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Abstract

The fundamental problem in digital record-keeping is to establish consensus on an update to

a ledger, e.g., a payment. Consensus must be achieved in the presence of faults—situations

in which some computers are offline or fail to function appropriately. Traditional centralized

record-keeping systems rely on trust in a single entity to achieve consensus. Blockchains decen-

tralize record-keeping, dispensing with the need for trust in a single entity, but some instead

build a consensus based on the wasteful expenditure of computational resources (proof-of-work).

An ideal method of consensus would be tolerant to faults, avoid the waste of computational re-

sources, and be capable of implementing all individually rational transfers of value among agents.

We prove a Blockchain Trilemma: any method of consensus, be it centralized or decentralized,

must give up (i) fault-tolerance, (ii) resource-efficiency, or (iii) full transferability.
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1 Introduction

Trust is of central importance in record-keeping. A ledger represents an agreed-upon history of

events and must therefore remain free of tampering or fraud. However, record-keepers are rarely

inherently trustworthy, and they often face the temptation to profit by altering the ledger. For

record-keepers to be trusted, then, they must be provided with incentives to behave honestly.

Traditionally, record-keeping has been centralized: a single entity is given full power to update

the ledger however it desires, and it derives some long-term benefit from its privileged position

(e.g., by extracting rents). The record-keeper can be trusted to communicate honestly with the

ledger’s users, ensuring they remain in agreement about the ledger’s contents, only if these long-run

incentives are strong enough. Blockchain technology has provided a radical decentralized alterna-

tive to record information. Public blockchains seek to minimize reliance on centralized trust: there

is no single authority who keeps records. For instance, Bitcoin uses a voting method known as

proof-of-work (PoW), in which power to update the ledger is allocated based on the expenditure

of computational resources, whereas other blockchains use proof-of-stake (PoS), which instead al-

locates voting power to token holders. In such systems, voting majorities must be incentivized to

behave honestly in order to guarantee consistent record-keeping. Hence, the advent of blockchains

raises important new questions regarding the fundamental difficulties in digital record-keeping that

decentralization aims to solve.

We take the view that the fundamental problem in digital record-keeping is to ensure agents

reach a consensus on updates to a ledger in the presence of faults – situations in which some

communication devices, e.g. computers, are offline or do not function appropriately. We therefore

study the design of consensus algorithms: communication protocols that permit agents with non-

faulty communication devices to reach agreement on a desirable outcome. Crucially, in an economic

environment, there is no inherently trustworthy agent who can be relied upon to truthfully relay

information to others: all agents must be incentivized to follow the prescribed protocol. From

a design perspective, two main questions arise. In the absence of a trusted mediator, how can

record-keeping be designed to incentivize honest reporting? What types of constraints does a lack

of trust impose on the types of outcomes that can be implemented?

We posit three ideal features of a consensus algorithm. First, a consensus algorithm should be

fault-tolerant : it should allow agents who communicate honestly to reach agreement even when some

fraction of agents have faulty communication devices that fail to communicate (or send messages

erratically). Faults are fundamental to digital communication: computers may be temporarily

disconnected from the network or suffer from programming errors, so any digital record-keeping

system must be robust to these considerations. Second, a consensus algorithm should achieve full

transferability : it should allow agents to reach agreement on any individually rational transfer

of value. That is, the consensus algorithm should not limit the types of transactions that can

be realized, since such limitations would impair the allocative efficiency of the mechanisms the

record-keeping system can implement. Third, a consensus algorithm should ideally be resource-

efficient, meaning it does not force agents to solve intrinsically useless computational problems and
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incur a deadweight loss of resources through proof-of-work. We investigate the conditions under

which these three ideal features can be achieved by a consensus algorithm that incentivizes honest

behavior.

Resource-efficiency Full transferability

Fault-tolerance

Figure 1: The Blockchain Trilemma.

We begin by adapting the theory of distributed consensus from the computer science literature

(e.g. Lamport, Shostak, and Pease 1980) to an economic setting. We impose typical assumptions

on agents’ communication technology and the behavior of faulty devices. Unlike previous work in

computer science, though, we do not assume the existence of any agent who will automatically act

honestly: the provision of incentives is key to our theory. Our consensus framework applies to a

broad variety of digital record-keeping arrangements: it can accommodate centralized ledgers as

well as PoW and PoS blockchains.

Our main contribution is a Blockchain Trilemma (Figure 1): we prove that no consensus algo-

rithm can simultaneously achieve fault-tolerance, resource-efficiency, and full transferability. We

also prove a converse: if there is a communication protocol with a trusted mediator that achieves

all three desired properties, then any two of the desired properties are achievable by an unmedi-

ated consensus algorithm. Hence, there is a sense in which our framework allows us to tightly

characterize the role of an inherently trustworthy mediator, which is one of the main questions

that originally motivated the development of public blockchains (Nakamoto, 2008). When no agent

can be trusted to behave honestly, it is necessary to either give up fault-tolerance (which is usually

infeasible in digital systems) or sacrifice one of two types of efficiency: allocative efficiency (which is

achieved under full transferability) or resource-efficiency. As we will show, giving up fault-tolerance

renders dishonest behavior detectable, whereas incentives for honesty can be provided by giving up

resource-efficiency or full transferability.

After proving the Trilemma, we use the insights of our model to discuss the relationship between
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the features of an ideal consensus algorithm and the types of digital record-keeping systems used in

practice. We elaborate on the ways in which common consensus algorithms (centralized, proof-of-

work, or proof-of-stake) can be used to overcome communication frictions and identify the types of

deviations that may allow record-keepers to fool other users of the ledger. The Blockchain Trilemma

allows us to classify the types of incentives that ensure honesty in each case, allowing us to map

each of the three main classes of record-keeping systems to a point on the Trilemma. All three of the

types of ledgers we consider are fault-tolerant to a certain extent. We find that centralized ledgers

and proof-of-stake blockchains both give up full transferability in order to provide incentives for a

set of record-keepers. Proof-of-work blockchains, on the other hand, give up resource-efficiency.

Motivating example. We begin with a simple example to illustrate the intuition underlying

the Trilemma. Consider an environment with three agents: Alice, Bob, and Carol. In the present,

the three agents can produce goods for one another, and through their future interactions, they will

generate a surplus V . An exchange of a unit of goods costs the producer c but yields utility u > c

for the consumer. The agents wish to record their transactions by using a ledger that permits them

to keep track of the amount of future surplus promised to each of them. They begin with balances

v = (vA, vB, vC) on the ledger (with vA+ vB + vC = V ) and can agree to a budget-feasible transfer

of balances t = (tA, tB, tC) (with tA + tB + tC = 0) subject to the constraint that agents cannot

spend more than their entire balance. For example, they may trade digital “tokens,” say, agreeing

to sell goods to each other at a price of p, so that one token is worth u
p of future promised value.

Whereas monetary exchange usually takes the form of an exchange of physical tokens (e.g.

cash), in a digital setting, transactions involve the exchange of messages. It is easy to determine

whether a transaction is valid (e.g., whether a buyer owns the tokens they are trying to send) – this

can typically be accomplished through cryptographic methods. However, it is far more difficult to

determine whether a transaction is final, meaning that at all future times, users of the ledger will

consider it to have occurred. If Alice can buy goods from Bob by sending a message of the form

m = “Sending token to Bob,” what prevents her from spending that token again in the future by

sending an identical message to Carol of the form m′ = “Sending token to Carol”? This is the key

issue in digital record-keeping, known as the double-spend problem.

Näıvely, one might think that all agents could just agree only to finalize whichever transaction

Alice sent first. In a digital setting, though, this is unrealistic. There are two key frictions in

communication that impede this simple solution. First, there may be a delay in messages sent

between agents, causing them to receive messages in different orders. Second, there may be faults

in communication: agents’ communication devices (i.e., computers) may be disconnected from the

network, behave erratically, or shut down entirely.

Therefore, agents require a robust method of achieving consensus on the transactions that have

been finalized in the ledger, in order to ensure that one of Alice’s attempts to spend her tokens is

recognized as final and the other is discarded. That is, agents must have some way of voting on

which entry should be finalized in the ledger and reaching agreement on which votes have been cast.

This voting method could be centralized, for example, in which case a single agent would have full
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Figure 2: Alice’s deviation in the motivating example. She sends conflicting votes to Bob and
Carol, who are unable to communicate due to delays in message delivery.

authority to finalize entries in the ledger, or decentralized, in which case perhaps a majority would

be required. No matter how the voting system is designed, though, the problem is that agents do

not have access to a mediator who could be trusted to aggregate and honestly report their votes,

ensuring that everyone sees the same ledger. Instead, the ledger is distributed : agents individually

keep track of the votes that have been cast, and dishonest voting behavior could cause agents to

disagree about the ledger’s contents.

Thus, agents need a consensus algorithm that incentivizes them to behave honestly. Concretely,

in this example, the ideal properties of a consensus algorithm are:

� Fault-tolerance: The consensus algorithm permits any two agents to come to agreement

even when the third has a faulty communication device;

� Resource-efficiency: The consensus algorithm does not require agents to expend (signifi-

cant) computational resources to update the ledger (e.g. electricity costs in Bitcoin mining).

� Full transferability: Any individually rational transfer of value among two agents can be

implemented via the consensus algorithm.

The main difficulty in designing a consensus algorithm is that no matter how it is designed,

Alice may communicate with Bob as if she wants to vote on message m while communicating with

Carol as if she wants to vote on message m′ (Figure 2). As long as consensus algorithm is fault-

tolerant, this strategy may be profitable for Alice. Fault-tolerance requires that Alice be able to

reach agreement with Bob in Carol’s absence, and that Alice and Carol be able to reach agreement

without Bob. If messages are delivered with some delay, Alice may agree on message m with Bob,

while reaching an agreement on m′ with Carol, before Bob and Carol ever communicate with each

other (and discover Alice’s dishonesty). This why the double-spend problem arises.1

1Note that Alice could also try to convince Carol that she sent tokens to a different account A′ that she also owns,
as often observed in reality.
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A fault-tolerant consensus algorithm must therefore provide Alice with incentives not to double-

spend. How can a well-designed consensus algorithm dissuade Alice from engaging in this type of

dishonest behavior? It may impose ex-ante costs on agents who cast multiple conflicting votes, or

it may punish dishonest agents in some way ex-post. The proof-of-work algorithm used by Bitcoin

and many other public blockchains imposes ex-ante costs by forcing agents to solve computational

problems in order to create a “block,” which is effectively a vote cast in favor of a set of transactions.

Hence, by giving up resource-efficiency, it is possible to incentivize Alice to behave honestly.

Alice can also be punished ex-post if the consensus algorithm permits agents to verify her

dishonest behavior after she has spent her tokens twice. Even if Bob and Carol do not communicate

with each other during the initial voting process, eventually they will be able to communicate and

realize that Alice lied (for example, if each of them has a signed message from Alice voting on

different messages). Then, Bob and Carol can use that evidence to update the state of the ledger,

reducing the value promised to Alice (to zero if necessary). However, if Alice is permitted to transfer

her entire promised value to Bob (or Carol) in a transaction, it is not possible to punish her – there

will be nothing more to take from her if she behaves dishonestly. In other words, if she is permitted

to transfer her entire promised value to others, she can no longer be trusted to be honest. Hence,

ex-post punishments are feasible only if full transferability is relinquished.

This simple argument illustrates the impossibility result in the Blockchain Trilemma: a consen-

sus algorithm cannot simultaneously achieve fault-tolerance, resource-efficiency, and full transfer-

ability. In our model, we also prove a converse: any two of the desired properties can be achieved

if the third is given up.

Related Literature. Our paper is mainly related to three strands of the academic literature.

First, our paper follows a long tradition in economics that studies communication in games with

and without trusted mediators. Forges (1986) and Myerson (1986) illustrate how a revelation

principle applies to communication mechanisms in games with trusted mediators. The literature

on implementation theory (e.g. Maskin 1999, among many others) studies how games with trusted

mediators can be designed to implement desirable social outcomes. Eliaz (2002) extends this work

to a setting in which some agents may be “faulty” and communicate in unpredictable ways, like

ours. Our paper’s main point of departure from this extensive literature is the assumption that

agents lack a trusted mediator.

Of course, there are other papers in economics that study unmediated communication in games.

Forges (2020) provides an extensive treatment of the subject.2 Relative to the literature on un-

mediated communication, we differ in our assumptions regarding communication frictions – namely,

that agents may have faulty communication devices and that communication takes time. As our

results show, these realistic assumptions are consequential for our conclusions.

Second, our paper is related to the literature on distributed consensus in computer science.

Lamport, Shostak, and Pease (1980) is the seminal paper in the study of synchronous consensus

2See also Aumann and Hart (2003), Ben-Porath (1998, 2003), and Gerardi (2004), which study the correlated
equilibria that may arise.
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algorithms that tolerate “Byzantine” faults. We focus on a setting with asynchronous communica-

tion, studied by Bracha and Toueg (1985), Fischer, Lynch, and Paterson (1985), and Castro and

Liskov (1999), among others. In the existence result of our Trilemma, we build on the consen-

sus algorithms derived by this earlier literature.3 Our main contribution in this area is to adapt

the distributed consensus literature to an economic setting. We require that consensus algorithms

be designed not only to protect against non-strategic faults in communication, but also to dis-

incentivize coordinated deviations by strategic agents. Concurrently with our work, He, Li, and

Halaburda (2021) provide an economic analysis of equilibrium multiplicity under the Byzantine

Fault Tolerance (BFT) algorithm developed by Castro and Liskov (1999).

Finally, our work is related to the emergent literature on the economic properties of blockchains

and cryptocurrencies. Budish (2018) and Gans and Gandal (2019) study the costs of incentivizing

honesty for cryptocurrency blockchains in isolation. Biais et al. (2020) propose a game-theoretic

model of Bitcoin mining and show that while the strategy of mining the longest chain proposed

by Nakamoto (2008) is in fact an equilibrium, there are other equilibria in which the blockchain

forks, as observed empirically. Saleh (2020) shows how proof-of-stake blockchains may guarantee

security through fluctuations in token prices. Relative to the previous literature, we study a unified

record-keeping framework and outline the requirements that must be satisfied by any record-keeping

system in order to ensure security.

Outline. The remainder of the paper is structured as follows. We present our model of

digital record-keeping in Section 2. In the model, we describe a class of communication games

in which agents attempt to reach consensus on updates to a ledger. We introduce our concept

of a consensus algorithm and define the fault-tolerance, resource-efficiency, and full transferability

properties. Then, we outline our model’s main assumptions, allowing us to prove the Trilemma in

Section 3. We proceed to discuss how our model relates to digital record-keeping in practice as well

as how the examples we consider (centralized, proof-of-work, and proof-of-stake) map to our three

ideal properties in Section 4. Sections 5 and 6 discuss our main assumptions on the communication

technology and formally extend the model to incorporate relaxations of those assumptions. Section

7 concludes.

2 The Consensus Framework

We model an environment with a digital ledger in which agents must come to a consensus

on a collection of transactions. We first describe the payoff environment and then introduce the

consensus problem that arises in digital record-keeping. Following the description of the communi-

cation game that agents play to reach consensus on an outcome, we define our notion of consensus

algorithms (postponing some technical details to Appendix A). We conclude this section by sum-

marizing, at a high level, the key assumptions of our model that lead to the Blockchain Trilemma.

3The impossibility result of Fischer, Lynch, and Paterson (1989) does not apply to our setting because we assume
the lags in message delivery are random and cannot be manipulated by malicious attackers.

6



2.1 Payoff environment

There is a set N = {1, . . . , N} of agents (with N ≥ 3) whose preferences are summarized by

a publicly known state of the world θ in a finite set Θ. Agents can realize a finite set of physical

transactions Y. A transaction y ∈ Y is a voluntary exchange of goods among some subset of agents

S(y) ⊂ N , who are said to be involved in transaction y. When a transaction y occurs, agent n

receives utility un(y|θ), where un : Y×Θ → R describes n’s preferences over individual transactions.

Agents can compensate each other in transactions by transferring balances they hold on a

ledger. Each agent n initially holds an integer balance vn ∈ N on the ledger.4 To each transaction

is associated a budget-feasible transfer of ledger balances t(y) = {tn(y)}n∈S(y) ∈ ZS(y) among the

agents S(y) involved in the transaction, such that
∑

n∈S(y)
tn(y) = 0 and tn(y) ≥ −vn for all n ∈ S(y),

that is, agents cannot transfer more than their entire balance.

An outcome x = (y(x), t(x)) in this environment is a budget-feasible collection of transactions

y(x) ⊂ Y and the corresponding transfer of balances t(x) =
∑

y∈y(x)
t(y). Agents’ preferences are

assumed to be additively separable across transactions and quasilinear in ledger balances,5 so an

outcome x is individually rational in state θ if

∑

y∈y(x)

un(y|θ) + tn(x) ≥ 0 ∀ n ∈ N . (IR)

2.2 Digital record-keeping

The purpose of record-keeping is to permit agents to transfer value in order to implement an

individually rational (i.e., mutually beneficial) outcome x. Our environment is consistent with both

physical record-keeping (e.g., via the exchange of cash) and digital record-keeping. In either case,

the “ledger” is a representation of the payoffs agents will receive through their future interactions,

and physical transactions are realized when the agents involved agree that the ledger has been

“updated” appropriately.

When records are kept with physical tokens, an update to the ledger is just an exchange of

tokens. For a transaction y to take place, the participants S(y) in that transaction need only

determine whether each agent has the requisite number of tokens. An agent cannot spend the same

token in multiple transactions, so transactions can be agreed upon independently.

The key distinguishing feature of digital record-keeping is that the ledger is a shared database

of digital transfers of value. Unlike physical record-keeping, there is no guarantee that an agent will

not spend the same unit of value in multiple transactions. Agents must communicate to reach a

consensus on an update to the ledger in order to ensure that no agent violates his budget constraint.

In a digital setting, then, agents must reach agreement with others not only on their own desired

transactions, but on the entire set of transactions to be added to the ledger. An effective method

4If we deal with a finite set of possible transactions, it is without loss of generality to assume that agents’ balances
have integer values. In reality, of course, balances on digital ledgers must come in discrete increments.

5We make this assumption for simplicity of notation, but it is inessential for our results.
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of reaching consensus will ensure that no agent agrees to a transaction that has not been finalized

in the eyes of all other agents.

We will present an abstract static model of consensus that adds game-theoretic elements to the

typical framework used by much of the computer science literature studying blockchain consensus

protocols.6 In section 4.2, we apply our model to discuss how digital record-keeping systems in

reality (centralized, proof-of-work, and proof-of-stake) deal with the problem of transaction finality.

The communication game. We model the process of reaching consensus on an outcome x

as a communication game G played among agents. There is no mediator who can be inherently

trusted to collect information about agents’ desired transactions and report an outcome to them.

Instead, agents communicate in rounds k = 1, 2, . . . using nodes, which are programmable devices

that can send one another bilateral, private messages and eventually decide on an outcome. When

agent n’s node decides on outcome x, n acknowledges the update to the ledger t(x) and agrees to

complete any transactions y ∈ y(x) in which she is involved.7 Messages may be costly to generate,

as in proof-of-work. Figure 3 illustrates the timeline of the game.

We introduce two frictions in communication that are central to the study of distributed con-

sensus. These frictions will in general make it difficult to detect dishonest behavior.

Assumption 1. There are two frictions in communication.

1. Messages are delivered with a random lag of at most ∆ rounds.8

2. Some agents have faulty nodes that are incapable of communicating.

Faulty nodes should be interpreted as computers that are shut down or offline for other reasons.

With some abuse of terminology, we sometimes directly refer to agents with faulty nodes as faulty

agents. Agents do not necessarily know who is faulty and who is not. We will use a robust

equilibrium concept that will not require us to further specify agents’ beliefs. We extend Assumption

1 to accommodate arbitrary behavior by faulty nodes (e.g. glitches or hacks) in Section 6.

Payoffs. Agents’ payoffs depend on their nodes’ decisions as follows:

� A physical transaction y is agreed upon (and payoffs un(y|θ) are realized) if at any point the

nodes of all agents involved, n ∈ S(y), have decided on an outcome x such that y ∈ y(x).

� Consensus is achieved once all non-faulty nodes have decided on a common outcome x∗.

Agents receive the payoffs vn + tn(x
∗) and the game ends.

Note that transactions are realized before the final transfer of ledger balances t(x∗) takes place.

This formulation allows agents to violate their budget constraints by acting dishonestly: they can

6Narayanan et al. (2016) articulate the link between blockchain consensus algorithms used in practice and the
theory of distributed consensus developed by to Lamport, Shostak, and Pease (1982). Garay and Kiayias (2019)
provide a comprehensive framework for the study of consensus algorithms that is compatible with our model.

7After deciding on an outcome, a node can revise its decision (e.g. if it initially decides on the wrong value due
to dishonest behavior by others).

8Formally, the lag length is drawn independently from a distribution G with full support on {0, 1, . . . ,∆}. The
IID assumption allows us to circumvent the impossibility result of Fischer, Lynch, and Paterson (1985).
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convince others to agree to transactions y that are not finalized in the ledger as part of the eventual

consensus outcome x∗.

Programming phase Communication phase Consensus

� Nature draws θ ∈ Θ and set S ⊂ N of
non-faulty agents

� Agents learn θ, program their nodes

� Nodes communicate and decide on
outcomes

� Transaction y realized if all n ∈ S(y)
decide on x s.t. y ∈ y(x)

� Payoffs un(y|θ) realized

� Game ends when all non-faulty nodes
reach consensus on an outcome x∗

� Payoffs vn + tn(x
∗) realized

Figure 3: Timeline of the communication game played by agents using their nodes.

Agents program their nodes to send messages and decide on an outcome based on the history

of messages they have previously received, in order to maximize

Un = E
[∑

y∈y
un(y|θ) + vn + tn(x

∗)−
∑

m∈M̂n

κ(m)

]
, (1)

where y is the set of realized transactions, κ(m) ≥ 0 is the disutility cost of sending a message

m, and M̂n is the set of messages sent by n over the course of the game. We provide a formal

description of this class of communication games in the Appendix (Definition A.1).

2.3 The design objective

In this section, we introduce the key concepts in our theory of consensus algorithms at a high

level. In order to streamline the exposition and avoid burdensome notation, our discussion is not

entirely formal. Precise definitions for the concepts in this section can be found in Appendix A.2.

There is a designer who would like to devise a method by which the set of agents with non-faulty

nodes can reach consensus on an appropriate outcome, called a consensus algorithm.

Definition 1. A consensus algorithm consists of a communication game G played by agents and

a communication protocol C that their nodes should be programmed to follow.

The designer specifies the rules of the game, including the set of messages a node is permitted to

send in each round and the cost of sending each message. The communication protocol is a profile

of strategies dictating how nodes should communicate with each other and when they should decide

on an outcome (i.e., conclude that a set of transactions has been finalized in the ledger). A node

n’s prescribed strategy should depend only on its information, i.e., the history of messages it has

previously received. Section 4 will discuss the different types of consensus algorithms used by

centralized systems as well as proof-of-work and proof-of-stake blockchains.

If a consensus algorithm enables a subset S ⊂ N of agents to reach consensus on their own, even

when agents N − S are faulty, it must satisfy two conditions. These ensure that agents in S have

incentives to follow the protocol and that, when they do, consensus is achieved on an individually

rational outcome.
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Definition 2. A subset of agents S ⊂ N can achieve consensus under the consensus algorithm

(G, C) if, whenever agents in S have non-faulty nodes, the following two conditions hold:9

� (Condition 1) Agents in S are guaranteed to reach consensus on an individually rational

outcome if they follow the communication protocol C.

� (Condition 2) No coalition S′ ⊂ S has an incentive to jointly deviate from protocol C.10

It might be the case that some (but not all) S ⊂ N can achieve consensus. As an example, some

blockchain consensus protocols guarantee consensus only when a majority of nodes are non-faulty, so

S ⊂ N achieves consensus if and only if |S| > 1
2N . By contrast, users of centralized record-keeping

systems can achieve consensus only when the node belonging to the ledger’s owner is non-faulty,

so if agent n∗ owns the ledger, S can achieve consensus whenever n∗ ∈ S.

Condition 1 is commonplace in the study of consensus algorithms in computer science. However,

in an economic environment, the designer faces an additional challenge. Agents cannot be forced

to program their nodes in accordance with the communication protocol: they must have incentives

to do so (Condition 2). There is a natural motive to lie: by doing so, agents can fool others into

accepting payments that are later nullified (as in our motivating example). This challenge is unique

to a setting without a trusted mediator: if there were a mediator who could be trusted to report

an outcome, there would be no possibility of disagreement on updates to the ledger.

Importantly, we require that the consensus algorithm be robust to coalitional deviations. A

common concern, especially in the context of decentralized record-keeping systems, is that one

entity might be in control of several nodes simultaneously. Blockchains are therefore typically

designed with coalitional deviations in mind.11 As we argue in Section 4.2, absent such concerns,

it would be trivially easy to design a fully secure consensus algorithm, so the coalition-proofness

requirement is essential for our results.

Having formulated our concept of a consensus algorithm, we can describe the three ideal prop-

erties in the Trilemma.

Definition 3. We define the following three properties of a consensus algorithm.

� (Fault-tolerance) Any majority S ⊂ N can achieve consensus.

� (Resource-efficiency) The consensus algorithm does not make use of costly messages.

� (Full transferability) If S ⊂ N can achieve consensus, then agents in S can reach agreement

on any individually rational outcome x such that t(x) transfers value among them.12

9Specifically, we require that Conditions 1 and 2 hold when agents in S know that agents in N − S are faulty.
10Formally, we impose the Strong Nash Equilibrium condition of Aumann (1959) (Definition A.3 in Appendix

A). We use this coalition-proofness requirement rather than that of Bernheim, Peleg, and Whinston (1987) because
we envision a situation in which deviating nodes are controlled by one entity (see below). We further discuss our
equilibrium notion in Online Appendix D.

11In Bitcoin, for instance, the most relevant concern is a “51% attack” in which an entity controls the majority of
the network’s computing power. Section 4.2 provides other examples.

12More specifically, let S be a set of agents that can achieve consensus and x = (y(x), t(x)) be an outcome that
is individually rational in some state θ such that t(x) is a transfer among agents in S. Then when the state is θ, if
agents in S are non-faulty and follow the protocol, they reach consensus on x with positive probability.
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Fault-tolerance is desirable because it is typically not practical to guarantee that all users of a

network will always be online, so the possibility that some agents go offline or face computer crashes

should not prevent the ledger from being updated. A fault-tolerant consensus algorithm guarantees

that agents will have incentives to follow the protocol, and will actually reach consensus, as long as

faulty nodes are known to be in the minority.13 The designer would like the consensus algorithm to

be resource-efficient because communication is not intrinsically costly, so it is undesirable for the

designer to impose communication costs that generate a deadweight loss of utility (unlike Bitcoin’s

proof-of-work). The beneficial implications of full transferability are clear: the consensus algorithm

should not arbitrarily prevent a subset of agents S from reaching agreement on any mutually

beneficial (i.e., individually rational) transfer of value among themselves.

Remark. Fault-tolerance imposes a notion of robustness not only to the presence of faulty nodes, but

also to agents’ beliefs about the faultiness of others. As long as an agent believes that some majority

of nodes are non-faulty, Condition 2 implies that agent has incentives to follow the protocol. It

does not matter how that agent assigns probabilities to the faultiness of individual nodes. Hence,

our equilibrium concept permits agents to entertain heterogeneous beliefs about the faultiness of

others (as in Eliaz, 2002). We discuss this point further in Online Appendix D.

2.4 The model assumptions

We will study the conditions under which it is possible to design a consensus algorithm that

is fault-tolerant, resource-efficient, and achieves full transferability. We make three additional

assumptions that lead to our main result, the Blockchain Trilemma, which states that in the

absence of a trusted mediator, it is only possible to simultaneously achieve two of those objectives.

Lemma 1 guarantees that, at least, it is possible for a communication protocol with a trusted

mediator to achieve fault-tolerance, resource-efficiency, and full transferability.

Lemma 1. Under Assumption 1, when a trusted mediator is available,14 there exists a consensus

algorithm that achieves fault-tolerance, resource-efficiency, and full transferability.

We provide a proof in Appendix B.

The consensus algorithm with a trusted mediator is extremely simple. First, the mediator asks

agents to report the state of the world θ. Then, if the mediator receives the same report θ from a

subset S of agents, the mediator reports back some outcome x∗ consisting of transactions among

agents in S that are individually rational in state θ.15 Agents have prior knowledge of the state of

the world θ but not of an outcome x∗ because they do not know the set of non-faulty agents S, who

are the only ones capable of participating in transactions. A trustworthy mediator permits non-

faulty agents to attain common knowledge of a suitable outcome. A lack of such common knowledge

13This is themaximal achievable degree of fault-tolerance, but, of course, it is possible to have partial fault-tolerance
as well. For example, it could be that a two-thirds supermajority is required for consensus.

14A trusted mediator is a special node n∗ (owned by no agent) that is assumed to automatically follow the
communication protocol chosen by the designer.

15If the mediator receives conflicting reports, she does not report an outcome to agents. This is similar to the
implementation procedure derived by Maskin (1977) in a setting with the possibility of coalitional deviations.
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in an unmediated setting is what allows for the possibility of profitable dishonest behavior, causing

different agents to decide on different outcomes.

Our key assumption on preferences implies an incentive for dishonesty that conflicts with the

goal of full transferability. It guarantees that agents would like a record-keeping system that permits

them to implement any budget-feasible transfer of value.

Assumption 2. Agents’ preferences have the following two properties:

� For each budget-feasible transfer t̃ among agents in S,16 there exists an outcome x = (y(x), t(x))

such that t(x) = t̃ and each transaction y ∈ y(x) involves only agents in S, S(y) ⊂ S.

� For each set of transactions y ⊂ Y, there exists a state θ ∈ Θ in which the set of individually

rational transactions is y.

That is, every budget-feasible transfer t is part of some outcome x, and each outcome x is indi-

vidually rational in some state θ. Under Assumption 2, the incentives for dishonesty parallel those

in our motivating example. In particular, once an agent n’s balance goes to zero in an outcome x

(i.e., tn(x) = −vn), that agent would like to fool others into agreeing to another outcome x′ that

will benefit her. Assumption 2 guarantees that there in fact exists an outcome with tn(x) = −vn.

Whether it is possible to design an ideal consensus algorithm depends critically on the designer’s

capacity to limit dishonest behavior, so we must make assumptions about what the designer can

do. Assumption 3 dictates the types of proofs that the designer can require agents to include in

their messages, in order to disincentivize or limit the scope for this type of dishonest behavior.

Assumption 3. The designer can require a node n to include the following types of proofs in a

message m.

1. (Proof-of-identity) A verifiable, unforgeable signature, proving that the owner of node n

sent the message.

2. (Proof-of-receipt) A proof that another message m′ was previously received.

3. (Proof-of-work) A proof that agent n incurred a computational cost κ(m) in the production

of message m.

Assumption 3 (formalized as Assumption A.1) concerns the types of deviations that are possible in

the communication game G chosen by the designer. Proof-of-identity and proof-of-receipt prevent

nodes from lying about certain statements, restricting the set of messages each node is permitted to

send in each round. One agent’s node cannot pretend to send messages on behalf of another agent,

and a node cannot pretend to have received messages that were never sent to it. Proof-of-work,

by contrast, disincentivizes dishonesty: it makes it costly for a node to send conflicting messages

to different groups. Importantly, though, the designer cannot prevent nodes from pretending that

they did not receive certain messages, which is crucial for our impossibility result.

16Recall that a budget-feasible transfer is t̃ ∈ ZN s.t.
∑
n∈S

t̃n = 0, t̃n ≥ −vn ∀ n ∈ S, t̃n = 0 ∀ n ̸∈ S.
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Assumption 3 will permit the designer to implement a wide variety of record-keeping arrange-

ments (e.g. centralized, proof-of-work, and proof-of-stake), as we discuss in Section 4. Additionally,

it admits both ex-ante costs of dishonesty (through proof-of-work) as well as ex-post punishments:

proof-of-receipt allows nodes to prove that others have previously sent dishonest messages, allowing

honest agents to eventually reach consensus on a state in which dishonest agents are stripped of

their balances on the ledger.

The designer faces a key limitation, however. As specified in Assumption 4, he does not know

∆, the maximum possible delay in the delivery of messages.

Assumption 4. The maximum delay ∆ in the delivery of messages is unknown to the designer.

Assumption 4, formalized as Assumption A.2, is a restriction on the types of the communication

protocols C the designer can choose: nodes’ prescribed behaviors cannot depend on ∆. This as-

sumption, known as asynchronous communication, is common in the computer science literature. It

is well-known in other contexts that asynchronous communication introduces significant difficulties

in the design of consensus algorithms.17 Asynchronicity is the most appropriate assumption in the

context of large-scale networks with ex-ante unknown users, e.g. the internet.

Section 4 relates our model to digital record-keeping in practice. We discuss our model’s assump-

tions further in Sections 5 and 6. We now proceed to our main result: the Blockchain Trilemma.

3 The Blockchain Trilemma

The Blockchain Trilemma follows from Assumptions 1-4. In the absence of a trusted media-

tor, no consensus algorithm can simultaneously achieve fault-tolerance, resource-efficiency, and full

transferability. Only two of these goals are simultaneously achievable. Hence, in light of Lemma 1,

the Trilemma characterizes the costs of a lack of trust.

Blockchain Trilemma. Under Assumptions 1-4, the following hold:

� (Impossibility) There does not exist a consensus algorithm that is fault-tolerant, resource-

efficient, and achieves full transferability (for all ∆).

� (Existence) For any two of the desired properties in Definition 3, there exists a consensus

algorithm satisfying both properties (for all ∆).

We begin with a discussion of the ideas behind the Trilemma, providing an overview of the tension

between the designer’s three objectives. Specifically, we show how the designer faces a tradeoff

between fault-tolerance, which provides opportunities for dishonest behavior, and incentives for

honesty, which can be provided by relinquishing resource-efficiency or full transferability. Then we

outline a proof sketch of the impossibility result, but we postpone some technical details to the full

17For example, compare the result of Lamport, Shostak, and Pease (1982), who show that consensus is always
possible under synchronous communication, to the impossibility result of Bracha and Toueg (1985), who prove
consensus cannot be achieved in an asynchronous context when the majority of nodes are faulty.
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Figure 4: The deviation pursued by coalition A in the double-spend lemma. Agents in A commu-
nicate with agents in B as if they have never received a message from C, and they communicate in
an analogous way with agents in C.

proof in the Appendix. The constructions of the consensus algorithms required for the proof of the

existence result are involved (but well-known in the computer science literature). In the Online

Appendix, we describe these consensus algorithms and prove the existence result.

The first step in our argument is a key intermediate result, the “double-spend lemma,” showing

how agents can profitably deviate from honesty under asynchronous communication. The lemma

takes as given a consensus algorithm (G, C) that achieves consensus for two overlapping sets of

agents, S and S′, and a pair of individually rational outcomes x, x′ such that x (resp. x′) can be

implemented by the consensus algorithm in state θ when agents in S (resp. S′) are non-faulty.18

It demonstrates that the coalition A = S ∩ S′ can deviate from the protocol C so that after

transactions y(x) and transfers t(x) are agreed upon by members of B = S\S′, then a different set

of transactions y(x′) and transfers t(x′) are agreed upon by members of C = S′\S as well (with

positive probability p). Such a deviation permits members of A to violate their budget constraints

by spending their balances on the ledger twice, once in transactions y(x) and again in transactions

y(x′).

The idea underlying the deviation is exactly as in our motivating example: after coalition A

has reached agreement on outcome x with coalition B (the analogue of Bob), then nodes in A

communicate with C (the analogue of Carol) as if they have never heard from B, convincing C

that consensus should be reached on outcome x′ instead. By Assumption 3, this deviation from

honesty is feasible. Assumption 4 implies that this deviation cannot always be detected, e.g., when

Alice told Bob she had never heard from Carol, Bob did not know if Carol’s node was faulty or

if Carol was simply taking a long time to communicate. Figure 3 illustrates this deviation. The

18Formally, we mean that with positive probability, when agents in S (resp. S′) are non-faulty and follow the
protocol, then in state θ, consensus is achieved on x (resp. x′) with positive probability.
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deviation we consider is slightly different from how some double-spends actually occur in practice,

in which the second recipient (“Carol”) is usually another account owned by the deviating agent.

We discuss in Section 4.2 how the deviation we derive can be viewed as representative of any kind

of double-spend in reality.

The double-spend deviation highlights the tension between fault-tolerance, resource-efficiency,

and full transferability, captured by a simple incentive condition (Inequality 2). When the double-

spend deviation succeeds (with probability p), agents in A receive utility ũn(x
′|θ) ≡ ∑

y∈y(x′)
un(y|θ)

from the transactions that are realized. If this deviation is eventually discovered, the maximum

punishment that can be inflicted on these agents is to strip them of their remaining ledger balances

vn − tn(x).
19 Furthermore, each agent n in the deviating coalition may have to incur an ex-ante

proof-of-work cost κn(x
′) to send the messages required to engage in the deviation. Therefore, if

honest behavior is optimal, it must be that

ũn(x
′|θ) · p︸ ︷︷ ︸

Deviation benefit

< vn − tn(x) + κn(x
′)︸ ︷︷ ︸

Deviation cost

for some n ∈ S ∩ S′ (2)

With a fault-tolerant consensus algorithm, S and S′ in Inequality 2 can be taken to be any two

distinct majorities of agents, since any majority must be able to achieve consensus on its own. If

the consensus algorithm achieves full transferability, then there exists a state θ and an individually

rational outcome x such that agents in A spend their entire balance, vn − tn(x) = 0 for all n ∈ A.

Resource-efficiency implies that the cost of engaging in any deviation is zero, κn(x) = 0. Hence,

agents in A face no cost of deviating and attempting to convince C to decide on the outcome x′,

allowing them to spend their balances again. This argument leads to the impossibility result.

The existence result can also be understood through Inequality 2. We have argued that under

asynchronous communication, a fault-tolerant consensus algorithm permits some deviating coalition

A to spend their balances twice (in one set of transactions with B and another with C). Critically,

for the deviation to go undetected, A ∪ B must be able to reach consensus without input from

C and, likewise, A ∪ C must be able to reach consensus without B. Therefore, the designer can

render double-spend deviations detectable by giving up fault-tolerance. If input from all agents is

required to achieve consensus, there is no possibility that different agents will decide on different

outcomes, and Inequality 2 becomes irrelevant. More generally, the designer can partially relax

the constraints in Inequality 2 by increasing the fraction of agents required for consensus (e.g.,

from a majority to two-thirds). This reduces the probability p that the double-spend deviation will

succeed and increases the size of the coalition S ∩S′ that must deviate in order to double-spend.20

On the other hand, if the designer wishes to maintain fault-tolerance, he has two options: he can

design a communication protocol that dissuades double-spending by imposing ex-post punishments

19After agents discover that coalition A deviated, they can communicate evidence of this deviation to each other
and reach consensus on an outcome in which those agents lose their balances.

20For example, when a simple majority is required for consensus, the deviating coalition S ∩ S′ might consist of
only one agent. When a fraction q are required for consensus, then the deviating coalition must consist of at least
⌈2q − 1⌉N agents.
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on those who deviate from honesty, or he can impose resource costs that make deviation expensive

from an ex-ante perspective. The term vn − tn(x) captures the maximum punishment that can be

imposed on an agent ex-post. By relinquishing full transferability and restricting transfers of value

among agents, the designer can ensure that ex-post punishments are always sufficient to dissuade

dishonesty. The designer can instead maintain full transferability and give up resource-efficiency.

If the cost of updating the ledger is large enough (captured by κn(x
′)), then agents in the deviating

coalition will not find it worthwhile to double-spend, even if ex-post punishments are not possible.

3.1 The double-spend lemma

The double-spend lemma illustrates the primary difficulty with the design of unmediated con-

sensus algorithms in asynchronous settings, and it is the key intermediate step in our impossibility

result. We provide a statement of the Lemma and a proof sketch below.

Lemma 2 (Double-spend lemma). Suppose that Assumptions 1, 3, and 4 hold. Fix a state θ ∈ Θ

and distinct majorities of agents S, S′ ⊂ N .21, and consider a fault-tolerant consensus algorithm

(G, C). Then for large enough ∆, there exists a deviation from the prescribed communication protocol

C for the coalition A = S ∩ S′ such that, with positive probability,

� The group B = S\S′ all decide on an outcome x, and transactions y(x) are realized;

� After transactions y(x) are realized, the group C = S′\S all decide on an outcome x′ ̸= x,

and transactions y(x′) are realized.

Furthermore, such a deviation exists for any two outcomes x, x′ such that x (resp x′) is implemented

by the consensus algorithm in state θ when agents in S (resp. S′) are non-faulty.

Proof sketch. In lieu of a proof, here we provide a sketch of the main intuition. In the Appendix

we present a formal proof including all of the technical details.

Since A∪B = S constitutes a majority of agents and the consensus algorithm is fault-tolerant,

then by Condition 1, it must be possible for S = A ∪B to reach a consensus if they communicate

honestly, even if all nodes in C are faulty. Hence, there must be some finite number of messages

that nodes in A∪B send to each other before reaching consensus on some outcome x, even if they

have received no messages from C (since faulty nodes do not communicate, by Assumption 1). Let

TS be the minimum number of rounds in which consensus can be reached by A ∪ B with positive

probability.22 By the same logic, under honest communication, there must be some finite number

of messages that nodes in A ∪ C will send each other before reaching agreement on x′, even if

they never communicate with B. Let TS′ be the minimum number of rounds of communication in

which this occurs with positive probability. The stopping times TS and TS′ are determined by the

21That is, the cardinalities of these subsets, |S| and |S′|, are both greater than N
2
.

22Specifically, the minimum number of rounds TS is the number of rounds it would take to reach consensus if every
message sent by a member of A ∪B was delivered in a single round.
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communication protocol chosen by the designer, who does not know the maximum message delay

∆ (by Assumption 4).

Consider the following coalitional deviation for agents in A:

� Communicate with nodes in B honestly according to the communication protocol C, until
agreement is reached on some outcome x.

� After agreement is reached on x, communicate with nodes in C according to the communi-

cation protocol C, as if they have never received any messages from nodes in B.

This deviation is illustrated in Figure 3. Now, suppose that all messages from B to C, and C to B,

are delayed by D > TS + TS′ rounds. Since TS and TS′ are independent of ∆, there exists ∆ large

enough that this occurs with positive probability. By Assumption 3, this deviation is undetectable

by any agent in B ∪ C before round TS + TS′ : it would have been impossible for A to provide a

proof to C that they have never communicated with B, so B and C cannot learn this fact until

they communicate with each other. With positive probability, then, A will convince B to decide on

outcome x in round TS and then convince C to decide on x′ in round TS + TS′ . Transactions y(x)

and y(x′) are realized before A’s deviation is revealed, which occurs in round D at the earliest.

We leave to the Appendix the proof that such a deviation is possible for any two outcomes x,

x′ that are implemented by the consensus algorithm in state θ.

These types of deviations are unique to unmediated settings: if there were a trusted mediator,

she would report the same outcome to all agents, ensuring no two nodes that follow the commu-

nication protocol ever decide on different outcomes. Furthermore, the assumption of asynchronous

communication is crucial as well: as we show in Section 6.2, in a setting with synchronous com-

munication, these types of deviations are no longer possible (with the caveat that the synchronous

communication is often an unrealistic ideal). Hence, the lemma demonstrates the obstacles that

are specific to the implementation of unmediated, asynchronous consensus algorithms. Note, also,

that the argument in the proof of Lemma 2 applies only to fault-tolerant consensus algorithms.

This argument then highlights how tolerance to faults (non-strategic abstention from communica-

tion) generates scope for strategic deviations by a coalition of attackers that wish to manipulate

outcomes, which is a key concept underlying our Trilemma.

3.2 Proof sketch of the impossibility result

Having proved the key double-spend lemma, we move on to the impossibility result in the

Blockchain Trilemma, which states that under asynchronous communication, no consensus algo-

rithm can simultaneously achieve (1) fault-tolerance, (2) resource-efficiency, and (3) full transfer-

ability. We provide a proof sketch below.

Proof sketch: Impossibility. We proceed by contradiction. Suppose that there is a consensus al-

gorithm (G, C) that achieves all three of the desired properties. Pick two distinct majorities of
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agents, S and S′. As in the proof of the double-spend lemma, we define A = S ∩ S′, B = S\S′,

and C = S′\S. The basic logic of the deviation pursued by agents in A is that they will transfer

their entire balance on the ledger to B but also transact with C in order to receive some additional

utility.

Let x be an outcome such that agents in A transfer their entire balance on the ledger to agents

in B, that is, tn(x) = −vn for all n ∈ A. Similarly, let x′ be an outcome in which agents in A

transfer their entire balance on the ledger to agents in C. By Assumption 2, such a pair of outcomes

x, x′ exists. The second part of Assumption 2 implies that there exists a state of the world θ ∈ Θ

such that the set of individually rational transactions is precisely y(x) ∪ y(x′).

Note that if agents in A behave honestly and consensus is reached on outcome x when the state

of the world is θ, each n ∈ A receives utility

UH
n =

∑

y∈y(x)

un(y|θ) + vn + tn(x) =
∑

y∈y(x)

un(y|θ),

(since they spend their entire balance on the ledger, tn(x) = −vn ∀ n ∈ A). By contrast, if agents in

A behave honestly until the transactions y(x) occur, and then they behave dishonestly by engaging

in a deviation that causes the transactions y(x′) to occur as well, they receive utility of

UD
n ≥

∑

y∈y(x)∪y(x′)

un(y|θ) >
∑

y∈y(x)

un(y|θ) = UH
n .

The first inequality holds because no matter what outcome eventually becomes a consensus, agents

in A can never lose more than their entire balance on the ledger (and we have normalized the

minimum ledger balance to zero). Therefore, they must receive at least
∑

y∈y(x)∪y(x′)
un(y|θ). The

outcome x′ is individually rational, so we can conclude that
∑

y∈y(x)
un(y|θ) > 0 for all n ∈ A, since

in the outcome x′, agents in A spend their balances vn on the ledger.

By construction, both outcomes x and x′ are individually rational in state θ. By the full

transferability property, outcome x (resp. x′) must then be implementable with positive probability

under the consensus algorithm (G, C) when agents in S (resp. S′) are non-faulty and the state of the

world is θ. We can then apply the double-spend lemma (Lemma 2): the consensus algorithm (G, C)
is fault-tolerant, and Assumptions 1, 3, and 4 are assumed to hold. Therefore, Lemma 2 implies

the existence of a deviation for agents in A such that if, after nodes in A have communicated with

B honestly and reached agreement on x, they still have not received any messages from C, they

can attempt to fool C into deciding on the outcome x′. With positive probability, nodes in C are

in fact fooled and decide on outcome x′, yielding a preferred set of transactions y(x) ∪ y(x′) for

all agents in A. By the resource-efficiency property, it is costless for agents in A to engage in this

deviation ex-ante, so the deviation yields higher expected utility than honest behavior for all agents

in coalition A.

We have shown that by assuming the existence of a fault-tolerant, resource-efficient consensus
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algorithm that achieves full transferability, we can derive a profitable deviation for some coalition

of agents, contradicting Condition 2 (which, by the fault-tolerance assumption, must hold whenever

any majority of agents have non-faulty nodes). Therefore, such a consensus algorithm cannot exist.

4 Digital Record-Keeping in Practice

In this section, we address the ways in which our model is able to capture the relevant elements

of digital ledger design and show how it addresses the fundamental issues. We begin by describing

how our model environment encapsulates a wide variety of record-keeping systems, as well as

possible deviations from honesty within those systems. Then, we discuss how the Trilemma relates

to three types of ledgers often used in reality: centralized ledgers, proof-of-work blockchains, and

proof-of-stake blockchains. Finally, we discuss how our model applies to ledgers in which not all

transactions are public.

4.1 Digital ledgers and the theory of consensus

We have adapted the theory of consensus pioneered by the seminal work of Lamport, Shostak,

and Pease (1982) to a game-theoretic setting suitable for studying the issues that arise in digital

record-keeping. We now discuss the connection between this theory and record-keeping.

The consensus problem in record-keeping: To understand the connection between the

abstract theory of consensus algorithms and the design of digital record-keeping in practice (espe-

cially using blockchains), it helps to keep in mind what a digital ledger actually is: it is a sequence

of entries, each one consisting of some data. The state of the ledger can be determined by reading

the sequence of entries. In reality, a ledger entry is often represented by a “block” in a blockchain,

which is a full copy of the ledger. Each node in the network keeps track of updates to the ledger.

When a node “decides” on a block, it adds that block to its internal ledger, considering it to be

final and updating its current view of the ledger’s state. A node should not decide on a new block

unless it is convinced that all others will eventually decide on that same block as well (i.e., unless

there will be a consensus on that block).

In our model, all nodes agree on an initial state of the ledger. We consider a one-time update

of the ledger, in which nodes must reach agreement on the addition of a single entry. An entry in

the ledger corresponds to a collection of transactions. The state of the ledger, in turn, is just the

distribution of ledger “balances.” Balances on the ledger could represent, for example, continuation

payoffs that agents will receive in some dynamic game that they play (as in Abreu, Pearce, and

Stacchetti, 1990).23

The consensus problem is particularly salient in blockchain-based systems. When several con-

flicting new entries to the ledger have been proposed, a fork is created in the blockchain. Each

possible new entry represents a “branch” of the fork. The consensus problem is simply the problem

23See Online Appendix D for additional discussion of this point.
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of resolving a fork. All nodes should decide on the same branch – a node that decides on a branch

that does not eventually become a consensus will have accepted transactions that are not viewed as

final by others. Hence, the agent who owns that node may accept payments that are not recognized.

As we will discuss, the double-spend problem is intrinsically related to this issue.

The generality of the framework: The problem of designing a consensus algorithm is

effectively that of designing a voting system in which agents must provide proof of their voting

power. Each node aggregates the votes it receives in order to determine whether a block should be

added to the ledger. In our three examples, the requisite proofs are:

� Centralized: A single node (the ledger’s owner) must authenticate and finalize transactions

using its signature.

� Proof-of-Stake blockchain: Nodes known as “validators” vote by proving ownership of a

certain quantity of tokens they have staked as collateral.

� Proof-of-Work blockchain: Nodes vote by proving they have solved computationally dif-

ficult problems, so voting power is allocated in proportion to computational expenditures.

Assumption 3 guarantees that our model can encapsulate all of these systems. Clearly, it allows

us to study systems based on proof-of-work. The designer can require agents to pay a cost before

their nodes send certain types of messages (i.e. votes). It also allows us to consider centralized

record-keeping systems: the proof-of-identity assumption implies that the ledger’s owner can send

signed messages authorizing transactions. Finally, proof-of-identity also allows us to study proof-

of-stake systems. If a node can send a signed message proving its owner is agent n, that message

also constitutes a proof of its ledger balance vn.

From static consensus to dynamic record-keeping: As in previous work, we study a static

model in which the objective is to design an algorithm permitting nodes to reach agreement on a

value (i.e., a set of transactions). This approach may, at first glance, appear puzzling: it might not

be entirely clear how the abstract problem of inducing consensus on a value in a static model is

related to practical issues of designing digital record-keeping systems in dynamic environments.

An ensemble of nodes can construct a blockchain through repeated consensus on updates to a

state (i.e., the repeated addition of blocks). As we have discussed, updates to the ledger in our

model could represent updates to a vector of continuation values in a dynamic game. In computer

science, these types of dynamic udpating problems are often referred to as state machine replication

problems (see Schneider, 1990). A fundamental building block of this problem, of course, is the

process by which nodes reach consensus on a single block to be added to the ledger. The algorithms

used to solve this problem are precisely those developed by the distributed consensus literature.

This is why previous work (e.g., Narayanan et al. 2016) has treated the static consensus problem

as central to digital record-keeping.24

24Garay and Kiayias (2019) also comment that, under certain conditions, the canonical static consensus problem
is equivalent to a dynamic problem of achieving consensus on updates to a ledger (“Nakamoto” consensus).
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Figure 5: An example of a double-spend in a dynamic environment. Agents agree on an initial
state of the ledger, in which (A,B,C) have balances (1, 0, 2). They need to reach consensus on
either the top branch, which contains two blocks, or the bottom branch, which contains a single
block. Eventually, they reach agreement on the top branch, and the state is updated to (0, 3, 0).

The resolution of forks in a dynamic environment can be thought of similarly to that in a static

environment. Figure 5 depicts a situation in which there are two branches of a fork, one of which

is longer than the other. Some nodes may have already decided to accept one of the two branches

at some point in the past. Each branch, however, corresponds to a single set of transactions and

a single terminal state, so the process of reaching consensus on one of the two branches can be

thought of as the static consensus process in our model.

4.2 Types of attacks on the ledger

Digital record-keeping systems are subject to several types of attacks. In this section, we provide

a brief overview of attacks that could occur on digital ledgers. This discussion will, in particular,

highlight the role of our model’s assumptions in determining the sets of attacks that are possible

and the security measures that can be implemented against those attacks. We will argue that each

type of attack (other than double-spending) is either easy to prevent or not relevant within our

model, hence justifying our focus on double-spends. We will also discuss how the double spend we

derive in Lemma 2 is representative of double-spends often observed in reality.

Stealing: A digital ledger must prevent agents from simply directly stealing others’ balances

on the ledger. That is, users of the ledger should not be able to spend tokens held by others. This

is typically easy to guarantee using cryptographic methods. An agent cannot spend a token held

in a particular account unless they provide proof that they know a secret “password” associated

with that account. In order to accomplish this in practice, digital ledgers use public-key encryption

schemes. Assumption 3 in our model allows the designer to effectively replicate these cryptographic

security measures: the designer can require agents to include their unforgeable signatures (i.e.,

provide proof-of-identity) whenever they attempt to spend balances on the ledger.

Denial-of-service: An attacker might want to engage in censorship, preventing certain agents

from entering transactions in the ledger. In a centralized system, this is a difficult problem to

circumvent: the ledger’s owner can always prevent a particular agent from transacting (or extract
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“Agree on m” “Agree on m′”

1. B and C finalize different outcomes.

A
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“Consensus on m”

“Consensus on m′”

2. Conflict between B and C’s outcomes revealed.

A

B C

A′

“Agree on m′”

3. Conflict resolved in favor of m′.

A double-spends by sending messages

{
m : “A sends q tokens to B”
m′ : “A sends q tokens to A′”

Figure 6: Alice double-spends by sending tokens to Bob in messagem, and then generating another
message m′ in which she sends tokens to herself (i.e., to another node A′ that she owns). Alice
and Bob reach agreement on m, whereas Alice and Carol reach agreement on m′. Eventually the
conflict resolves in favor of m′.

a fee from the agent in exchange for including their transactions). On the other hand, in a de-

centralized system, a single agent is typically unable to prevent others from transacting: as long

as other nodes follow the consensus algorithm honestly, even if one agent fails to vote in favor of

a transaction, others will do so, leading to its inclusion in the ledger. Our model incorporates

the possibility of such denial-of-service attacks (censorship) because nodes are always permitted

to ignore messages they received in the past. That is, Assumption 3 does not permit agents to

prove they have not seen a message. However, our assumptions on preferences imply that agents

would never want to censor transactions, since they care about only their own transactions. We

view a study of denial-of-service attacks as important work for future research on decentralized

record-keeping.

Double-spends: In the double-spend attack we considered in our motivating example, Alice

convinced two other agents, Bob and Carol, to accept payment using the same tokens. Double-spend

deviations in reality often take a slightly different form: Alice would instead send tokens to Bob

(and convince him to accept them) while also sending those same tokens to a different account that

she holds, aiming to induce consensus on the second transaction. Our model accommodates these

types of double-spend deviations as well. Instead of convincing Carol to accept tokens herself, Alice

could instead attempt to convince Carol that she had sent tokens to another one of her accounts A′

(represented by a different node). If Carol is convinced that tokens were sent to A′, then Bob and

Carol would be left to reconcile two different ledgers: one in which Alice sent tokens to Bob, and

another in which she sent tokens to A′. If Bob and Carol eventually reach consensus on the latter,

Alice will have succeeded in receiving goods from Bob while retaining her tokens. The double-spend

lemma also implies that such deviations are feasible and succeed with positive probability. Figure

6 illustrates this type of deviation.
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In a blockchain-based system, a double-spend can be accomplished by sending tokens to a

recipient, waiting until that recipient accepts a block containing that transaction, and then creating

a fork of the blockchain that does not contain the transaction. That is, the sender, who may control

multiple nodes in the network, proposes a new block (or sequence of blocks) and then attempts

to induce consensus on the newly created branch of the blockchain. If the attacker succeeds, the

initial payment will not be recognized by any node as final.

4.3 Mapping ledgers to the Trilemma

The discussion above shows that in the context of our model, double-spend attacks are the only

types of attacks on the ledger that give rise to a need for incentive provision. In this section, we

describe how in each of the examples of digital record-keeping we consider, the security measures

put in place against double-spending require a violation of one of the properties in the Trilemma.

Centralized ledgers: Agents will accept a transaction as final whenever the ledger’s owner

(i.e., the record-keeper) approves it. In order to double-spend, then, the record-keeper simply has

to send different transactions to different agents, causing them to regard conflicting transactions

as final. The record-keeper is incentivized not to do so only by the prospect of losing some value

promised to her in the future.

This corresponds to the record-keeper having some non-transferable value v in our model,

which could represent, for example, rents that the ledger’s owner will earn in the future. Hence,

centralized ledgers violate full transferability. On the other hand, the consensus protocol used by a

centralized ledger does not require proof-of-work, so it is resource-efficient. Furthermore, consensus

can be achieved whenever the record-keeper behaves honestly. While not all majorities of nodes can

achieve consensus, centralized ledgers tolerate faults in all nodes other than the record-keeper’s.

Proof-of-stake blockchains: In many proof-of-stake systems, a block is finalized when a two-

thirds supermajority of validators (weighted by their token holdings) vote in favor of it. It is then

possible for a set of validators who hold a supermajority of voting tokens to double-spend: after

spending tokens, they can send votes to other agents in which they send those same tokens to

themselves.

Typically, proposals for proof-of-stake consensus algorithms specify that if validators are found

to have voted on conflicting transactions, the tokens they staked as collateral are stripped (called a

“slasher” punishment). Our model allows for such ex-post punishments, since the final consensus

state can include transactions in which agents lose their balances on the ledger. However, in order

for such punishments to be implementable, validators must not be able to transfer the tokens they

set aside as collateral, so full transferability is violated. Proof-of-work is not used, so these systems

are resource-efficient, and consensus can be achieved whenever a supermajority of validators act

honestly, so they tolerate some faults.

Proof-of-work blockchains: In proof-of-work blockchains, double-spends are disincentivized

by rendering them expensive. Nodes must solve computationally difficult problems in order to

create blocks. A node then effectively votes in favor of a ledger by creating a block and appending
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it to that ledger. Proof-of-work blockchains use a “longest chain rule” to determine the ledger’s

current state, so a block b is considered to be final if it is in the longest chain of blocks C.25 A

group of attackers can then revert the finality of a block b (and double-spend) by creating a chain

of blocks C ′ that is longer than the consensus chain C and does not contain b. In order to succeed

in creating a longer chain with high probability, attackers would need to control a majority of the

network’s computing power, so these are called 51% attacks. The cost of conducting a 51% attack

is what our model captures by allowing for costly communication.

Clearly, proof-of-work blockchains are not resource-efficient. However, they allow arbitrary

transfers of value (therefore satisfying full transferability). Moreover, any majority that acts hon-

estly can achieve consensus on a new block, so proof-of-work blockchains are maximally fault-

tolerant.

Collusion among attackers: One final point is worth noting regarding the nature of attacks

on decentralized blockchains. In both the case of proof-of-stake and proof-of-work, attackers needed

to be in control of several nodes at once for their double-spend attempt to succeed. Typically, an

attacker with access to a single node will be unable to accomplish anything through dishonesty.

Blockchains are therefore designed to prevent collusion among groups of attackers attempting to

subvert the ledger, which is why we require coalition-proofness in our equilibrium concept. If only

robustness to unilateral deviations were required, it would be easy to design a consensus algorithm

that entirely prevents profitable dishonest behavior. More specifically, we use the Strong Nash

concept of Aumann (1959), which permits the deviating coalition to make binding agreements with

one another, because blockchain security protocols often envision situations in which several nodes

are in the control of a single entity.26

4.4 Consensus without a public ledger

In our model, we effectively assume a public ledger. During the consensus process, agents have

access to the entire set of transactions that are being added to the ledger. This may seem unrealistic

in the particular case of centralized ledgers, despite the fact that we claim our model applies to

such systems.

It is simple to extend our model to systems in which nodes can see only transactions in which

they are involved. Given an outcome x in our model, define yn(x) = {y ∈ y(x) : n ∈ S(y)}
to be the set of transactions in outcome x that involve agent n. Then, suppose that during the

course of the game, instead of deciding on an outcome x, each node n instead decides on a set of

transactions ỹn. That is, nodes do not necessarily see others’ transactions – instead, they can agree

to the proposed transactions in which they are involved. A consensus is a situation in which there

25More specifically, a block is usually considered final if it is in the longest chain and there are sufficiently many
blocks (called “confirmations”) following it.

26The (more common) coalition-proofness concept of Bernheim, Peleg, and Whinston (1987), by contrast, considers
situations in which deviating agents cannot commit to a deviation. Instead, a deviation is considered to be stable only
if it is “self-enforcing,” meaning that no sub-coalition has an incentive to alter their strategies given the agreed-upon
deviation.
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exists an outcome x such that ỹn = yn(x) for all non-faulty nodes n. In this case, all nodes agree to

a set of transactions that are consistent with a particular entry in the ledger, despite the fact that,

perhaps, none of them see that entry. With this reformulation of the communication game, none

of our results would change, so our model can accommodate systems with private transactions.

As an example, consider a network of payments via bank accounts. A seller accepting a payment

must verify that funds have been deposited in his account before delivering goods to a buyer.

The seller therefore “decides” on a transaction when his banker informs him the transaction has

been completed (which can be interpreted as receiving a “vote” from the banker), but he need

not know anything about other transactions that are occurring simultaneously. Another example

is cryptocurrency blockchains that use “zero-knowledge proofs” to provide transaction anonymity

(e.g. Zcash). No node in the network can see others’ transactions, but all nodes can verify payments

they receive and determine whether a transaction has received enough votes to be considered final.

5 The Fault-Tolerance Requirement

The Blockchain Trilemma characterizes conditions under which a record-keeping system requires

the provision of incentives against double-spending. In this respect, our model’s key assumptions

are (1) that the record-keeping system is fault-tolerant to some extent, and (2) that communication

is asynchronous. The key intuition behind the proof is that under any fault-tolerant consensus al-

gorithm in an asynchronous network, dishonest behavior can cause different nodes to draw different

conclusions about the transactions that were added to the ledger. Necessarily, then, some node

must accept a set of transactions that is not actually final.

In this section, we will first discuss the role of fault-tolerance in our model. Then, we will

extend our notion of fault-tolerance to be much more general: while in our benchmark model, we

restricted faults to be situations in which some agents’ computers are offline, we will extend our

results to a setting in which faulty nodes can engage in arbitrary behavior. Section 6, in turn, will

discuss the role of asynchronicity.

5.1 The role of fault-tolerance

If no fault-tolerance were required, it would be possible to design a consensus algorithm under

which all honest nodes are guaranteed to reach agreement on a finalized set of transactions. When

nodes cannot be faulty, the designer can specify a protocol of the following form.

1. “Once all nodes have confirmed that they believe a particular set of transactions x should be

added to the ledger, decide that x is final.”

2. “After deciding on a final set of transactions x, do not revert that decision.”

This is feasible because when no node is faulty, then each node n will eventually receive a message

from all other nodes n′. After sending enough messages to one another, nodes will be able to reach

agreement on a set of transactions to finalize.
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Under such a protocol, no two honest nodes can ever decide on different outcomes x and x′.

Moreover, even if some nodes act dishonestly after a consensus on some outcome x has been reached,

nodes that act honestly will never be fooled into reverting the original set of finalized transactions.

Our existence result in the Blockchain Trilemma, in fact, proves that this protocol achieves con-

sensus without need for incentives: we show that when the fault-tolerance requirement is given up,

there exists a consensus algorithm that is resource-efficient and achieves full transferability.

In reality, though, computer networks are bound to have faults. The problem posed by a fault-

tolerance requirement is that it is infeasible to wait for a confirmation of an outcome x from all

other nodes. Faulty nodes cannot be relied upon to confirm any set of transactions, so non-faulty

nodes must proceed without their participation. Fault-tolerant protocols must therefore permit a

node n to make a decision even without receiving for confirmation from some other node n′. In turn,

this property can create a situation in which n and n′ temporarily decide on different outcomes x

and x′, meaning that one of those outcomes will not be final.

As it turns out, a fault-tolerance requirement on its own is insufficient to render a protocol

vulnerable to double-spend attacks. Section 6 will demonstrate why the asynchronicity assumption

is also essential. For now, we will generalize our model to show that our conclusions apply to

essentially any fault-tolerant system rather than just the ones we consider in our benchmark model,

in which faulty nodes simply do not communicate.

5.2 A richer model of faults

In our benchmark model, we make a somewhat weak assumption: faulty nodes do not commu-

nicate, representing computers that are currently offline or have suffered from a crash. A “faulty”

node could also represent a potential new user who has not yet joined the network. In real-

ity, however, the design of consensus algorithms often takes into account other faults that nodes

may experience. For instance, in some cases it is appropriate to account for the possibility that

nodes may suffer from programming errors that cause them to behave erratically, sending random

messages to others. In other cases, designers of digital ledgers worry that some agents might be

malicious in the sense that they have an incentive to undermine the ledger, intentionally aiming to

prevent consensus.

Our consensus framework can be easily extended to accommodate these considerations.

Assumption 1’. There are two frictions in communication.

1. Messages are delivered with a random lag of at most ∆ rounds.

2. Some agents have faulty nodes, which may exhibit arbitrary behavior.

Agents with non-faulty nodes act strategically, taking the behavior of arbitrary nodes as given.

Their strategies must remain an equilibrium no matter how faulty nodes behave (even if they act

maliciously in order to prevent consensus). Furthermore, the consensus algorithm must be designed

so that agents who follow the communication protocol reach agreement regardless of the behavior
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of faulty nodes. In this setting, we therefore strengthen Conditions 1 and 2, updating our definition

of what it means for a set of agents S to achieve consensus.

Definition 2’. A subset of agents S ⊂ N can achieve consensus under the consensus algorithm

(G, C) if, when agents in S have non-faulty nodes, the following two conditions hold:

� (Condition 1’) Agents in S are guaranteed to reach consensus on an individually rational

outcome if they follow the protocol C, regardless of how faulty nodes behave.

� (Condition 2’) Taking as given any feasible behavior of faulty nodes, no coalition of agents

has an incentive to jointly deviate from the protocol C.

Condition 2’, clearly, is a substantial strengthening of our equilibrium concept. We expand on this

definition in the Appendix (Definition A.4).

We must also modify our definition of fault-tolerance. When faulty nodes can exhibit a wider

range of behaviors, it is no longer possible to require that any majority of agents be able to reach

consensus. This is a well-known result in the distributed consensus literature (see Bracha and

Toueg, 1985). However, in this case, consensus can typically be achieved as long as a supermajority

of two-thirds of nodes follow the communication protocol.

Definition 3’. A consensus algorithm (G, C) is strongly fault-tolerant if any subset of more

than two-thirds of agents can achieve consensus (in the sense of Definition 2’).

The rest of our model remains unmodified. We can prove all of the main results in our paper

under the more stringent requirement that equilibria must tolerate arbitrary faults.

Proposition 1. Under Assumptions 1’ and 2 - 4, Lemma 1 and Lemma 2 continue to hold. The

Blockchain Trilemma holds as well, so long as the fault-tolerance requirement is replaced with strong

fault-tolerance (Definition 3’).

The proofs of the double-spend lemma and the impossibility result are in the Appendix. The proof

of the existence result can be found in the Online Appendix.

The double-spend lemma (Lemma 2) holds because it only relied on the possibility that faulty

nodes may shut down, which of course is a possibility that we allow for in the extended framework.

The impossibility result of the Trilemma therefore goes through as well, since it depended only on

that lemma. Proving the existence result in the Trilemma, on the other hand, requires that we

construct different consensus algorithms from those used in the original proof, but again we are

able to adapt methods from the distributed consensus literature.

The results in this section show that there is a sense in which, up to a point, it is simple to

design a consensus algorithm that is robust to arbitrary types of non-strategic behavior. That is,

the algorithm described in Section 5.1 can be generalized to this setting. However, a fault-tolerant

consensus algorithm always creates the possibility of profitable dishonest behavior by strategic

agents. Hence, the problem of designing a consensus algorithm that is robust both to non-strategic
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and strategic deviations is hard. The designer must always provide some type of incentive for

honesty, which requires giving up full transferability or resource-efficiency.

Importantly, our impossibility result rests only on the weak assumption that computers may

fail to communicate. By contrast, in this section we are able to prove our existence result under the

much stronger assumption that attacks on the network may be malicious. Therefore, we actually

prove our Trilemma under the most stringent possible assumptions on the behavior of faulty nodes.

6 The Asynchronicity Assumption

In this section, we address the second key property of communication that leads to the Blockchain

Trilemma: asynchronicity (Assumption 4). Again, we will first discuss the role of this assumption

and then examine what happens if the assumption is relaxed. We will show that asynchronicity is

indeed essential for our results. However, we demonstrate that even when Assumption 4 is relaxed,

a consensus protocol satisfying the three properties in the Trilemma does not scale well to large

systems.

6.1 The role of asynchronicity

From our discussion in Section 5.1, it may seem as if it is hopeless to design a foolproof,

fault-tolerant consensus algorithm. However, this is not actually the case: the assumption of

asynchronicity is required as well. By assuming asynchronous communication, we impose that

the designer cannot make the protocol rules contingent on ∆, the maximum possible message lag

between nodes. That is, the protocol cannot provide instructions of the form:

1. “If more than ∆ rounds pass without receiving a message from node n′, label n′ as a faulty.

Ignore n′ thereafter.”

2. “Once a confirmation of the set of transactions x has been received from all nodes who have

not been labeled faulty, decide that x is final.”

3. “After deciding on a final set of transactions x, do not revert that decision.”

Note that it is equivalent to assume that agents do not have access to perfectly synchronized clocks

that can tell them how many “rounds” to wait, hence the label “asynchronous.”

This type of protocol circumvents the problem posed by the presence of faulty nodes: those

who follow the protocol will never be left waiting for a message from a faulty node, because after ∆

rounds have passed, any node that follows the protocol will learn the identities of faulty nodes and

label them as such. Hence, nodes that follow the protocol do not have to wait for confirmations

from all nodes (which is infeasible). Rather, it is feasible to wait for confirmation from all nodes who

have not deviated from the protocol, and this process is guaranteed to terminate in finite time. If n

and n′ both follow the protocol honestly, then, they cannot decide on different sets of transactions x

and x′. This is because n must wait for confirmation from n′ before deciding (and vice-versa). Per
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the protocol instructions, after nodes have decided on a set of transactions, it is never reverted, so

attackers cannot subvert the finality of transactions. Indeed, we will show that under synchronous

communication (i.e., when the designer knows ∆), it is possible to design a fault-tolerant and

resource-efficient consensus algorithm that achieves full transferability (Proposition 2).

How does this protocol guarantee transaction finality? It permits those who follow the protocol

to reach common knowledge of the identities of nodes who have disobeyed. In this sense, syn-

chronicity is an extremely strong assumption on agents’ information. After a set of nodes S ⊂ N
have agreed on a collection of transactions x, they know that any node outside of S must either

be faulty or otherwise disobedient (for malicious reasons, perhaps). Hence, after deciding on x, if

nodes in S ever receive evidence that a node n′ ̸∈ S believes a different set of transactions x′ should

be added to the ledger, then they know that n′ must be controlled by an agent who disobeyed the

protocol and can therefore safely ignore n′.

In reality, though, synchronous communication is far too strong an assumption for most appli-

cations: on most public networks, such as the internet, it is impossible to know precisely the length

of transmission lags between all users of the network. In principle, transmission lags can also be

extremely long – a new user of a network may join years after its inception. Achieving common

knowledge of the identities of agents who disobeyed the protocol is therefore not achievable in

practice. Asynchronicity, then, can be viewed as a perturbation of the information structure that

precludes common knowledge of certain events. Hence, when a set of nodes S agrees that a set of

transactions x is final, they cannot necessarily conclude that any n′ ̸∈ S who disagrees with that

conclusion is dishonest. The double-spend lemma proves this point: given a fault-tolerant consen-

sus algorithm in an asynchronous network, it is always possible for two honest nodes to temporarily

finalize different sets of transactions.

Attempting to circumvent asynchronicity: We have effectively assumed that message

delays are exogenous properties of the communication network, but one might imagine that the

designer could implement a scheme that incentivizes agents to alter the communication network

and remove these frictions. In fact, the designer could provide certain record-keepers with rewards

for staying online at regular intervals. Some proof-of-stake systems do exactly this: validators are

rewarded for regularly sending messages, and if they fail to do so, they are removed. In principle,

it would also be possible to reward some agents for ensuring their computers are free of faults.

While it may be possible to provide some important record-keepers with rewards to overcome

communication frictions, however, what would be required is actually that all potential users of

the network stay online at regular intervals. Above, we illustrate that our results require only the

possibility that two honest agents disagree about the set of final transactions, which in turn is

possible whenever they cannot be relied upon to communicate synchronously. It does not seem

possible, in practice, to reward all potential users of a system for staying online continuously,

especially because the set of users may be unknown ex-ante.
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6.2 Synchronous settings and scalability

We next address how our results change when we relax the asynchronicity assumption (Assump-

tion 4), which was key to the proof of many of our main results. In this section, we assume that

communication is instead synchronous.

Assumption 4’. The maximum message delay ∆ is known to the designer.

Recall that the synchronicity assumption amounts to a restriction on the set of communication

protocols the designer can choose. We formally define the class of permissible communication

protocols in the Appendix (Definition A.10). The assumption of synchronous communication is

perhaps appropriate in a private network of known participants who are guaranteed to be connected

to one another at regular intervals. For example, a consortium of firms who build a network to

track deliveries to one another (e.g., a permissioned supply chain management blockchain) would

fall into this category. Nevertheless, we address this case for completeness.

When communication is synchronous, it is always possible to simultaneously achieve fault-

tolerance, resource-efficiency, and full transferability (as long as it is possible to do so with a

trusted mediator).

Proposition 2. Under Assumptions 1’, 3, and 4’, there exists a consensus algorithm (G, C) that

is strongly fault-tolerant, resource-efficient, and achieves full transferability.

We prove this proposition (as well as Proposition 3 below) in the Online Appendix.

We are able to prove the result under the assumption that faulty nodes may act in arbitrary

ways (which is clearly more difficult than the case in which they simply do not communicate). Our

construction is related to the algorithm originally derived by Lamport, Shostak, and Pease (1980)

in the context of the “Byzantine Generals” problem. The simple intuition underlying Proposition 2

is that in the deviation described by the double-spend lemma (Lemma 2), what permits dishonest

agents to deviate is that those who fall victim to the attack cannot detect whether others have

faulty nodes (e.g., Bob could not tell whether Carol’s node was faulty). When communication is

synchronous, by contrast, it is possible to do so: if a node n has not received a message from another

node n′ in more than ∆ rounds, n can safely conclude that n′ is either faulty or has strategically

deviated from the protocol.

A primary concern facing designers of decentralized consensus systems is the scalability of the

consensus algorithms they use.27 Decentralized blockchains have so far not been proven capable

of scaling to the same level as centralized systems. For example, while Bitcoin’s payment system

processes about seven transactions per minute, Visa’s system can process several million. The

algorithm constructed in Proposition 2 resolves the Blockchain Trilemma, but this result raises an

important question: is the synchronous consensus algorithm scalable? We prove a negative result:

as the number of agents using the record-keeping system grows, the time to consensus grows linearly

as well.
27For example, Vitalik Buterin has posited a trilemma in which blockchains cannot simultaneously be secure,

decentralized, and scalable.
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Proposition 3. Suppose that Assumptions 1’, 3, and 4’ hold. Then any consensus algorithm (G, C)
that is strongly fault-tolerant, resource-efficient, and achieves full transferability must take at least
N
3 ·∆ rounds of communication to reach consensus.

Proposition 3 says that when faulty nodes can behave in arbitrary ways, it is impossible to

resolve the Blockchain Trilemma with any algorithm that runs in less than O(N) time, where N

is the number of agents. A scalable system, though, should require that consensus be attained in

O(1) time – the time for one agent’s transaction to process should be (roughly) independent of the

number of users. Note, additionally, that the time to reach consensus scales with ∆, the maximum

time for messages to be delivered between nodes (which, in turn, depends on how long any node in

the network can remain offline). Hence, the Trilemma is resolved only by sacrificing scalability. In

a sense, then, if the designer is required to provide agents with a scalable record-keeping system,

our results carry over even to settings in which agents have access to synchronized clocks.

The reason is that reaching agreement in the presence of faults is hard. To reach consensus,

non-faulty agents must attain common knowledge of a statement of the form “all other non-faulty

agents will decide that the outcome is x.” Faulty nodes can act maliciously, making it as difficult

as possible for non-faulty agents to realize exactly who has deviated from the consensus algorithm.

This means, though, that when a number NF of nodes are faulty, agents who act honestly must

then check all possible joint deviations by coalitions of NF nodes. As it turns out takes NF + 1

rounds of cross-checking via back-and-forth messages. Only then is it possible to guarantee that a

consensus has been reached. Therefore, consensus cannot be reached in fewer than N
3 ∆ rounds of

communication when there can be as many as N
3 faulty nodes (since a message is delivered in at

most ∆ rounds).

7 Conclusion

The fundamental problem in digital record-keeping is to develop a method by which agents

can reach an agreement on an update to a ledger in the presence of faults. When an inherently

trustworthy mediator is available, this problem is easy to solve: the mediator can report updates

to the ledger to all of its users, guaranteeing they remain in agreement about the ledger’s contents.

When record-keepers are self-interested, however, they have incentives to equivocate and report

mutually inconsistent outcomes to different sets of agents. In an economic environment, then, the

provision of incentives for honesty is central to the digital record-keeping problem.

We develop a framework to study the design of consensus algorithms in a setting without

trustworthy agents (in contrast to the computer science literature, which assumes certain nodes to

act honestly). Our main result is a Blockchain Trilemma, which proves that any consensus algorithm

must give up fault-tolerance, resource-efficiency, or full transferability. The central tension faced

by the designer is between fault-tolerance and incentive provision. The designer can eliminate the

need for incentives by giving up on the fault-tolerance requirement, but in many important digital

record-keeping applications, it is unrealistic to assume that agents’ computers will always function
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properly. Hence, the designer must provide either ex-ante incentives for agents to behave honestly

(by giving up resource-efficiency) or impose ex-post punishments on dishonest agents (by giving up

full transferability).

We have shown that the logic underlying our result is quite general and extends to settings be-

yond our benchmark model. In particular, we are able to introduce arbitrary misbehavior by faulty

nodes without changing our results. Moreover, we show that even if consensus were synchronous,

the designer could achieve the goals of fault-tolerance, resource-efficiency, and full transferability

only by designing a protocol that takes a prohibitively long time to run.

There are two promising directions future research might take. First, we have not characterized

constrained-optimal consensus algorithms. The nature of such an algorithm would likely be quite

specific to the relevant application, so we have not analyzed that problem in our general model.

Second, in mechanism design, it is typical to study implementation protocols that guarantee all

equilibria of a given mechanism yield a desirable outcome, while in our analysis, the designer is

content with specifying a single equilibrium (i.e., communication protocol) that yields a desirable

outcome. Future work could study the problem of designing communication games without “bad”

equilibria, as implementation theory has done.
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A Formal preliminaries

In this section, we set up the formal framework required for a precise statement of our results

as well as our proofs.

A.1 Communication games and an equilibrium concept

We begin by defining the class of communication games considered in Section 2.2. First, we set

up some notation. The set of outcomes will be denoted X , and the subset of outcomes that are

achievable by S ⊂ N is denoted XS = {(y(x), t(x)) : S(y) ⊂ S ∀ y ∈ y(x)}. If in a round k, a

node’s most recent decision was x, we write dnK = x.

A communication game specifies a message vocabulary, the cost of each message, and the set

of messages that each node is permitted send as well as the set of outcomes on which it can decide

in each round.

Definition A.1. A communication game G consists of

� A vocabulary M of messages that nodes may send to one another, with each m ∈ M having

an associated proof-of-work cost κ(m) ≥ 0;

� A set of permissible messages Mnk ⊂ M that can be sent, and outcomes Dnk ⊂ X that can be

decided on, by each node n ∈ N in each round k = 1, 2, . . . (which may depend on the history

Hnk of messages that node n has exchanged through round k).

When a set S of agents have non-faulty nodes, the resulting communication game played among

those agents is denoted GS.

Recall that agents communicate until a round K such that all non-faulty nodes have decided

on an outcome x∗, dnK = x∗ for all non-faulty n. At this point, payoffs vn + tn(x
∗) are realized.

The set of transactions realized in the game is

y = {y ∈ Y : ∃ x ∈ X , k ∈ N s.t. y ∈ y(x), dnk = x ∀ n ∈ S(y)}.

Agents’ payoffs are given by Equation 1.

Strategy spaces and expected payoffs: Here we detail the sets of strategies available to each

agent. Agents program their nodes to follow a behavior, which specifies how the node communicates

with others, and when it will decide on an outcome, based on the information it possesses. In turn,

the information held by a node in round k consists of the state of the world θ, which should be

thought of as the node’s initial input, and the history of messages it has exchanged with others up

until round k.

We must first define the history of messages exchanged by a node n. In a round k, a node will

send a set of messages M̂S
nk and receive a set of messages M̂R

nk. We let hnk = M̂S
nk ∪ M̂R

nk ⊂ M be

the set of messages exchanged by node n in round k, so that the history of messages exchanged
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by n through round k is Hnk = (hn0, hn1, . . . , hn,k) ∈
(
2M × 2M

)k+1
. We let Hnk be the set of

histories that node n can exchange through round k.

In round k of communication, a node may send a message in mn,n′,k ∈ Mnk to each other

node n′ ∈ N . A permissible messaging strategy of node n towards n′ in round k is then σm
n,n′,k :

Hnk ×Θ → Mnk. We let σm
n = {σn,n′,k : Hnk ×Θ → Mnk | n′ ∈ N , k ∈ N} denote a full messaging

strategy for agent n, and we define Σm to be the set of feasible messaging strategies for n.

Similarly, if Dnk is the set of outcomes on which that node n may decide in round k, then a

feasible decision strategy for node n in round k is σd
nk : Hnk ×Θ → Dnk, and a full action strategy

is σd
n = {σd

nk : Hnk ×Θ → Dnk | k ∈ N}, with Σd
n denoting the set of action strategies. Then, the

set of behaviors available to node n is Σn = Σm
n × Σd

n.

Definition A.2. A behavior σn for a node n consists of a messaging strategy mn,n′(Hnk, θ) ∈ Mnk,

specifying which message it will send to node n′, and a decision strategy dn(Hnk, θ) ∈ Dnk, specifying

which action it will recommend to its owner, at each information set (Hnk, θ). A communication

protocol C = {σn}n∈N is a profile of feasible behaviors for each node.

A pure strategy for agent n is simply a behavior σ ∈ Σn for that agent’s node. We will sometimes

denote a strategy profile by σ ∈ ∏
n∈N

Σn. We let

Vn(σ) = E
[∑

y∈y
un(y|θ) + vn + tn −

∑

m∈M̂n

κ(m)
∣∣ σ

]

denote the expected payoff of agent n when the strategy profile is σ (where the expectation is taken

over the state of the world θ as well as the lag in the delivery of messages, which in turn determine

the messages m that are sent by each node, the set of transactions y that are realized, and the final

consensus ledger update t).

Equilibrium definition: If S is the set of non-faulty agents, we denote a profile of feasible

behaviors of their nodes by σS = {σn}n∈S ∈ ∏
n∈S

Σn. Under our baseline assumptions (Assumption

1), faulty nodes do not communicate at all, nor do they make any decisions. We denote this

behavior by σ0. Hence, the profile of behaviors of faulty nodes will be denoted σ0 = {σ0}n̸∈S . The
expected payoff of a non-faulty agent n ∈ S under the behavior profile σS is denoted Vn(σS ,σ

0).

These payoffs define the communication game GS played among agents in S when agents N−S have

faulty nodes. When a coalition S′ ⊂ S deviates from the prescribed strategy profile, we denote the

altered strategy profile by (σ̃S′ ,σS−S′ ,σ0), so that agents’ expected payoffs are Vn(σ̃S′ ,σS−S′ ,σ0).

Using this notation, our equilibrium concept can then be expressed as follows.

Definition A.3. A communication protocol C = σ ∈ ΣN constitutes a fault-tolerant equilibrium

for a subset S ⊂ N of agents if, whenever nodes in N−S are faulty, the behaviors {σn}n∈S constitute
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a Strong Nash equilibrium of GS That is, for all potential deviating coalitions S′ ⊂ S,

̸ ∃ σ̃S′ ∈
∏

n∈S′
Σn s.t. Vn(σ̃S′ ,σS−S′ ,σ0) ≥ Vn(σS ,σ

0) ∀ n ∈ S′

Vn(σ̃S′ ,σS−S′ ,σ0) > Vn(σS ,σ
0) for some n ∈ S′

Note that under this definition, agents are assumed to know the identities of faulty nodes.

Extension in Section 5.2: In Section 5.2, we permit a faulty node n to exhibit any arbitrary

behavior in σ̃F
n ∈ Σn. When the behavior profile of faulty nodes is σ̃F = {σ̃F

n }n̸∈S ∈ Σn, the

expected payoff of an agent n ∈ S under the behavior profile σS is denoted Vn(σS , σ̃F ). These

payoffs define the game GS(σ̃
F ). Similarly to the benchmark case, when a coalition S′ ⊂ S deviates

from the prescribed strategy profile, we denote the altered strategy profile by (σ̃S′ ,σS−S′ , σ̃F ), so

that agents’ expected payoffs are Vn(σ̃S′ ,σS−S′ , σ̃F ). Using this notation, our equilibrium concept

can then be expressed as follows.

Definition A.4. A communication protocol C = σ ∈ ΣN constitutes a strongly fault-tolerant

equilibrium for a subset S ⊂ N of agents if if the behaviors {σn}n∈S constitute a Strong Nash

equilibrium of GS(σ̃F ). That is, for all σ̃F ∈ ∏
n̸∈S

Σn. for all potential deviating coalitions S′ ⊂ S,

∀ σ̃F ∈
∏

n̸∈S
Σn : ̸ ∃ σ̃S′ ∈

∏

n∈S′
Σn s.t. Vn(σ̃S′ ,σS−S′ , σ̃F ) ≥ Vn(σS , σ̃F ) ∀ n ∈ S′

Vn(σ̃S′ ,σS−S′ , σ̃F ) > Vn(σS , σ̃F ) for some n ∈ S′

Intuitively, a set of strategies constitutes a strongly fault-tolerant equilibrium for a subset of non-

faulty agents S if those strategies are coalition-proof regardless of how faulty nodes communicate.

A.2 The design of consensus algorithms

In this section, we adapt the theory of consensus algorithm design pioneered in computer science

by Lamport, Shostak, and Pease (1980) to our economic environment. A consensus algorithm

(chosen by the designer) consists of two objects: (1) a communication game played by agents, and

(2) a communication protocol dictating how nodes should be programmed to communicate.

Definition A.5. A consensus algorithm (G, C) consists of:

� A communication game G (as in Definition A.1);

� A communication protocol C (as in Definition A.2).

In what follows, it will also be useful to define the set of outcomes achievable by a set of agents

S that are individually rational in state θ. This set is

X IR
S (θ) = {x ∈ XS : Inequality IR holds in state θ}.
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Designing a consensus algorithm does not guarantee that the communication strategies specified

by the designer will be an equilibrium. The concept of a consensus algorithm by itself, therefore, is

economically vacuous. We define a consensus set to be a set of agents S ⊂ N who have incentives to

behave according to the communication protocol even when all other agents are faulty and achieve

consensus on an outcome x ∈ XS .

Definition A.6. A subset of agents S ⊂ N is a consensus set of an algorithm (G, C) if the

following two conditions hold:

� (Condition 1) Whenever nodes in S communicate according to the communication protocol

C, and the state of the world is θ, they eventually achieve consensus on an individually rational

outcome x ∈ X IR
S (θ);

� (Condition 2) The behaviors C constitute a fault-tolerant equilibrium for agents in S.

This definition formalizes Conditions 1 and 2 in the main text. A consensus set is simply a set

of nodes that can achieve consensus.

Now that we have developed our formal preliminaries, we can define the three ideal properties

of a consensus algorithm.

Definition A.7. We define the following three properties of a consensus algorithm (G, C):

� (Fault-tolerance) Any set of agents S ⊂ N with |S| > N
2 is a consensus set of (G, C);

� (Resource-efficiency) The consensus algorithm does not make use of costly messages,

κ(m) = 0 for all m in the message vocabulary M specified by G.

� (Full transferability) For each consensus set S ⊂ N of (G, C), whenever nodes in S are

non-faulty and the state is θ, when agents in S follow the protocol C, they reach consensus on

each x ∈ X IR
S (θ) with positive probability.

A.3 Model assumptions

In this section, we provide technical details on some of our model’s assumptions. Assumptions

1 and 2 have been fully specified at this point. On the other hand, the assumptions about the

designer’s capabilities, Assumptions 3 and 4, require a formalization. In providing details on

Assumption 4, we will fully explain the synchronicity assumption in Section 6.2 (Assumption 4’)

as well.

Types of proofs: The designer may impose that nodes cannot send any arbitrary message

m ∈ M. Instead, a node n may have access only to a feasible set of messages Mnk that it may send

in round k and a feasible set Dnk of decisions that it may recommend in round k (as in Definition

A.1). A proof is a restriction on the set of messages or decisions that a node is permitted to make: if

a node cannot provide the proof required to send a message, it is not permitted to do so. Likewise,

if a node does not have the required proof that a certain outcome was entered the ledger, it cannot
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decide on that outcome and send a signal to its owner proving that the ledger was updated. Hence,

our assumptions about the proofs the designer can require amount to restrictions on the types of

communication games G that the designer can specify.

Before proceeding, we first define two notions of a partial order on the set of message histories.

We define the collection of messages M̂(H) ⊂ M contained in a history Hnk ∈ Hnk by

M̂(Hnk) = {m : ∃ k′ ≤ k s.t. m ∈ M̂R
nk}.

Then, we define a subset order ⪯s and for two histories of messages H,H ′ ∈ Hn (where Hn ≡
∞⋃
k=0

Hnk), we define H ⪯s H ′ if M̂(H) ⊂ M̂(H ′).

We also introduce a concatenation order ⪯c on the set of message histories. We define a message

concatenation as a finite sequence of messages M, so that the space of message concatenations is

Ξ(M) =
⋃
J∈N

MJ , with a generic element being m1 : m2 : · · · : mJ (where each mj ∈ M). Given

an ordered set of messages M = {m1, . . . ,mJ} ⊂ M, we define the concatenation of that set to be

ξ(M) = m1 : m2 : · · · : mJ . The concatenation of a history of messages Hnk ∈ Hnk is defined as

ξ(Hnk) = ξ(hn1) : ξ(hn2) : · · · : ξ(hnk).

We define H ⪯c H ′ if ξ(H ′) is at least as long as ξ(H) and can be written as ξ(H ′) = ξ(H) : ξ′,

where ξ′ ∈ Ξ(M) is any other sequence of messages.

Next, we formally define the designer’s capabilities laid out in Assumptions 3 and 4.

Definition A.8 (Proof-of-identity). A node’s feasible set of messages Mnk and decisions Dnk may

depend on its identity n.

Definition A.9 (Proof-of-receipt). A node’s feasible set of messages Mnk and decisions Dnk are

weakly increasing in the history of messages Hnk it has exchange (in the subset order).

Therefore, the set of messages that a node can send and the actions it can recommend, in general,

must be a function of the node’s identity and the history of messages it has exchanged. Assumptions

3 therefore amounts to the restriction that the sets Mnk and Dnk are of the form Mnk = M(n,Hnk)

and Dnk = D(n,Hnk), with M(n,H) ⊂ M(n,H ′) and D(n,H) ⊂ D(n,H ′) whenever the collection

of messages in H ′ contains that in H, H ⪯s H ′. Assumption 3 can therefore be rewritten as

Assumption A.1. The designer can choose a communication game G such that:

� (Proof-of-identity and proof-of-receipt) The permissible sets of messages Mnk and de-

cisions Dnk for node n in round k take the form Mnk = M(n,Hnk) and D(n,Hnk), where

M(n,H) ⊂ M(n,H ′) and D(n,H) ⊂ D(n,H ′) whenever H ⪯s H ′.

� (Proof-of-work) Each message m ∈ M can be associated with an arbitrary proof-of-work

cost κ(m) ≥ 0, which the sender must pay in order to send m.
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Asynchronicity assumptions: Assumption 4 amounts to a restriction on the types of com-

munication protocols C ∈ ∏
n∈N

Σn that the designer can choose. When the designer knows ∆, the

designer may specify the message sent by nodes in each individual round and, moreover, may use

the constant ∆ in the specification of the communication protocol. On the other hand, when the

designer does not know ∆, the designer does not know the length of a communication round, so it is

not possible to condition nodes’ instructions on the number of rounds that have passed. Addition-

ally, the designer may not use the constant ∆ in the definition of the algorithm. However, it is still

possible for the designer to specify instructions based on the order in which nodes received mes-

sages, since that does not depend on the time interval between rounds of communication. That is,

while it is not possible to condition instructions on a node’s history Hnk, it is possible to condition

instructions on ξ(Hnk).

Definition A.10 (Synchronicity). A communication protocol C ∈ ∏
n∈N

Σn is synchronous if each

node’s behavior is a function of the form σn :
⋃
k∈N

Hnk × Θ × N → Mnk × Dnk, where the last

argument denotes the value of ∆, the maximum message lag.

A communication protocol C ∈ ∏
n∈N

Σn is asynchronous if each node’s behavior is a function

of the form σn :
⋃
k∈N

Hnk ×Θ → Mnk ×Dnk, such that:

� If H ≃c H ′, then σn(H, θ) = σn(H
′, θ);

� The message-decision pair (m, d) = σn(H, θ) does not depend on ∆.

Assumption A.2. The designer must choose an asynchronous communication protocol C (as in

Definition A.10).

B Benchmark result (Lemma 1)

In this section, we prove Lemma 1. Note that in the proof, we do not use the fact that faulty

nodes are restricted to not communicate at all – they are permitted to communicate in arbitrary

ways. Hence, Lemma 1 carries over to the setting with arbitrary behavior by faulty nodes outlined

in Section 5.2.

B.1 The mediated consensus algorithm

First, we formally describe a consensus algorithm with a trusted mediator. There is a special

agent, the trusted mediator, who is assumed to follow the communication protocol without the

need for incentives. We denote this agent by n̂ ̸∈ N . This agent, just like those in the model,

knows the state of the world θ but not the set of faulty agents.28

The message space available to agents n ∈ N is extremely simple. For each possible type θ ∈ Θ,

there is a corresponding message m = θ. Hence, M = Θ. Agents are instructed to send the state θ

28The assumption that the mediator knows θ is inessential.
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to the mediator in the first round, and they send no messages thereafter, so mn,n̂(H = ∅, θ) = θ, and

mn,n′(H, θ) = ∅ for all other recipients n′ and histories of exchanged messages H. In what follows,

there are two cases to consider: the case of synchronous communication (Assumption 4’) and the

case of asynchronous communication (Assumption 4), since we do not impose either assumption in

the statement of the lemma.

Synchronous communication: In the case of synchronous communication (Assumption 4’),

the mediator waits until round ∆ to send a recommended outcome to agents. We say the mediator

receives a valid input θ from agent n if, by round ∆, the mediator has received precisely one message

m = θ from node n. Let S be the set of agents from whom the mediator received a valid input,

define θ̂n to be the message sent to the mediator by each n ∈ S. If all respondents sent the same

state of the world to the mediator, i.e. θ̂n = θ for all n who respond, then the mediator computes

an outcome x ∈ X IR
S (θ) at random and sends the message x to all agents (so the message space for

the mediator is the space of possible outcomes). Otherwise, if agents send inconsistent reports to

the mediator, then the mediator reports nothing to agents.

Once an agent receives a message x from the mediator, the communication protocol specifies

that they should program their nodes to decide on outcome x. This means that

dn(H, θ) =

{
x n has received exactly one outcome x from n̂

∅ otherwise

Asynchronous communication: When communication is asynchronous (Assumption 4), the

mediator cannot necessarily wait until messages from all agents have been received. Then, in-

stead of waiting ∆ rounds, the mediator first waits until valid inputs have been received from at

least a majority of agents. The mediator then follows the same procedure as in the case of syn-

chronous communication (described above), and agents are instructed to respond to the mediator’s

recommendations in the same way.

B.2 Proof of Lemma 1

Proof. We define the mediated consensus algorithm in Appendix B.1. Under that algorithm, all

agents announce the state of the world θ to the mediator, who then computes an outcome x∗ ∈
X IR
S (θ) at random (recalling that the set of agents N−S with faulty nodes fail to report altogether).

A subset of non-faulty agents S′ ⊂ S cannot profitably deviate by coordinating on a different

messaging strategy. If they report a state of the world θ̃ different from the true state, agents in

S\S′ will report θ regardless. By the definition of the mediated consensus algorithm, in this case

the mediator will not report an outcome back to agents, so consensus will not be reached. Similarly,

if agents in S′ coordinate on a decision x′ different from x, agents in S\S′ will not decide on x′ and

the payoffs vn + tn(x
′) will not be realized.

It is also not possible for the entire set of non-faulty agents S to deviate profitably. They

cannot fool the mediator by reporting a different state θ̃ ̸= θ – the mediator is assumed to know
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θ.29 Additionally, since any outcome recommended by the mediator is individually rational, no

agent will opt to remain silent and report nothing to the mediator.

The mediated consensus algorithm, by construction, achieves consensus on each individually

rational outcome in state θ with positive probability. It does not make use of costly messages, and

as we have shown, no matter which subset of agents S is non-faulty, it is optimal for agents to

follow the protocol. The mediated consensus algorithm therefore achieves fault-tolerance, resource-

efficiency, and full transferability, as claimed.

C Proof of the impossibility result

In this section, we present a full, formal proof of the impossibility result in the Blockchain

Trilemma (Proposition 3). We begin by proving the double-spend lemma and then prove the

impossibility result.

C.1 Proof of Lemma 2

We first state the double-spend lemma more precisely.

Lemma C.1. Suppose Assumptions 1-4 hold. Let (G, C) be a consensus algorithm with overlapping

consensus sets S, S′ such that S ∩ S′ = ∅, S ̸⊃ S′, S′ ̸⊃ S. Consider a pair of outcomes x ∈ XS,

x′ ∈ XS′ such that there exists θ ∈ Θ such that, when agents in S (resp. S′) are non-faulty and

follow the protocol C, they reach consensus on x (resp. x′) with positive probability.

Then for large enough ∆, there exist disjoint coalitions of agents A = S ∩ S′, B = S\S′, and

C = S′\S such that in the game GS∪S′, there is a deviation σ̃x→x′
= {σ̃x→x′

n }n∈A for nodes in A

such that in state θ:

� With some probability p ∈ (0, 1), A∪B reaches consensus on the outcome x, and then A∪C

reaches consensus on x′;

� With probability 1 − p, agents in A receive precisely the same payoff that they would have

received if they had behaved honestly.

Proof. The first step in our proof is to define the strategy outlined in the proof sketch of the

double-spend lemma. We are given a consensus algorithm (G, C) and assume a game GS∪S′ and two

consensus sets S, S′ with S ∩ S′ ̸= ∅.
The behavior of nodes in A is to first communicate honestly. Then, if they reach consensus

with nodes in B without ever receiving a message from nodes in C (or having evidence that nodes

29To see that this assumption is inessential, note that agents also would not have incentives to deviate jointly if
the mediator chose the distribution over outcomes given (θ, S) so that for all θ̃ ̸= θ, there exists some n ∈ S with
En[

∑
y∈y(x)

un(y|θ) + vn + tn(x)|θ̃, S] < En[
∑

y∈y(x)

un(y|θ) + vn + tn(x)|θ, S].

42



in B did so), they communicate with nodes in C as if they have never received any message from

nodes in B (or from each other).

The nodes of agents in A communicate honestly at any time such that agreement on x has

not been reached with members of B. If agreement on x has been reached, then nodes in A

pursue the following strategy. Once node n ∈ A decides on outcome x (say in round K), it

sends a set of messages MnK = {mn,n′(∅, θ)} to all nodes in S′. For k > K, recursively define

H̃nk = (H̃n,k−1, h̃nk ∪Mnk), where

h̃nk = {m : m was received by n from n′ ∈ S′ in round k},

Mnk = {mn,n′(H̃nk, θ) : n
′ ∈ S′},

and H̃nK = ∅. That is, nodes in A behave as if they have never received any message prior to

round K and ignore all communication from nodes in B.

We now show that for nodes in C, under asynchronous communication, the history of messages

exchanged is indistinguishable (with positive probability) from the history of messages that would

have been exchanged in the instance where nodes in N − (S ∪ S′) and nodes in B are faulty and

do not communicate. The only messages that would permit nodes in C to distinguish the history

from one in which nodes in A behave honestly are those that were either (1) sent by nodes in B,

or (2) were sent by nodes in A to C before round K.

By the definition of a consensus set (namely, Condition 1 in Definition A.6), if nodes in A and C

do not communicate with any other node, they must eventually come to consensus on an outcome

with probability one. Then there exists a number of rounds K ′ such that A∪C come to a consensus

on x′ in K ′ rounds with positive probability. Under the assumption of asynchronous communication

(as in Definition A.10), the probability of this event is independent of whether nodes in A∪C begin

communicating in the first round or in round K.

Additionally, given that communication is asynchronous, there exists ∆ large enough that, with

positive probability, no message sent by B to C arrives before round K +K ′ and no message sent

by A to C before round K arrives before K+K ′. Therefore, under this strategy, nodes in A and C

come to consensus on x′ with positive probability after nodes in A and B have come to a consensus

on x. Denote this probability by q ∈ (0, 1).

To summarize, the deviation for a node n ∈ A is σx→x′
n = (mx→x′

n,n′ , dx→x′
n ), where

mx→x′
n,n′ (Hnk, θ) =





mn,n′(Hnk, θ) ̸ ∃ H ′ ⊂ Hnk : x = dn(H
′, θ)

mn,n′(H̃nk, θ) n ∈ S′, ∃ H ′ ⊂ Hnk : x = dn(H
′, θ)

∅ n ̸∈ S′, ∃ H ′ ⊂ Hnk : x = dn(H
′, θ)

dx→x′
n (Hnk, θ) =

{
dn(Hnk, θ) ̸ ∃ H ′ ⊂ Hnk : x = dn(H

′, θ)

dn(H̃nk, θ) ∃ H ′ ⊂ Hnk : x = dn(H
′, θ)

Note that under this strategy, nodes in A never decided on any outcome other than precisely the
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one on which they would have decided under honest communication unless consensus on x has

already been reached in the past. So if q′ ∈ (0, 1) is the probability that outcome x is reached by S

in state θ under honest communication, then with probability 1 − q′, all agents decide on exactly

the same outcome as they would have under honest communication. Conditional on outcome x,

then with probability q, outcome x′ will occur as well. With probability 1 − q, consensus on x′ is

not reached, meaning nodes in A never decide on any other outcome, so transactions y(x) occur.

Under honest communication, when transactions y(x) occur, the balances of agents in A on the

ledger go to zero, so they will receive a payoff of zero when consensus is reached. Therefore, the

probability p given in the statement of the lemma is p = qq′.

Note that the restriction in Assumption 1 that faulty nodes must not communicate is irrelevant.

Under the weaker Assumption 1’ on faulty nodes’ behavior, faulty nodes are still permitted to remain

silent, so our argument remains valid for some possible behavior of faulty nodes, which is all we

require. Therefore, we have also shown that the double-spend lemma holds as required by 1.

C.2 Proof of Proposition 3 (Impossibility)

Proof. We proceed by contradiction. Assume that (G, C) is a fault-tolerant, resource-efficient con-

sensus algorithm that achieves full transferability. By the fault-tolerance assumption, there exist

overlapping consensus sets S and S′ with S ∩ S′ ̸= ∅, S ̸⊃ S′, and S′ ̸⊃ S. Again, let A = S ∩ S′,

B = S − S′, C = S′ − S.

Claim C.1. By Assumption 2 and the full transferability condition, there exists a state θ ∈ Θ such

that:

� Under an outcome x ∈ X IR
S (θ), agents in A transfer their entire balance on the ledger to

agents in B, i.e.
∑
n∈S

tn(x) = 0 with tn(x) = −vn for all n ∈ A;

� Under an outcome x′ ∈ X IR
S′ (θ), agents in A transfer their entire balance on the ledger to

agents in C, as above.

Proof. The first part of Assumption 2 guarantees the existence of such a pair of outcomes. There

is an outcome x̃ = (y(x̃), t(x̃)) ∈ XS in which agents in A transfer their entire balance to agents

in B. Then, let x be the outcome corresponding to the set of transactions y(x) = {y ∈ y(x̃) :

S(y) ̸⊂ A}. Similarly, there is an outcome x̃′ ∈ XS′ such that agents in A transfer their entire

balance to agents in C, and we can define x′ to be the outcome corresponding to transactions

y(x′) = {y ∈ y(x̃′) : S(y) ̸⊂ A}. The second part guarantees that there exists a state in which both

x and x′ are individually rational. We can simply choose a state θ in which the set of individually

rational transactions is precisely y(x) ∪ y(x′).
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By the individual rationality of x′ in state θ, we have

∑

y∈y(x′)

un(y|θ) + vn + tn(x
′) =

∑

y∈y(x′)

un(y|θ) ≥ vn > 0

for all n ∈ A. The equality above follows from the fact that we constructed x′ to satisfy tn(x
′) = −vn

for all n ∈ A, and the first inequality follows from the definition of individual rationality.

Assumptions 1, 3, and 4 are assumed to hold, and the consensus algorithm we consider is fault-

tolerant, so the double-spend lemma applies. By Lemma C.1, in state θ, there exists a deviation

for agents in A in the game GS∪S′ (i.e., when agents in S ∪ S′ are non-faulty) such that with some

probability p, in a situation in which only outcome x would have been realized under honesty, both

outcomes x and x′ are realized. With probability 1 − p, the payoffs that agents in A receive are

precisely those that would have realized under honesty.

We then need only consider what happens if agents in A engage in a deviation that causes

all nodes in S to decide on outcome x and all nodes in S′ to decide on outcome x′. The set of

transactions realized must contain y(x) ∪ y(x′), no matter what occurs after agreement is reached

on x and x′. The payoffs of agents in A must then be at least

UD
n ≥

∑

y∈y(x)∪y(x′)

un(y|θ) ∀ n ∈ A.

Note that this inequality uses the fact that agents in A can never lose more than their entire balance

on the ledger. Under honest communication, on the other hand, consensus would have been reached

on outcome x, and agents in A would have received payoffs

UH
n =

∑

y∈y(x)

un(y|θ) + vn + tn(x) =
∑

y∈y(x)

un(y|θ) <
∑

y∈y(x)

un(y|θ) +
∑

y∈y(x′)

un(y|θ) ≤ UD
n ∀ n ∈ A

The second equality uses the fact that, by construction, tn(x) = −vn for all n ∈ A. The first

inequality uses the claim proven above that
∑

y∈y(x′)
un(y|θ) > 0.

The resource-efficiency condition implies that agents’ payoffs when the deviation succeeds are

exactly UD
n , since there is no cost of sending messages. Given that UD

n > UH
n for all n ∈ A,

this deviation strictly benefits all agents in A, so honest communication according to the protocol

C cannot be a fault-tolerant equilibrium for S ∪ S′, violating the condition that S ∪ S′ must be

a consensus set (by the fault-tolerance property). Then we have shown that the assumption of

a fault-tolerant, resource-efficient consensus algorithm that achieves full transferability leads to a

contradiction. It must then be that no such consensus algorithm exists.

The proof of the impossibility result requires only the double-spend lemma and Assumption 2.

Since the double-spend lemma has been shown to hold in the extension of our model where faulty

nodes can exhibit arbitrary behavior, the impossibility result holds in that extension as well.
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