Financial and Monetary Economics

Eco529 Fall 2020

Lecture 04: Jumps and Runs

Markus K. Brunnermeier

Princeton University

Jumps due to multiple equilibria

Bank runsDiamond Dybvig

Liquidity spirals
Brunnermeier Pedersen

Sudden stops
Calvo, Mendoza, ...

Currency attacks
 Obstfeld (2nd generation models), Morris Shin

Twin crisis models
 Kaminsky Reinhart (3rd generation models)

Loss of safe asset status (after introducing safe asset in world with idiosyncratic risk)

Recall: Endogenous Risk due to Amplification

Recall: Endogenous Risk due to Multiple Equilibria Jumps

Two Type/Sector Model with Outside Equity

Expert sector

$\begin{array}{c|c} \textbf{A} & \textbf{Debt} \\ \hline \textbf{Capital} & \\ \kappa_t^e q_t K_t & \\ \hline N_t^e & \textbf{Outside} \\ \hline \geq \alpha \kappa_t^e \end{array}$

Household sector

- lacktriangle Experts must hold fraction $\chi^e_t \geq \alpha \kappa^e_t$ (skin in the game constraint)
- lacktriangle Return on inside equity N_t can differ from outside equity
 - Issue outside equity at required return from HH
 - In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return

Two Type Model Setup

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$E_0[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt] \qquad \rho^e \ge \rho^h \qquad E_0[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt]$$

Friction: Can only issue

- Risk-free debt
- Equity, but most hold $\chi_t^e \geq \alpha \kappa_t$

Household sector

- •Consumption rate: c_t^h
- Investment rate: ι_t^n $\frac{dk_t^{\tilde{\imath},e}}{k^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}} \qquad \frac{dk_t^{\tilde{\imath},h}}{k^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$

$$E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Unanticipated Run on Experts

- Can unanticipated withdrawal of all experts' funding be self-fulfilling?
- lacktriangle Unanticipated crash jump to $\eta^e=0$
 - Absent a run: solution as in Lecture 03, since unanticipated
 - When do jump capital losses wipe out experts net worth?

$$\left(q(\eta_t^e) - q(0)\right) \underbrace{\left(\theta_t^{e,K} + \theta_t^{e,OE}\right)\eta_t^e}_{\chi_t^e} K_t \ge \eta_t^e q(\eta_t^e) K_t$$

$$q(\eta_t^e) \left(1 - \frac{\eta_t^e}{\chi^e(\eta_t^e)} \right) \ge q(0) \text{ or } q(\eta_t^e) \left(1 - \frac{1}{\theta_t^{e,K} + \theta_t^{e,OE}} \right) \ge q(0)$$

- Vulnerability region:
 - High price (not very low η^e)
 - "high risk-leverage" (not very high η^e)
- After run: $\eta^0 = 0$ forever

2 Types of Runs and Modeling Challenges

- What type of run? What's the trigger?
 - Funding supply run: Depositor/households run
 - Household withdraw funding to experts
 - Funding demand run: Other experts run
 - Each expert tries to pay back debt and fire-sells assets
 - Drop in q is driver
- Model advantage: Always jump to the same point $q(\eta^e = 0)!$
- Modeling Challenges: (see Mendo (2020)
 - 1. Experts are whipped out forever.
 - OLG structure:
 - Death: all agents die with Poisson rate λ^d ,
 - ullet Birth: fraction ψ of newborns are experts
 - 2. With anticipated run, expert fear "infinite marginal utility state" $\eta^e = 0$.
 - Transfer of τK to bankrupt experts after run
 - Also fixes challenge 1.
 - To keep τ small also introduce relative performance penalty

From Ito to Levy and Cox Processes

- Ito process: $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$ (geometric) the Brownian "shocks" dZ_t are i.i.d. and small s.t. continuous path
 - lacktriangle For non-normal shocks within dt one needs discontinuities
- Levy process: $dL_t = adt + bdZ_t + dJ_t$ most general class with i.i.d. increments $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t + j_t^X X_{t-} dJ_t$
 - Restrict attention to Poisson processes:
 - Levy jump process can be written as integral w.r.t. Poisson random measures
 - Poisson process with arrival rate $\lambda > 0$:
 - J takes on values in $\mathbb{N}_0 = \{0,1,2,...\}$
 - Increments $J_{t+\Delta t}-J_t$ are Poisson distributed with Parameter $\lambda \Delta t$
 - Stochastic integral w.r.t. Poisson process simply sums up the values of the integrand
 - Cox process: λ_t can be time-varying
 - Compensated Jump process: $J_t \int_0^t \lambda_s ds$ is martingale
 - If $\int_0^t a_s dJ_s$ and a_t uses info only up to right before t then $J_t \int_0^t a_s \lambda_s ds$ is martingale

Ito formulas

Power rule:

Product rule:

• Quotient rule:

Memorize simple rules:

•
$$1 + j_t^X = (1 + j_t^X)^{\gamma}$$

•
$$1 + j_t^{XY} = (1 + j_t^X)(1 + j_t^Y)$$

•
$$1 + j_t^{X/Y} = \frac{1+j_t^X}{1+j_t^Y}$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

O. Postulate Aggregates and Processes

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \big(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\big)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 • Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

Capital aggregation:

• Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$

• Across sectors: $K_t \equiv \sum_i K_t^i$

• Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

Net worth aggregation:

• Within sector *i*: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$

Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$

• Value of capital stock: $q_t K_t$

Postulate
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t + j_t^q dJ_t$$

(c is numeraire)

O. Postulate Aggregates and Processes

• Individual capital evolution:

$$\frac{dk_t^{\tilde{i},i}}{k_t^{\tilde{i},i}} = (\Phi(\iota^{\tilde{i},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i},i}$$

- Where $\Delta_t^{k,\tilde{i},i}$ is the individual cumulative capital purchase process
- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = (\Phi(\iota_t^i) - \delta)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$
- Value of capital stock: $q_t K_t$

$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_{t} + j_t^q dJ_t$$

Postulate
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t + j_t^q dJ_t$$
Postulated SDF-process:
$$\frac{d\xi_t^i}{\xi_t^i} = \mu_t^{\xi_t^i} dt + \sigma_t^{\xi_t^i} dZ_t + j_t^{\xi_t^i} (dJ_t - \lambda_t dt) \quad (c \text{ is numeraire})$$

$$\equiv -r_t^{F,i} \qquad \equiv -\varsigma_t^i \qquad \equiv -v_t^i$$

Sunspot arrival rate

13

O. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
 - Use Ito product rule to obtain capital gain rate (in absence of purchases/sales)

■ Define
$$\check{k}_t^{\tilde{\imath}}$$
: $\frac{d\check{k}_t^{\tilde{\imath},i}}{\check{k}_t^{\tilde{\imath},i}} = \left(\Phi\left(\iota_t^{\tilde{\imath},i}\right) - \delta\right)dt + \sigma dZ_t + d\Lambda_t^{k\tilde{\imath},i}$ without purchases/sales

Dividend yield $E[\text{Capital gain rate}] = \frac{d(q_t\check{k}^i_t)}{(q_t\check{k}_t^i)}$

Dividend yield
$$dr_t^k \left(\iota_t^{\tilde{\imath},i} \right) = \left(\frac{a^i - \iota_t^i}{q} + \Phi(\iota_t^i) - \delta + \mu_t^q + \sigma \sigma_t^q \right) dt \\ + \left(\sigma + \sigma_t^q \right) dZ_t + j_t^q dJ_t$$

For aggregate capital return, Replace a^i with $A(\kappa)$

Return on defaultable debt

$$dr_t^D = r_t^i dt + j_t^{D,i} dJ_t$$

■ Postulate SDF-process: (Example: $\xi_t^i = e^{-\rho t} V'(n_t^i)$.)

$$\frac{d\xi_t^i}{\xi_t^i} = -r_t^{F,i}dt - \varsigma_t^i dZ_t - \gamma_t^i (dJ_t - \lambda_t dt)$$
Price of risk Price of jump/run risk

The Big Picture

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

- Choice of ι is static problem (and separable) for each t
- $= \max_{\iota_t^i} dr_t^k(\iota_t^i)$ $= \max_{\iota_t^i} \left(\frac{a^i \iota_t^i}{q_t} + \Phi(\iota_t^i) \delta + \mu^q + \sigma\sigma^q \right) + (\sigma + \sigma_t^q) dZ_t + j_t^q dJ_t$

For aggregate capital return, Replace a^i with $A(\kappa)$

- All agents $\iota_t^i = \iota_t \Rightarrow \frac{dK_t}{K_t} = (\Phi(\iota_t) \delta) dt + \sigma dZ_t$
 - Special functional form:
 - $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \phi \iota = q 1$
- Goods market clearing: $(A(\kappa) \iota_t)K_t = \sum_i C_i$. $\kappa_t a^e K_t + (1 - \kappa_t) a^h K_t - \iota(q_t) K_t = \eta_t^e \frac{C_t^e}{N_t^e} q_t K_t + (1 - \eta_t^e) \frac{C_t^h}{N_t^h} q_t K_t$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

$$\max_{\{\iota_t,\theta_t,c_t\}_{t=0}^\infty} E\left[\int_0^\infty e^{-\rho t} u(c_t) dt\right]$$
 s.t. $\frac{dn_t}{n_t} = -\frac{c_t}{n_t} dt + \sum_j \theta_t^j dr_t^j$ + labor income/endow/taxes n_0 given

- Portfolio Choice: Martingale Approach
 - Let x_t^A be the value of a "self-financing trading strategy" (reinvest dividends)
- Theorem: $\xi_t x_t^A$ follows a Martingale, i.e. drift = 0.

Let
$$\frac{dx_t^A}{x_t^A} = \mu_t^A dt + \sigma_t^A dZ_t + j_t^A dJ_t,$$
 Recall SDF
$$\frac{d\xi_t^i}{\xi_t^i} = -r_t dt - \varsigma_t^i dZ_t - \nu_t^i (dJ_t - \lambda_t dt)$$

By Ito product rule

$$\frac{d\left(\xi_t^i x_t^A\right)}{\xi_t^i x_t^A} = \left(-r_t + \mu_t^A - \varsigma_t^i \sigma_t^A - \left(1 - \nu_t^i\right) \lambda_t\right) dt + \left(\sigma^A - \varsigma_t^i\right) dZ_t + \left(j_t^A - \left(1 - \nu_t^i\right) \left(1 + j_t^A\right)\right) dJ_t$$

$$\frac{d\left(\xi_t^i x_t^A\right)}{\xi_t^i x_t^A} = \left(-r_t + \mu_t^A - \varsigma_t^i \sigma_t^A - \nu_t^i \lambda_t j_t^A\right) dt + \underbrace{\left(\sigma^A - \varsigma_t^i\right) dZ_t + \left(j_t^A - \left(1 - \nu_t^i\right) \left(1 + j_t^A\right)\right) (dJ_t - \lambda_t dt)}_{martingale}$$

• Expected return: $\mu_t^A + \lambda j_t^A = r_t + \varsigma_t^i \sigma_t^A + \nu_t^i \lambda j_t^A$

- Expected return: $\mu_t^A + \lambda j_t^A = r_t^i + \varsigma_t^i \sigma_t^A + \nu_t^i \lambda j_t^A$
 - r_t^i is the shadow risk-free rate (need not to be same across groups)
 - ς_t^i is the price of Brownian risk of agents i, $\varsigma_t^i \sigma_t^A$ is the required Brownian risk premium of agents i
 - $v_t^i \lambda_t$ is the price of Poisson upside risk if $j^A>0$ For risk-neutral agents $v_t^i=0$

Remark:

- $dr^{e,K}$ experts return on capital
- $\blacksquare dr^{h,OE}$ households return on outside equity
- $\blacksquare dr^{h,D}$ households' return on debt is risky (due to bankruptcy)

- Expected return: $\mu_t^A + \lambda j_t^A = r_t^i + \zeta_t^i \sigma_t^A + \nu_t^i \lambda j_t^A$
 - r_t^i is the shadow risk-free rate (need not to be same across groups)
 - ς_t^i is the price of Brownian risk of agents i, $\varsigma_t^i \sigma_t^A$ is the required Brownian risk premium of agents i
 - $v_t^i \lambda_t$ is the price of Poisson upside risk if $j^A>0$ For risk-neutral agents $v_t^i=0$
- Remark:
 - For CRRA utility: SDF is $\xi_t=e^{-\rho}\omega_t^{1-\gamma}n_t^{-\gamma}$ $1-\nu_t=(1+j_t^\omega)^{1-\gamma}(1+j_t^n)^{-\gamma}$
 - For log utility: $v_t = 1 \frac{1}{1 + j_t^n} = \frac{j_t^n}{1 + j_t^n}$
 - For Epstein-Zin: part of ω_t -process

Of experts with outside equity issuance (after plugging in households' outside equity choice)

$$\frac{a^{e}-\iota_{t}}{q_{t}} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q} + \sigma\sigma_{t}^{q} - \left[\frac{\chi_{t}^{e}}{\kappa_{t}^{e}}r_{t}^{F,e} + \left(1 - \frac{\chi_{t}^{e}}{\kappa_{t}^{e}}\right)r_{t}^{F,h}\right] + \lambda_{t} j_{t}^{q} = \left[\varsigma_{t}^{e} \frac{\chi_{t}^{e}}{\kappa_{t}^{e}} + \varsigma_{t}^{h} \left(1 - \frac{\chi_{t}^{e}}{\kappa_{t}^{e}}\right)\right] (\sigma + \sigma^{q}) + \left[\nu_{t}^{e} \frac{\chi_{t}^{e}}{\kappa_{t}^{e}} + \nu_{t}^{h} \left(1 - \frac{\chi_{t}^{e}}{\kappa_{t}^{e}}\right)\right] \lambda_{t} j_{t}^{q}$$

Of households' capital choice

$$\frac{a^{h}-\iota_{t}}{q_{t}} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q} + \sigma\sigma_{t}^{q} - r_{t}^{F,h} + \lambda_{t}(j_{t}^{q} - j_{t}^{D})$$

$$\leq \varsigma_{t}^{h}(\sigma + \sigma^{q}) + \nu_{t}^{h}\lambda_{t}(j_{t}^{q} - j_{t}^{D})$$

with equality if $\kappa_t^e < 1$

 Note: Later approach replaces this step with Fisher Separation Social Planners' choice (see below)

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1b. Asset/Risk Allocation across I Types

Price-Taking Planner's Theorem:

Let $dN_t/N_t = \mu_t^N dt + \sigma_t^N dZ_t + j_t^N dJ_t$

A social planner that takes prices as given chooses an physical asset allocation, κ_t , and Brownian risk allocation, χ_t , and a Jump risk allocation, ζ_t , that coincides with the $\zeta_t = (\zeta_t^1, \zeta_t^1)$ choices implied by all individuals' portfolio choices. $\chi_t = (\chi_t^1, \zeta_t^1)$

Return on total wealth

 $\varsigma_{t} = (\varsigma_{t}^{1}, ..., \varsigma_{t}^{I})$ $\chi_{t} = (\chi_{t}^{1}, ..., \chi_{t}^{I})$ $\zeta_{t} = (\zeta_{t}^{1}, ..., \zeta_{t}^{I})$ $\sigma(\chi_{t}) = (\chi_{t}^{1} \sigma^{N}, ..., \chi_{t}^{I} \sigma^{N})$ $j(\zeta_{t}) = (\zeta_{t}^{1} j_{t}^{N}, ..., \zeta_{t}^{I} j_{t}^{N})$

Planner's problem

$$\max_{\{\boldsymbol{\kappa}_{t},\boldsymbol{\chi}_{t},\boldsymbol{\zeta}_{t}\}} \frac{E_{t}[dr_{t}^{N}(\kappa_{t})]}{dt} - \boldsymbol{\varsigma}_{t}\sigma(\boldsymbol{\chi}_{t}) - \lambda \nu j(\boldsymbol{\zeta}_{t}) = \frac{dr^{F}}{dt} \text{ in equilibrium if for everyone}$$
subject to friction: $F(\boldsymbol{\kappa}_{t},\boldsymbol{\chi}_{t},\boldsymbol{\zeta}_{t}) \leq 0$

 $=dr^F/dt$ in equilibrium if risk free asset is tradable for everyone

- Example:
 - 1. $\chi_t = \zeta_t = \kappa_t$ (can't issue outside equity to offload Brownian or risky debt to offload Jump risk)
 - 2. $\chi_t \ge \alpha \kappa_t$ (skin in the game constraint, outside equity up to a limit)

1b. Asset/Risk Allocation across I Types

- Sketch of Proof of Theorem
- 1. Fisher Separation Thm: (delegated portfolio choice by firm)
 - FOC yield the martingale approach solution
 - Each individual agent (i, \tilde{i}) portfolio maximization is equivalent to the maximization problem of a firm

$$\max_{\{\boldsymbol{\theta}^{j,i}\}} \frac{E_t \left[dr^{n^{(i,\tilde{i})}} \right]}{dt} - \varsigma \sigma^{r^n} - \lambda v^i j^{n^i}(\zeta_t)$$

- - \blacksquare Either bang-bang solution for θs s.t. portfolio constraints bind
 - Or prices/returns/risk premia are s.t. that firm is indifferent
- 2. Aggregate
 - \blacksquare Taking η -weighted sum to obtain return on aggregate wealth
- 3. Use market clearing to relate θ s to κ s & χ s & ζ s (incl. θ -constraint)

1b. Allocation of Capital/Risk: 2 Types

• Expert: $\theta^e = (\theta^{e,K}, \theta^{e,OE}, \theta^{e,D})$ for capital, outside equity, debt

maximize

$$\theta_t^{e,K} E \left[dr_t^{e,K} \right] dt + \theta_t^{e,OE} \left(E \left[dr_t^{OE} \right] dt \right) + \theta_t^{e,D} E \left[dr_t^{D,e} \right] - \varsigma_t^e \left(\theta_t^{e,K} + \theta_t^{e,OE} \right) \sigma^{r^{e,K}} - \lambda_t \nu_t^e \left(\left(\theta_t^{e,K} + \theta_t^{e,OE} \right) j_t^{r^{eK}} + \theta_t^{e,D} j_t^{r^D} \right)$$

■ Household:
$$\boldsymbol{\theta^h} = (\theta^{h,K}, \theta^{h,OE}, \theta^{h,D})$$

 $\theta^{h,K} \geq 0$

 $\theta^{h,OE} > 0$

maximize

$$\theta^{h,K} E\left[dr_t^{h,K}\right]/dt + \theta^{h,OE} E\left[dr_t^{OE}\right]/dt + \theta^{h,D} E\left[dr_t^{D,h}\right] - \varsigma_t^h \left(\theta_t^{h,K} + \theta_t^{h,OE}\right) \sigma^{r^{h,K}} - \lambda_t \nu_t^h \left(\left(\theta_t^{h,K} + \theta_t^{h,OE}\right) j_t^{r^{hK}} + \theta_t^{h,D} j_t^{r^D}\right)$$

1b. Allocation of Capital/Risk: 2 Types

Example 2: 2 Type + with outside equity

$$\max_{\{\kappa_t^e, \chi_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \right] - \left(\chi_t^e \varsigma_t^e + (1 - \chi_t^e) \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right) + \cdots$$

■
$$FOC_{\chi}$$
: Case 1: $\varsigma_t^e(\sigma + \sigma_t^q) + \cdots > \varsigma_t^h(\sigma + \sigma_t^q) + \cdots \Rightarrow \chi_t^e = \alpha \kappa_t^e$

Case 2: $\chi_t^e > \alpha \kappa_t^e$

• Case 1: plug $\chi_t^e = \alpha \kappa_t^e$ in objective

a.
$$FOC_{\kappa}: \frac{a^e - a^h}{q_t} > \alpha (\varsigma_t^e - \varsigma_t^h) (\sigma + \sigma_t^q) + \cdots \Rightarrow \kappa_t^e = 1$$

b. $\Rightarrow \kappa_t^e < 1$

• Case 2:

Se 2:

$$a. \quad FOC_{\kappa} : \frac{a^{e} - a^{h}}{q_{t}} > 0$$

$$\Rightarrow \kappa_{t}^{e} = 1$$

$$= 0 \Rightarrow \kappa_{t}^{e} < 1 \text{ impossible}$$

$$\chi_{t}^{e} = \alpha \kappa_{t}^{e}$$

$$\chi_{t}^{e} = \alpha \kappa_{t}^{e}$$

1b. Allocation of Capital, κ , and Risk, χ

Summarizing previous slide (2 types with outside equity)

Cases	$\chi_t^e \ge \alpha \kappa_t^e$		$\frac{\left(a^{e}-a^{h}\right)^{\text{Shift a capital unit to expert}}_{\text{Benefit: LHS}}}{q_{t} \text{Cost: RHS}} \geq \alpha \left(\varsigma_{t}^{e}-\boldsymbol{\varsigma}_{t}^{h}\right) \left(\sigma+\sigma_{t}^{q}\right) + \cdots$	$(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q) + \cdots$ ≥ 0 Required risk premium of experts vs. HH
1 a	=	<	=	>
1b	=	=	>	>
2a	>	=	>	=
impossible				

Invariance of Relative Capital Demand

- One of the insights of Mendo (2020) is that self-fulfilling jumps do not influence the relative demand for capital of experts relative to households.
 I.e. the excess market return that experts demand to hold capital is not affected.
- Subtract experts pricing condition from households

- Losses are split between experts and households (via defaultable debt)
- Since experts' losses are capped by their net worth due to limited liability, all additional losses from increasing capital holding, $\theta_t^{e,K}$, are born by households

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of € in \$ (exchange rate)

$$\frac{dY_t}{Y_{t-}} = \mu_t^Y dt + \sigma_t^Y dZ_t + j_t^Y dJ_t$$

■ x_t^A/Y_t value of the self-financing strategy/asset in €

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t} \text{ follows a martingale (+ SDF in new numeraire } \hat{\xi}_t = \xi_t Y_t)$$
are not dependent on numeraire

Recall
$$\mu_t^A - \mu_t^B + \lambda_t (j_t^A - j_t^B) = \underbrace{\left(-\sigma_t^{\xi}\right)}_{=c_t} \underbrace{\left(\sigma^A - \sigma_t^B\right)}_{risk} + \nu_t \lambda_t (j_t^A - j_t^B)$$

$$\mu_t^{\frac{A}{Y}} - \mu_t^{\frac{B}{Y}} + \lambda_t \left(j_t^{\frac{A}{Y}} - j_t^{\frac{B}{Y}} \right) = \underbrace{\left(-\sigma_t^{\xi} - \sigma_t^{Y} \right)}_{price\ of\ risk} \underbrace{\left(\sigma^A - \sigma_t^B \right)}_{risk} + (\nu_t - j_t^Y - \nu_t j_t^Y) \lambda_t \frac{j_t^A - j_t^B}{1 + j_t^Y}$$

- Price of Brownian risk $\varsigma^{\in} = \varsigma^{\$} \sigma^{Y}$
- lacksquare Price of Jump risk $u_t^{\in} =
 u_t^{\$} j_t^Y
 u_t j_t^Y$

Change of Numeraire: SDF

SDF in good numeraire is

$$d\xi_t^i/\xi_{t-}^i = -r_t^{F,i}dt - \varsigma_t^i dZ_t - \nu_t^i (dJ_t - \lambda_t dt)$$

SDF in total net worth numeraire is

$$d\hat{\xi}_t^i/\hat{\xi}_{t-}^i = \mu_t^{\hat{\xi}^i} dt - \left(\varsigma_t^i - \sigma_t^N\right) dZ_t - \left(\nu_t^i - j_t^N - \nu_t j_t^N\right) dJ_t$$

$$= \hat{r}_t^{F,i} dt - \underbrace{\left(\varsigma_t^i - \sigma_t^N\right)}_{=\hat{\varsigma}_t^i} dZ_t - \left(\nu_t^i - j_t^N - \nu_t j_t^N\right) (dJ_t - \lambda_t dt)$$

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

2. GE: Markov States and Equilibria

■ Equilibrium is a map

Histories of shocks ----- prices $q_t, \varsigma_t^i, \iota_t^i, \theta_t^e$

$$\{\boldsymbol{Z}_{\scriptscriptstyle S}, s \in [0,t]\}$$

net worth distribution

$$\eta_t^e = \frac{N_t^e}{q_t K_t} \in (0,1)$$

net worth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology
- All markets clear
 - Consumption, capital, money, outside equity

2. Law of Motion of Wealth Share η_t

- Method 1: Using Ito's quotation rule $\eta_t^i = N_t^i/(q_t K_t)$
 - Recall bm = benchmark asset $= -\frac{N_t^i}{N_t^i} dt + r_t^{bm} dt + \sum_{price\ of}^i \underbrace{\left(\frac{\chi_t^i \kappa_t^i}{\eta_t^i} (\sigma + \sigma_t^q) - \sigma^{bm}\right)}_{\text{express}\ risk} dt + +\nu \left(j_t^{N^i} - j_t^{bm}\right) dt$ $+\frac{\chi_t^i \kappa_t^i}{\eta_t^i} (\sigma + \sigma_t^q) dZ_t + \left(j_t^{Ni} - j_t^{bm}\right) dJ_t + \tau^i K_t / N_t^i dJ_t$ $-\frac{d\eta_t^i}{\eta_t^i} = \dots \text{ (lots of algebra)}$ Transfers in case of June 1... I ignored OLG terms for now

Transfers in case of Jump

- Method 2: Change of numeraire + Martingale Approach
 - New numeraire: Total wealth in the economy, N_t
 - Apply Martingale Approach for value of i's portfolio
 - Simple algebra to obtain drift of η_t^i : $\mu_t^{\eta^i}$ Note that change of numeraire does not affect ratio η^i !

2. μ^{η} Drift of Wealth Share: Many Types

- New Numeraire
 - "Total net worth" in the economy, N_t (without superscript)
 - Type i's portfolio net worth = net worth share
- Martingale Approach with new numeraire
 - Asset A = i's portfolio return in terms of total wealth,

$$\left(\frac{C_t^i}{N_t^i} + \mu_t^{\eta^i} + \lambda_t j^{\eta^i} \right) dt + \sigma_t^{\eta^i} dZ_t$$
 Dividend E[capital gains] yield rate

Asset B (benchmark asset that everyone can hold,
 e.g. risk-free asset or money (in terms of total economy wide wealth as numeraire))

$$r_t^{bm}dt + \sigma_t^{bm}dZ_t$$

Apply our martingale asset pricing formula

$$\mu_t^A - \mu_t^B + \lambda_t(j_t^A - j_t^B) = \hat{\varsigma}_t^i(\sigma_t^A - \sigma_t^B) + \hat{v}_t(j_t^A - j_t^B)$$

Hat notation : indicates total net worth numeraire

2. μ^{η} Drift of Wealth Share: Many Types

Asset pricing formula (relative to benchmark asset)

$$\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^{bm} + \lambda_t \left(j_t^{\eta^i} - j_t^{bm} \right) = \left(\varsigma_t^i - \sigma_t^N \right) \left(\sigma_t^{\eta^i} - \sigma_t^{bm} \right) + \hat{v}_t^i \left(j_t^{\eta^i} - j_t^{bm} \right)$$

 Add up across types (weighted), (capital letters without superscripts are aggregates for total economy)
 in numeraire

$$\sum_{t'}^{I} \eta_t^{i'} \mu_t^{\eta^{i'}} + \frac{C_t}{N_t} - r_t^{bm} + \sum_{t'}^{I} \eta_t^{i'} j_t^{\eta^{i'}} - \lambda_t dj_t^{bm} = \sum_{t'}^{I} \eta_t^{i'} j_t^{\eta^{i'}} - \lambda_t dj_t^{b$$

$$\sum_{i'} \eta_t^{i'} \hat{\varsigma}_t^{i'} \left(\sigma_t^{\eta^{i'}} - \sigma_t^{bm} \right) + \sum_{i'} \eta_t^{i'} \hat{v}_t^{i'} \left(j_t^{\eta^{i'}} - j_t^{bm} \right)$$

Subtract from first equation

$$\mu_{t}^{\eta^{i}} + \lambda_{t} j_{t}^{\eta^{i'}} = \frac{C_{t}}{N_{t}} - \frac{C_{t}^{i}}{N_{t}^{i}} - \hat{\varsigma}_{t}^{i} \left(\sigma^{\eta^{i}} - \sigma^{bm}\right) - \sum_{i'} \eta_{t}^{i'} \hat{\varsigma}_{t}^{i'} \left(\sigma_{t}^{\eta^{i'}} - \sigma_{t}^{m}\right) + \hat{v}_{t}^{i} \left(j_{t}^{\eta^{i}} - j_{t}^{bm}\right) - \sum_{i'} \eta_{t}^{i'} \hat{v}_{t}^{i'} \left(j_{t}^{\eta^{i'}} - j_{t}^{bm}\right)$$

2. μ^{η} Drift of Wealth Share: Two Types $i \in \{e, h\}$

Subtract from each other yield net worth share dynamics

$$\mu_{t}^{\eta^{e}} + \lambda_{t} j_{t}^{\eta^{e}} = \frac{C_{t}}{N_{t}} - \frac{C_{t}^{e}}{N_{t}^{e}} - (1 - \eta_{t}^{e}) \hat{\varsigma}_{t}^{e} \left(\sigma_{t}^{\eta^{e}} - \sigma_{t}^{bm}\right) - (1 - \eta_{t}^{e}) \hat{\varsigma}_{t}^{h} \left(\sigma_{t}^{\eta^{h}} - \sigma_{t}^{bm}\right) + (1 - \eta_{t}^{e}) \hat{v}_{t}^{e} \left(j_{t}^{\eta^{e}} - j_{t}^{bm}\right) - (1 - \eta_{t}^{e}) \hat{v}_{t}^{h} \left(j_{t}^{\eta^{h}} - j_{t}^{bm}\right)$$

- In in our model, benchmark asset is risky debt,
 - $\bullet \quad \sigma_t^{bm} = -\sigma_t^N,$
 - $j_t^{bm} = \frac{j^D j^N}{1 + j^N}$ (since j_t^D risky debt jump in c-numeraire, j_t^N wealth jump)
 - Apply quotient rule for jumps

$$\begin{split} & \blacksquare \mu_t^{\eta^e} + \lambda_t j_t^{\eta^e} \\ & = \frac{C_t}{N_t} - \frac{C_t^e}{N_t^e} - (1 - \eta_t^e) \hat{\varsigma}_t^e \left(\sigma_t^{\eta^e} + \sigma_t^N \right) - (1 - \eta_t^e) \hat{\varsigma}_t^h \left(\sigma_t^{\eta^h} + \sigma_t^{bm} \right) \\ & + (1 - \eta_t^e) \hat{v}_t^e \left(j_t^{\eta^e} - \frac{j^D - j^N}{1 + j^N} \right) - (1 - \eta_t^e) \hat{v}_t^h \left(j_t^{\eta^h} - \frac{j^D - j^N}{1 + j^N} \right) \end{split}$$

2. σ^{η} Volatility of Wealth Share

• Since
$$\eta_t^i = N_t^i/N_t$$
,
$$\sigma_t^{\eta^i} = \sigma_t^{N^i} - \sigma_t^N = \sigma_t^{N^i} - \sum_{i'} \eta_t^{i'} \sigma_t^{N^{i'}}$$
$$= (1 - \eta_t^i) \sigma_t^{N^i} - \sum_{i^- \neq i} \eta_t^{i^-} \sigma_t^{N^{i^-}}$$

$$j_t^{\eta^i} = \frac{j_t^{N^i} - j_t^N}{1 + j_t^N} = \frac{j_t^{N^i} - \sum_{i'} \eta_t^{i'} j_t^{N^{i'}}}{1 + \sum_{i'} \eta_t^{i'} j_t^{N^{i'}}} = \frac{(1 - \eta_t^i) j_t^{N^i} - \sum_{i - \neq i} \eta_t^{i^-} j_t^{N^{i^-}}}{1 + \sum_{i'} \eta_t^{i'} j_t^{N^{i'}}}$$

Note for 2 types example

$$j_t^{\eta^e} = \frac{(1 - \eta_t^e)(j_t^{N^e} - j_t^{N^h})}{1 + \eta_t^e j_t^{N^e} + (1 - \eta_t^e)j_t^{N^h}}$$

Note:

- OLG structure and
- transfers τK_t

also affects net worth evolution and still has to be incorporated!

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^iig(n^{ ilde{\imath}};\eta,Kig)$ into $v^i(\eta)u(K)ig(n^{ ilde{\imath}}/n^iig)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

The Big Picture

3a. CRRA Value Function Applies separately for each type of agent

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)
- $lacksquare V^i(n_t^i; oldsymbol{\eta_t}, K_t)$ for individuals i
- For CRRA/power utility $u(c_t^i) = \frac{(c_t^i)^{1-\gamma}-1}{1-\gamma}$ $f(c,U) = (1-\gamma)\rho U\left(\log(c) \frac{1}{1-\gamma}\log((1-\gamma)U)\right)$

recursive utility
$$U_t = E_t \left[\int_t^\infty f\left(c_s, U_s\right) ds \right]$$

$$f\left(c, U\right) = (1 - \gamma) \, \rho U \left(\log\left(c\right) - \frac{1}{-1} \log\left(\left(1 - \gamma\right) U\right) \right)$$

 \Rightarrow increase net worth by factor, optimal c^i for all future states increases by this factor \Rightarrow $\left(\frac{c_t^i}{n_t^i}\right)$ -ratio is invariant in n_t^i

- $lack \Rightarrow$ value function can be written as $V^i \left(n_t^i; m{\eta_t}, K_t \right) = \frac{u \left(\omega^i(m{\eta_t}, K_t) n_t^i \right)}{\rho^i}$
- ω_t^i Investment opportunity/ "net worth multiplier"
 - $\omega^i(\eta_t, K_t)$ -function turns out to be independent of K_t
 - Change notation from $\omega^i(\pmb{\eta_t}, K_t)$ -function to ω^i_t -process

3a. Special case: log utility

- Result: $q(\eta^e)$ -function is invariant to run risk, i.e. same as in Lecture 03.
 - ... but expected returns are different.
- Proof (sketch)
 - Log utility implies, prices of risk:
 - $\bullet \varsigma_t^i = \sigma_t^{n^i}$
 - $\lambda_t v_t^i = \lambda_t / (1 + j_t^{n^i})$
 - Goods market clearing
 - Brownian amplification equation

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'}{q}(\kappa - \eta)}$$

Relative asset pricing equation

$$\frac{a^e - a^h}{q_t} \ge \left(\frac{\kappa_t}{\eta_t} - \frac{1 - \kappa_t}{1 - \eta_t}\right) \left(\sigma + \sigma_t^q\right)^2$$

3a. Value function in OLG setting

Note: with OLG structure we have to take care that individual value function differs from sector wide.

$$V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma} = \frac{1}{\rho^i} \frac{\left(\omega_t^i \eta_t^{i,\tilde{i}} N^i\right)^{1-\gamma}}{1-\gamma}$$

- Where $\eta_t^{i,\tilde{i}}$ is the net worth share of individual (\tilde{i},i) within sector i
- It is time-varying deterministically, and hence does not affect asset pricing.

3a. CRRA Value Function: relate to ω

■ ⇒ value function can be written as $\frac{u(\omega_t^i n_t^i)}{\rho}$, that is

$$= \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma} - 1}{1-\gamma} = \frac{1}{\rho^i} \frac{\left(\omega_t^i\right)^{1-\gamma} \left(n_t^i\right)^{1-\gamma} - 1}{1-\gamma}$$

 $\blacksquare \frac{\partial V}{\partial n^i} = u'(c^i)$ by optimal consumption (if no corner solution)

$$\frac{\left(\omega_t^i\right)^{1-\gamma}\left(n_t^i\right)^{-\gamma}}{\rho^i} = (c_t^i)^{-\gamma} \Leftrightarrow \frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma}(\omega_t^i)^{1-1/\gamma}$$

Optimal consumption is different:

$$\omega^{1-\gamma}n^{-\gamma} = \frac{\partial V}{\partial n} = \frac{\partial f}{\partial c} = \rho(\omega n)^{1-\gamma} \frac{1}{c}$$

$$\Rightarrow \frac{c}{n} = \rho$$

3a. CRRA Value Function: relate to ω

• \Rightarrow value function can be written as $\frac{u(\omega_t^i n_t^i)}{\rho}$, that is

$$=\frac{1}{\rho^{i}}\frac{\left(\omega_{t}^{i}n_{t}^{i}\right)^{1-\gamma}-1}{1-\gamma}=\frac{1}{\rho^{i}}\frac{\left(\omega_{t}^{i}\right)^{1-\gamma}\left(n_{t}^{i}\right)^{1-\gamma}-1}{1-\gamma}$$

SDF now

$$\xi_t = e^{\int_0^t \frac{\partial f}{\partial V}(c_S, V_S) dS} \frac{\partial V}{\partial n} = e^{\int_0^t \frac{\partial f}{\partial V}(c_S, V_S) dS} \omega_t^{1-\gamma} n_t^{-\gamma}$$

Get new discounting term

$$e^{-\int_0^t \frac{\partial f}{\partial V}(c_s, V_s) ds} \xi_t n_t = (1 - \gamma) V_t$$

$$\Rightarrow E_t [dV_t] / V_t = (-\partial f / \partial V_t - c_t / n_t) dt$$

3a. CRRA Value Function: Special Cases

$$c_t^i = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma=1$: $\xi_t^i=e^{-\rho^i t}/c_t^i=e^{-\rho^i t}/(\rho n_t^i) \text{ for any } \omega_t^i\Rightarrow\sigma_t^{n^i}=\sigma_t^{c^i}=\zeta_t^i$ Expected excess return: $\mu_t^A-r_t^F=\sigma_t^{n^i}\sigma_t^A$ Recall $\frac{dn_t^i}{n_t^i}=-\frac{c_t^i}{n_t^i}dt+\left(1-\theta^i\right)dr_t^K+\theta^i dr_t$

3a. CRRA Value Function: Special Cases

$$\frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma=1$: $\xi_t^i=e^{-\rho^i t}/c_t^i=e^{-\rho^i t}/(\rho n_t^i) \text{ for any } \omega_t^i\Rightarrow\sigma_t^{n^i}=\sigma_t^{c^i}=\varsigma_t^i$ Expected excess return: $\mu_t^A-r_t^F=\sigma_t^{n^i}\sigma_t^A$

 - $= \operatorname{Recall} \frac{dn_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 \theta^i) dr_t^K + \theta^i dr_t$
- For constant investment opportunities $\omega_t^i = \omega^i$, $\Rightarrow c^i/n^i$ is constant and hence $\sigma_t^{c^i} = \sigma^{n^i}$
 - Expected excess return: $\mu_t^A r_t^F = \gamma \sigma_t^{n^l} \sigma_t^A$

Poll 49: Which term refers to (dynamic/Mertonian) hedging demand?

- $a) \gamma$
- b) σ_t^n
- c) hidden in risk-free rate
- d) none of the above

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts