
Macro, Money and (International) Finance – Problem Set 2

September 16, 2020

Problem set prepared by Sebastian Merkel (smerkel@princeton.edu). Please let me know, if any tasks
are unclear or you find mistakes in the problem descriptions.

The submission deadline is Thursday, September 24 (end of day Princeton time). Please
submit your group’s solution via email to Fernando Mendo (fmendolopez@gmail.com).

1 PDE Review

Read the remaining sections in the differential equations notes.

2 The Kolmogorov Forward Equation for an Ornstein-Uhlenbeck
Process

In this problem you are asked to write a solution algorithm for a relatively simple PDE, a (time-varying)
Kolmogorov forward equation for a simple process. The purpose of this problem is to familiarize yourself
with the solution methods you read about in Problem 1. For this reason, you should write your own
PDE solution code and not rely on a solver written by someone else.

The generic form of the Kolmogorov forward equation for diffusion processes (Ito processes) is
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If p0 is the probability density of the initial value X0 of a process X that follows the evolution

dXt = µ(Xt, t)dt+ σ(Xt, t)dZt,

then p(·, t) is the density of the random variable Xt, if the function p solves equation (1) and satisfies the
initial condition p(x, 0) = p0(x) for all x. In this problem, let X follow an Ornstein-Uhlenbeck process,

dXt = θ(x̄−Xt)dt+ σdZt.

The Kolmogorov forward equation is then

∂p

∂t
(x, t) = θ(x− x̄)

∂

∂x
p(x, t) + θp(x, t) +

σ2

2

∂2

∂x2
p(x, t). (2)

1



Suppose the initial condition p0 is a normal density with mean m0 and variance v0. This process is
the continuous-time analog of a discrete-time AR(1) process with normal noise and we know that for a
discrete-time AR(1) process x, xt is normally distributed for all t ≥ 0, if the initial value x0 is normally
distributed (potentially degenerate normal with zero variance). Indeed, the same is true for continuous
time. The solution function is given by
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2/2 is the standard normal density.1 Use this PDE problem as a test problem to

practice numerical solutions of PDEs. For your convenience, I have written a matlab script problem2.m
that performs most of the auxiliary tasks required for problems 2-5.

1. Write a generic Kolmogorov forward equation solver for the Ornstein-Uhlenbeck process. The
function should take the following inputs:

(a) equation paramters θ, σ and x̄;

(b) generic grid vectors along the x and t dimensions (not necessarily uniformly spaced);

(c) a vector of initial density values (p0) on the specified x grid (not necessarily a normal density);

(d) vectors of (artificial) boundary conditions p(x, ·), p(x, ·) on the specified t grid, where x and
x are the left and right end points of the x grid;

(e) an option specifying the solution method (explicit or implicit Euler);

(f) an option specifying the computation of first derivatives (central differences, left differences,
right differences or upwind)

The function is supposed to return a matrix that contains the solution values p(x, t) for all elements
(x, t) on the specified grids.

I have distributed a matlab template file solveKfeOu.m with this problem set that you can use as
a starting point.

2. Using your solver function, solve equation (2) for the simple case x̄ = 0, θ = 0, σ = 1 (then
dX = dZ). Let x := −5, x := 5, T := 2 solve the equation on [x, x] in the time interval [0, T ]
taking as an initial value a normal density with variance v0 = 0.1 and mean m0 = 0, and a
uniform space and time discretization with ∆x = 0.1 and ∆t = 0.005. Use central differences for
the computation of first derivatives and compute a numerical solution using both the explicit and
implicit method. For both numerical solutions p̃ plot the absolute error log10 |p̃−p| and the relative

error log10
|p̃−p|
|p| as a two-dimensional plot, where p is the closed-form solution (3). Also plot the

maximum relative error along the space dimension over time for both methods.

1If one wanted to derive this closed-form solution, one could start by guessing that the solution is a normal density,
substituting it into the PDE and solving for v and m. Here, you can just take this solution as given.
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3. Repeat the exercise of part 2, but this time use the finer space discretization ∆x = 0.05. What
happens?

4. Revert back to the values of ∆x, ∆t of part 2, but now add mean reversion, θ = 3 and reduce
the volatility to σ = 0.33. Also, let v0 = 0.33, m0 = −3 and T = 1. Solve the equation with all
8 possible method options (explicit/implicit, central/left/right/upwind). For each method check
whether it yields an acceptable result and report in 1-2 sentences why it does or what goes wrong.
Add some plots to your answer to illustrate your point (this is not required for all 8 possibilities,
2-5 plots are sufficient).

5. Check that your function written in part 1 also works for nonuniformly spaced grids. Generate a
random space grid with N = 200 points and the restriction that x0 = xL = −5, xN = xR = 5 and
solve the problem with parameters x̄ = 0, θ = 0.5, σ = 0 and initial conditions m0 = 0, v0 = 0.1
(how exactly you implement the random grid generation is your choice as long as it is random).
Run it a number of times and verify that the numerical approximation quality is acceptable.

3 The Lecture 3 Model with Generalized Preferences

In this problem, you will solve an augmented version of the Lecture 3 model numerically. You can use
the existing solution code in the lecture notes and change it so that it solves the model presented here.

The physical environment and the set of available contracts is the same as in lecture 3, but we allow
for more general preferences. Expected utility of agent type i ∈ {e, h} is

E
[∫ ∞
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,

where ui is a CRRA utility function with parameter γi > 0 (you may assume γi 6= 1 as in the lecture)
and Θi

t is a stochastic time discounting process with the properties
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The stochastic component of Θi can be interpreted as taste shocks.2 If σΘ,e = σΘ,h = 0, then we get the
familiar time preferences Θi

t = e−ρ
it. If we assume in addition γe = γh = γ, this model reduces to the

one solved in Lecture 3.
You can use without proof that the following facts remain true in this generalized setup:
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• the SDF of each agent is the discounted marginal value of wealth,
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• the optimal consumption choice equates the marginal utility of consumption with the marginal
value of wealth,
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2You have seen these shocks before in a problem at the Princeton Initiative.
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1. Explain why solution steps 1 and 2 remain unaffected by this change in assumptions (1-2 sentences
are sufficient)

2. Work through step 3 of the solution procedure and adjust it to this augmented preference specifi-
cation. Derive

(a) BSDEs (drift expressions) for the descaled value functions ve and vh;

(b) prices of risk ςe and ςh;

(c) consumption-wealth ratios ce/ne and ch/nh in terms of η, q and the descaled value functions
ve and vh.

3. Update the code of the Lecture 3 model to incorporate the augmented preference specification.
Your code should allow the user to choose arbitrary combinations of the six preference parameters
γe, γh, ρe, ρh, σΘ,e and σΘ,h (currently, it imposes the restrictions γe = γh and σΘ,e = σΘ,h) and
run (at least) for economically reasonable choices of these parameters.

4. Set σΘ,e = σΘ,h = 0 and investigate what happens when we allow for γe 6= γh. Specifically, take
the baseline parameterization from Slide 87 of Lecture 3, reproduce the result and then compute
solutions for larger and smaller γe keeping all other parameters as in the baseline. For all three
specifications, plot q, σq, κ, χ, µηη, σηη and whatever else you find informative to understand how
a change in expert risk aversion changes model outcomes. Explain what happens.

5. Go back to γe = γh, but add taste shocks for experts. Again, use the same baseline as in part 4
and compare it to a situation with σΘ,e > 0 and σΘ,e < 0 by plotting solution functions. How do
taste shocks affect the equilibrium?

4


