Inflation and Deflation Pressures after the COVID Shock

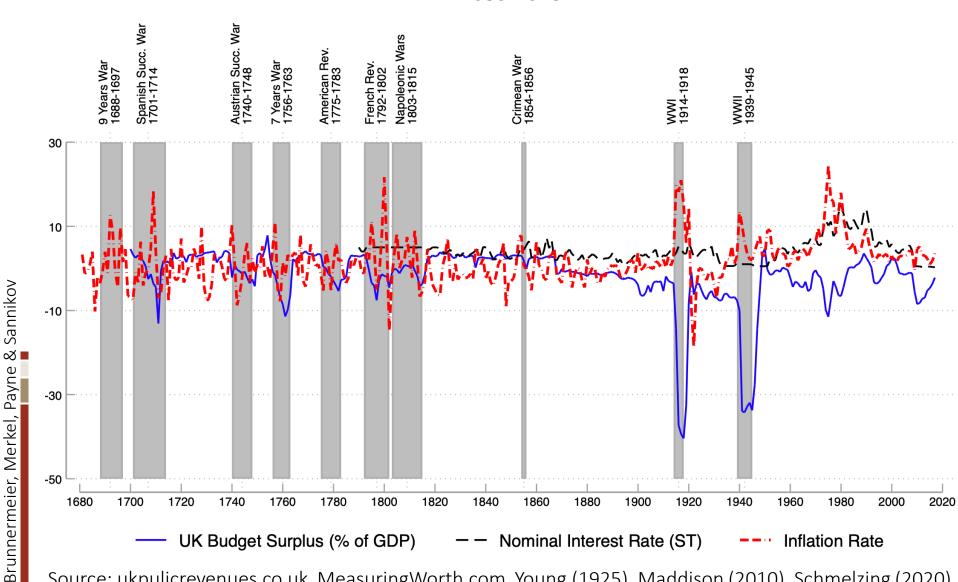
Markus Brunnermeier Sebastian Merkel Jonathan Payne Yuliy Sannikov Preliminary -Work in progress

Key Takeaways

- Inflation and deflation pressures are multifold with subtle interactions
- Gov. debt serves as safe asset
 - precautionary savings instrument in world with incomplete markets
- Inflation (dynamics) is driven by
 - "Gamble on recovery" ... if pandemics lasts longer than expected
 - Financial frictions: incomplete markets & borrowing constraint
 - Inequality and redistribution
 - Government funding
 - Debt financing and future taxes (what taxes?)
 - Debt monetization

UK: inflation-fiscal link + wars

UK Budget Surpluses, Nominal Interest Rate and Inflation 1680-2018

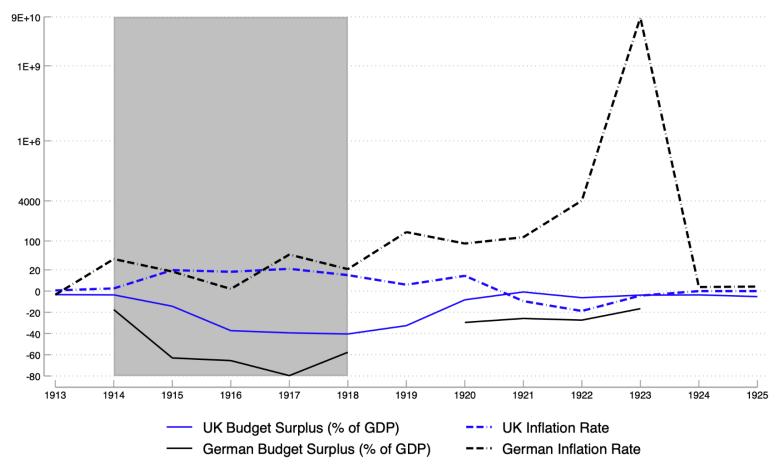


Source: ukpulicrevenues.co.uk, MeasuringWorth.com, Young (1925), Maddison (2010), Schmelzing (2020)

UK vs Germany after WWI

■ War financing ≈≠ COVID (GDP and G)

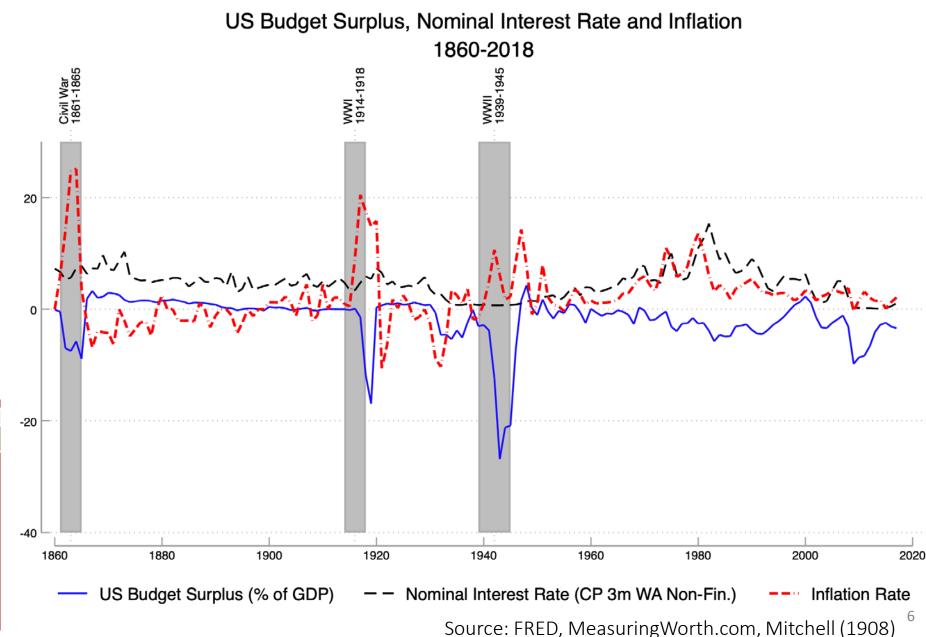
Budget Surplus and Inflation - UK and Germany 1913-1925



Balderston 1989, Dornbusch 1996, Harold James 2020: Princeton webinar

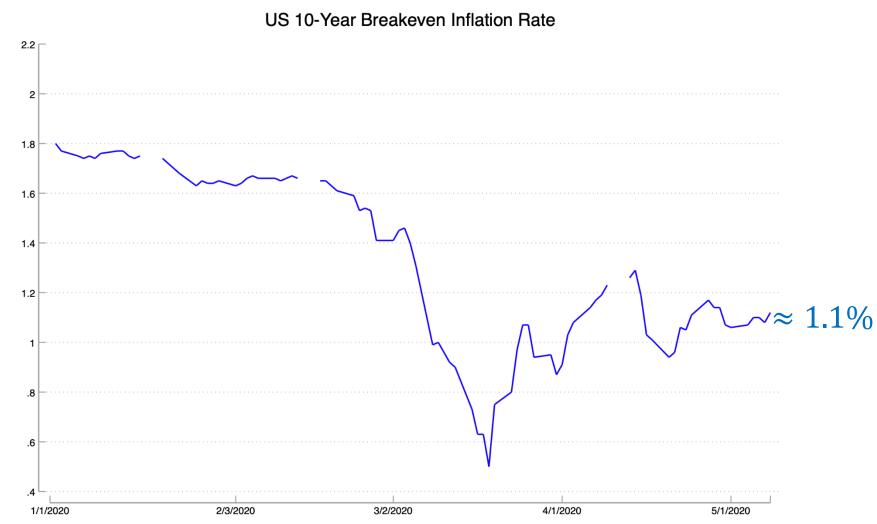
Brunnermeier, Merkel, Payne & Sannikov

■ US: inflation-fiscal link + wars



US Inflation expectations now

■ TIPS: 10 year break even



Brunnermeier, Merkel, Payne & Sannikov

Overview

- Historical examples
- Model setup
 - \blacksquare Uninsurable idiosyncratic risk on capital \Rightarrow risk premium on $r^{K}>g>r^{f}$ is depressed
- Solutions
 - Steps for all phases
 - Phase by phase
- Dissection inflation/deflation forces
- Policy measures and inflation

■ Literature: Money as Store of Value

\Friction	OLG	Incomplete Markets + idiosyncratic risk	
Risk	deterministic	labor endowment risk borrowing constraint	capital risk
			_
Only money	Samuelson	Bewley	
			- "I Theory without I"
With capital	Diamond	Aiyagari	Angeletos
			Pecuniary
Money/gov. o	$r > ?r^*, K < ?K^*$		

- Abel et al. vs. Geerolf (2013)
- Blanchard (2019)
- Jiang, Van Nieuwerburgh, Lustig, Xiaolan (2020)

Brunnermeier, Merkel, Payne & Sannikov

Selected literature

- Sargent & Wallace "inflation is ... a fiscal phenomenon"
- (Modern Monetary Theory)
- "Fiscal Theory of the Price Level with a Bubble"
 - Brunnermeier, Merkel & Sannikov (2020)
- BruSan (2018) "The I Theory of Money"

- New Keynesian models (demand management)
 - Woodford, Gali, HANK, ... (cashless limit)
 - So far, we abstract from price stickiness

Broad money definition

- Broad MONEY definition safe asset/store of value
 - Narrow Money
 - Reserves = consol bond with floating nominal interest i_t
 - ignore small interest rate advantage of narrow money due to medium of exchange role of money (CIA, MIU, Shopping time, ...)
 - + Government debt (credibly default free, no second safe asset/currency)

Like in Samuelson's OLG model!

 Crisis dynamics of medium of exchange role of money < of store of value role

The challenge also for model setup

Stop clock = total standstill of all debt/rent/wages/...

- Not possible
 - Essential sector food, ...
 - Less essential sector

- Shut down part of economy
 - Supported by other part
 - via government financing (debt vs. monetization)?

Model setup

■ Citizen ĩ's preferences

$$E\left[\int_0^\infty e^{-\rho t} \ln(c_t^{\tilde{\iota}}) \ dt\right]$$

$$c_t^I = \left[\alpha_t^A (c_t^{A\tilde{\imath}})^{\frac{\varepsilon - 1}{\varepsilon}} + \bar{\alpha} (c_t^{B\tilde{\imath}})^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}}$$

Sector A

- Output:
- Physical capital: $\frac{dk_t^{A\tilde{\imath}}}{k_t^{A\tilde{\imath}}} =$

$$= (\Phi(\iota_t^A) - \delta)dt + \tilde{\sigma}_t d\tilde{Z}_t^{A\tilde{\imath}} + d\Delta_t^{k,A\tilde{\imath}} = (\Phi(\iota_t^B) - \delta)dt + \tilde{\sigma}_t d\tilde{Z}_t^{B\tilde{\imath}} + d\Delta_t^{k,B\tilde{\imath}}$$

Investment is in CES-composite good

Financial Frictions:

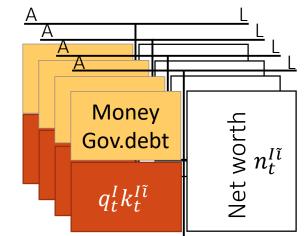
- Agents cannot share $d\tilde{Z}_t^{I\tilde{i}}$
 - ⇒ gives value to money/gov. debt
- Borrowing constraint $\theta^{M^{I\tilde{i}}} > -\theta^{M}$

Sector B

$$y_t^{A\tilde{\imath}} = a_t^A k_t^{I\tilde{\imath}} \qquad y_t^{Bi} = \bar{a} k_t^{B\tilde{\imath}}$$

$$\frac{dk_t^{A\tilde{\imath}}}{k_t^{A\tilde{\imath}}} = \frac{dk_t^{B\tilde{\imath}}}{k_t^{B\tilde{\imath}}} =$$

$$(\Phi(\iota_t^B) - \delta)dt + \tilde{\sigma}_t d\tilde{Z}_t^{B\tilde{\iota}} + d\Delta_t^{k,B\tilde{\iota}}$$



Shocks: Pandemic + Recovery

CES:

$$c_t^I = \left[\alpha_t^A \left(c_t^{A\tilde{\iota}}\right)^{\frac{\varepsilon-1}{\varepsilon}} + \bar{\alpha} \left(c_t^{B\tilde{\iota}}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{1}{\varepsilon-1}}$$

Output:

$$y_t^{Ai} = a_t^A k_t^{I\tilde{\imath}}, \quad y_t^{Bi} = \bar{a} k_t^{B\tilde{\imath}}$$

 a_t^A or α_t^A

Pre-Pandemic

Pandemic

Recovery phase

random length $\lambda e^{-\lambda \tau}$

Brunnermeier, Merkel, Payne & Sannikov

■ Shocks: Pandemic + Recovery

Gov. budget constraint

Gov. budget constraints

$$(\mu_t^M - i_t)M_t/P_t + (\tau_t^A N_t^A + \tau_t^B N_t^B) = 0$$

- Distribution of
 - seigniorage to all agents
 - Tax = transfer

Proportional to net worth (wealth)

- Intertemporal gov. budget constraint contains bubble term
 - "FTPL with a Bubble"

Some notation

Levels Shares Assumption:
$$K_t = K_t^A + K_t^B \qquad \qquad \underset{Q_t}{\overset{\text{Solution}}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}}{\overset{\text{Solution}}{\overset{\text{Solution}}{\overset{\text{Solution}}}{\overset{\text{S$$

$$q_t^K = \kappa_t q_t^A + (1)$$

$$N_t = q_t^K K_t + q_t^M K_t$$
 $\vartheta_t = \frac{q_t^M K_t}{(q_t^K + q_t^M)K_t}$ Nominal wealth share (portfolio)

Translate back in levels

$$\frac{\omega}{\Omega} \kappa_t = K_t^A / K_t$$

$$\eta_t = N_t^A/N_t$$

$$\varphi_t = \kappa_t q_t^A / q_t^B$$

$$\theta_t = \frac{R}{(q_t^K + q_t^M)K_t}$$

Solve model in shares

Composite good (consider intermediary goods sector)

$$\mathcal{A}(\kappa_t; a_t^A, \alpha^A) K_t = \left[\alpha_t^A (a_t^A \kappa_t)^{\frac{\varepsilon - 1}{\varepsilon}} + \bar{\alpha} (\bar{a} (1 - \kappa_t))^{\frac{\varepsilon - 1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon - 1}} K_t$$

■ Money supply $\frac{dM_t}{M_t} = \mu_t^M dt + \nu_t^M dJ_t$ "Inflation tax" $\mu_t^M - i_t$

Jumps:

COVID + recovery 18

Overview

- Historical examples
- Model setup
- Solutions for all phases
- Phase by phase
- Policy and inflation

Optimal choices

lacksquare Optimal investment rate ι_t^I (in composite good) in Sector I

$$\iota_t^I = \frac{1}{\phi}(q_t^I - 1)$$

$$\frac{1}{q_t^I} = \Phi'(\iota_t^{I\tilde{\iota}}) \quad \text{Tobin's } q$$

All agents $\iota_t^{I ilde{\iota}} = \iota_t^I$

Special functional form:

$$\Phi(\iota_t^I) = \frac{1}{\phi}\log(\phi\iota_t^I + 1)$$

Evolution of capital share κ

$$\mu_t^{\kappa} = (1 - \kappa_t) \left(\Phi(\iota_t^A) - \Phi(\iota_t^B) \right) = (1 - \kappa_t) \log(q_t^A/q_t^B)$$

Optimal choices

lacksquare Optimal investment rate ι_t^I

$$\iota_t^I = \frac{1}{\phi}(q_t^I - 1)$$

Optimal consumption

$$c_t^{I\tilde{\imath}} = \rho n_t^{I\tilde{\imath}}$$

• Optimal portfolio $(\theta_t^{M,I}, \theta_t^{K,I})$

$$\theta_t^{M,A} = \cdots$$

$$\theta_t^{M,B} = \cdots$$

Optimal choices & aggregation

lacksquare Optimal investment rate ι_t^I

$$\iota_t^I = \frac{1}{\phi}(q_t^I - 1)$$

Optimal consumption

$$c_t^{I\tilde{\iota}} = \rho n_t^{I\tilde{\iota}} \Rightarrow C_t = \rho (N_t^A + N_t^B)$$

$$\rho \underbrace{[(q_t^A \kappa_t + q_t^B (1 - \kappa_t)) + q_t^M] K_t}_{=q_t^K}$$
Value of Money/gov. debt

lacktriangle Optimal portfolio ($heta_t^{M,I}$, $heta_t^{K,I}$)

$$\theta_t^{M,A} = \cdots$$

$$\theta_t^{M,B} = \cdots$$

Let's solve optimal portfolio later.

Optimal choices & aggregation

lacksquare Optimal investment rate ι_t^I

$$\iota_t^I = \frac{1}{\phi}(q_t^I - 1)$$

Optimal consumption

$$c_t^{I\tilde{\iota}} = \rho n_t^{I\tilde{\iota}} \Rightarrow C_t = \rho (N_t^A + N_t^B)$$

$$\rho[\underbrace{(q_t^A \kappa_t + q_t^B (1 - \kappa_t))}_{=q_t^K} + q_t^M] K_t$$

■ Optimal portfolio $(\theta_t^{M,I}, \theta_t^{K,I})$

$$\theta_t^{M,A} = \cdots \underbrace{\left[\theta_t^{M,A}\eta_t + \theta_t^{M,B}(1 - \eta_t)\right]}_{\vartheta_t :=} N_t$$

$$\theta_t^{M,B} = \cdots$$

Let's solve optimal portfolio later.

Optimal choices & market clearing

lacksquare Optimal investment rate ι_t^I

$$\iota_t^I = \frac{1}{\phi}(q_t^I - 1)$$

Optimal consumption

$$c_t^{I\tilde{\iota}} = \rho n_t^{I\tilde{\iota}} \Rightarrow C_t = \rho (N_t^A + N_t^B)$$

$$\rho[\underbrace{(q_t^A \kappa_t + q_t^B (1 - \kappa_t))}_{=q_t^K} + q_t^M] K_t = (\mathcal{A}_t - \iota_t) K_t$$

■ Optimal portfolio $(\theta_t^{M,I}, \theta_t^{K,I})$

$$\theta_t^{M,A} = \cdots \qquad [\theta_t^{M,A} \eta_t + \theta_t^{M,B} (1 - \eta_t)] N_t = q_t^M K_t$$

 $\vartheta_t \coloneqq$

 $\theta_{t}^{M,B} = \cdots$

Let's solve optimal portfolio later.

24

\blacksquare Optimal ι + goods market

Price of physical composite capital

$$q_t^K = (1 - \vartheta_t) \frac{1 + \phi \mathcal{A}(\kappa_t; a_t^A)}{(1 - \vartheta_t) + \phi \rho}$$

lacktriangle Real value of money per unit of K_t

$$q_t^M = \vartheta_t \frac{1 + \phi \mathcal{A}(\kappa_t; a_t^A)}{\underbrace{(1 - \vartheta_t) + \phi \rho}_{=q_t^K + q_t^M = N_t/K_t}}$$

- Moneyless equilibrium: $q_t^M = 0 \Rightarrow \vartheta_t = 0 \Rightarrow q_t^K = \frac{1 + \phi \mathcal{A}(\kappa_t; a_t^A)}{1 + \phi \rho}$
 - Real value of government debt is fragile!

Drifts

weighted idio-risk premium

seignorage distribution

backward equations

$$+\lambda(1-artheta_t)$$
 (weighted jump $-$ risk premium) $-(1-artheta_t) \quad (\psi_t^A-\psi_t^B)$

Brunnermeier, Merkel, Payne &

Drifts

$$\mu_t^K = \kappa_t \Phi(\iota_t^A) + (1 - \kappa_t) \Phi(\iota_t^B) - \delta$$

$$\mu_t^K = (1 - \kappa_t) \left(\Phi(\iota_t^A) - \Phi(\iota_t^B) \right) = (1 - \kappa_t) \log(q_t^A/q_t^B)$$

$$\mu_t^\eta = (1 - \eta_t) ((\text{risk premium}) \theta_t^{K,A} - (\text{risk premium}) \theta_t^{K,B})$$

$$\mu_t^\varphi = (1 - \varphi_t) (\mu_t^{q^A} - \mu_t^{q^A} + \frac{\mu_t^\kappa}{1 - \kappa_t})$$

weighted idio-risk premium

 $+\lambda(1-\vartheta_t)$ (weighted jump—risk premium)

$$-(1-\vartheta_t) \quad (\psi_t^A - \psi_t^B)$$

Lagrange multipl. borrowing constr.

"inflation tax"

Drifts

$$\mu_t^K = \kappa_t \Phi(\iota_t^A) + (1 - \kappa_t) \Phi(\iota_t^B) - \delta$$

$$\mu_t^K = (1 - \kappa_t) \left(\Phi(\iota_t^A) - \Phi(\iota_t^B) \right) = (1 - \kappa_t) \log(q_t^A/q_t^B)$$

$$\mu_t^\eta = (1 - \eta_t) ((\text{risk premium}) \theta_t^{K,A} - (\text{risk premium}) \theta_t^{K,B})$$

$$\mu_t^\varphi = (1 - \varphi_t) (\mu_t^{q^A} - \mu_t^{q^A} + \frac{\mu_t^K}{1 - \kappa_t})$$

weighted idio-risk premium

"inflation tax"

$$\vartheta_t = E_t \int\limits_t^\infty e^{-\rho(s-t)} [(1-\vartheta_s)(i-\mu_s^M) + (1-\vartheta_s)^2 \left(\frac{\varphi_s^2}{\eta_s} + \frac{(1-\varphi_s)^2}{1-\eta_s}\right) \tilde{\sigma}_s^2] \vartheta_s ds$$
 Portfolio distortion "payoff" due to inflation tax Insurance service flow

Brunnermeier, Merkel, Payne & Sannikov

Overview

- Historical examples
- Model setup
- Solutions for all phases
- Phase by phase
 - I. Pre-pandemic
 - II. Pandemic
 - III. Recovery

Policy and inflation

nnermeier, Merkel, Payne & Sanniko

III I. Phase: Non-pandemic SS

■ In SS & deterministic
since pandemics is a zero probability shock

Pre-COVID Pandemic Recovery
(start and endpoint)

• 0 =
$$\mu_t^{\kappa}$$
 = $(1 - \kappa_t)\log(q_t^A/q_t^B) \Rightarrow q_t^A = q_t^B \Rightarrow \varphi^{SS} = \kappa^{SS} = \frac{1}{2}$
• 0 = μ_t^{η} = $(1 - \vartheta)^2 \tilde{\sigma}_t^2 \left(\frac{\varphi^2}{\eta_t} + \frac{(1 - \varphi)^2}{1 - \eta_t}\right) (1 - \eta_t) \eta_t \Rightarrow \varphi^{SS} = \eta^{SS} = \frac{1}{2}$
• 0 = μ_t^{φ} = $(1 - \varphi_t) (\mu_t^{q^A} - \mu_t^{q^A} + \frac{\mu_t^{\kappa}}{1 - \kappa_t}) \Rightarrow p_t^{A,SS} = p_t^{B,SS}$
• 0 = μ_t^{ϑ} = $\rho - (1 - \vartheta)^2 \tilde{\sigma}_t^2 \left(\frac{\varphi^2}{\eta} + \frac{(1 - \varphi)^2}{1 - \eta}\right) + \underbrace{(1 - \vartheta)(\mu^M - i)}_{iM \leftarrow i}$

$$\Rightarrow 1 - \vartheta^{SS} = \frac{\sqrt{\rho + \widecheck{\mu}^M}}{\widecheck{\sigma}(\kappa^{SS})}$$

I. Phase: Non-pandemic SS

Pre-COVID Pandemic

Recovery

Money less equilibrium	Money equilibrium
$q_0^M = 0$	$q^{M} = \frac{\left(\tilde{\sigma} - \sqrt{\rho + \check{\mu}^{M}}\right)(1 + \phi\bar{a})}{\sqrt{\rho + \check{\mu}^{M}} + \phi\tilde{\sigma}\rho}$
$q_0^K = \frac{1 + \phi \bar{a}}{1 + \phi \rho}$	$q^{K} = \frac{\sqrt{\rho + \check{\mu}^{M}} (1 + \phi \bar{a})}{\sqrt{\rho + \check{\mu}^{M}} + \phi \tilde{\sigma} \rho}$
$\iota^A = \iota^B = \frac{\bar{a} - \rho}{1 + \phi \rho}$	$\iota^{A} = \iota^{B} = \frac{\bar{a}\sqrt{\check{\mu}^{M}} - \tilde{\sigma}\rho}{\sqrt{\check{\mu}^{M}} + \phi\tilde{\sigma}\rho}$

Money is a bubble

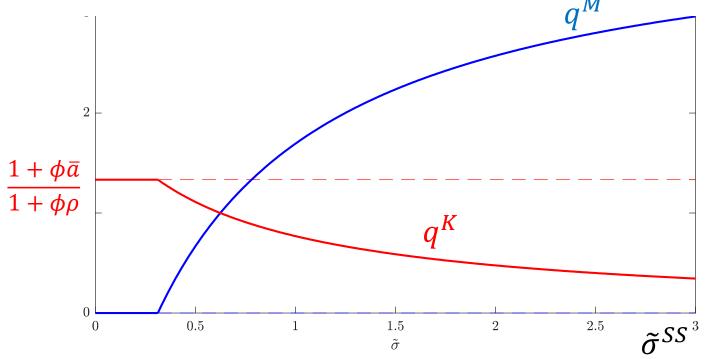
But provides store of value/insurance role

(no seigniorage since all money growth is paid to money holders in form of interest)

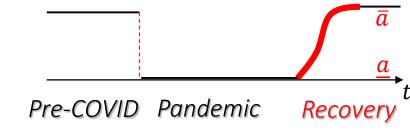
For $\mu^M = i \implies \check{\mu}^M = 0$

${ m I\hspace{-.1em}I}$ I. Comparative static $\tilde{\sigma}^{SS}$

- Pre-COVID Pandemic Recovery
- lacktriangle Comparative static: As $ilde{\sigma}$ increases
 - Flight to safety to bubbly money
 - q^M rises (disinflation)
 - q^K falls and so does
 - ι and
 - growth rate of economy



III. Recovery phase



- Pandemic random length, exponentially distributed $\lambda e^{-\lambda \tau}$
- 1. Jump at recovery news (vaccine discovery)
 - $lacksq q^A$ and N jump up, and so is N^A and η
 - $C^A = \rho N^A$ jumps
- 2. Deterministic convergence to SS (only idiosyncratic risk)
 - a_t^A converges back to \bar{a} (exogenously)
 - φ_t converges back to SS: $\varphi^{SS} = 1/2$
 - κ_t converges back to SS: $\kappa^{SS}=1/2$ $\Rightarrow \tilde{\sigma}(\kappa_t)$ starts declining

- K_t grows faster (but never fully makes up)
- $\mathcal{A}(\kappa_t; a_t^A, \alpha^A)$ converges back to \bar{a}

II. Pandemic phase

- For t > 0: Aggregate recovery arrival jump risk
 - Sector A "gambles on recovery"
 - Holds on capital
 - Consumes and net worth share η_t declines as pandemic drags on

Pre-COVID Pandemic

- κ_t declines $\Rightarrow \tilde{\sigma}_t$ rises
- At some point borrowing constraint starts binding

$$\mu_t^{\vartheta} = \rho - (1 - \vartheta_t)^2 \tilde{\sigma}_t^2 \left(\frac{\varphi^2}{\eta_t} + \frac{(1 - \varphi)^2}{1 - \eta_t} \right) + (1 - \vartheta_t) (\mu_t^M - i_t)$$

$$+ \lambda (1 - \vartheta_t) \text{ (weighted jump-risk premium)}$$

$$- (1 - \vartheta_t) \underbrace{(\psi_t^A - \psi_t^B)}_{Lagrange\ multipl.}$$
when borrowing constraint binds
$$\text{constraint binds}$$

At t = 0: COVID shock (zero probability)

borrowing constr.

Sector A accepts low return hoping for recovery with q^A jump up

Recovery

II. Pandemic phase

- Pre-COVID Pandemic For t>0: Aggregate recovery arrival jump risk
 - Sector A "gambles on recovery"
 - Holds on capital
 - Consumes and net worth share η_t declines as pandemic drags on

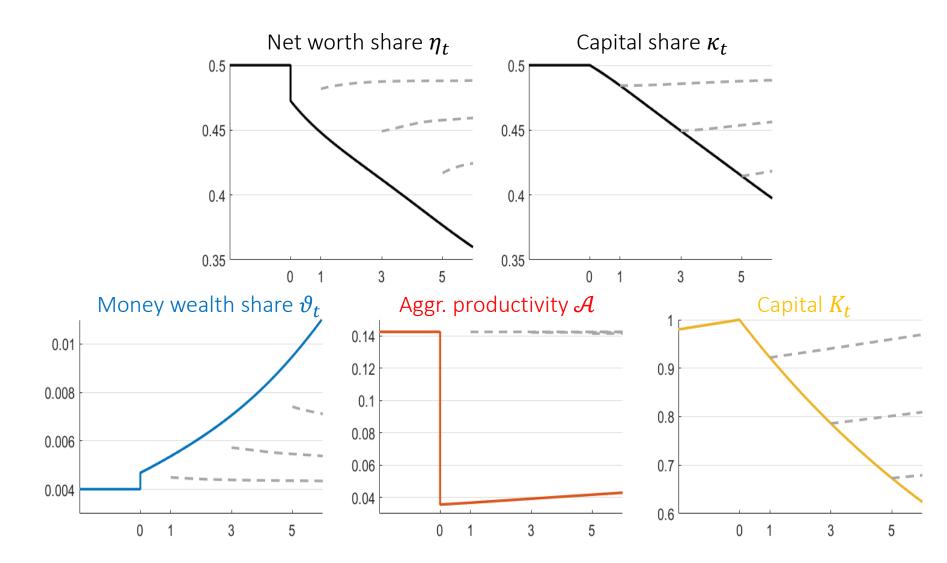
Recovery

- κ_t declines $\Rightarrow \tilde{\sigma}_t$ rises
- At some point borrowing constraint starts binding
 - Affects already equilibrium before it binds
- At t = 0: COVID shock (zero probability)
 - q_{0+}^A drops more than q_{0+}^B $\Rightarrow \eta_{0+}$ jumps
 - Price level P_0 + jumps due to 2 forces
 - Downwards: since $\mathcal{A}(\kappa_t; a_t^A)$ drops as a_t^A drops from \bar{a} to \bar{a}
 - + Upwards: as PV("insurance service flow" of money) rises

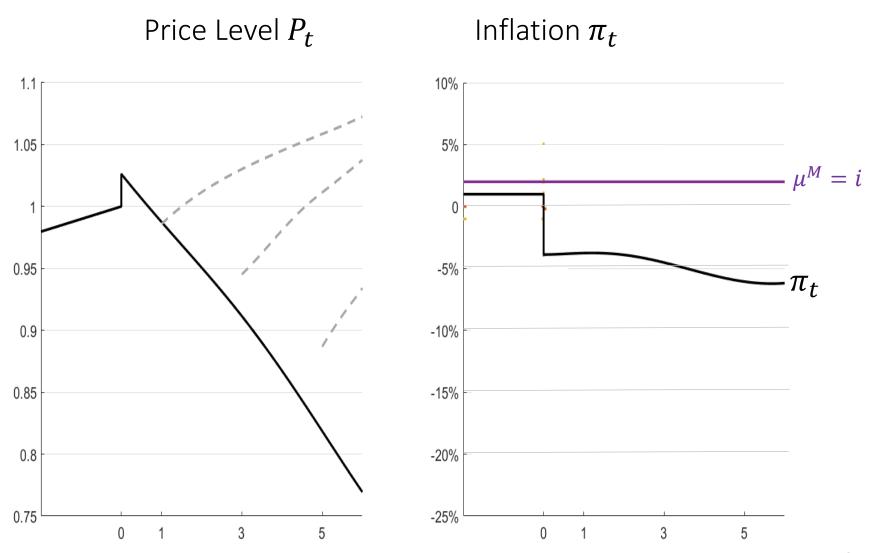
$$\vartheta_{t} = E_{t} \int e^{-\rho(s-t)} [(1 - \vartheta_{s})(i - \mu_{s}^{M}) + (1 - \vartheta_{s})^{2} \left(\frac{\varphi_{s}^{2}}{\eta_{s}} + \frac{(1 - \varphi_{s})^{2}}{1 - \eta_{s}} \right) \tilde{\sigma}_{s}^{2}] \vartheta_{s} ds_{35}$$

■ Time path after COVID shock/recovery shock

•
$$\rho = 1.5\%$$
, $\bar{a} = .22$, $\underline{a} = 0$, $\phi = 2$, $\delta = .1$, $\varepsilon = 2$, $\lambda = 1$, $\tilde{\sigma}(\kappa) = .125 + |\kappa - 1/2|$



■ Price Level and Inflation



Brunnermeier, Merkel, Payne & Sannikov

Dissecting inflation pressures

■ Value of a coin: $\frac{q_t^M K_t}{M_t}$ Price level: $P_t = \frac{M_t}{q_t^M K_t}$

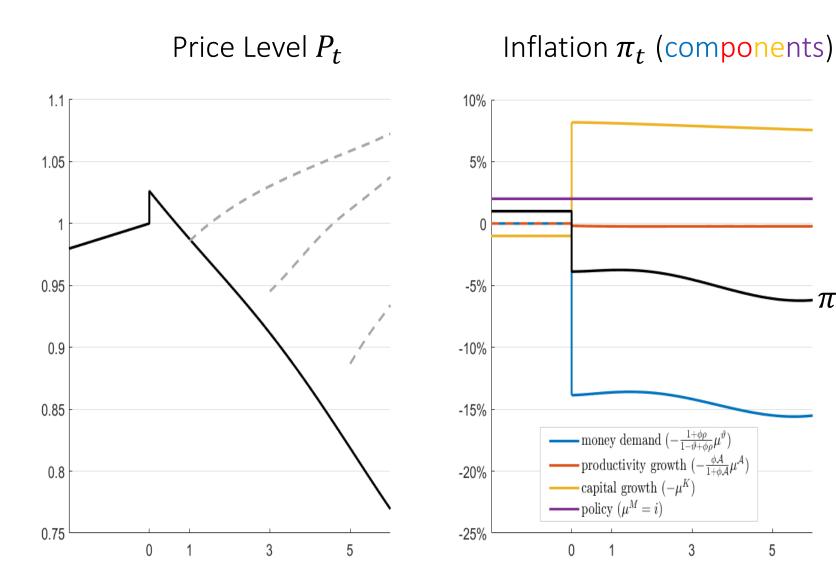
$$\blacksquare \pi_t = \mu_t^M - \mu_t^K - \mu_t^{q^M}$$

$$\begin{aligned} & \blacksquare \pi_t = +\mu_t^M & \text{money printing} \\ & -(\kappa_t \Phi(\iota_t^A) + (1-\kappa_t) \Phi(\iota_t^B) - \delta) \text{ capital factor growth} \\ & -\frac{\phi \mathcal{A}(\kappa_t; a_t^A)}{(1-\vartheta_t) + \phi \rho} \mu_t^{\mathcal{A}}(\kappa_t; a_t^A) & \text{productivity growth} \end{aligned}$$

$$-\frac{1+\phi\rho}{(1-\vartheta_t)+\phi\rho}\mu_t^{\vartheta}$$

future idio-risk

Dissecting inflation pressures



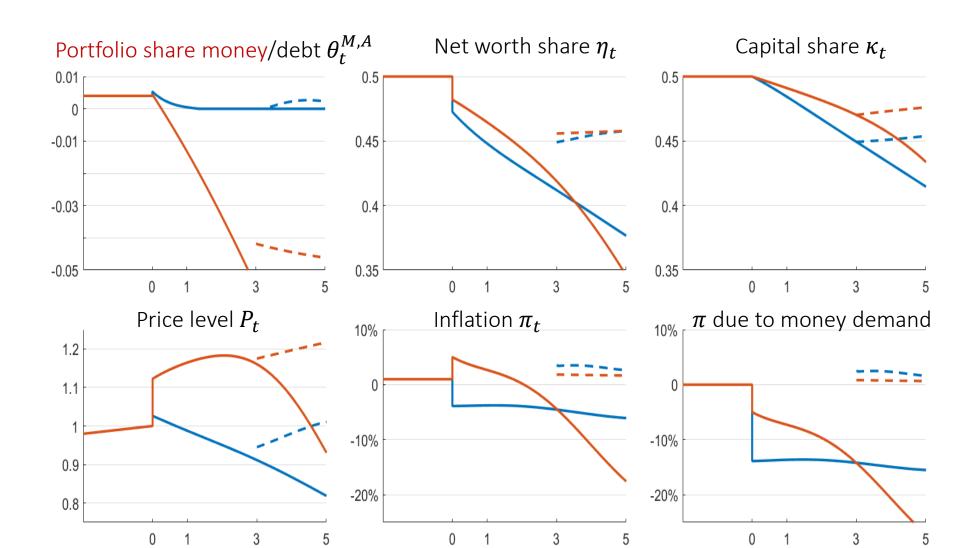
Overview

- Historical examples
- Model setup
- Solutions for all phases
- Phase by phase
- Policy and inflation
 - Lending policy
 - Intratemporal redistribution
 - Intertemporal
 - Fiscal debt financing to redistribute
 - Monetization

Lending policy

lacktriangle Removes borrowing constraint $\theta_t^{M,A} \geq 0$

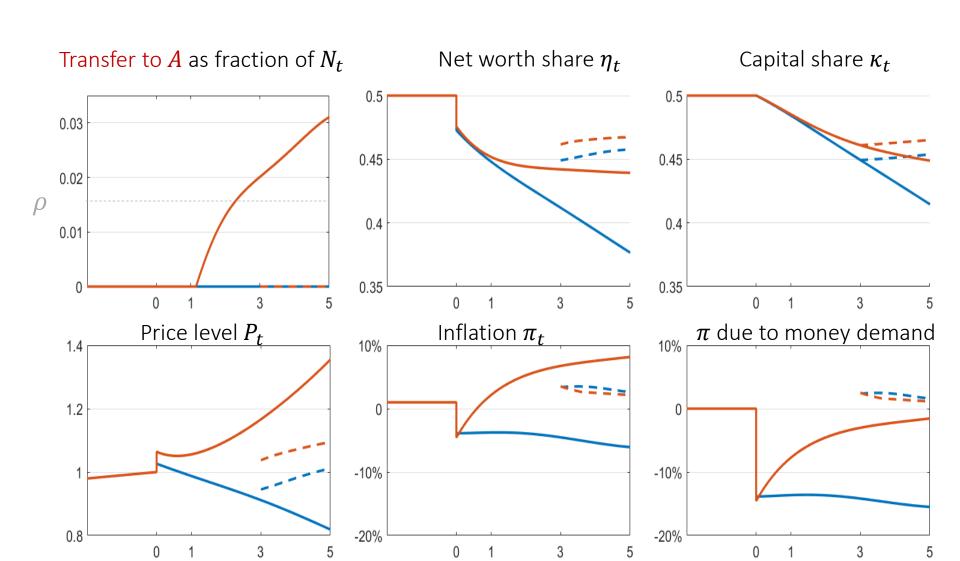
Policy in red Benchmark in blue



Intratemporal redistributive policy

■ Transfers to sector A from sector B (

to net worth)



Intertemporal redistribution+fiscal debt

- Transfers to sector A are funding with government debt + future taxes (on sector B starting with recovery phase forever)
 If
 - i. + lending policy added (removes borrowing constraint)
 - ii. Lump sum tax on B

Intratemporal redistribution

- Alternative tax schemes:
 - Tax on A in the future
 - Tax proportional net worth

partially insures idio-risk (for B)⇒ less money demand

Intertemporal redistribution+monetization

- Transfer to sector A funding with future "inflation tax"
- Policy space is very limited
 - Needs more serious calibration future work!

 Need model in which with existing <u>long-term</u> debt can be wiped out

Conclusion

- Many inflationary and deflationary pressures
 - Simple model with rich implications
 - Lending programs, redistribution, gov. debt, monetization, ...
 - Rich inflation dynamics
 "smoothed out" for measured inflation or price stickiness
- Assumptions to be relaxed:

- to do list! -

- Full price flexibility
- Government debt is default free and no competing safe asset
 - No flight-to-safety into competing currency (see BruSan "International...")
- Government debt is predictable / perfect commitment
 - UK 1920-25: fiscal policy to return to gold standard
 - Germany 1920: Matthias Erzberger's fiscal tax plan failed
- Demand vs. supply shock (α_t instead of a_t)

Thank YOU!

Backup slide

- Seignorage is distributed
 - 1. Proportionally to money holdings
 - No real effects, only nominal
 - 2. Proportionally to capital holdings
 - Money return decreases with dM_t (change in money supply)
 - Capital return increases
 - Pushes citizens to hold more capital
 - 3. Proportionally to net worth
 - Fraction of seignorage goes to capital same as 2.
 - Rest of seignorage goes to money holders same as 1.
 - 4. Per capita
 - No real effects people simply borrow against the transfers they expect to receive

