Financial and Monetary Economics

Eco529 Fall 2020

Lecture 03: Endogenous Risk Dynamics

Markus K. Brunnermeier

Princeton University

Desired Model Properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Endogenous risk and price of risk
 - Fire-sales, liquidity spirals, fat tails
 - Spillovers across assets and agents
 - Market and funding liquidity connection
 - SDF vs. cash-flow news
- Volatility paradox
- Financial innovation less stable economy
- ("Net worth trap" double-humped stationary distribution)

Two Type/Sector Model with Outside Equity

BruSan 2017: Handbook of Macroeconomics, Lecture Notes, Chatper 3

Expert sector

Household sector

- lacktriangle Experts must hold fraction $\chi^e_t \geq \alpha \kappa^e_t$ (skin in the game constraint)
- lacktriangle Return on inside equity N_t can differ from outside equity
 - Issue outside equity at required return from HH
 - In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return

Expert sector

Household sector

$$y_t^e = a^e k_t^e$$

$$a^e \ge a^h$$

• Output: $y_t^e = a^e k_t^e$ $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

$$A(\kappa) = \kappa^e a^e + \kappa^h a^h$$

Capital share of experts

Poll 4: Why is it important that households can hold capital?

- a) to capture fire-sales
- b) for households to speculate
- c) to obtain stationary distribution

Expert sector

Household sector

$$y_t^e = a^e k_t^e$$

$$a^e \ge a^h$$

• Output: $y_t^e = a^e k_t^e$ $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

$$A(\kappa) = \kappa^e a^e + \kappa^h a^h$$

$$\uparrow$$
Capital share of experts

Poll 5: What are the modeling tricks to obtain stationary distribution?

- a) switching types
- b) agents die, OLG/perpetual youth models (without bequest motive)
- c) different preference discount rates

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$\frac{dk_t^{i,e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{i}}$$

Household sector

Output:
$$y_t^h = a^h k_t^h$$

•Consumption rate: c_t^h

Investment rate:
$$\iota_t^e$$

$$\frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$$

$$\frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$$

Physical capital evolution absent market transactions/fire-sales

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$\frac{dk_t^{i,e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{i}}$$

$$E_0[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt] \qquad \rho^e \ge \rho^h \qquad E_0[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt]$$

Household sector

- •Consumption rate: c_t^h
- Investment rate: ι_t^n $\frac{dk_t^{\tilde{\imath},e}}{k_t^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}} \qquad \frac{dk_t^{\tilde{\imath},h}}{k_t^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$

$$E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$
 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

- Consumption rate: c_t^e
- Investment rate: ι_t^e

$$\frac{dk_t^{i,e}}{k_t^{\tilde{i},e}} = \left(\Phi\left(\iota_t^{\tilde{i},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{i}}$$

$$E_0[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt] \qquad \rho^e \ge \rho^h \qquad E_0[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt]$$

Friction: Can only issue

- Risk-free debt
- Equity, but most hold $\chi_t^e \geq \alpha \kappa_t$

Household sector

- •Consumption rate: c_t^h
- •Investment rate: ι_t^n $\frac{dk_t^{\tilde{\imath},e}}{k^{\tilde{\imath},e}} = \left(\Phi\left(\iota_t^{\tilde{\imath},e}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}} \qquad \frac{dk_t^{\tilde{\imath},h}}{k^{\tilde{\imath},h}} = \left(\Phi\left(\iota_t^{\tilde{\imath},h}\right) - \delta\right)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$

$$E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \left(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = (\Phi(\iota^{\tilde{\imath},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

- Where $\Delta_t^{k,\tilde{i},i}$ is the individual cumulative capital purchase process
- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = (\Phi(\iota^{\tilde{\imath},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

- Where $\Delta_t^{k,\tilde{i},i}$ is the individual cumulative capital purchase process
- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$ Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = (\Phi(\iota^{\tilde{\imath},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

- Where $\Delta_t^{k,\tilde{i},i}$ is the individual cumulative capital purchase process
- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector *i*: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$
- Value of capital stock: $q_t K_t$

Postulate
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$

Poll 13: How many Brownian motions span prob. space?

- a) one
- b) two
- c) one + number of sectors
- d) two + number of sectors

• Individual capital evolution:

$$\frac{dk_t^{\tilde{\imath},i}}{k_t^{\tilde{\imath},i}} = \big(\Phi\big(\iota^{\tilde{\imath},i}\big) - \delta\big)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{\imath},i}$$

 • Where $\Delta_t^{k,\tilde{\imath},i}$ is the individual cumulative capital purchase process

Capital aggregation:

• Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$

• Across sectors: $K_t \equiv \sum_i K_t^i$

• Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

Net worth aggregation:

• Within sector i: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$

Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$

• Value of capital stock: $q_t K_t$

Postulate $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$

• Individual capital evolution:

$$\frac{dk_t^{\tilde{i},i}}{k_t^{\tilde{i},i}} = (\Phi(\iota^{\tilde{i},i}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i},i}$$

- Where $\Delta_t^{k,\tilde{i},i}$ is the individual cumulative capital purchase process
- Capital aggregation:
 - Within sector i: $K_t^i \equiv \int k_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $K_t \equiv \sum_i K_t^i$
 - Capital share: $\kappa_t^i \equiv K_t^i/K_t$

$$\frac{dK_t}{K_t} = \left(\Phi(\iota_t^i) - \delta\right)dt + \sigma dZ_t$$

- Net worth aggregation:
 - Within sector *i*: $N_t^i \equiv \int n_t^{\tilde{i},i} d\tilde{i}$
 - Across sectors: $N_t \equiv \sum_i N_t^i$ Wealth share: $\eta_t^i \equiv N_t^i/N_t$
- Value of capital stock: $q_t K_t$

Postulate
$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$

Postulate $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$ Postulated SDF-process: $\frac{d\xi_t^i}{\xi_t^i} = \mu_t^\xi dt + \sigma_t^{\xi_t^i} dZ_t$

- ... from price processes to return processes (using Ito)
 - Use Ito product rule to obtain capital gain rate (in absence of purchases/sales)

$$\text{ Define } \check{k}_t^{\tilde{\imath}:} : \frac{d\check{k}_t^{\tilde{\imath},i}}{\check{k}_t^{\tilde{\imath},i}} = \left(\Phi\left(\iota_t^{\tilde{\imath},i}\right) - \delta\right)dt + \sigma dZ_t + dZ_t^{\tilde{\imath}_t} \text{ without purchases/sales}$$

$$\text{ Dividend yield } \qquad \text{ E[Capital gain rate]} = \frac{d(q_t\check{k}_t^{\tilde{\imath}_t})}{(q_t\check{k}_t^{\tilde{\imath}_t})}$$

$$dr_t^k\left(\iota_t^{\tilde{\imath},i}\right) = \left(\frac{a^i - \iota_t^i}{q} + \Phi(\iota_t^i) - \delta + \mu_t^q + \sigma\sigma_t^q\right)dt \qquad \text{For aggregate capital return, Replace } a^i \text{ with } A(\kappa)$$

■ Postulate SDF-process: (Example: $\xi_t^i = e^{-\rho t} V'(n_t^i)$.)

$$\frac{d\xi_t^i}{\xi_t^i} = -r_t dt - \varsigma_t^i dZ_t$$
Price of risk

Recall discrete time $e^{-r^F} = E[SDF]$

Poll 16: Why does drift of SDF equal risk-free rate

a) no idio risk

$$b) e^{-r^F} = E[SDF] * 1$$

c) no jump in consumption

The Big Picture

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1a. Individual Agent Choice of ι , θ , c

- lacktriangle Choice of ι is static problem (and separable) for each t
- $-\max_{\iota_t^i} dr_t^k(\iota_t^i)$

$$= \max_{\iota_t^i} \left(\frac{a^i - \iota_t^i}{q_t} + \Phi(\iota_t^i) - \delta + \mu^q + \sigma \sigma^q \right)$$

For aggregate capital return, Replace a^i with $A(\kappa)$

- FOC: $\frac{1}{q_t} = \Phi'(\iota_t^i)$ Tobin's q
 - All agents $\iota_t^i = \iota_t \Rightarrow \frac{dK_t}{K_t} = (\Phi(\iota_t) \delta) \ dt + \sigma dZ_t$
 - Special functional form:
 - $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \phi \iota = q 1$
- lacksquare Goods market clearing: $(A(\kappa) \iota_t) K_t = \sum_i C_i$.

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1a. Individual Agent Choice of ι , θ , c

 Of experts with outside equity issuance (after plugging in households' outside equity choice)

$$\frac{a^e - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t = [\varsigma_t^e \chi_t^e / \kappa_t^e + \varsigma_t^h (1 - \chi_t^e / \kappa_t^e)](\sigma + \sigma^q)$$

New compared to Basac-Cuoco

Of households' capital choice

$$\frac{a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t \le \varsigma_t^h(\sigma + \sigma^q)$$
 with equality if $\kappa_t^e < 1$

Note: Later approach replaces this step with
 Fisher Separation Social Planners' choice (see below)

1a. Individual Agent Choice of ι , θ , c

- Consumption Choice: Martingale Approach
 - Consider a self-financing trading strategy consisting of agent's net worth with consumption reinvested.

$$= \frac{d\left(\xi_t^i n_t^i\right)}{\xi_t^i n_t^i} + \frac{c_t^i}{n_t^i} dt = \left(-r_t + \mu_t^{n^i} - \varsigma_t^i \sigma_t^{n^i} + \frac{c_t^i}{n_t^i} \right) dt + \sigma \dots$$

(only) useful for steady state characterization

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

1b. Asset/Risk Allocation across I Types

Price-Taking Planner's Theorem:

A social planner that takes prices as given chooses an physical asset allocation, κ_t and risk allocation χ_t that coincides with the choices implied by all individuals' portfolio choices.

Planner's problem

$$\max_{\{\boldsymbol{\kappa}_t, \boldsymbol{\chi}_t\}} E_t [dr_t^N(\kappa_t)] / dt - \boldsymbol{\varsigma}_t \sigma(\boldsymbol{\chi}_t)$$

subject to friction:
$$F(\kappa_t, \chi_t) \leq 0$$

- Example:
 - 1. $\chi_t = \kappa_t$ (if one holds capital, one has to hold risk)
 - 2. $\chi_t \ge \alpha \kappa_t$ (skin in the game constraint, outside equity up to a limit)

$$\varsigma_t = (\varsigma_t^1, ..., \varsigma_t^I)
\chi_t = (\chi_t^1, ..., \chi_t^I)
\sigma(\chi_t) = (\chi_t^1 \sigma^N, ..., \chi_t^I \sigma^N)
= dr^F/dt in
equilibrium$$

1b. Asset/Risk Allocation across I Types

- Sketch of Proof of Theorem
- 1. Fisher Separation Thm: (delegated portfolio choice by firm)
 - FOC yield the martingale approach solution
 - Each individual agent (i, \tilde{i}) portfolio maximization is equivalent to the maximization problem of a firm

$$\max_{\{\boldsymbol{\theta}^{j,i}\}} E_t \left[dr^{n^{(i,\tilde{i})}} \right] / dt - \varsigma \sigma^{r^n}$$

- - lacktriangle Either bang-bang solution for heta s s.t. portfolio constraints bind
 - Or prices/returns/risk premia are s.t. that firm is indifferent
- 2. Aggregate
 - lacktriangle Taking η -weighted sum to obtain return on aggregate wealth
- 3. Use market clearing to relate θ s to κ s & χ s (incl. θ -constraint)

■ Expert: $\boldsymbol{\theta}^{e} = (\theta^{e,K}, \theta^{e,OE}, \theta^{e,D})$ for capital, outside equity, debt

maximize

$$\theta_t^{e,K} E[dr_t^{e,K}]/dt + \theta_t^{e,OE} E[dr_t^{OE}]/dt + \theta_t^{e,D} r_t - \varsigma_t^e (\theta_t^{e,K} + \theta_t^{e,OE}) \sigma^{r^{e,K}}$$

■ Expert: $\boldsymbol{\theta}^{e} = (\theta^{e,K}, \theta^{e,OE}, \theta^{e,D})$ for capital, outside equity, debt

maximize

$$\theta_t^{e,K} E[dr_t^{e,K}]/dt + \theta_t^{e,OE} E[dr_t^{OE}]/dt + \theta_t^{e,D} r_t - \varsigma_t^e (\theta_t^{e,K} + \theta_t^{e,OE}) \sigma^{r^{e,K}}$$

 $\theta^{h,K} \geq 0$ Household: $\boldsymbol{\theta^h} = (\theta^{h,K}, \theta^{h,OE}, \theta^{h,D})$ $\theta^{h,OE} \geq 0$

maximize

$$\theta^{h,K} E[dr_t^{h,K}]/dt + \theta^{h,OE} E[dr_t^{OE}]/dt + \theta^{h,D} r_t - \varsigma_t^e (\theta_t^{h,K} + \theta_t^{h,OE}) \sigma^{r^{h,K}}$$

• Aggreate η -weighted sum of expert + HH max problem $\eta^e\{...\} + \eta^h\{...\}$

$$\bullet \underbrace{\eta_t^e \theta_t^{e,K} E[dr_t^{e,K}]/dt + \underbrace{\eta_t^h \theta_t^{hK} E[dr_t^{h,K}]/dt + \underbrace{(\eta_t^e \theta_t^{e,OE} + \eta_t^h \theta_t^{h,OE}) E[dr_t^{OE}]/dt + \underbrace{(\eta_t^e \theta_t^{e,D} + \eta_t^h \theta_t^{e,D}) r_t}_{=:\chi_t^e} }$$

$$-\varsigma_t^e \underbrace{\eta_t^e (\theta_t^{e,K} + \theta_t^{e,OE}) \sigma_t^{rK} - \varsigma_t^h \eta_t^h (\theta_t^{h,K} + \theta_t^{h,OE}) \sigma_t^{rK} }_{=:\chi_t^h}$$

• Aggreate η -weighted sum of expert + HH max problem $\eta^e\{\dots\} + \eta^h\{\dots\}$

$$\bullet \underbrace{\eta_t^e \theta_t^{e,K} E[dr_t^{e,K}]/dt + \eta_t^h \theta_t^{hK} E[dr_t^{h,K}]/dt + \underbrace{\left(\eta_t^e \theta_t^{e,OE} + \eta_t^h \theta_t^{h,OE}\right) E[dr_t^{OE}]/dt + \left(\eta_t^e \theta_t^{e,D} + \eta_t^h \theta_t^{e,D}\right) r_t }_{=0}$$

$$-\varsigma_t^e \underbrace{\eta_t^e \left(\theta_t^{e,K} + \vartheta_t^{e,OE}\right) \sigma_t^{rK} - \varsigma_t^h \eta_t^h \left(\theta_t^{h,K} + \theta_t^{h,OE}\right) \sigma_t^{rK} }_{=:\chi_t^e}$$

Poll 29: Why = 0.7

- a) because marginal benefits= marginal costs at optimum
- b) due to martingale behavior
- c) because outside equity and debt are in zero net supply

- Translate constraints:
 - $\mathbf{x}_t^e \leq \kappa_t^e$ experts cannot buy outside equity of others only important for the case with idio risk

Price-taking social planers problem

$$\max_{\left\{\kappa_t^e, \kappa_t^h = 1 - \kappa_t^e, \chi_t^e \in \left[\alpha \kappa_t^e, \kappa_t^h\right], \chi_t^h = 1 - \chi_t^e\right\}} \left[\frac{\kappa_t^e \alpha^e + \kappa_t^h \alpha^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta\right] - (\varsigma_t^e \chi_t^e + \varsigma_t^h \chi_t^h) \sigma_t^{r^K}$$
 End of Proof. Q.E.D.

- Linear objective (if frictions take form of constraints)
 - Price of risk adjust such that objective becomes flat or
 - Bang-bang solution hitting constraints

• Example 1: 2 Types + <u>no</u> outside equity ($\alpha = 1$)

$$\max_{\{\kappa_t^e, \chi_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta \right] - \left(\chi_t^e \varsigma_t^e + (1 - \chi_t^e) \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right)$$

s.t. friction $\chi^e_t = \kappa^e_t$ if no outside equity can be issued

$$FOC_{\chi}: \frac{a^e - a^h}{q_t} = (\varsigma_t^e - \varsigma_t^h) (\sigma + \sigma_t^q)$$

■ May hold only with inequality (\geq), if at constraint $\kappa_t^e=1$

Example 2: 2 Type + with outside equity

$$\max_{\{\kappa_t^e, \chi_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta \right] - \left(\chi_t^e \varsigma_t^e + (1 - \chi_t^e) \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right)$$

■
$$FOC_{\chi}$$
: Case 1: $\varsigma_t^e(\sigma + \sigma_t^q) > \varsigma_t^h(\sigma + \sigma_t^q) \Rightarrow \chi_t^e = \alpha \kappa_t^e$
Case 2: $\chi_t^e > \alpha \kappa_t^e$

• Case 1: plug $\chi_t^e = \alpha \kappa_t^e$ in objective

a.
$$FOC_{\kappa}: \frac{a^e - a^h}{q_t} > \alpha(\varsigma_t^e - \varsigma_t^h) (\sigma + \sigma_t^q) \Rightarrow \kappa_t^e = 1$$

b. $\Rightarrow \kappa_t^e < 1$

■ Case 2:

a.
$$FOC_{\kappa}: \frac{a^e - a^h}{q_t} > 0$$
 $\Rightarrow \kappa_t^e = 1$
b. $= 0 \Rightarrow \kappa_t^e < 1$ impossible

Example 2: 2 Type + with outside equity

$$\max_{\{\kappa_t^e, \chi_t^e\}} \left[\frac{\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota_t}{q_t} + \Phi(\iota_t) - \delta \right] - \left(\chi_t^e \varsigma_t^e + (1 - \chi_t^e) \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right)$$

■
$$FOC_{\chi}$$
: Case 1: $\varsigma_t^e(\sigma + \sigma_t^q) > \varsigma_t^h(\sigma + \sigma_t^q) \Rightarrow \chi_t^e = \alpha \kappa_t^e$
Case 2: $\chi_t^e > \alpha \kappa_t^e$

• Case 1: plug $\chi_t^e = \alpha \kappa_t^e$ in objective

a.
$$FOC_{\kappa}: \frac{a^e - a^h}{q_t} > \alpha(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q) \Rightarrow \kappa_t^e = 1$$

b. $\Rightarrow \kappa_t^e < 1$

■ Case 2:

Se 2:

$$a. \quad FOC_{\kappa} : \frac{a^{e} - a^{h}}{q_{t}} > 0$$

$$\Rightarrow \kappa_{t}^{e} = 1$$

$$= 0 \Rightarrow \kappa_{t}^{e} < 1 \text{ impossible}$$

$$\chi_{t}^{e} = \alpha \kappa_{t}^{e}$$

$$\chi_{t}^{e} = \alpha \kappa_{t}^{e}$$

1b. Allocation of Capital, κ , and Risk, χ

Summarizing previous slide (2 types with outside equity)

Cases	$\chi_t^e \ge \alpha \kappa_t^e$		$\frac{\left(a^{\boldsymbol{e}}-a^{\boldsymbol{h}}\right)}{q_t} \begin{array}{l} \text{Shift a capital unit to expert} \\ \text{Benefit: LHS} \\ \text{Cost: RHS} \\ \geq \alpha \big(\varsigma_t^{\boldsymbol{e}}-\varsigma_t^{\boldsymbol{h}}\big) \big(\sigma+\sigma_t^q\big) \end{array}$	$(\varsigma_t^e - \varsigma_t^h)(\sigma + \sigma_t^q) \ge 0$ Required risk premium of experts vs. HH
1a	=	<	=	>
1b	=	=	>	>
2a	>	=	>	=
impossible HHs' short-sale constraint of				

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}};\eta,K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of \in in \$ (exchange rate) dY_t

$$\frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t$$

■ x_t^A/Y_t value of the self-financing strategy/asset in €

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t} \text{ follows a martingale}$$

Recall
$$\mu_t^A - \mu_t^B = \underbrace{(-\sigma_t^\xi)}_{=\varsigma_t} \underbrace{(\sigma^A - \sigma_t^B)}_{risk}$$

$$\mu_t^{A/Y} - \mu_t^{B/Y} = \underbrace{(-\sigma_t^\xi - \sigma_t^Y)}_{price\ of\ risk} \underbrace{(\sigma^A - \sigma_t^B + \sigma_t^Y)}_{risk}$$

■ Price of risk $\varsigma^{\in} = \varsigma^{\$} - \sigma^{Y}$

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of € in \$ (exchange rate)

$$\frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t$$

■ x_t^A/Y_t value of the self-financing strategy/asset in €

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t} \text{ follows a martingale}$$

Recall
$$\mu_t^A - \mu_t^B = \underbrace{(-\sigma_t^\xi)}_{=\varsigma_t} \underbrace{(\sigma^A - \sigma_t^B)}_{risk}$$

$$\mu_t^{A/Y} - \mu_t^{B/Y} = \underbrace{(-\sigma_t^\xi - \sigma_t^Y)}_{price\ of\ risk} \underbrace{(\sigma^A - \sigma_t^A)}_{risk} + \underbrace{(\sigma^A - \sigma_t^A)}_{risk}$$

- ullet Price of risk $arsigma^{\in}=arsigma^{\$}-\sigma^{Y}$ Poll 37: Why does the price of risk change, though real risk remains the same
 - a) because risk-free rate might not stay risk-free
 - b) because covariance structure changes

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

2. GE: Markov States and Equilibria

Equilibrium is a map

Histories of shocks ----- prices $q_t, \varsigma_t^i, \iota_t^i, \theta_t^e$

$$\{\boldsymbol{Z}_{S}, s \in [0, t]\}$$

net worth distribution

$$\eta_t^e = \frac{N_t^e}{q_t K_t} \in (0,1)$$

net worth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology
- All markets clear
 - Consumption, capital, money, outside equity

2. Law of Motion of Wealth Share η_t

- Method 1: Using Ito's quotation rule $\eta_t^i = N_t^i/(q_t K_t)$
 - $\begin{array}{l} \text{Recall} \\ \frac{dN_t^i}{N_t^i} = r_t dt + \underbrace{\frac{\chi_t^i \kappa_t^i}{\eta_t^i} (\sigma + \sigma_t^q)}_{risk} \underbrace{\zeta_t^i}_{price\ of} dt + \underbrace{\frac{\chi_t^i \kappa_t^i}{\eta_t^i} (\sigma + \sigma_t^q)}_{risk} dZ_t \underbrace{\frac{C_t^i}{N_t^i}}_{risk} dt \\ \end{array}$
 - $= \frac{d\eta_t^i}{\eta_t^i} = \dots \text{(lots of algebra)}$
- Method 2: Change of numeraire + Martingale Approach
 - lacktriangle New numeraire: Total wealth in the economy, N_t
 - Apply Martingale Approach for value of i's portfolio
 - Simple algebra to obtain drift of η_t^i : $\mu_t^{\eta^i}$ Note that change of numeraire does not affect ratio η^i !

2. μ^{η} Drift of Wealth Share: Many Types

- New Numeraire
 - lacktriangle "Total net worth" in the economy, N_t (without superscript)
 - Type i's portfolio net worth = net worth share
- Martingale Approach with new numeraire
 - Asset A = i's portfolio return in terms of total wealth,

Asset B (benchmark asset that everyone can hold,
 e.g. risk-free asset or money (in terms of total economy wide wealth as numeraire))

$$r_t^m dt + \sigma_t^m dZ_t$$

Apply our martingale asset pricing formula

$$\mu_t^A - \mu_t^B = \varsigma_t^i (\sigma_t^A - \sigma_t^B)$$

Poll 41: Is risk-free asset, risk free in the new numeraire?

- a) Yes
- b) No

2. μ^{η} Drift of Wealth Share: Many Types

Asset pricing formula (relative to benchmark asset)

$$\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^m = \left(\varsigma_t^i - \sigma_t^N\right) \left(\sigma_t^{\eta^i} - \sigma_t^m\right)$$
 due to change

Add up across types (weighted), in numeraire

(capital letters without superscripts are aggregates for total economy)

$$\sum_{i'}^{I} \eta_{t}^{i'} \mu_{t}^{\eta^{i'}} + \frac{C_{t}}{N_{t}} - r_{t}^{m} = \sum_{i'} \eta_{t}^{i'} \left(\varsigma_{t}^{i'} - \sigma_{t}^{N} \right) \left(\sigma_{t}^{\eta^{i'}} - \sigma_{t}^{m} \right)$$

Poll 42: Why = 0?

- a) Because we have stationary distribution
- b) Because η s sum up to 1
- c) Because η s follow martingale

Benchmark asset everyone can trade $\sigma_{t}^{m}=-\sigma_{t}^{N}$

2. μ^{η} Drift of Wealth Share: Two Types

Asset pricing formula (relative to benchmark asset)

$$\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^m = \left(\varsigma_t^i - \sigma_t^N\right) \left(\sigma_t^{\eta^i} - \sigma_t^m\right)$$

Add up across types (weighted),
 (capital letters without superscripts are aggregates for total economy)

$$\underbrace{(\eta_t^e \mu_t^{\eta^e} + \eta_t^h \mu_t^{\eta^h})}_{=0} + \underbrace{\frac{C_t}{N_t} - r_t^m}_{=0}$$

$$= \eta_t^e \left(\varsigma_t^e - \sigma_t^N \right) \left(\sigma_t^{\eta^e} - \sigma_t^m \right) + \eta_t^h \left(\varsigma_t^h - \sigma_t^N \right) \left(\sigma_t^{\eta^h} - \sigma_t^m \right)$$

Subtract from each other yield net worth share dynamics

$$\mu_t^{\eta^e} = (1 - \eta_t^e) \left(\varsigma_t^e - \sigma_t^N\right) \left(\sigma_t^{\eta^e} - \sigma_t^m\right) - (1 - \eta_t^e) \left(\varsigma_t^h - \sigma_t^{N^h}\right) \left(\sigma_t^{\eta^h} - \sigma_t^m\right)$$
$$-\left(\frac{c_t^e}{N_t^e} - \frac{c_t}{q_t K_t}\right)$$

For benchmark asset: risk-free debt $\sigma_t^m = -\sigma_t^N$

2. σ^{η} Volatility of Wealth Share

• Since $\eta_t^i = N_t^i/N_t$,

$$\sigma_t^{\eta^i} = \sigma_t^{N^i} - \sigma_t^N = \sigma_t^{N^i} - \sum_{i'} \eta_t^{i'} \sigma_t^{N^{i'}} = (1 - \eta_t^i) \sigma_t^{N^i} - \sum_{i^- \neq i} \eta_t^{i^-} \sigma_t^{N^{i^-}}$$

Note for 2 types example

$$\sigma_t^{\eta^e} = (1 - \eta_t^e)(\sigma_t^{n^e} - \sigma_t^{n^h}) \qquad \qquad \text{Change in notation in 2 type setting} \\ \sigma_t^{n^e} = \underbrace{\chi_t^e/\eta_t^e}_{-\varrho e, V = \varrho e, OE} (\sigma + \sigma_t^q) \qquad \qquad \sigma_t^{n^h} = \frac{\chi_t^h}{\eta_t^h} (\sigma + \sigma_t^q) = \frac{1 - \chi_t^e}{1 - \eta_t^e} (\sigma + \sigma_t^q)$$

Hence,

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \ (\sigma + \sigma_t^q)$$

■ Note also,
$$\eta_t^e \sigma_t^{\eta^e} + \eta_t^h \sigma_t^{\eta^h} = 0 \Rightarrow \sigma_t^{\eta^h} = -\frac{\eta_t^e}{\eta_t^h} \sigma_t^{\eta^e} = -\frac{\eta_t^e}{1-\eta_t^e} \sigma_t^{\eta^e}$$

2. Amplification Formula: Loss Spiral

Recall

$$\sigma_t^{\eta^e} = \underbrace{\frac{\chi_t^e - \eta_t^e}{\eta_t^e}}_{\text{leverage}} (\sigma + \sigma_t^q)$$

$$lacktriangle$$
 By Ito's Lemma on $q(\eta^e)$ $\sigma_t^q = rac{q'(\eta_t^e)}{q(\eta_t^e)} \eta_t^e \sigma_t^{\eta^e}$

$$\sigma_t^q = \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$$
elasticity

Total volatility

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e \eta_t^e}}$$

- Loss spiral
 - Market illiquidity (price impact elasticity)

2. Amplification Formula: Loss Spiral

Recall

$$\sigma_t^{\eta^e} = \underbrace{\frac{\chi_t^e - \eta_t^e}{\eta_t^e}}_{\text{leverage}} (\sigma + \sigma_t^q)$$

■ By Ito's Lemma on $q(\eta^e)$

$$\sigma_t^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} \eta_t^e \sigma_t^{\eta^e}$$

$$\sigma_t^q = \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e} (\sigma + \sigma_t^q)$$

$$= \frac{elasticity}{elasticity}$$

Total volatility

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e}}$$

Poll 46: Where is the spiral?

- a) Sum of infinite geometric series (denominator)
- b) in q', since with constant price, no spiral

- Loss spiral
 - Market illiquidity (price impact elasticity)

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^iig(n^{ ilde{\imath}};\eta,Kig)$ into $v^i(\eta)u(K)ig(n^{ ilde{\imath}}/n^iig)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

The Big Picture

3a. CRRA Value Function Applies separately for each type of agent

- Martingale Approach: works best in endowment economy
- Here: mix Martingale approach with value function (envelop condition)
- $lacksquare V^i(n_t^i; oldsymbol{\eta_t}, K_t)$ for individuals i
- For CRRA/power utility $u(c_t^i) = \frac{(c_t^i)^{1-\gamma}-1}{1-\gamma}$
- \Rightarrow increase net worth by factor, optimal c^i for all future states increases by this factor \Rightarrow $\left(\frac{c_t^i}{n_t^i}\right)$ -ratio is invariant in n_t^i
- \Rightarrow value function can be written as $V^i(n_t^i; \eta_t, K_t) = \frac{u(\omega^i(\eta_t, K_t)n_t^i)}{\rho^i}$
- lacksquare ω_t^i Investment opportunity/ "net worth multiplier"
 - $\omega^i(\eta_t, K_t)$ -function turns out to be independent of K_t
 - Change notation from $\omega^i(\pmb{\eta_t}, K_t)$ -function to ω^i_t -process

3a. CRRA Value Function: relate to ω

• > value function can be written as $\frac{u(\omega_t^i n_t^i)}{\rho}$, that is

$$=\frac{1}{\rho^{i}}\frac{\left(\omega_{t}^{i}n_{t}^{i}\right)^{1-\gamma}-1}{1-\gamma}=\frac{1}{\rho^{i}}\frac{\left(\omega_{t}^{i}\right)^{1-\gamma}\left(n_{t}^{i}\right)^{1-\gamma}-1}{1-\gamma}$$

 $= \frac{\partial V}{\partial n^i} = u'(c^i) \text{ by optimal consumption (if no corner solution)}$

$$\frac{\left(\omega_t^i\right)^{1-\gamma}\left(n_t^i\right)^{-\gamma}}{\rho^i} = (c_t^i)^{-\gamma} \Leftrightarrow \frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma}(\omega_t^i)^{1-1/\gamma}$$

Next step:

- a) Special simple cases
- b) replace ω_t with something scale invariant

$$\frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma=1$: $\xi_t^i=e^{-\rho^i t}/c_t^i=e^{-\rho^i t}/(\rho n_t^i) \text{ for any } \omega_t^i\Rightarrow\sigma_t^{n^i}=\sigma_t^{c^i}=\zeta_t^i$ Expected excess return: $\mu_t^A-r_t^F=\sigma_t^{n^i}\sigma_t^A$ Recall $\frac{dn_t^i}{n_t^i}=-\frac{c_t^i}{n_t^i}dt+\left(1-\theta^i\right)dr_t^K+\theta^i dr_t$

$$\frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma=1$: $\xi_t^i=e^{-\rho^i t}/c_t^i=e^{-\rho^i t}/(\rho n_t^i) \text{ for any } \omega_t^i\Rightarrow\sigma_t^{n^i}=\sigma_t^{c^i}=\varsigma_t^i$ Expected excess return: $\mu_t^A-r_t^F=\sigma_t^{n^i}\sigma_t^A$

 - $= \operatorname{Recall} \frac{dn_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 \theta^i) dr_t^K + \theta^i dr_t$
- For constant investment opportunities $\omega_t^i = \omega^i$, $\Rightarrow c^i/n^i$ is constant and hence $\sigma_t^{c^i} = \sigma^n$
 - Expected excess return: $\mu_t^A r_t^F = \gamma \sigma_t^{n^l} \sigma_t^A$

Poll 52: Which term refers to (dynamic/Mertonian) hedging demand?

- $a) \gamma$
- b) σ_t^n
- c) hidden in risk-free rate
- d) none of the above

$$\frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma=1$: $\xi_t^i=e^{-\rho^i t}/c_t^i=e^{-\rho^i t}/(\rho n_t^i) \text{ for any } \omega_t^i\Rightarrow\sigma_t^{n^i}=\sigma_t^{c^i}=\varsigma_t^i$
 - Expected excess return: $\mu_t^A r_t^F = \sigma_t^{n^l} \sigma_t^A$
 - $= \operatorname{Recall} \frac{dn_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 \theta^i) dr_t^K + \theta^i dr_t$
- For constant investment opportunities $\omega_t^i = \omega^i$, $\Rightarrow c^i/n^i$ is constant and hence $\sigma_t^{c^i} = \sigma^n$
 - Expected excess return: $\mu_t^A r_t^F = \gamma \sigma_t^{n^l} \sigma_t^A$
 - Now $\frac{dn_t^i}{n_t^i} = r^F dt + \frac{(\varsigma^i)^2}{\gamma} dt + \frac{\varsigma^i}{\gamma} dZ_t \frac{c_t^i}{n_t^i} dt$

$$\Rightarrow \frac{c_t^i}{n_t^i} = \rho^i + \frac{\gamma - 1}{\gamma} \left(r^F - \rho^i + \frac{(\varsigma^i)^2}{2\gamma} \right)$$

$$\frac{c_t^i}{n_t^i} = (\rho^i)^{1/\gamma} (\omega_t^i)^{1-1/\gamma}$$

- For log utility $\gamma=1$: $\xi_t^i=e^{-\rho^i t}/c_t^i=e^{-\rho^i t}/(\rho n_t^i) \text{ for any } \omega_t^i\Rightarrow\sigma_t^{n^i}=\sigma_t^{c^i}=\varsigma_t^i$
 - Expected excess return: $\mu_t^A r_t^F = \sigma_t^{n^t} \sigma_t^A$
 - $= \operatorname{Recall} \frac{dn_t^i}{n_t^i} = -\frac{c_t^i}{n_t^i} dt + (1 \theta^i) dr_t^K + \theta^i dr_t$
- For constant investment opportunities $\omega_t^i = \omega^i$, $\Rightarrow c^i/n^i$ is constant and hence $\sigma_t^{c^i} = \sigma^{n^i}$
 - Expected excess return: $\mu_t^A r_t^F = \gamma \sigma_t^{n^l} \sigma_t^A$
 - Now $\frac{dn_t^l}{n_t^i} = r^F dt + \frac{(\varsigma^i)^2}{\nu} dt + \frac{\varsigma^i}{\nu} dZ_t \frac{c_t^l}{n_t^i} dt$

$$\Rightarrow \frac{c_t^i}{n_t^i} = \rho^i + \frac{\gamma - 1}{\gamma} \left(r^F - \rho^i + \frac{(\varsigma^i)^2}{2\gamma} \right)$$

$$= \rho^{i} + \gamma \left(r^{F} - \frac{c_{t}^{i}}{n_{t}^{i}} \right) + \frac{\gamma - 1}{\gamma} \frac{(\varsigma^{i})^{2}}{2}$$

Way to compute c_t^i/n_t^i if one can obtain from some other source r^F (omega can we avoided)

3b. CRRA Value Fcn. & State Variable η

• Recall Martingale approach: if x_t is the value of a portfolio with return $\frac{dn_t^i}{n_t^i} + \frac{c_t^i}{n_t^i} dt$, then $\xi_t^i x_t^i$ must be a martingale

$$\frac{d(\xi_t^i n_t^i)}{\xi_t^i n_t^i} = -\frac{c_t^i}{n_t^i} dt + martingale$$

• Optimal consumption implies with CRRA $V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma}$:

$$\frac{\partial u^{i}}{\partial c^{i}} = \frac{\partial V^{i}}{\partial n^{i}} \iff (c_{t}^{i})^{-\gamma} = \frac{1}{\rho^{i}} \left(\omega^{i}\right)^{1-\gamma} (n_{t}^{i})^{-\gamma} \iff e^{\rho^{i}t} \underbrace{e^{-\rho^{i}t} (c_{t}^{i})^{-\gamma}}_{=\xi_{t}^{i}} n_{t}^{i} = \underbrace{\frac{1}{\rho^{i}} \left(\omega^{i}\right)^{1-\gamma} \left(n_{t}^{i}\right)^{1-\gamma}}_{(1-\gamma)V_{t}^{i}}$$

Hence,

$$\frac{dV_t^i}{V_t^i} = \frac{d(e^{\rho^i t} \xi_t^i n_t^i)}{e^{\rho^i t} \xi_t^i n_t^i} = \left(\rho^i - \frac{c_t^i}{n_t^i}\right) dt + martingale$$

• Next, let's compute the drift of $\frac{dV_t^l}{V_t^i}$

3b. CRRA Value Fcn: De-scale by K_t

- Drift of $\frac{dV_t^i}{V_t^i}$, we could use Ito on $V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma}$, but
 - Poll 56: What could be the problem?
 - a. Net worth n_t is unbounded
 - b. Net worth $n_t(\eta_t)$ and N-multiplier $\omega_t(\eta_t)$ are not differentiable (if $q(\eta_t)$, $q^B(\eta_t)$ have a kink).
 - c. N-multiplier is not scale invariant

3b. CRRA Value Fcn: De-scale by K_t

- Drift of $\frac{dV_t^i}{V_t^i}$, we could use Ito on $V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma}$, but
 - Poll 57: What could be the problem?
 - a. Net worth n_t is unbounded
 - b. Net worth $n_t(\eta_t)$ and N-multiplier $\omega_t(\eta_t)$ are not differentiable (if $q(\eta_t)$, $q^B(\eta_t)$ have a kink).
 - c. N-multiplier is not scale invariant
 - Answer: b.
- In equilibrium $n^i = N^i$ (all experts/HH are the same)
- lacktriangle Let's de-scale the problem w.r.t. K_t

$$V_t^i = \frac{1}{\rho^i} \frac{\left(\omega_t^i n_t^i\right)^{1-\gamma}}{1-\gamma} = \underbrace{\frac{\left(\omega_t^i N_t^i / K_t\right)^{1-\gamma}}{\rho^i}}_{v_t^i :=} \underbrace{\frac{K_t^{1-\gamma}}{1-\gamma}}_{u(K) :=}$$

and define v_t^i (which is twice differentiable in η_t)

lacktriangle state variable K_t is easy to handle due to scale invariance

3b. CRRA Value Function

$$\frac{dV_t^i}{V_t^i} = \frac{d\left(v_t^i K_t^{1-\gamma}\right)}{v_t^i K_t^{1-\gamma}}$$

By Ito's product rule

$$= \left(\mu_t^{v^i} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)(\sigma^2) + (1 - \gamma)\sigma\sigma_t^{v^i}\right)dt + volatility\ terms$$

Recall by consumption optimality $\frac{dV_t^i}{V_t^i} - \rho^i dt + \frac{c_t^i}{n_t^i} dt \text{ follows a martingale}$

Poll 58: Why martingale?

- a) Because we can "price" net worth with SDF
- b) because ho^i and c_t^i/n_t^i cancel out
- Hence, drift above = $\rho^i \frac{c_t^i}{n_t^i}$ Still have to solve for $\mu_t^{v^i}$, $\sigma_t^{v^i}$

3b. CRRA Value Fcn BSDE

- Only conceptual interim solution
 - We will transform it into a PDE in Step 4 below
- From last slide

$$\underbrace{\mu_t^{v^i} + (1 - \gamma)(\Phi(\iota_t) - \delta) - \frac{1}{2}\gamma(1 - \gamma)\sigma^2 + (1 - \gamma)\sigma\sigma_t^{v^i}}_{=:\mu_t^{V^i}} = \rho - \frac{c_t^i}{n_t^i}$$

lacksquare Can solve for $\mu_t^{v^i}$, then v_t^i must follow

$$\frac{dv_t^i}{v_t^i} = f\left(\eta_t^i, v_t^i, \sigma_t^{v^i}\right) dt + \sigma_t^{v^i} dZ_t$$

with

$$f\left(\eta_{t}^{i}, v_{t}^{i}, \sigma_{t}^{v^{i}}\right) = \rho^{i} - \frac{c_{t}^{i}}{n_{t}^{i}} - (1 - \gamma)(\Phi(\iota_{t}) - \delta) + \frac{1}{2}\gamma(1 - \gamma)(\sigma^{2}) - (1 - \gamma)\sigma\sigma_{t}^{v^{i}}$$

- lacktriangle Together with terminal condition v_T^i (possibly a constant for 1000 periods ahead), this is a backward stochastic differential equation (BSDE)
- lacksquare A solution consists of processes v^i and σ^{v^i}
- Can use numerical BSDE solution methods (as random objects, so only get simulated paths)
- To solve this via a PDE we also need to get state evolution

The Big Picture

3c. Get ς s from Value Function Envelop

- $= \text{Recall } V^i \left(n_t^i; \boldsymbol{\eta_t}, K_t \right) = \frac{u \left(\omega^i (\boldsymbol{\eta_t}, K_t) n_t^i \right)}{\rho^i}$
- For envelop condition $\frac{\partial V_t}{\partial n_t} = \frac{\partial u(c_t)}{\partial c_t}$
 - $\blacksquare \text{ To obtain } \frac{\partial V^i \left(n_t^i; \pmb{\eta_t}, K_t \right)}{\partial n_t^i} = \frac{(\omega^i (\pmb{\eta_t}, K_t))^{1-\gamma}}{\rho^i} \left(n_t^i \right)^{-\gamma}$
 - $= \frac{\left(\omega_t^i n_t^i / K_t\right)^{1-\gamma}}{\rho^i} \left(\frac{K_t}{n_t^i}\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma},$ $v_t^i :=$
 - $\Rightarrow \frac{\partial V_t}{\partial n_t^i} = v_t^i \left(\frac{K_t}{n_t^i}\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma} = (c_t^i)^{-\gamma} = \frac{\partial u(c_t^i)}{\partial c_t^i}$
- In equilibrium $N_t^i = n_t^i$ and $C_t^i = c_t^i$ & using $N_t^i = \eta_t^i q_t K_t$

$$\frac{v_t^i}{\eta_t^i q_t} K_t^{-\gamma} = (C_t^i)^{-\gamma}$$

Ito's quotient rule $\sigma_t^{v^i} - \sigma_t^{\eta^i} - \sigma_t^q - \gamma \sigma = -\gamma \sigma_t^{c^i} = -\varsigma_t^i$

3c. Get $\frac{C_t^i}{N_t^i}$ from Value Function Envelop

- Recall Envelop condition $v_t^i \left(\frac{K_t}{N_t^i}\right)^{1-\gamma} \left(n_t^i\right)^{-\gamma} = (c_t^i)^{-\gamma}$
- using $K_t/N_t^i = 1/\eta_t^i q_t$

$$\frac{C_t^i}{N_t^i} = \frac{c_t^i}{n_t^i} = \frac{(\eta_t^i q_t)^{1/\gamma - 1}}{(v_t^i)^{1/\gamma}}$$

Aggregate level (two agents case)

$$\frac{C_t}{N_t} = \frac{C_t^e + C_t^h}{N_t^e + N_t^h} = \eta_t^e \frac{C_t^e}{N_t^e} + \eta_t^h \frac{C_t^h}{N_t^h} = \frac{1}{q_t} \left[\left(\frac{\eta_t^e q_t}{v_t^e} \right)^{1/\gamma} + \left(\frac{\eta_t^h q_t}{v_t^h} \right)^{1/\gamma} \right]$$

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

4. Value function Iteration - Big picture

- Add time, t, as an additional state variable $v^e(\eta^e, t)$, $v^h(\eta^e, t)$
- Convert BSDE into PDE using Ito's Lemma

Note in 2 type model we only use η^e as state variable

4. Value Function Iteration — Big Picture

4. Value Function Iteration — Big Picture

4. Value Function Iteration — Big Picture

4. Value function Iteration - Big picture

- Add time, t, as an additional state variable $v^e(\eta^e, t)$, $v^h(\eta^e, t)$
- Convert BSDE into PDE using Ito's Lemma

- Guess terminal value functions $v^e(\eta^e, T)$ and $v^h(\eta^e, T)$ (far in the future t = T)
- \blacksquare ... and iterate back to t=0
 - In each step use
 - From Step 3: $\mu_t^{v^e} v_t^e$, $\mu_t^{v^h} v_t^h$
 - From Step 2: $\eta_t^e \mu_t^{\eta^e}$ and $\eta_t^e \sigma_t^{\eta^e}$ (η -evolution)
 - Portfolio choice, planners' problem, (static conditions)
 - Market clearing
 - To calculate all terms in these $\mu^{v^i}_{t-\Delta}v^i_{t-\Delta}$, $\eta^e_{t-\Delta}\mu^{\eta^e}_{t-\Delta}$ and $\eta^e_{t-\Delta}\sigma^{\eta^e}_{t-\Delta}$

Short-hand notation:

 $\partial_x f$ for $\partial f/\partial x$

4a. PDE Value Function Iteration

Postulate $v_t^i = v^i(\eta_t^e, t)$

Short-hand notation: $\partial_x f$ for $\partial f / \partial x$

By Ito's Lemma

- Equating with Step 3 (plug in $\mu_t^{v^i}$) ⇒ "growth equation"

$$\begin{aligned} \partial_t v_t^i + \left(\eta^e \mu_t^{\eta^e} + (1 - \gamma)\sigma \eta_t^e \sigma_t^{\eta^e}\right) \partial_\eta v_t^i + \frac{1}{2} \left(\eta_t^e \sigma_t^{\eta^e}\right)^2 \partial_{\eta\eta} v_t^i \\ &= \left(\rho^i - (1 - \gamma)(\Phi(\iota_t) - \delta) + \frac{1}{2}\gamma(1 - \gamma)\sigma^2\right) v_t^i - \frac{c_t^i}{n_t^i} v_t^i \end{aligned}$$

4a. PDE Value Fcn: Replacing Terms

$$\begin{split} \partial_t v_t^i + \left(\eta^e \mu_t^{\eta^e} + (1 - \gamma)\sigma\eta_t^e \sigma_t^{\eta^e}\right) \partial_\eta v_t^i + \frac{1}{2} \left(\eta_t^e \sigma_t^{\eta^e}\right)^2 \partial_{\eta\eta} v_t^i \\ = \left(\rho^i - (1 - \gamma)(\Phi(\iota_t) - \delta) + \frac{1}{2}\gamma(1 - \gamma)\sigma^2\right) v_t^i - \frac{c_t^i}{n_t^i} v_t^i \end{split}$$

1. Replace "blue terms" using results from Step 2.

$$\mu_{t}^{\eta^{e}} = (1 - \eta_{t}^{e}) \left(\varsigma_{t}^{e} - \sigma_{t}^{q} - \sigma\right) \left(\sigma_{t}^{\eta^{e}} - \sigma_{t}^{M}\right)$$

$$-(1 - \eta_{t}^{e}) \left(\varsigma_{t}^{h} - \sigma_{t}^{q} - \sigma\right) \left(\sigma_{t}^{\eta^{h}} - \sigma_{t}^{M}\right) - \left(\frac{c_{t}^{e}}{N_{t}^{e}} - \frac{c_{t}}{N_{t}}\right)$$

$$\sigma_{t}^{\eta^{e}} = \frac{\chi_{t}^{e} - \eta_{t}^{e}}{\eta_{t}^{e}} \left(\sigma + \sigma_{t}^{q}\right) \qquad \sigma_{t}^{\eta^{h}} = -\frac{\eta_{t}^{e}}{1 - \eta_{t}^{e}} \sigma_{t}^{\eta^{e}}$$

2. Replace "white terms" using results from Step 3c.

$$\varsigma_{t}^{e} = -\sigma_{t}^{v^{e}} + \sigma_{t}^{\eta^{e}} + \sigma_{t}^{q} + \gamma\sigma_{t}^{q} + \gamma\sigma_{t}^{q} + \gamma\sigma_{t}^{q} + \sigma_{t}^{\eta^{h}} + \sigma_{t}^{\eta^{h}} + \sigma_{t}^{q} + \gamma\sigma$$

$$\frac{c_{t}^{i}}{N_{t}^{i}} = \frac{(\eta_{t}^{i}q_{t})^{1/\gamma - 1}}{(v_{t}^{i})^{1/\gamma}} \operatorname{Recall}_{\varsigma_{t}^{v}} \gamma_{t}^{i} = (\eta^{e}\sigma_{t}^{v})^{3\eta^{v_{t}^{i}}} \qquad \frac{c_{t}}{N_{t}} = \frac{1}{q_{t}} \left[\left(\frac{\eta_{t}^{e}q_{t}}{v_{t}^{e}} \right)^{1/\gamma} + \left(\frac{(1 - \eta_{t}^{e})q_{t}}{v_{t}^{h}} \right)^{1/\gamma} \right]$$

3. Replace "red terms" ι_t , σ_t^q , χ_t^e (see below)

4a. Replacing *lt*

- Recall from optimal re-investment $\Phi'(\iota_t) = 1/q_t$
 - For $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1) \Rightarrow \phi \iota = q 1$

4a. Replacing χ , obtain κ for good mkt clearing

Recall from planner's problem (Step 1b)

Cases	$\chi_t^e \ge \alpha \kappa_t^e$	$\kappa_t^e \leq 1$	$\frac{\left(a^{e} - a^{h}\right)}{q_{t}} \ge \alpha \left(\varsigma_{t}^{e} - \varsigma_{t}^{h}\right) \left(\sigma + \sigma_{t}^{q}\right)$	$\left(\varsigma_t^e - \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right) \ge 0$
1a	=	<	=	>
1b	=	=	>	>
2a	>	=	>	=
impossible				

4a. Replacing χ , obtain κ for good mkt clearing

- Need to determine diff in risk premia $(\varsigma_t^e \varsigma_t^h)(\sigma + \sigma_t^q)$:
- Recall

• diff in price of risk:
$$\zeta_t^e - \zeta_t^h = -\sigma_t^{v^e} + \sigma_t^{v^h} + \frac{\sigma_t^{\eta^e}}{1 - \eta_t^e}$$

■ By Ito's lemma
$$\sigma_t^{v^e} = \frac{\partial_{\eta} v_t^e}{v_t^e} \eta_t^e \sigma_t^{\eta^e} \text{ and } \sigma_t^{v^h} = \frac{\partial_{\eta} v_t^h}{v_t^h} \eta_t^e \sigma_t^{\eta^e}$$

$$\Rightarrow \left(\varsigma_t^e - \varsigma_t^h\right) \left(\sigma + \sigma_t^q\right) = \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{\left(1 - \eta_t^e\right)\eta_t^e}\right) \eta_t^e \sigma_t^{\eta^e} \left(\sigma + \sigma_t^q\right)$$

$$= \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{\left(1 - \eta_t^e\right)\eta_t^e}\right) (\chi_t^e - \eta_t^e) \left(\sigma + \sigma_t^q\right)^2$$

Note, since
$$-\frac{\partial_{\eta} v_{t}^{e}}{v_{t}^{e}} + \frac{\partial_{\eta} v_{t}^{h}}{v_{t}^{h}} + \frac{1}{(1-\eta_{t}^{e})\eta_{t}^{e}} > 0$$
,
$$(\varsigma_{t}^{e} - \varsigma_{t}^{h})(\sigma + \sigma_{t}^{q}) > 0 \Leftrightarrow \chi_{t}^{e} > \eta_{t}^{e} \Leftrightarrow \alpha \psi_{t}^{e} > \eta_{t}^{e}$$

4a. Replacing χ , obtain κ for good mkt clearing

lacktriangle Determination of κ_t

$$(a^e - a^h)/q_t \ge \alpha \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e)\eta_t^e} \right) (\chi_t^e - \eta_t^e) \left(\sigma + \sigma_t^q \right)^2$$
 with equality if $\kappa_t^e < 1$

■ Determination of χ_t^e

$$\chi_t^e = \max\{\alpha \kappa_t^e, \eta_t^e\}$$

4a. Market Clearing

Output good market

$$\left(\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t\right) K_t = C_t$$

• ... jointly restricts κ_t and q_t

$$\kappa_{t}a^{e} + (1 - \kappa_{t})a^{h} - \iota(q_{t}) = \underbrace{\left(\frac{\eta_{t}^{e}q_{t}}{v_{t}^{e}}\right)^{1/\gamma}}_{C_{t}^{e}/K_{t}} + \underbrace{\left(\frac{(1 - \eta_{t}^{e})q_{t}}{v_{t}^{h}}\right)^{1/\gamma}}_{C_{t}^{h}/K_{t}}$$

4a. Market Clearing

Output good market

$$\left(\kappa_t^e a^e + (1 - \kappa_t^e)a^h - \iota_t\right) K_t = C_t$$

 Capital market is taken care off by price taking social planner approach

$$1 - \theta_t^e = \frac{\kappa_t^e q_t K_t}{\eta_t^e q_t K_t}$$

 Risk-free debt also taken care off by price taking social planner approach (would be cleared by Walras Law anyways)

4a. $\sigma^q(q,q')$

■ Recall from "amplification slide" — Step 2

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e}}$$

$$1 - \frac{q'(\eta_t^e)}{q/\eta_t^e} \frac{\chi_t^e - \eta_t^e}{\eta_t^e}$$

$$\sigma^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} (\chi_t^e - \eta_t^e)(\sigma + \sigma_t^q)$$

Now all red terms are replaced and we can solve ...

4b. Algorithm – Static Step

- Suppose we know functions $v^e(\eta^e)$, $v^h(\eta)$, have five static conditions:
- 1. $\phi \iota_t = q_t 1$
- 2. Planner condition for κ_t^e
- 3. Planner condition for χ_t^e

4.
$$\kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota(q_t) = \underbrace{\left(\frac{\eta_t^e q_t}{v_t^e}\right)^{\frac{1}{\gamma}}}_{C_t^e/K_t} + \underbrace{\left(\frac{(1 - \eta_t^e) q_t}{v_t^h}\right)^{\frac{1}{\gamma}}}_{C_t^h/K_t}$$
 $\sigma^{\eta e}(\eta^e)$

- 5. $\sigma^q = \frac{q'(\eta_t^e)}{q(\eta_t^e)} (\chi_t^e \eta_t^e) (\sigma + \sigma_t^q)$
- Start at q(0), solve to the right, use different procedure for two η regions depending on κ :
- 1. While $\kappa^e < 1$, solve ODE for $q(\eta^e)$:
 - For given $q(\eta)$, plug optimal investment (1) into (4)
 - Plug planner condition (3) into (2) and (5)
 - Solve ODE using three equilibrium condition (2),(4) and (5) via Newton's method (see next slide)
- 2. When $\kappa = 1$, (2) is no longer informative, solve (1) and (4) for $q(\eta)$

 \Rightarrow Get

4b. Aside: Newton's Method

• Find the root of equation system $F(\mathbf{z}_n) = 0$ via iterative method $\mathbf{z}_{n+1} = \mathbf{z}_n - J_n^{-1} F(\mathbf{z}_n)$

Where J_n is the Jacobian matrix, i.e., $J_{ij} = \partial f_i(\mathbf{z})/\partial z_j$.

- Newton's method does not guarantee global convergence.
- commonly take several-step iteration.

4b. Aside: Newton's Method

$$oldsymbol{z}_n = egin{bmatrix} q_t \ \kappa_t^e \ \sigma + \sigma_t^q \end{bmatrix}$$
 ,

market clearing condtion amplification condition for κ_t^e

$$F(\mathbf{z}_n) = \begin{bmatrix} \kappa_t^e a^e + (1 - \kappa_t^e) a^h - \iota(q_t) - \left(\frac{\eta_t^e q_t}{v_t^e}\right)^{\frac{1}{\gamma}} + \left(\frac{(1 - \eta_t^e) q_t}{v_t^h}\right)^{\frac{1}{\gamma}} \\ q'(\eta_t^e) (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q) - \sigma^q q(\eta_t^e) \\ \left(a^e - a^h\right) - \alpha q_t \left(-\frac{\partial_{\eta} v_t^e}{v_t^e} + \frac{\partial_{\eta} v_t^h}{v_t^h} + \frac{1}{(1 - \eta_t^e) \eta_t^e}\right) (\chi_t^e - \eta_t^e) (\sigma + \sigma_t^q)^2 \end{bmatrix}$$

80

4. Value Function Iteration — Big Picture

- For given $v^i(\eta^e, T)$, derive SDF ξ_T^i
- ullet Optimal investment, portfolio, consumption, at T as fcn. of η^e
- 4. Market clearing at T obtain PDE coefficient at T (pretend they are constant between $T \& T \Delta$)

4. Value Function Iteration — Big Picture

4. Market clearing at T obtain PDE coefficient at T (pretend they are constant between $T \& T - \Delta$)

4. Value Function Iteration — Big Picture

- Obtain descaled value function $v^i(\eta^e, T \Delta)$
- Repeat previous steps

4b. Pseudocode

- 1. Initialize two terminal functions $v^e(\eta^e, T)$, $v^h(\eta^e, T)$ over η^e -grid $(\eta_1^e, \eta_2^e, \cdots, \eta_n^e)$
- 2. For $t \in \{T, T \Delta t, T 2\Delta t, \dots 0\}$
 - a. Compute $\partial_{\eta} v_t^i$ by first-order difference
 - b. Start at $\eta_1^e = 0$ (autarky economy), find q(0,t), $\kappa^e(0,t)$, $\sigma^q(0,t)$.
 - c. For $\eta_i^e \in \{\eta_2^e, \eta_3^e, \cdots, \eta_n^e\}$
 - i. If $\kappa^e(\eta_i^e, t) < 1$, solve ODE for $q(\eta_i^e, t), \kappa^e(\eta_i^e, t), \sigma^q(\eta_i^e, t)$ using Newton's method.
 - ii. If $\kappa^e(\eta_i^e,t)=1$, solve ODE for $q(\eta_i^e,t)$ from market clearing equation via Newton's method. Then find $\sigma^q(\eta_i^e,t)$ using amplification function
 - d. Find $\mu^{\eta^e}(\boldsymbol{\eta^e},t), \sigma^{\eta^e}(\boldsymbol{\eta^e},t), \mu^{v^i}(\boldsymbol{\eta^e},t)$.
 - e. Update: obtain $v^e(\eta^e, t \Delta t)$ from $v^e(\eta^e, t)$ via finite difference method (do $\mu_t^v v_t = \partial_t v_t^i + \mu_t^{\eta^e} \eta_t^e (\partial_{\eta} v_t^i) + \frac{1}{2} \left(\sigma_t^{\eta^e} \eta_t^e \right)^2 (\partial_{\eta \eta} v_t^i)$ for one time-step)

Upwind scheme:
$$\partial_{\eta} f(n,t) = \begin{cases} \frac{f(\eta+1,t)-f(\eta,t)}{\Delta \eta} & \text{for } \mu^{\eta} \eta > 0 \\ \frac{f(\eta,t)-f(\eta-1,t)}{\Delta \eta} & \text{for } \mu^{\eta} \eta < 0 \end{cases}$$
 Implicit scheme: $\partial_{t} f(\eta,t) = \frac{f(\eta,t+1)-f(\eta,t)}{\Delta t}$ 2-order difference: $\partial_{n} f(\eta,t) = \frac{f(\eta,t+1)-f(\eta,t)}{(\Delta \eta)^{2}}$

Financial and Monetary Economics

Eco529 Fall 2020

Lecture 03: Endogenous Risk Dynamics

Solutions

Markus K. Brunnermeier

Princeton University

Solution

Price of capital

Amplification

Parameters:
$$\rho^e = .06$$
, $\rho^h = .05$, $a^e = .11$, $a^h = .03$, $\delta = .05$, $\sigma = .01$, $\alpha = .50$, $\gamma = 2$, $\phi = 10$

Volatility Paradox

• Comparative Static w.r.t. $\sigma = .01, .05, .1$

Risk Sharing via Outside Equity

• Comparative Static w.r.t. Risk sharing $\alpha = .1, .2, .5$ (skin the game constraint)

Market Liquidity

• Comparative static w.r.t. $a^h = .03, -.03, -.09$

From $\mu^{\eta^e}(\eta^e)$ & $\sigma^{\eta^e}(\eta^e)$ to Stationary Distribution

lacktriangle Drift and Volatility of η^e

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

5. Kolmogorov Forward Equation

• Given an initial distribution $f(\eta,0)=f_0(\eta)$, the density diffusion follows PDE

$$\frac{\partial f(\eta, t)}{\partial t} = \frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

 "Kolmogorov Forward Equation" is in physics referred to as "Fokker-Planck Equation"

lacktriangledown Corollary: if stationary distribution $f(\eta)$ exists, it satisfies the ODE

$$0 = \frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

5. Kolmogorov Forward Equation

 \blacksquare Kolmogorov forward differential operator T (hard to discretize)

$$Tf := \frac{\partial}{\partial \eta} [\mu f] + \frac{1}{2} \frac{\partial^2}{\partial \eta^2} [\sigma^2 f]$$

Shortcut: Kolmogorov backward differential operator S

$$Sg \coloneqq \mu \frac{\partial}{\partial \eta} g + \sigma^2 \frac{1}{2} \frac{\partial^2}{\partial \eta^2} g$$

- KFE is the adjoint equation to the KBE, T is the adjoint of S.
- Approximate operator S with discretization matrix A using finite difference method.
- A can be interpreted as the transition matrix of a continuous-time Markov chain.
- lacktriangle adjoints in finite-dimensional space are matrix transposes, A^T can approximate operator T.

5. Kolmogorov Forward Equation

Solving method:

- 1. Approximate operator S with A using finite difference method.
- 2. For stationary distribution, $A^T f = 0$,
- find kernel space of A^T
- normalized the space vector to density function.
- 3. For time-dependent KFE, $A^T f = f_t$,
- Solve the PDE as we did with value function, but move forward.
- Alternative method: Monte Carlo Simulation of SDE

(high computing complexity for high dimensions...)

5. Stationary Distribution

• Stationary distribution of η^e

5. Stationary Distribution

• Stationary distribution of η^e

Poll 97: Is the constraint always (not a occasionally binding)

- a) yes
- b) no, only for some parameters $\rho^e > \rho^h$

5. Stationary Distribution

• Stationary distribution of η^e

Experts' skin in the game constraint binds $\chi_t^e = \alpha \kappa_t^e$

Perfect risk-sharing region (infeasible)

Poll 98: What happens for $\rho^e = \rho^h$

- a) experts take over the economy, $\eta \to 1$
- b) there is a steady state at $\eta = \alpha$

5. Fan chart and distributional impulse response

- ... the theory to Bank of England's empirical fan charts
- lacktriangle Starts at η_0 , the median of stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 \ dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution

5. Fan chart and distributional impulse response

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t=-2.32\ dt$) for a period of $\Delta t=1$.
- Converges back to stationary distribution

5. Density Diffusion

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock $(dZ_t=-2.32\ dt)$ for a period of $\Delta t=1$.
- Converges back to stationary distribution

5. Density Diffusion Movies

5. Distributional Impulse Response

- Difference between path with and without shock
- Difference converges to zero in the long-run

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given C/N-ratio and SDF processes for each i finance block
 - a. Real investment ι + Goods market clearing (static)
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)

forward equation

3. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{\imath}}; \eta, K)$ into $v^i(\eta)u(K)$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration
- 5. KFE: Stationary distribution, Fan charts

Recent Macro-finance Literature (in cts. time)

- Core
 - BrunSan (2014), Basak & Cuoco (1998) He & Krishnamurthy (2012,13), DiTella (2013), Isohätälä et al. (2014)
- Intermediation/shadow banking
 - Phelan (2014), Adrian & Boyarchenko (2012,13), Huang (2014), Moreira & Savov (2014), Klimenko & Rochet (2015)
- Quantification
 - He & Krishnamurthy (2014), Mittnik & Semmler (2013)
- International
 - BruSan (2015), Maggiori (2013)
- Monetary
 - "The I Theory of Money" (2012), Drechsler et al. (2014)

• ...