
Macro, Money and (International) Finance – Problem Set 3

September 24, 2020

Problem set prepared by Sebastian Merkel (smerkel@princeton.edu). Please let me know, if any tasks
are unclear or you find mistakes in the problem descriptions.

The submission deadline is Friday, October 2 (end of day Princeton time). Please submit
your group’s solution via email to Fernando Mendo (fmendolopez@gmail.com).

1 Stochastic Lifetimes and Type Switching

We have discussed in Lecture 4 another common modeling device to generate a stationary wealth distri-
bution in a model that would otherwise lead to the long-term dominance of one type of agent: stochastic
lifetimes and type switching of the offsprings of dying agents. In this problem, you will work out some of
the technical details involved. You may not have the mathematical training to make every single step in
your argument fully rigorous. If that happens, try to argue intuitively why that step is logically correct
(we are economists after all).

1. Let’s start from a single-agent decision problem for an agent with a finite, but random, lifetime
τ ∼ Exp(λ)1 and no bequest motive. Expected utility at time t is

Ut =

{
Et
[∫ τ
t
e−ρ(s−t)u(cs)ds

]
, t ≤ τ

0, t > τ
.

The agent solves a consumption-portfolio problem with J assets 1, ..., J , the net worth evolution
for t < τ is given by

dnt = −ctdt+ nt

J∑
j=1

θjtdr
j
t .

Assume that the asset return processes drjt satisfy

drjt = µj(Xt)dt+

M∑
m=1

σjm (Xt) dZ
m
t ,

1Exp(λ) refers to the exponential distribution with parameter λ > 0, its density is t 7→ λe−λt over [0,∞).
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where Z1, . . . , Zm are independent Brownian motions, µj , σjm are some given functions and Xt is
a Markov state that evolves according to

dXt = µX(Xt)dt+

M∑
m=1

σX,m (Xt) dZ
m
t .

Also assume that the Brownian motions Z1, ..., Zm are independent of the idiosyncratic lifetime
τt. This setup implies in particular that there are no assets that allow the agent to hedge
death/longevity risk.

We assume further that the agent’s choices for {ct, θ1t , . . . , θJt }t<τ conditional on being alive at time
t are restricted to Markov controls

ct = c(t,Xt, nt), θ
1
t = θ1(t,Xt, nt), . . . , θ

1
t = θJ(t,Xt, nt) (1)

that may only depend on the current time t, exogenous state Xt and endogenous state nt.
2

(a) For each admissible control {ct, θ1t , . . . , θJt }t<τ of the agent that can be expressed in terms of
policy functions according to equation (1), that equation actually defines a valid stochastic
process {ct, θ1t , . . . , θJt }∞t=0 for all times t, not just t < τ . Argue that this extension of the
agent’s control process to the time domain [0,∞) must necessarily be independent of τ .

For your answers of the following subquestion, you may even assume a stronger property than
you have shown here: conditional on τ > t and {Z1

s , ..., Z
m
s }s≤t (i.e. all time t information),

the continuation process {Xs, ns, cs, θ
1
s , . . . , θ

J
s }s>t is independent of the event τ > T for all

T > t.

(b) Let V (t,X, n) := sup{c,θ1,...,θJ} E
[
Ut
(
{c, θ1, ..., θJ}

)
| Xt = X,nt = n, τ > t

]
be the agent’s

value function at time t conditional on still being alive (i.e. on τ > t).3 Derive the HJB
equation for V . Then show that policy functions for c, θ1, ..., θJ that maximize the objective
in the HJB equations do not directly depend on time t (just on the state vector (Xt, nt)).
This means we can remove the explicit time-dependence in (1) without loss of generality.

Hint : you may use without proof that the exponential distribution is memoryless, that is
P (τ ≤ T | τ > t) = P (τ ≤ T − t) for all 0 ≤ t ≤ T .4

(c) For any admissible choice, define {ct}∞t=0 for all t as in (a) and show that

U0 = E
[∫ ∞

0

e−(ρ+λ)tu(ct)dt

]
.

Hint : this can be solved without reference to any results from part (b).

(d) Argue that solving the random lifetime problem over the interval [0, τ ] is equivalent to solving
the infinite lifetime problem with a larger discount rate ρ+ λ.

2Technical note: enlarging the decision problem to allow for arbitrary controls that are predictable with respect to the
filtration generated by the Brownians and the process 1{τ≤t} would not improve the utility the agent could achieve. So
this restriction is without loss of generality.

3While not explicit in the notation, the supremum is of course assumed to be taken over all admissible choices and the
process {ns}∞s=t depends on the chosen control.

4This is the main reason why we use a stochastic lifetime with exponential distribution instead of a deterministic lifetime.
With a deterministic lifetime, the time until death becomes a state variable whereas for an exponentially distributed lifetime,
the distribution of the remaining lifetime is independent of how long the agent has already been around. This makes the
problem very tractable, but also unsuitable for certain questions (e.g. life cycle behavior).
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2. Part 1 shows us that from the perspective of individual choice problems, adding stochastic lifetimes
simply increases the effective discount rate – provided there are no assets to hedge death risk. In
this part we do some aggregate accounting.

Now assume that there are two types of agents, experts (i = e) and households (i = h). Both
experts and households have some decision problems whose optimal solutions have the property
that consumption-net-worth ratios and portfolio weights depend only on the agent’s type, but not
on individual net worth. Consequently, individual net worth ni(̃i) of individual ĩ of type i has
some type-independent geometric drift µn,it and volatility loading σn,i,mt with respect to each of the
Brownian shocks dZmt . We are not concerned with the details of these individual decision problems
but only with the behavior or aggregates.

Suppose all agents alive at any point in time t can be indexed by ĩ ∈ [0, 1]. When agent ĩ dies (at
idiosyncratic rate λ), then that agent is replaced by an offspring who inherits all the dying agent’s
net worth, but whose type may differ: irrespective of the ancestor’s type, the newborn agent is an
expert with probability ψ ∈ (0, 1) and a household with probability 1−ψ. We index the new agent
again by the index ĩ so that ĩ no longer refers to an individual, but to a “dynastic chain” of agents.
For i ∈ {e, h}, denote by nit(̃i) the net worth of the agent in that chain conditional on the current
type being i and set nit(̃i) = 0 whenever the type of agent ĩ is not i.

(a) Argue that the the situation described above can be modeled by the stochastic evolution
equations

dnet (̃i) = net (̃i)µ
n,e
t dt+

M∑
m=1

net (̃i)σ
n,e,m
t dZmt − net−(̃i)dJ̃e→ht (̃i) + nht−(̃i)dJ̃h→et (̃i)

dnht (̃i) = nht (̃i)µn,ht dt+

M∑
m=1

nht (̃i)σn,h,mt dZmt − nht−(̃i)dJ̃h→et (̃i) + net−(̃i)dJ̃e→ht (̃i)

for all ĩ ∈ [0, 1], where J̃e→h(̃i) and J̃h→e(̃i) are independent (time-homogeneous) Poisson
processes which are also independent across dynastic chains ĩ. How does one have to choose
the intensities λe→h and λh→e?

(b) Let N i
t :=

∫ 1

0
nit(̃i)dĩ be the aggregate net worth of type i ∈ {e, h} at time t.5,6 Show that Ne

and Nh are Ito processes and derive their laws of motion.

Hint : use the “law of large numbers”
∫ 1

0
dJ̃ i1→i2t (̃i)dĩ = Et

[
dJ̃ i1→i2t

]
= λi1→i2dt.

(c) Derive the law of motion of η :=
Net

Net+N
h
t

. How does it differ relative to a situation with

infinitely-lived agents?

3. Reconsider the Basak-Cuoco model with log utility and identical time preference rates from Lecture
2. Instead of heterogeneous discount rates as in Problem Set 1, assume now that agents die at rate
λ > 0 and are replaced by newborn agents who inherit the wealth of the dying and become an
expert with probability ψ and a household with probability 1−ψ. Solve this augmented model and
compare your solution to both the one from the lecture and your solution to Problem 1 of Problem
Set 1.

5This is a reasonable definition even though we integrate over the same set of ĩ, because we have set nit (̃i) to zero

whenever ĩ is not of type i.
6If you have a mathematical background and wondered whether this integral exists: we ignore measurability issues here.

Things get formally more involved, if you do not.
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2 Money Model with Stochastic Volatility

Consider the model of Lecture 5 with log utility without government policy (µB = i = σB = g = 0).
In this problem, we add stochastic volatility to the model. Suppose idiosyncratic risk σ̃ is no longer a
constant, but evolves according to the exogenous stochastic process

dσ̃t = b(σ̃ss − σ̃t)dt+ ν
√
σ̃tdZt,

where σ̃ss, b and ν are positive constants. You may assume that there a no aggregate capital shocks, i.e.
σ = 0.

1. Characterize the equilibrium:

(a) Use goods market clearing and optimal investment to express qK , qB and ι in terms of ϑ :=
qB

qK+qB

(b) Use agents’ portfolio choice to derive an equation of the form µϑt = f(ϑt, σ̃t), where the
function f only depends on model parameters (the “money valuation equation”)

2. Solve the model numerically. To do so, apply Ito’s lemma to ϑt = ϑ(σ̃t), which allows you to
transform the money valuation equation µϑt = f(ϑt, σ̃t) into an ODE for the function ϑ(σ̃t). Solve
this equation with the methods from lecture 3 and plot ϑ, qK , qB , ι, rf and ς̃ as a function of σ̃.

For your plots, use the model parameters a = 0.2, φ = 1, ρ = 0.01, σ̃ss = 0.2, b = 0.05, ν = 0.02.

3 Money as a Medium of Exchange

In this problem, we add a medium-of-exchange role for the nominal asset in the model of Lecture 5.
Take the baseline model from the lecture with log utility and assume a steady state. Now call the bonds
“money” and denote them by M instead of B. We assume a constant money stock, so µM = σM = 0
and no interest is paid on money (i = 0). We make money a medium of exchange by adding a simple
cash-in-advance constraint to the model. Consider two possibilities:

A. Households face a cash-in-advance constraint for consumption and – potentially – investment ex-
penditures:

For each household ĩ,

αcc
ĩ
t + αιι

ĩ
t

θk,̃it nĩt
qKt

≤ θm,̃it nĩt,

where αc > 0 and αι ≥ 0 are model parameters. Also, define velocity as

vt :=
cĩt + αι

αc
ιĩt

θm,̃it nĩt
.

B. Households face a cash-in-advance constraint in production:7

7This can be interpreted as expenditures made in an unmodeled supply chain.
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For each household ĩ,

α · aθ
k,̃i
t nĩt
qKt

≤ θm,̃it nĩt,

where α ≥ 0 is a model parameter. Define velocity in this case as

vt :=
a
θk,̃it nĩt
qKt

θm,̃it nĩt
.

Here, θk,̃it denotes the households’ portfolio share in capital and θm,̃it = 1− θk,̃it the households’ portfolio

share in money. In both cases θm,̃it nĩt is the real value of ĩ’s money balances and
θk,̃it nĩt
qKt

= kĩt is the quantity

of capital held by agent ĩ.

1. Write down the HJB equation of agent ĩ.

2. For both possibilities of the cash-in-advance constraint (consider one possibility at a time), derive
the first-order conditions with respect to ct, ιt, θ

m
t and θkt = 1− θmt . Show that in both cases the

portfolio choice condition between capital and money can be written in the form

Et[drkt ]

dt
− Et[drmt ]

dt
= ς̃tσ̃ + λtvt,

where λt is a re-scaled Lagrange multiplier on the constraint and vt is the velocity of money
holdings.

3. Fully characterize the steady-state equilibrium for the cash-in-advance constraint of the form A.
by a set of equations. When is the constraint binding and how does it affect the equilibrium values

of qK , qM , ι, ϑ := qM

qK+qM
and c/n? In the case σ̃ = αι = 0, there is a simple closed-form solution.

Derive it.

4. Characterize the equilibrium for the cash-in-advance constraint of the form B. by a set of equations
and derive a closed-form solution for qK , qM , ι, ϑ and c/n.

5. In the case αc = αι = α, the constraints in A. and B. both say that for each unit of output agents
must hold at least α real units of money. Does this imply that the two specifications lead to the
same equilibrium allocation? Why/why not?
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