inverse selection

markus brunnermeier rohit lamba carlos segura-rodriguez princeton penn state banco central de costa rica

2020-04-24

NBER Insurance Meeting

motivation

The New York Times

Opinion | THE PRIVACY PROJECT

Insurers Want to Know How Many Steps You Took Today

The cutting edge of the insurance industry involves adjusting premiums and policies based on new forms of surveillance.

By Sarah Jeong

Ms. Jeong is a member of the editorial board.

April 10, 2019

motivation

The New York Times Google to Store and Analyze Millions of Health Records

The tech company's deal with Ascension is part of a push to use artificial intelligence to aid health services.

Google, like other big tech companies, is aggressively trying to get a bigger piece of the health care industry. Jeff Chiu/Associated Press

the seed of a question

- advent of big data, machine learning and ai
 - significant increase in data storage and computing powers.
- insurance companies statistically infer things 'we' can't.
- inversion of info advantage in classical screening contracts?
- how we model insurance contracts/industry?

a perspective on insurance models

first generation:

asymmetric information matters for markets,

markets can unravel, so role for market design.

second generation:

asymm info is multidimensional- advantageous selection.

heterogeneity in risk aversion.

third generation(?):

big data changes the notion of asymm info.

"who knows what" needs an update.

a question of our times:

with big data, should we think of information here differently?

in terms of modeling:

once insurer knows some basic information about you, statistical inference allows it to know more about risks. selection inverts the info advantage

roadmap

model setup with 2-dimensional asymmetric info

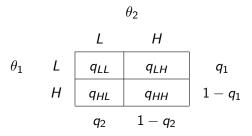
agent has partial hard information advantage

principal has statistical information advantage

3 cases: principal's informational advantage

- ▶ no \Rightarrow Rothschild-Stiglitz
- yes and agents are gullible ("gutgläubig")
- yes and agents are rational

regulation:


- nationalize statistical information analysis
- force to reveal statistical info

welfare

model setup: a cara-gaussian version

- risk neutral insurer (principal):
 - maximizes profit.
 - offers contract: c = {p, x}, p = premium, x = fraction of coverage.
- risk averse insuree (agent):
 - maximizes $u(z) = -\exp(-\gamma z)$,
 - initial wealth w and realized loss/damage ℓ ,
 - $\ell \sim \mathcal{N}(\mu, \sqrt{\nu})$, where $\mu \equiv \mu_{\theta}$.
 - $\blacktriangleright \ \theta = (\theta_1, \theta_2) \text{ and } \mu \in \{\mu_{LL}, \mu_{HL}, \mu_{LH}, \mu_{HH}\}.$
 - θ jointly distributed according to **q**.

joint distribution

joint distribution

• distribution is parametrized by (q_1, q_2, ρ) ,

• the stan dev is
$$\sigma = \sqrt{q_1(1-q_1)}\sqrt{q_2(1-q_2)}$$
.

key departure from existing model(s)

- **•** priors: q_1 , q_2 and $\rho \sim F$ on $[\rho, \overline{\rho}]$, publicly known.
- agent's hard info advantages: θ_1 .
- principals' statistical info advantage: ρ.
 - $\blacktriangleright \rho$ is data collection exogenous to the model.
 - > an endogenous approach would determine ρ in "equilibrium".
 - first step in pushing insurance models to data considerations...
- agent's info and principal's info interacts.

structure of "game" and timing

mediator proposes:

- message rule, $r : [\underline{\rho}, \overline{\rho}] \to \Delta(\mathcal{M})$,
- ▶ mechanism, $c^m = (p^m, x^m)$ s.t. $p^m, x^m : \{H, L\} \rightarrow \mathbb{R}$.

stage 1

- nature draws $\rho \sim F, \theta \sim q_{\rho}$.
- seller learns p and reports it.
- r generates message m.
- buyer forms posterior *F*_m.

stage 2

- menu (c_H^m, c_L^m) is offered.
- buyer learns θ_1 and reports it.
- contract $c_{\theta_1}^m$ is implemented.
- > payoffs π and u are realized.

optimal dynamic mechanism

insurer's profit is given by:

$$\Pi = \int\limits_{\underline{
ho}}^{\overline{
ho}} \pi(
ho) f(
ho) d
ho$$

the optimization problem:

 $\max_{r,c} \Pi \text{ s.t. } IC_{\rho}, IC_{\theta_1}, IR, \& \text{ regulatory constraint.}$

odm: constraints

incentive constraints:

•
$$\mathit{IC}_
ho$$
: $\pi(
ho,
ho)\geq\pi(
ho,\hat
ho)$, and

 $\blacktriangleright IC_{\theta_1}: u(\theta_1, \theta_1; m) \geq u(\theta_1, \hat{\theta_1}; m).$

• under truthtelling: $\pi(\rho)$ and $u_{\theta_1}(m)$.

message and contract space:

•
$$\mathcal{M} = \operatorname{Supp}(r)$$
,

$$\blacktriangleright C = \{c^m \mid m \in \mathcal{M}\}.$$

regulatory revelation constraint:

roadmap

model setup with 2-dimensional asymmetric info

• agent has partial hard information advantage θ_1

principal has statistical information advantage ρ

3 cases: principal's informational advantage

- ▶ no, ρ is common knowledge \Rightarrow Rothschild-Stiglitz
- yes and agents are gullible ("gutgläubig")
- yes and agents are rational

regulation:

- nationalize statisical information analysis
- force to reveal statistical info
- welfare

special case 1: ρ is comm know

what if $F = \delta_{\rho}$?

- we are back in the rothschild-stiglitz world.
- both insurer and insuree integrate over θ_2 using ρ .
- but insuree has more information: knows θ₁.

proposition

$$\exists \rho^* \text{ s.t. } \pi^{rs}(\rho^*) = \max_{\rho} \pi^{rs}(\rho), \text{ and}$$
full (partial) insurance for high (low) risk type, (no overinsurance),

1.
$$\rho > \rho^* \Rightarrow 1 = x_H^{rs} > x_L^{rs}$$
,

$$2. \ \rho < \rho^* \Rightarrow x_H^{rs} < x_L^{rs} = 1.$$

▶ not consistent with data ⇒ "advantageous selection"

special case 1: ρ is commonly know

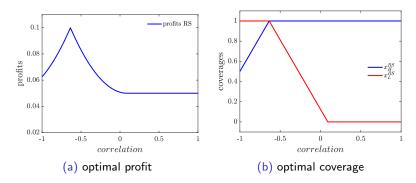


figure: rothschild-stiglitz profits and coverage for different correlations

roadmap

model setup with 2-dimensional asymmetric info

• agent has partial hard information advantage θ_1

principal has statistical information advantage ρ

- 3 cases: principal's informational advantage
 - ▶ no, ρ is common knowledge \Rightarrow Rothschild-Stiglitz
 - yes and agents are gullible ("gutgläubig")
 - yes and agents are rational
- regulation:
 - nationalize statisical information analysis
 - force to reveal statistical info
- welfare

special case 2: gutgläubig

- no inference by agent from contract offer
- \blacktriangleright agent is gullible and believes principle's announced ρ
- no regulatory constraints
- mechanism is given by $\{m(\rho), c^{\rho}\}_{\rho \in [\rho, \overline{\rho}]}$.

lemma

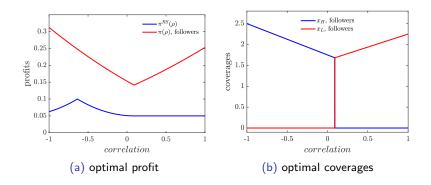
the seller reports extreme correlations to the buyer:

$$m \in \left\{\underline{\rho}, \overline{\rho}\right\}$$
 and $F_m = \delta_{\underline{\rho}} \text{ or } \delta_{\overline{\rho}}.$

special case 2: gutgläubig

proposition

if the buyer is a gutgläubig, $\exists \ \tilde{\rho} \in (\underline{\rho}, \overline{\rho})$ such that:


1. extreme binary and misleading messages: $m(\rho) = \overline{\rho} \text{ for } \rho < \widetilde{\rho} \text{ and } m(\rho) = \underline{\rho} \text{ for } \rho > \widetilde{\rho},$

2. higher profits:
$$\pi(\rho) > \pi^{rs}(\rho) \forall \rho$$
,

- 3. generically separating: $x_H \neq x_L \ \forall \rho \neq \tilde{\rho}$,
- generically inexact coverage: x_i ≠ 1 ∀ ρ a.s., (one type under-, one type overinsured)
- 5. RS-comparison: less (more) coverage for high (low) risk type,

•
$$x_H < x_H^{rs}$$
 and $x_L > x_L^{rs}$ for $\rho > \tilde{\rho}$,
• $x_H > x_H^{rs}$ and $x_L < x_L^{rs}$ for $\rho < \tilde{\rho}$.

special case 2: gutgläubig

roadmap

model setup with 2-dimensional asymmetric info

• agent has partial hard information advantage θ_1

principal has statistical information advantage ρ

- 3 cases: principal's informational advantage
 - ▶ no, ρ is common knowledge \Rightarrow Rothschild-Stiglitz
 - yes and agents are gullible ("gutgläubig")
 - yes and agents are rational

regulation:

- nationalize statisical information analysis
- force to reveal statistical info

welfare

rational agents

main tradeoff:

- between belief gap and price discrimination,
- offering many contracts helps better discriminate among different ρ,
- but also enables rational agent to infer ρ,
- resolved (mostly) in favor of maintaining the belief gap.
- Iimited number of contracts (one or two).

$|\mathcal{M}| = |\mathcal{C}| = 2$

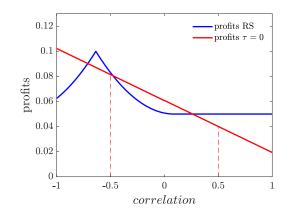


figure: profits in equilibrium with two pooling regions.

$$|\mathcal{M}| = |\mathcal{C}| = 2$$

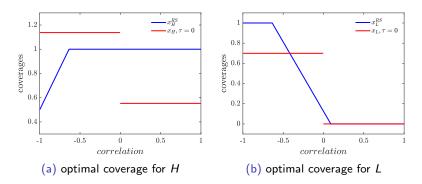


figure: coverage for different correlations

roadmap

model setup with 2-dimensional asymmetric info

• agent has partial hard information advantage θ_1

principal has statistical information advantage ρ

3 cases: principal's informational advantage

- ▶ no, ρ is common knowledge \Rightarrow Rothschild-Stiglitz
- yes and agents are gullible ("gutgläubig")
- yes and agents are rational
- regulation to reveal ρ :
 - nationalize statisical information analysis
 - force to reveal statistical info

welfare

• information analysis is "nationalized" and ρ freely revealed \Rightarrow common knowledge ρ Rothschild-Stiglitz case.

• insurer is incentivized to reveal ρ .

needs incentive to collect data and estimate ρ

additional IC-constraint

proposition

1. profits are uniformly lower:

$$\pi(\rho) < \pi^{rs}(\rho) \; \forall \rho.$$

- 2. generically inexact insurance: $x_i \neq 1$ for i = H, L.
- 3. there is pooling and separation at the optimum:

3.1 $\rho > \rho^* \Rightarrow x^{\rho}(\theta_H) \ge x^{\rho}(\theta_L),$ 3.2 $\rho < \rho^* \Rightarrow x^{\rho}(\theta_H) \le x^{\rho}(\theta_L).$ 3.3 one of these holds with equality.

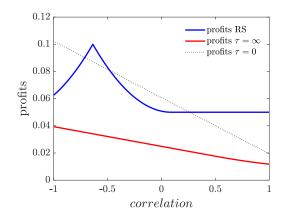


figure: optimal profits with full info revelation.

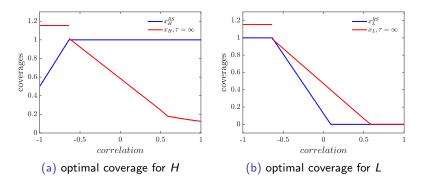


figure: coverage for different correlations

insuree welfare

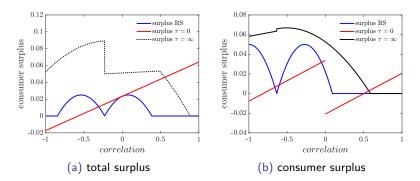


figure: welfare is mostly higher for full information revelation

what did we learn so far?

- without regulatory constraints, insurer resolves tradeoff between belief gap and price discrimination in favor of the former.
 - why do we see such little price discrimination in the market?
 - role for consumer activism.
- regulatory information requirement increases the class of contracts, and shrinks the firm's profit.
 - should we store data in a pubic platform, usable for a fee?
- overinsurance and partial insurance at the optimum.
 - "cross-subsidizing" across different populations.