϑB
T ≤ ϑ̂T ≤ 1 into a time path {s̃t}t∈[0,T) for the policy variable.

Given a strategy, ODEs (40) and (41) then provide a mapping from pairs (ϑB
T , ϑ̂T) into time paths

{ϑB
t , ϑ̂t}t∈[0,T) of asset values of the interval [0, T).

The government desires to maximize a social welfare function as in Section 5.4 and Ap-
pendix A.4:

W :=
∫ 1

0
λ(i)E

[∫ ∞

0
e−ρt log ci

tdt
]

di,

where {λ(i)}i∈[0,1] is a given distribution of (nonnegative) welfare weights. As we have argued
in Section 5.4, individual utility can be written in the form (14) that separates individual and
aggregate variables, so that the former (and the welfare weights) are not relevant for a planner’s
optimal choices. In addition, the government in question here has no way of influencing prices
after period T. Consequently, we can assume that government j maximizes the simpler objective

W
(
{ϑ̂t}t∈[0,T]

)
:=
∫ T

0
e−ρT

log

(
ρ
(
1 + ϕ (a − g)

)
1 − ϑ̂t + ϕρ

)
+

1
ϕρ

log


(

1 − ϑ̂t

) (
1 + ϕ (a − g)

)
1 − ϑ̂t + ϕρ

− δ

ρ
−

(
1 − ϑ̂t

)2
σ̃2

2ρ


︸ ︷︷ ︸

=:Ψ(ϑ̂t)

dt.

We remark that Ψ is a strictly concave function with a unique global maximizer. This maxi-
mizer has been denoted ϑopt in Section 5.4 and we write ϑ∗ := ϑopt in Section A.8 and the proof
of Proposition 4 below.

Equilibrium. An equilibrium in the policy game consists of absolutely continuous valuation
paths {ϑB

t , ϑ̂t}t∈[0,∞) and a bounded and measurable government policy path {s̃t}t∈[0,∞) such
that for all j = 0, 1, . . . , {s̃t}t∈[jT,(j+1)T) is the optimal policy chosen by government j given
terminal valuations (ϑB

(j+1)T, ϑ̂(j+1)T) and {ϑB
t , ϑ̂t}t∈[jT,(j+1)T is the valuation path over [jT, (j +

1)T) implied by that optimal policy.

86We do not need to impose the inequality ϑB
t ≤ ϑ̂t explicitly because the structure of the ODEs ensures that this

condition is automatically satisfied at all times if it is satisfied at the terminal time t = T.

70



Note that, due to Lemma 2, this definition automatically implies that {ϑB
t , ϑ̂t}t∈[0,∞) cor-

responds to a competitive equilibrium of the idiosyncratic risk model for the policy choice
{s̃t}t∈[0,∞).

A.8.2 Proof of Proposition 4

We first show that any equilibrium in the policy game must feature ϑ̂t ≥ ϑ∗ at all times.
The proof of this part is organized into a sequence of technical lemmas that provide key results
about the associated ODEs (40) and (41) and the optimal choices of any individual government.

Lemma 5. Let (ϑB,i
T , ϑ̂i

T), i = 1, 2 be two sets of terminal conditions (with ϑB,i
T ≤ ϑ̂i

T) and {s̃i
t}t∈[0,T),

i = 1, 2 two policy paths over [0, T). Let {ϑB,i
t , ϑ̂i

t}t∈[0,T] be the implied solution paths to ODEs (40) and
(41). Define ϑC,i

t := ϑ̂i
t − ϑB,i

t . If ϑ̂1
t ≤ ϑ̂2

t for all t ∈ [0, T] and ϑ̂2
T − ϑ̂1

T ≤ ϑB,2
T − ϑB,1

T , then ϑC,1
t ≥ ϑC,2

t .

Proof. Let α(ϑ̂) := ρ + µ̆C −
(

1 − ϑ̂
)2

σ̃2, note that α′(ϑ̂) = 2
(

1 − ϑ̂
)

σ̃2 > 0 for ϑ̂ ∈ (0, 1). ODEs

(40) and (41) and the definition of ϑC,i
t imply

ϑ̇C,i
t =

(
ρ + µ̆C −

(
1 − ϑ̂i

t

)2
σ̃2
)

ϑC,i
t = α(ϑ̂i

t)ϑ
C,i
t .

This has the solution

ϑC,i
t = ϑC,i

T exp

(
−
∫ T

t
α(ϑ̂i

s)ds

)
. (44)

If ϑ̂1
t ≤ ϑ̂2

t for all t, then α(ϑ̂1
t ) ≤ α(ϑ̂2

t ) for all t, and so

exp

(
−
∫ T

t
α(ϑ̂1

s )ds

)
≥ exp

(
−
∫ T

t
α(ϑ̂2

s )ds

)
. (45)

In addition, if ϑ̂2
T − ϑ̂1

T ≤ ϑB,2
T − ϑB,1

T , then ϑ̂1
T − ϑB,1

T ≥ ϑ̂2
T − ϑB,2

T and so

ϑC,1
T = ϑ̂1

T − ϑB,1
T ≥ ϑ̂2

T − ϑB,2
T = ϑC,2

T . (46)

Combining inequalities (45) and (46) with equation (44) implies ϑC,1
t ≥ ϑC,2

t .

Lemma 6. Consider the problem of government j = 0 with terminal condition (ϑB
T , ϑ̂T) and let {ϑ̂t}t∈[0,T],

{ϑ̂′
t}t∈[0,T] be two absolutely continuous time paths satisfying the terminal condition for ϑ̂. Suppose there

is a feasible policy that implements {ϑ̂t}t∈[0,T] as a time path for ϑ̂, {ϑ̂′
t}t∈[0,T] has bounded derivative,

and ϑ̂′
t ≥ ϑ̂t for all t ∈ [0, T]. Then there is also a feasible policy that implements {ϑ̂′

t}t∈[0,T] as a time
path for ϑ̂.
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Proof. First, use ODE (40) to back out the associated policy s̃′t such that ϑ̂′
t satisfies the ODE with

terminal condition ϑ̂T.87 We need to show that s̃′ is a feasible policy choice.

Given the time paths s̃′t for policy and ϑ̂′
t for ϑ̂, there is a unique solution ϑB′

t to ODE (41) that
satisfies the terminal condition ϑB′

T = ϑB
T .

The policy s̃′ is feasible if it satisfies the condition s̃′t ≥ 0 whenever ϑB′
t = 0. Inspecting

ODE (41) reveals that this property is equivalent to ϑB′
t ≥ 0 for all t and we choose to prove this

equivalent property.

Let ϑB
t denote the solution for ϑB associated with the feasible path ϑ̂t. Then ϑB

t ≥ 0 for all t.
By assumption, also ϑ̂t ≤ ϑ̂′

t and thus by Lemma 5, ϑC
t ≥ ϑC′

t . Combining these facts yields for
all t ∈ [0, T] the inequality chain

0 ≤ ϑB
t = ϑ̂t − ϑC

t ≤ ϑ̂′
t − ϑC′

t = ϑB′
t .

Thus, policy s̃′ is indeed feasible.

Lemma 7. Consider the problem of government j = 0 for a given terminal condition. Suppose {ϑ̂◦
t }t∈[0,T]

is an arbitrary absolutely continuous time path with bounded derivative that satisfies ϑ̂◦
T ≤ ϑ̂T and

ϑ̂◦
t ≤ ϑ∗ for all t. Then the optimal policy choice implies ϑ̂t ≥ ϑ̂◦

t for all t ∈ [0, T].

Proof. Let ϑ̂t be the time path for ϑ̂ implied by the optimal solution. Define ϑ̂′
t := max{ϑ̂t, ϑ̂◦

t }.
Because both ϑ̂ and ϑ̂◦ are absolutely continuous with bounded derivative, so is also the point-
wise maximum ϑ̂′. In addition, by construction ϑ̂′

t ≥ ϑ̂t for all t and by assumption on the
terminal values, ϑ̂′

T = ϑ̂T. Thus, all assumptions of Lemma 6 are satisfied and we can conclude
that there is a feasible policy that implements the time path ϑ̂′.

We show next that this alternative policy generates at least as high welfare as the original
plan leading to ϑ̂ and strictly larger welfare if ϑ̂ and ϑ̂′ are different. Because ϑ̂ is optimal by
assumption, the latter cannot be the case and so it must be that ϑ̂t = ϑ̂′

t ≥ ϑ̂◦
t for all t.

To do so, we use that the relevant part of the government’s objective can be written as

W
(
{ϑ̂}t∈[0,T]

)
=
∫ T

0
e−ρtΨ(ϑ̂t)dt

and Ψ is a strictly concave function with global maximizer ϑ∗. For each t ∈ [0, T] we have two
cases

(i) if ϑ̂t ≥ ϑ̂◦
t , then ϑ̂′

t = ϑ̂t and thus Ψ(ϑ̂′
t) = Ψ(ϑ̂t);

87 s̃′t is always uniquely defined, except possibly on a set of measure zero. It can be backed out by taking the time
derivative of ϑ̂′

t and comparing terms with equation (40). It is also easy to see that s̃′t must be bounded because ϑ̂′
t

has bounded derivative by assumption and all other terms in equation (40) are also bounded.
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(ii) if ϑ̂t < ϑ̂◦
t , then ϑ∗ ≥ ϑ̂′

t > ϑ̂t and thus Ψ(ϑ̂′
t) > Ψ(ϑ̂t).

So in any case, Ψ(ϑ̂′
t) ≥ Ψ(ϑ̂t) for all t ∈ [0, T]. Thus ϑ̂′ must yield at least as high welfare as

ϑ̂. In addition, if case (ii) ever occurs, then Ψ(ϑ̂′
t) > Ψ(ϑ̂t) must hold on a set of positive mea-

sure for t because all expressions are continuous in t. But that would imply W
(
{ϑ̂′}t∈[0,T]

)
>

W
(
{ϑ̂}t∈[0,T]

)
. Therefore, ϑ̂′ yields strictly higher welfare unless the two paths are identical at

all times.

The previous lemma implies the following corollary that is key to the proof that ϑ̂t ≥ ϑ∗ in
all equilibria in the policy game.

Corollary 1. Consider the problem of any government j for any terminal condition at time (j + 1)T.
Then the optimal solution to the government problem features ϑ̂jT ≥ ϑ∗.
In addition, if the terminal condition satisfies ϑ̂(j+1)T ≥ ϑ∗, then the optimal solution even satisfies
ϑ̂t ≥ ϑ∗ for all t ∈ [jT, (j + 1)T].

Proof. We show the assertion for j = 0. Because the problem of government j > 0 is identical to
the problem of government j = 0 except for a time shift, the result for j = 0 immediately carries
over to any j ≥ 0.

We start by proving the additional statement in the case ϑ̂(j+1)T ≥ ϑ∗. This also proves the
main assertion in this case. To see that this statement must hold, simply define ϑ̂◦

t := ϑ∗ and
apply Lemma 7 to conclude ϑ̂t ≥ ϑ̂◦

t = ϑ∗ for all t ∈ [0, T].

Next, suppose ϑ̂(j+1)T < ϑ∗. In this case, the time path ϑ̂◦ defined by

ϑ̂◦
t := ϑ∗ +

t
T

ϑ̂(j+1)T

satisfies the terminal condition and ϑ̂◦
t ≤ ϑ∗ for all t ∈ [0, T]. We can thus again apply Lemma 7

and conclude ϑ̂t ≥ ϑ̂◦
t . In particular, ϑ̂0 ≥ ϑ̂◦

0 = ϑ∗.

Corollary 2. Any equilibrium in the policy game features ϑ̂t ≥ ϑ∗ for all t.

Proof. By the previous corollary, any government j always chooses a policy that implies ϑ̂jT ≥
ϑ∗. But because this holds for all j, this means that any government j − 1 for j ≥ 1 faces a
terminal condition with ϑ̂jT ≥ ϑ∗. Applying again the previous corollary, we can even conclude
ϑt ≥ ϑ∗ for all t ∈ [(j − 1)T, jT]. As this must hold for all j ≥ 1, we obtain ϑt ≥ ϑ∗ for all
t ∈ [0, ∞).

The previous result completes the proof of the first part of Proposition 4 that ϑ̂t ≥ ϑ∗.
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We next characterize all equilibria in the policy game in which the inequality always holds
with equality, ϑ̂t = ϑ∗ for all t. In this case, we only need to check under which conditions there
is a feasible infinite-horizon policy path {s̃t}t∈[0,∞) and there are valuation paths {ϑ̂t, ϑB

t }t∈[0,∞)

for this policy consistent with ODEs (40) and (41) and ϑ̂t = ϑ∗ for all t. Whenever this is the
case, this automatically represents an equilibrium of the policy game because this particular
path for ϑ̂t is the global maximizer of the objective of any government j = 0, 1, . . . and so no
government can have an incentive to deviate.

Inspecting ODE (40) reveals that ϑ̂t = ϑ∗ for all t requires the policy

s̃t =
(

ρ + µ̆C − (1 − ϑ∗)2σ̃2
)

ϑ∗ =: αϑ∗.

Under this candidate policy, ODE (41) becomes

ϑ̇B
t = α

(
ϑB

t − ϑ∗
)

and thus ϑC
t = ϑ̂t − ϑB

t = ϑ∗ − ϑB
t must satisfy the ODE

ϑ̇C
t = αϑC

t .

This is a standard linear ODE with the general solution

ϑC
t = ϑC

0 eαt,

where ϑC
0 ∈ R parameterizes the possible solutions. All solutions with ϑC

0 < 0 imply ϑB
t =

ϑ̂t − ϑC
t > ϑ̂t and can thus not correspond to model equilibria by Lemma 2. We now consider

two cases

(i) If µ̆C > µ̆∗, then α > 0 and thus any solution with ϑC
0 > 0 generates a ϑC path that

grows without bounds. Eventually, such a solution implies ϑC
t > ϑ∗ = ϑ̂t and thus ϑB

t <

0. By Lemma 2 such a solution does therefore not correspond to a model equilibrium.
Consequently, only the solution with ϑC

0 = 0, i.e. ϑC
t = 0 for all t ≥ 0 remains. This

solution implies ϑB
t = ϑ̂t = ϑ∗ and this corresponds indeed to a model equilibrium (again,

by Lemma 2).

(ii) If µ̆C ≤ µ̆∗, then α ≤ 0. For any initial condition ϑC
0 ∈ [0, ϑ∗], the implied path satisfies

ϑC
t ∈ [0, ϑ∗] for all t ≥ 0. This implies ϑB

t = ϑ∗ − ϑC
t ∈ [0, ϑ∗] for all t ≥ 0. By Lemma 2,

any such solution corresponds to a model equilibrium.

To complete the proof of Proposition 4, we only need to show that in the case µ̆C > µ̆∗

(case (i) above), there can be no other equilibria in the policy game. Such other equilibria must
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necessarily feature ϑ̂t > ϑ∗ for some time t by the previous discussion. But it is easy to see that
this cannot be possible:

First, we show that there is no equilibrium with ϑC
t > 0 for any t ≥ 0. The proof is largely

identical to the one in case (i) above. We know already that ϑ̂t ≥ ϑ∗ in any equilibrium and thus
with α defined as previously,

ϑ̇C
t ≥ αϑC

t .

Therefore, any solution must satisfy ϑC
t1
≥ ϑC

t0
eα(t1−t0) for any t0 < t1. If ϑC

t0
> 0, then, because

α > 0, there is some t1 such that ϑC
t1
> 1 and thus ϑB

t1
< 0, so that this cannot be an equilibrium

solution by Lemma 2. Consequently, ϑC
t0
= 0 is the only possibility. Because t0 was arbitrary,

any equilibrium must feature ϑC
t = 0 for all t ≥ 0. From now on, we can therefore identify ϑ̂t

and ϑB
t and simply write ϑt. Note that ODEs (40) and (41) coincide in this case.

Second, we show that ϑt > ϑ∗ at any time t is impossible in any equilibrium of the policy
game. We proceed in two steps:

1. If any government j faces a terminal condition ϑ(j+1)T = ϑ∗, then it is feasible and (strictly)
optimal to implement ϑt = ϑ∗ for all t ∈ [jT, (j + 1)T]. Feasibility follows from the pre-
vious discussion, optimality from the structure of the government’s objective. Therefore,
the observation ϑt > ϑ∗ for some t cannot result from the policy of any government that
faces the terminal condition ϑ(j+1)T = ϑ∗.

2. We show next that if any government j was to face a terminal condition ϑ(j+1)T > ϑ∗, its
optimal policy would still imply ϑjT = ϑ∗ at the beginning of its period of office, so that
the previous government j − 1 would face the terminal condition ϑjT = ϑ∗. But if this
holds for all j, then a terminal condition ϑ(j+1)T > ϑ∗ cannot actually be the outcome of
any equilibrium.

We prove this last result by contradiction and assume w.l.o.g. that j = 0. Suppose the
optimal response of the government to a terminal condition ϑT > ϑ∗ was leading to a
price path {ϑt}t∈[0,T] such that ϑ0 > ϑ∗. We construct a feasible alternative price path
{ϑ′

t}t∈[0,T] that generates higher welfare than {ϑt}t∈[0,T] contradicting the assumption that
the latter is the result of an optimal policy choice by the government.

For the construction of {ϑ′
t}t∈[0,T], let s̃t denote the optimal policy chosen by the govern-

ment. For x > 0, define s̃′′t := s̃t − x. Consider the solution ϑ′′
t to ODE (40) under this

policy with the terminal condition ϑ′′
T = ϑT. Clearly, that solution satisfies ϑ′′

t < ϑt for all
t < T.88 Also, if x is sufficiently large, ϑ′′

t must cross ϑ∗ in the interval [0, T]. We define the

88This is because the ODE’s right-hand side for policy s̃′′ is strictly larger than that for s̃ if evaluated at any given
ϑ̂ path. By standard ODE comparison logic, ϑ′′ must thus fall faster than ϑ when moving backward in time.
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last crossing time,
t0 := sup{t ∈ [0, T] | ϑ′′

t ≤ ϑ∗}.

By continuity of ϑ′′ and ϑ′′ = ϑT, ϑ′′
t0
= ϑ∗ whenever t0 > 0. Clearly t0 is increasing in x

and t0 → T as x → ∞. Consequently, for any given ε > 0, we can choose x > 0 sufficiently
large such that t0 > T − ε. Choose such x appropriately and define next

s̃′t :=

αϑ∗, t < t0

s̃′′t , t ≥ t0

,

where α is defined as previously. Now let ϑ′
t be the solution to ODE (40) with terminal

condition ϑ′
T = ϑT and the policy s̃′. Because the ODE coincides with the one for ϑ′′ on

[t0, T] and because the terminal conditions are identical, it must be that ϑ′
t = ϑ′′

t for all
t ∈ [t0, T]. Furthermore, ϑ′

t0
= ϑ′′

t0
= ϑ∗ and we have seen above that the policy s̃ = αϑ∗

makes the right-hand side of ODE (40) vanish whenever ϑ̂t = ϑ∗. Consequently, the
solution ϑ′ must satisfy ϑ′

t = ϑ∗ for all t ≤ t0.

The path ϑ′ just constructed has the property ϑ′
t = ϑ∗ for all t ≤ T − ε and ϑ′

t ≤ ϑ̄ :=
maxt∈[0,T] ϑt ≤ 1 for all t ∈ [T − ε, T]. Consequently, the relevant part of the government’s
welfare objective under this path is

W
({

ϑ′
t
}

t∈[0,T]

)
=
∫ T

0
e−ρtΨ

(
ϑ′

t
)

dt

=
∫ T−ε

0
e−ρtΨ (ϑ∗) dt +

∫ T

T−ε
e−ρtΨ

(
ϑ′

t
)

dt

≥
∫ T

0
e−ρtΨ (ϑ∗) dt −

∫ T

T−ε
e−ρt

(
Ψ
(
ϑ̄
)
− Ψ (ϑ∗)

)
dt

≥ W∗ − ε
(

Ψ
(
ϑ̄
)
− Ψ (ϑ∗)

)
,

where W∗ denotes the global maximum of the government’s objective. As we have con-
structed such an alternative path ϑ′ for any ε > 0, we can move the achievable welfare
arbitrarily close to the global maximum W∗ by choosing ε > 0 sufficiently small. Con-
versely, ϑ0 > ϑ∗ and by continuity there must be numbers δ0, δ1 > 0 such that ϑt ≥ ϑ∗ + δ0

for all t ≤ δ1. This is sufficient to conclude that the welfare attained under the optimal
policy, W

(
{ϑt}t∈[0,T]

)
must fall short of W∗, a contradiction.
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