# Financial and Monetary Economics

Eco529 Fall 2020

Lecture 07: Welfare – Optimal Policy

Markus K. Brunnermeier

**Princeton University** 

# The big Roadmap: Towards the I Theory of Money

- One sector model with idio risk "The I Theory without I" (steady state focus)
  - Store of value
    - Insurance role of money within sector
  - Money as bubble or not
  - Fiscal Theory of the Price Level
  - Medium of Exchange Role ⇒ SDF-Liquidity multiplier ⇒ Money bubble
- 2 sector/type model with money and idio risk
  - Generic Solution procedure (compared to lecture 03)
  - Equivalence btw experts producers and intermediaries
  - Real debt vs. nominal debt/money
    - Implicit insurance role of money across sectors
  - I Theory
- Welfare analysis
- Optimal Monetary Policy and Macroprudential Policy
- International Monetary Model

odav

ext lecture

- Finding the optimal policy is generally complicated, need
  - 1. precise definition of policy space
  - 2. analytical tools to characterize the optimum
- One side: inefficiencies / tradeoffs
  - insurance vs. investment (one sector/type)
  - allocation of assets / risk (across sectors/types)
- Other side: "large" policy space
  - controlling money growth rate
  - macroprudential tools / wealth redistribution
  - risk redistribution
- Approach
  - Start with simple model
  - Add step-by-step more model elements

#### Roadmap

- Expected Utility/Value function with log-utility
- One sector model with stochastic idiosyncratic volatility
- Two sector model
  - with exogenous net worth share  $\eta$
  - With endogenous wealth share  $\eta$
  - I theory (with two technologies)

■ The welfare for any agent  $\tilde{\imath}$  of type i

$$E\left[\int_0^\infty e^{-\rho t}\log(c_t^{\tilde{i}})\,dt\right]$$

$$ilde{\eta}_0^{ ilde{\imath}} = 1, \frac{d ilde{\eta}_t^{ ilde{\imath}}}{ ilde{\eta}_t^{ ilde{\imath}}} = ilde{\sigma}_t^{ ilde{\eta}^i} d ilde{Z}_t^{ ilde{\imath}}$$

- Recall from general model with log utility
  - $\frac{c_t^{\tilde{i}}}{n_t^{\tilde{i}}} = \rho$
  - $c_t^{\tilde{\iota}} = \rho \eta_t^i (A(\kappa_t) \iota_t) K_t \tilde{\eta}_t^{\tilde{\iota}}$  using goods market clearing

■ The welfare of any agent  $\tilde{i}$  is

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log(c_{t}^{\tilde{i}}) dt\right] = E\left[\int_{0}^{\infty} e^{-\rho t} \log(\eta_{t}^{i}(A(\boldsymbol{\kappa_{t}}) - \iota_{t})K_{t} \, \tilde{\eta}_{t}^{\tilde{i}}) dt\right]$$

$$= E\left[\int_{0}^{\infty} e^{-\rho t} \log \eta_{t}^{i} dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log(A(\boldsymbol{\kappa_{t}}) - \iota_{t}) dt\right]$$
ignoring constant  $\frac{\log \mu}{\rho}$ 

$$+E\left[\int_0^\infty e^{-\rho t}\log K_t\,dt\right] + E\left[\int_0^\infty e^{-\rho t}\log \tilde{\eta}_t^{\tilde{t}}\,dt\right]$$

Recall

$$\log X_t - \log X_0 = \int_0^t d \log X_s$$

Apply to Ito's lemma

$$d \log X_t$$

$$= \left(\mu_t^X - \frac{1}{2}(\sigma_t^X)^2 - \frac{1}{2}(\tilde{\sigma}_t^X)^2\right)dt + \sigma_t^X dZ_t + \tilde{\sigma}_t^X d\tilde{Z}_t$$

Plug into Expected integral

$$E\left[\int_0^\infty e^{-\rho t}\log(X_t)\ dt\right]$$

$$= \frac{1}{\rho} \log(X_0) + \frac{1}{\rho} E \left[ \int_0^\infty e^{-\rho t} \left( \mu_t^X - \frac{1}{2} (\sigma_t^X)^2 - \frac{1}{2} (\tilde{\sigma}_t^X)^2 \right) dt \right]$$

lacktriangle The welfare of any agent  $\tilde{\imath}$  is

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log(c_{t}^{\tilde{i}}) dt\right] = E\left[\int_{0}^{\infty} e^{-\rho t} \log(\eta_{t}^{i}(A(\kappa_{t}) - \iota_{t})K_{t} \tilde{\eta}_{t}^{\tilde{i}}) dt\right]$$
ignoring constant  $\frac{\log \rho}{\rho}$ 

$$= E\left[\int_0^\infty e^{-\rho t} \log \eta_t^i dt\right] + E\left[\int_0^\infty e^{-\rho t} \log(A(\kappa_t) - \iota_t) dt\right]$$

$$\frac{\log \eta_0^i}{\rho} + E \left[ \int_0^\infty e^{-\rho t} \left( \frac{\mu_t^{\eta^i}}{\rho} - \frac{\left( \sigma_t^{\eta^i} \right)^2}{2\rho} \right) dt \right] 
+ E \left[ \int_0^\infty e^{-\rho t} \log K_t dt \right] + E \left[ \int_0^\infty e^{-\rho t} \log \tilde{\eta}_t^{\tilde{i}} dt \right]$$

$$\frac{\log K_0}{\rho} + E\left[\int_0^\infty e^{-\rho t} \left(\frac{\Phi(\iota_t) - \delta}{\rho} - \frac{\left(\sigma_t^K\right)^2}{2\rho}\right) dt\right] - E\left[\int_0^\infty e^{-\rho t} \left(\frac{\left(\tilde{\sigma}_t^{\tilde{\eta}^i}\right)^2}{2\rho}\right) dt\right]$$

#### Welfare of Intermediaries I and HH h

• Intermediaries (Pareto weight  $\lambda$ )

$$E\left[\int_0^\infty e^{-\rho t} \left(\log \eta_t + \log(A(\kappa) - \iota_t) + \frac{\Phi(\iota_t) - \delta}{\rho} - \frac{\sigma^2}{2\rho} - \frac{(1 - \vartheta_t)^2}{2\rho} \frac{\kappa^2 \varphi^2 \tilde{\sigma}^2}{\eta^2}\right) dt\right]$$

• Households (Pareto weight  $1 - \lambda$ )

$$E\left[\int_{0}^{\infty} e^{-\rho t} \left(\log(1 - \eta_{t}) + \log(A(\kappa) - \iota_{t}) + \frac{\Phi(\iota_{t}) - \delta}{\rho} - \frac{\sigma^{2}}{2\rho} - \frac{(1 - \vartheta_{t})^{2}}{2\rho} \frac{(1 - \kappa)^{2} \tilde{\sigma}^{2}}{(1 - \eta)^{2}}\right) dt\right]$$

#### Roadmap

- Expected Utility/Value function with log-utility
- One sector model with stochastic idiosyncratic volatility
- Two sector model
  - with exogenous net worth share  $\eta$
  - With endogenous wealth share  $\eta$
  - I theory (with two technologies)

# One Sector Model with Money

■ Agent ĩ's preferences

$$E\left[\int_0^\infty e^{-\rho t}\log c_t^{\tilde{\iota}}\,dt\right]$$

- Each agent operates one firm
  - Output

$$y_t^{\tilde{i}} = ak_t^{\tilde{i}}$$

Physical capital k

$$\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = (\Phi(\iota_t^{\tilde{i}}) - \delta)dt + \tilde{\sigma}_t d\tilde{Z}_t^{\tilde{i}}$$



 $\sigma = 0$ 

• Idiosyncratic risk  $\tilde{\sigma}$  is stochastic (hence a state variable)

$$d\tilde{\sigma}_t = \mu(\tilde{\sigma}_t)dt + \nu(\tilde{\sigma}_t)dZ_t^{\nu}$$

e.g. CIR process

$$d\tilde{\sigma}_t = \alpha \left( \sigma^{SS} - \tilde{\sigma}_t \right) dt + \nu \sqrt{\tilde{\sigma}_t} dZ_t^{\nu}$$

• Financial Friction: Incomplete markets: Agents cannot share  $d\tilde{Z}_t^{\tilde{i}}$ 

# One Sector Model with Money

■ Agent ĩ's preferences

$$E\left[\int_0^\infty e^{-\rho t}\log c_t^{\tilde{\iota}}\,dt\right]$$

- Each agent operates one firm
  - Output

$$y_t^{\tilde{i}} = ak_t^{\tilde{i}}$$

Physical capital k

$$\frac{dk_t^{\tilde{l}}}{k_t^{\tilde{l}}} = (\Phi(\iota_t^{\tilde{l}}) - \delta)dt + \tilde{\sigma}_t d\tilde{Z}_t^{\tilde{l}}$$



$$\sigma = 0$$

- lacktrianspiral Financial Friction: Incomplete markets: Agents cannot share  $d ilde{Z}_t^{ ilde{l}}$
- Outside money/Gov. bond

$$\frac{dM_t}{M_t} = \mu_t^M dt + \nu_t^M dZ_t^{\nu}.$$

State variable is  $\tilde{\sigma}$ : -- Monetary policy  $\mu^{M}(\tilde{\sigma}_{t}), \nu^{M}(\tilde{\sigma}_{t})$ 

#### One Sector Model with Money

■ Dynamics of  $\tilde{\eta}_t$ :

$$d\tilde{\eta}_t/\tilde{\eta}_t = d\left(\frac{n_t^{\tilde{\imath}}}{N_t^{\tilde{\imath}}}\right)/d\tilde{\eta}_t = \underbrace{(1-\vartheta_t)\,\tilde{\sigma}_t}_{\widetilde{\sigma}_t^{\tilde{\eta}^I}}d\tilde{Z}_t^{\tilde{\imath}}$$

- lacktriangle Total wealth as numeraire has return ho,  $dr_t^N=
  ho dt$
- Money has return

$$dr_t^{\vartheta_t/M_t} = \frac{d(\vartheta_t/M_t)}{\vartheta_t/M_t} = \underbrace{\left(\mu_t^\vartheta - \mu_t^M + \nu_t^M \left(\nu_t^M - \sigma_t^\vartheta\right)\right)}_{\mu_t^{\vartheta/M}} dt + \underbrace{\left(\sigma_t^\vartheta - \nu_t^M\right)}_{\sigma_t^{\vartheta/M}} d\tilde{Z}_t^{\nu}$$

Money valuation equation

$$\rho - \mu_t^{\vartheta/M} = \left(\tilde{\sigma}_t^{\tilde{\eta}^i}\right)^2 = (1 - \vartheta_t)^2 \,\tilde{\sigma}_t^2$$

Without policy, equation

$$\rho - \mu_t^{\vartheta} = (1 - \vartheta_t)^2 \, \tilde{\sigma}_t^2$$

has a unique solution in  $\vartheta(\tilde{\sigma}_t) \in (0,1)$  (if  $\tilde{\sigma}_t$  sufficiently large)

# One Sector Model with Money/Gov. Bond

#### Recall Equilibrium

Price of physical capital

$$q_t^K = (1 - \vartheta_t) \frac{1 + \phi a}{(1 - \vartheta_t) + \phi \rho}$$

Price of nominal capital

$$q_t^M = \theta_t \frac{1 + \phi a}{(1 - \theta_t) + \phi \rho}$$

Optimal investment rate

$$\iota_t = \frac{(1 - \vartheta_t)a - \rho}{(1 - \vartheta_t) + \phi\rho}$$

• Fraction of nominal wealth  $\vartheta_t$ 

$$1 - \vartheta_t = \frac{\sqrt{\rho + \mu_t^M - (\sigma_t^M)^2 - \mu_t^\vartheta + \sigma_t^\vartheta \sigma_t^M}}{\tilde{\sigma}_t}$$

Welfare is

Eltare is 
$$\frac{\log K_0}{\rho} - \frac{\delta}{\rho^2} + E\left[\int_0^\infty e^{-\rho t} \log(A(\kappa_t) - \iota_t) \ dt\right]$$

$$= a$$

$$= \left[\int_0^\infty e^{-\rho t} \log\left(\rho \frac{a\phi + 1}{\rho\phi + 1 - \vartheta_t}\right) dt\right]$$

$$+ E\left[\int_0^\infty e^{-\rho t} \frac{\Phi(\iota_t)}{\rho} dt\right] - E\left[\int_0^\infty e^{-\rho t} \frac{(1 - \vartheta_t)^2 \tilde{\sigma}_t^2}{2\rho} dt\right]$$

$$= \frac{1}{\rho\phi} E\left[\int_0^\infty e^{-\rho t} \log\left(\frac{(a\phi + 1)(1 - \vartheta_t)}{\rho\phi + 1 - \vartheta_t}\right) dt\right]$$

Welfare is

$$\frac{\log K_0}{\rho} - \frac{\delta}{\rho^2} + E\left[\int_0^\infty e^{-\rho t} \left[\log\left(\rho \frac{a\phi + 1}{\rho\phi + 1 - \vartheta_t}\right) + \frac{1}{\rho\phi}\log\left(\frac{(a\phi + 1)(1 - \vartheta_t)}{\rho\phi + 1 - \vartheta_t}\right) - \frac{(1 - \vartheta_t)^2 \tilde{\sigma}_t^2}{2\rho}\right] dt\right]$$

- Lemma: Problem collapses to a static problem for each t
- Let  $\frac{\vartheta^*(\tilde{\sigma}_t^2)}{\varrho}$  be be the maximizer of welfare (optimal policy)  $\max_{\vartheta} \frac{1}{\rho \phi} \log(1 \vartheta_t) \frac{\rho \phi + 1}{\rho \phi} \log(\rho \phi + 1 \vartheta_t) \frac{(1 \vartheta_t)^2 \tilde{\sigma}_t^2}{2\rho}$



Red: equilibrium  $\vartheta$  in the baseline model

Black: optimal policy  $\vartheta^*$ 

#### Pecuniary Externality Explanation

- Money growth  $\mu^{M}$  affects
  - Shadow risk-free rate
  - (Steady state) inflation in two ways

$$\pi = \mu^{M} + i - \underbrace{\left(\Phi\left(\iota(\mu^{M})\right) - \delta\right)}_{g}$$

- Proposition:
  - For sufficiently large  $\tilde{\sigma}$  and  $\phi < \infty$  welfare maximizing  $\mu^{M^*} > 0$ .
    - Laissez-faire Market outcome is not even constrained Pareto efficient
    - $\blacksquare$  Economic growth rate g is also higher
  - Growth maximizing  $\mu^{g*} \ge \mu^{M*}$ , s.t.  $p^{g*} = 0$ , Tobin (1965)
- Corollary: No super-neutrality of money
  - i: Super-neutrality only w.r.t. part of money growth rate that is used to pay interest on money
  - $\mu^{M}$ : Nominal money growth rate affects real economic growth by distorting portfolio choice if  $\phi < \infty$ 
    - No price/wage rigidity, no monopolistic competition

- If the planner can control  $\theta_t$  directly, she would set  $\theta_t = \theta^*(\tilde{\sigma}_t^2)$ 
  - $d\tilde{\sigma}_t = \mu^{\tilde{\sigma}}(\tilde{\sigma}_t)dt + \nu^{\tilde{\sigma}}(\tilde{\sigma}_t)dZ_t^{\nu}$

$$d\vartheta_t = \mu^{\vartheta} (\tilde{\sigma}_t) \vartheta_t dt + \nu^{\vartheta} (\tilde{\sigma}_t) \vartheta_t dZ_t^{\nu}$$

- The planner can choose instruments  $\mu^M(\tilde{\sigma}_t), \nu^M(\tilde{\sigma}_t)$  to achieve any function  $\vartheta_t$ 
  - How to find the instruments  $\mu^M(\tilde{\sigma}_t)$ ,  $\nu^M(\tilde{\sigma}_t)$  that achieve  $\vartheta^*(\tilde{\sigma}_t^2)$ ?
    - -- solving money valuation equation

$$\rho - \underbrace{(\mu_t^{\vartheta} + \nu_t (\nu_t - \sigma_t^{\vartheta}))}_{=\mu_t^{\vartheta/M}} = (1 - \vartheta_t)^2 \tilde{\sigma}_t^2$$

- Optimal policy is easier to find than equilibrium outcome
  - differentiation vs. integration (or solve PDEs)

#### Roadmap

- Expected Utility/Value function with log-utility
- One sector model with stochastic idiosyncratic volatility
- Two sector model
  - with exogenously fixed net worth share  $\eta$
  - With endogenous wealth share  $\eta$
  - I theory (with two technologies)

# Two Switching Sector model with Exogenous wealth dist.



| Agents                            | Intermediaries                                              | Household       |
|-----------------------------------|-------------------------------------------------------------|-----------------|
| Share of agents = net worth share | η                                                           | $1 - \eta$      |
| Idiosyncratic risk of capital     | $\varphi \tilde{\sigma}, \varphi \in (0,1)$ diversification | $	ilde{\sigma}$ |
| Output per unit of capital        | $oldsymbol{a}$ the same, independently of the allocation    |                 |

Policy marker can choose the money growth rate  $\mu_t^M$ .

#### Remark

- Policy-marker cannot affect the wealth shares
- Welfare Pareto weights
  - $\lambda = \eta$  for intermediaries and
  - $1 \lambda = 1 \eta$  for households from the setup
- Optimal monetary (with or without macroprudential policy – controlling capital allocation)
  - Perfect commitment Ramsey problem

#### Equilibrium capital allocation

- Fraction  $\chi$  of risk ( $\kappa$  of capital) is held by the intermediaries  $(\chi = \kappa)$
- Capital allocation must be such that

$$\underbrace{\varphi \tilde{\sigma}_{t}}_{idio\ risk\ of\ I} \underbrace{\frac{(1-\vartheta)\kappa\varphi \tilde{\sigma}_{t}}{\eta}}_{I's\ price\ of\ idio.risk} = \underbrace{\tilde{\sigma}_{t}}_{idio\ risk\ of\ h} \underbrace{\frac{(1-\vartheta)(1-\kappa)\tilde{\sigma}_{t}}{1-\eta}}_{h's\ price\ of\ idio.risk}$$

$$\Rightarrow \kappa = \frac{\eta}{\varphi^2(1-\eta)+\eta}$$

• Policy marker may try to affect  $\kappa$ ...

#### Welfare of Intermediaries I and HH h

• Intermediaries (Pareto weight  $\lambda$ )

$$E\left[\int_0^\infty e^{-\rho t} \left(\log \eta_t + \log(a - \iota_t) + \frac{\Phi(\iota_t) - \delta}{\rho} - \frac{\sigma^2}{2\rho} - \frac{(1 - \vartheta_t)^2}{2\rho} \frac{\kappa^2 \varphi^2 \tilde{\sigma}^2}{\eta^2}\right) dt\right]$$

■ Households (Pareto weight  $1 - \lambda$ )

$$E\left[\int_{0}^{\infty} e^{-\rho t} \left(\log(1 - \eta_{t}) + \log(a - \iota_{t}) + \frac{\Phi(\iota_{t}) - \delta}{\rho} - \frac{\sigma^{2}}{2\rho} - \frac{(1 - \vartheta_{t})^{2}}{2\rho} \frac{(1 - \kappa)^{2} \tilde{\sigma}^{2}}{(1 - \eta)^{2}}\right) dt\right]$$

#### Welfare

• Law of large numbers: switching risk does not matter. Everyone's wealth growth averages out to  $\Phi(\iota_t) - \delta$  and idiosyncratic risk exposure, to

$$\eta \left(\tilde{\sigma}^{I}\right)^{2} + (1 - \eta)\left(\tilde{\sigma}^{h}\right)^{2} = (1 - \vartheta)^{2} \underbrace{\tilde{\sigma}^{2} \left(\lambda \frac{\kappa^{2} \varphi^{2}}{\eta^{2}} + (1 - \lambda) \frac{(1 - \kappa)^{2}}{(1 - \eta)^{2}}\right)}_{(\tilde{\sigma}^{Ave})^{2} :=}$$

$$\tilde{\sigma}^I = \frac{(1-\vartheta)\kappa\varphi\tilde{\sigma}}{\eta}$$
,  $\tilde{\sigma}^h = \frac{(1-\vartheta)(1-\kappa)\tilde{\sigma}}{1-\eta}$ 

Welfare

$$E\left[\int_0^\infty e^{-\rho t} \log(a - \iota(\vartheta)) \ dt\right] + E\left[\int_0^\infty e^{-\rho t} \frac{\Phi(\iota(\vartheta)) - \delta}{\rho} dt\right] - E\left[\int_0^\infty e^{-\rho t} \frac{(1 - \vartheta)^2 (\tilde{\sigma}^{Ave})^2}{2\rho} dt\right]$$

• Given  $\tilde{\sigma}^A$ , optimal to set  $\vartheta = \vartheta^* \left( \left( \tilde{\sigma}^{Ave} \right)^2 \right)$ .

• Set  $\lambda = \eta$  (Pareto weight is population share)

#### Money valuation

Money valuation equation

$$\rho - \underbrace{\left(\mu_t^{\vartheta} - \mu_t^M + \nu_t^M \left(\nu_t^M - \sigma_t^{\vartheta}\right)\right)}_{\mu_t^{\vartheta/M}} = \underbrace{\eta \left(\tilde{\sigma}_t^I\right)^2 + (1 - \eta) \left(\tilde{\sigma}_t^h\right)^2}_{(1 - \vartheta_t)^2 \left(\tilde{\sigma}_t^{Ave}\right)^2}$$

#### Macroprudential tools

Average idiosyncratic risk of capital

$$\tilde{\sigma}^2 \left( \frac{\kappa^2 \varphi^2}{\eta} + \frac{(1 - \kappa)^2}{1 - \eta} \right)$$

is minimized when

$$\frac{\kappa \varphi^2}{\eta} = \frac{1 - \kappa}{1 - \eta} \Rightarrow \kappa = \frac{\eta}{\varphi^2 (1 - \eta) + \eta}$$

This is the equilibrium allocation!

• Lemma: Optimal not to use macroprudential tools. assuming  $\lambda = \eta$ 

Recall: can use  $\chi$  instead of  $\kappa$  (depends on model interpretation)

#### Remarks

- Same trade-off between insurance and investment
- Equilibrium allocation is efficient,
   minimizes the cost of risk exposure
- Policy space
  - (1) money growth and
  - (1) + (2) (money growth + macroprudential tools)
     leads to the same outcome

#### Roadmap

Expected Utility/Value function with log-utility

- One sector model with stochastic idiosyncratic volatility
- Two sector model
  - With exogenously fixed net worth share  $\eta$
  - With endogenous wealth share  $\eta$
  - I theory (with two technologies)

# Endogenous law of motion of $\eta$

- Wealth distribution can change endogenously with
  - risk exposure of intermediaries and households
  - risk premia
  - consumption rates
- Consider the following model

# Fixed types (no switching)

Model Setup

Intermediaries

Households

Types fixed (no switching)

| Agents                        | Intermediaries                                 | Household       |
|-------------------------------|------------------------------------------------|-----------------|
| Welfare weights               | λ                                              | $1-\lambda$     |
| Wealth share                  | $\eta$                                         | $1-\eta$        |
| Aggregate risk                | $\sigma$                                       | σ               |
| Idiosyncratic risk of capital | $\varphi \tilde{\sigma}, \varphi \in (0,1)$    | $	ilde{\sigma}$ |
| Output per unit of capital    | lpha the same, independently of the allocation |                 |

You have already seen this model except here  $\overline{\kappa}=1$ 

Two policy settings: (1) money growth rate  $\mu_t^M$  only (1) + (2) also choose allocation (macroprudential) and transfer wealth between group (why/how?)

#### Welfare of Intermediaries I and HH h

• Intermediaries (Pareto weight  $\lambda$ )

$$E\left[\int_0^\infty e^{-\rho t} \left(\log \eta_t + \log(a - \iota_t) + \frac{\Phi(\iota_t) - \delta}{\rho} - \frac{\sigma^2}{2\rho} - \frac{(1 - \vartheta_t)^2}{2\rho} \frac{\kappa^2 \varphi^2 \tilde{\sigma}^2}{\eta^2}\right) dt\right]$$

• Households (Pareto weight  $1 - \lambda$ )

$$E\left[\int_{0}^{\infty} e^{-\rho t} \left(\log(1 - \eta_{t}) + \log(a - \iota_{t}) + \frac{\Phi(\iota_{t}) - \delta}{\rho} - \frac{\sigma^{2}}{2\rho} - \frac{(1 - \vartheta_{t})^{2}}{2\rho} \frac{(1 - \kappa)^{2} \tilde{\sigma}^{2}}{(1 - \eta)^{2}}\right) dt\right]$$

lacktriangle Planner chooses  $\theta$ ,  $\kappa$  and  $\eta$  to max discount integral of

$$\lambda \log \eta_t + (1 - \lambda) \log(1 - \eta_t) + \log(a - \iota(\vartheta_t)) + \frac{\Phi(\iota(\vartheta_t)) - \delta}{\rho} - \frac{\sigma^2}{2\rho}$$

$$-\frac{(1-\vartheta_t)^2\widetilde{\sigma}^2}{2\rho} \left(\lambda \frac{\kappa^2 \varphi^2}{\eta^2} + (1-\lambda) \frac{(1-\kappa)^2}{(1-\eta)^2}\right)$$

$$\frac{\lambda(1-\lambda)\varphi^2}{\lambda\varphi^2(1-\eta)^2 + (1-\lambda)\eta^2}$$

given the optimal choice of  $\kappa = \frac{(1-\lambda)\eta^2}{\lambda \varphi^2 (1-\eta)^2 + (1-\lambda)\eta^2}$ 

not the competitive allocation (unless  $\eta = \lambda$ )

• Step 1: Solve optimal  $\kappa$  (or  $\chi$ ) for a given  $\eta$  and  $\lambda$  Competitive  $\kappa$  vs. minimizing cost of risk



lacktriangle Planner chooses  $\theta$ ,  $\kappa$  and  $\eta$  to max discount integral of

$$\lambda \log \eta_t + (1 - \lambda) \log(1 - \eta_t) + \log(a - \iota(\vartheta_t)) + \frac{\Phi(\iota(\vartheta_t)) - \delta}{\rho} - \frac{\sigma^2}{2\rho}$$

$$-\frac{(1-\vartheta_t)^2\widetilde{\sigma}^2}{2\rho}\underbrace{\left(\lambda\frac{\kappa^2\varphi^2}{\eta^2}+\left(1-\lambda\right)\frac{(1-\kappa)^2}{(1-\eta)^2}\right)}_{\begin{array}{c}\lambda(1-\lambda)\varphi^2\\\\\hline\lambda\varphi^2(1-\eta)^2+(1-\lambda)\eta^2\\\\\text{given the optimal choice of }\kappa=\frac{(1-\lambda)\eta^2}{\lambda\varphi^2(1-\eta)^2+(1-\lambda)\eta^2}\\\\\text{not the competitive allocation (unless }\eta=\lambda)\end{array}$$

- Step 2: Solve  $\theta_t = \theta^*(\cdot)$  (having used optimal  $\kappa_t$ ) for each given  $\eta$
- Given  $\kappa$  and  $\eta$ , optimal to set  $\vartheta$  to

$$\vartheta = \vartheta^* \left( \tilde{\sigma}^2 \frac{\lambda (1 - \lambda) \varphi^2}{\lambda \varphi^2 (1 - \eta)^2 + (1 - \lambda) \eta^2} \right)$$

welfare weighted average risk exposure

- Step 3: Optimal  $\eta$  (given  $\theta$ )
- let's look at terms containing  $\eta$
- Given  $\kappa$  and  $\eta$ ,

$$\max_{\eta} \underbrace{\frac{\lambda \log \eta_t + (1 - \lambda) \log (1 - \eta_t)}{\text{concave, max at } \eta = \lambda, \text{ goes to } -\infty \text{ at } 0 \& 1}}_{\text{concave, max at } \eta = \lambda, \text{ goes to } -\infty \text{ at } 0 \& 1} - \underbrace{\frac{(1 - \vartheta_t)^2 \tilde{\sigma}^2}{2\rho}}_{\text{concave, max at } \frac{\lambda \varphi^2}{\lambda \varphi^2 + 1 - \lambda} < \lambda}$$

- hence it is optimal to set  $\eta > \lambda$  (unfortunately no closed-form expression for the optimal  $\eta$ )
- push more risk onto intermediaries than they'd take under competitive outcome
- relative to previous infinite switching model
  - it is optimal to give intermediaries more wealth, because they are more efficient at absorbing risk
  - overall risk is reduced and the value of money is lower (more intermediation)

# Optimizing over $\eta$



$$\rho = .05, \phi = 2, \tilde{\sigma} = .3, \varphi = .5, \lambda = .2$$

- Planner cannot alter competitive alloc.  $\kappa_t = \frac{\eta_t}{\varphi^2(1-\eta_t)+\eta_t}$
- Welfare is the discount integral of

$$\lambda \log \eta_t + (1 - \lambda) \log(1 - \eta_t) + \log(a - \iota(\vartheta_t)) + \frac{\Phi(\iota(\vartheta_t)) - \delta}{\rho} - \frac{\sigma^2}{2\rho}$$

$$- \frac{(1 - \vartheta_t)^2 \tilde{\sigma}^2}{2\rho} \underbrace{\left(\lambda \frac{\kappa_t^2 \varphi^2}{\eta_t^2} + (1 - \lambda) \frac{(1 - \kappa_t)^2}{(1 - \eta_t)^2}\right)}_{\frac{\lambda \varphi^2 + (1 - \lambda) \varphi^4}{(\varphi^2 (1 - \eta_t) + \eta_t)^2}}$$

s.t.

$$\frac{d\eta_t}{\eta_t} = (1 - \eta_t) \left( \left( \tilde{\sigma}_t^I \right)^2 - \left( \tilde{\sigma}_t^h \right)^2 \right) dt = (1 - \eta_t) \frac{(1 - \theta_t)^2 \tilde{\sigma}^2 \varphi^2 (1 - \varphi^2)}{(\varphi^2 (1 - \eta_t) + \eta_t)^2} dt$$

- Planner can not choose  $\kappa_t$  or  $\eta_t$  but has some control over  $\mu_t^\eta$
- Now, fully dynamic problem!

■ Payoff flow: 
$$f(\eta_t, \vartheta_t) = \lambda \log \eta_t + (1 - \lambda) \log (1 - \eta_t) + \frac{\log (1 - \vartheta_t)}{\rho \phi}$$
$$-\frac{\rho \phi + 1}{\rho \phi} \log (\rho \phi + 1 - \vartheta_t) - \frac{(1 - \vartheta_t)^2 \tilde{\sigma}^2}{2\rho} \left( \lambda \frac{\kappa_t^2 \phi^2}{\eta_t^2} + (1 - \lambda) \frac{(1 - \kappa_t)^2}{(1 - \eta_t)^2} \right),$$
$$\text{with } \kappa = \frac{\eta}{\phi^2 (1 - \eta) + \eta}$$

HJB equation

$$\rho V(\eta) = \max_{\vartheta} f(\eta, \vartheta) + V'(\eta) \mu^{\eta} \eta + \frac{1}{2} V''(\eta) (\sigma^{\eta} \eta)^{2}$$

Law of motion of  $\eta$   $\frac{d\eta}{n} = (1 - \eta) \frac{(1 - \vartheta)^2 \tilde{\sigma}^2 \varphi^2 (1 - \varphi^2)}{(\varphi^2 (1 - \eta) + \eta)^2} dt + 0 dZ$ 

■ Payoff flow:  $f(\eta_t, \vartheta_t) = \lambda \log \eta_t + (1 - \lambda) \log(1 - \eta_t) + \frac{\log(1 - \vartheta_t)}{\rho \phi}$  $-\frac{\rho \phi + 1}{\rho \phi} \log(\rho \phi + 1 - \vartheta_t) - \frac{(1 - \vartheta_t)^2 \tilde{\sigma}^2}{2\rho} \left(\lambda \frac{\kappa_t^2 \phi^2}{\eta_t^2} + (1 - \lambda) \frac{(1 - \kappa_t)^2}{(1 - \eta_t)^2}\right),$ 

• with 
$$\kappa = \frac{\eta}{\varphi^2(1-\eta)+\eta}$$

HJB equation

$$\rho V(\eta) = \max_{\vartheta} f(\eta, \vartheta) + V'(\eta) \mu^{\eta} \eta + \frac{1}{2} V''(\eta) (\sigma^{\eta} \eta)^{2}$$

**Law** of motion of  $\eta$ 

$$\frac{d\eta}{\eta} = (1 - \eta) \frac{(1 - \theta)^2 \tilde{\sigma}^2 \varphi^2 (1 - \varphi^2)}{(\varphi^2 (1 - \eta) + \eta)^2} dt + 0 dZ$$

- lacksquare Optimal  $artheta^*$
- HJB equation

$$\max_{\vartheta} \frac{\log(1-\vartheta)}{\rho\phi} - \frac{\rho\phi + 1}{\rho\phi} \log(\rho\phi + 1 - \vartheta) - \frac{(1-\vartheta_{t})^{2}\tilde{\sigma}^{2}}{2\rho} \left(\lambda \frac{\kappa^{2}\varphi^{2}}{\eta^{2}} + (1-\lambda)\frac{(1-\kappa)^{2}}{(1-\eta)^{2}}\right) + V'(\eta)(1-\vartheta_{t})^{2} \frac{\eta(1-\eta)\tilde{\sigma}^{2}\varphi^{2}(1-\varphi^{2})}{(\varphi^{2}(1-\eta) + \eta)^{2}}$$

•  $\vartheta$  affects the drift of  $\eta$ , it is optimal to choose

$$\vartheta^* \left( \tilde{\sigma}^2 \left( \lambda \frac{\kappa^2 \varphi^2}{\eta^2} + (1 - \lambda) \frac{(1 - \kappa)^2}{(1 - \eta)^2} \right) - 2\rho V'(\eta) \frac{\eta (1 - \eta) \tilde{\sigma}^2 \varphi^2 (1 - \varphi^2)}{(\varphi^2 (1 - \eta) + \eta)^2} \right)$$

■ Speed up  $\eta$  when V' > 0, slow down when V' < 0.

# Example: using $\vartheta$ to push $\eta$



$$\rho = .05, \phi = 2, \tilde{\sigma} = .3, \varphi = .5, \lambda = .2$$

- $lacktriang{f Using MoPo $\theta$ to push $\eta$ (to recapitalize banks via risk premia)}$
- Using screwdriver as hammer



### Roadmap

- Expected Utility/Value function with log-utility
- One sector model with stochastic idiosyncratic volatility
- Two sector model
  - With exogenously fixed net worth share  $\eta$
  - With endogenous wealth share  $\eta$
  - I theory (with two technologies)

### I Theory of Money

- Aim: intermediary sector is not perfectly hedged
- Idiosyncratic risk that HH have to bear is time-varying
- Needed: Intermediaries' aggregate risk ≠ aggregate risk of economy
  - One way to model: 2 technologies a and b

| Technology                | a                                                                             | b                                                                              |
|---------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Capital share (Leontieff) | $1 - \bar{\kappa}$                                                            | $ar{\mathcal{K}}$                                                              |
| Risk                      | $\frac{dk_t}{k_t} = (\cdot)dt + \sigma^a dZ_t + \tilde{\sigma} d\tilde{Z}_t$  | $\frac{dk_t}{k_t} = (\cdot)dt + \sigma^b dZ_t + \tilde{\sigma}d\tilde{Z}_t$    |
| Intermediaries            | No                                                                            | Yes, reduce to $\varphi \tilde{\sigma}$                                        |
| Excess risk               | $-\bar{\kappa}\sigma - \frac{\sigma^{\vartheta} - \sigma^{M}}{1 - \vartheta}$ | $(1-\bar{\kappa})\sigma - \frac{\sigma^{\vartheta} - \sigma^{M}}{1-\vartheta}$ |

# I Theory: Balance Sheets



#### Frictions:

- Household cannot diversify idio risk
- Limited risky claims issuance
- Only nominal deposits

### Model with Intermediaries – new policy

Model Setup

$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta) dt + \underbrace{\sigma dZ_t}_{\text{aggregate}} + \underbrace{\tilde{\sigma} d\tilde{Z}_t}_{\text{idiosyncratic}}$$

- Intermediaries can hold equality share up to  $\bar{\kappa}$
- lacktriangledown can diversify some idiosyncratic risk, reduce it to  $\phi ilde{\sigma}$
- Intermediaries' wealth share  $\eta_t = N_t / ((p_t + q_t)K_t)$
- lacktriangle Welfare weights  $\lambda$  on intermediaries,  $1-\lambda$  on HH

#### Two policy settings:

- (1) money growth rate  $\mu_t^M$  only
- (1) + (2) also choose allocation (macroprudential) and transfer wealth between group (why/how?)

Same steps as above

• Step 1: Optimal 
$$\kappa = \min\left(\frac{(1-\lambda)\eta^2}{\lambda\varphi^2(1-\eta)^2+(1-\lambda)\eta^2}, \bar{\kappa}\right)$$
 given  $\eta$   
• Step 2: Optimal  $\vartheta = \vartheta^*\left(\tilde{\sigma}^2 \frac{\lambda(1-\lambda)\varphi^2}{\lambda\varphi^2(1-\eta)^2+(1-\lambda)\eta^2}\right)$  welfare weighted average risk exposure

• Step 3: Optimal  $\eta$  (given  $\theta$ ) as a function of Pareto weight  $\lambda$ 

• Step 3: Optimal  $\eta$  (given  $\vartheta$ ) - let's look at terms containing  $\eta$ 

$$\max_{\eta} \underbrace{\frac{\lambda \log \eta_t + (1 - \lambda) \log (1 - \eta_t)}{\text{concave, max at } \eta = \lambda, \text{ goes to } -\infty \text{ at } 0 \& 1}}_{\text{concave, max at } \eta = \lambda, \text{ goes to } -\infty \text{ at } 0 \& 1} - \frac{(1 - \vartheta_t)^2 \tilde{\sigma}^2}{2\rho} \underbrace{\frac{\lambda (1 - \lambda)}{\lambda \varphi^2 (1 - \eta)^2 + (1 - \lambda) \eta^2}}_{\text{concave, max at } \eta = \lambda, \text{ goes to } -\infty \text{ at } 0 \& 1}$$



For  $\varphi = 1$ , the optimal policy

as a function of  $\lambda$  is

ullet For arphi=1, and ec r=0.6 (intermediaries' risk taking is constrained)



• For  $\varphi=0.8$ ,  $\bar{\kappa}=1$ , and  $\varphi=0.8$ ,  $\bar{\kappa}=0.8$ Intermediaries given a lot more risk when they can diversify it



- Step 3: Optimal  $\eta$  (given  $\vartheta$ ) let's look at terms containing  $\eta$
- Same as above
- Given  $\kappa$  and  $\eta$ , optimax  $\lambda \log \eta_t + (1-\lambda) \log (1-\eta_t) \frac{(1-\vartheta_t)^2 \widetilde{\sigma}^2}{2\rho}$   $\lambda (1-\lambda) \varphi^2$   $\lambda \varphi^2 (1-\eta)^2 + (1-\lambda) \eta^2$  concave, max at  $\eta = \lambda$ , goes to  $-\infty$  at 0 & 1 concave also, max at  $\lambda \varphi^2 / \lambda \varphi^2 + 1 \lambda < \lambda$
- lacktriangledown Assuming FOC holds uniquely, it is optimal to set  $\eta>\lambda$
- push more risk to intermediaries and they'd take under competitive outcome
- relative to previous infinite switching model
  - it is optimal to give intermediaries more wealth, because they are more efficient at absorbing risk
  - overall risk is reduced and the value of money is lower (more intermediation)

## Optimizing over $\eta$



$$\rho = .05, \phi = 2, \tilde{\sigma} = .3, \varphi = .5, \lambda = .2$$

• Using  $\theta$  to push  $\eta$  - Same analytical steps as before  $\rho = .05, \phi = 2, \tilde{\sigma} = .3, \varphi = .5, \lambda = .2$ 

$$\rho = .05, \phi = 2, \tilde{\sigma} = .3, \varphi = .5, \lambda = .2$$



### Take-aways of Optimal Policy

- Baseline (one-sector) model
  - Trade-off: insurance vs. investment (growth)
- Multi-sector model
  - Allocation of risk/assets
- Money is not super-neutral
  - since it affect portfolio choice, risk allocation
  - Price of risk (risk premia),  $\eta$ -drift
- (1) MoPo + (2) MacroPru
  - Static problem 3 steps maximization
    - Always  $\vartheta^*(\cdot)$ -function
- (1) MoPo only
  - lacktriangle Using screwdriver as hammer to push  $\eta$



# Thank you!

markus@princeton.edu