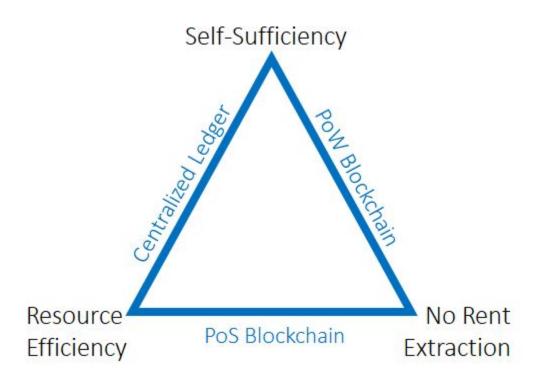


Blockchain Economics

Joseph Abadi Markus Brunnermeier

Princeton University

How can we generate consensus?


- Fundamental problem of record-keeping: Create trusted *ledger*
- What are the assumptions required to operate a trusted ledger?
 - Centralized ledger: Rents
 - PoS blockchain: External trust
 - PoW blockchain: **Resource costs**
- What are the **tradeoffs** and **constraints** in record-keeping?
 - When is PoW necessary?
 - How is PoS trust different from centralized trust?
 - Does the desired mechanism imply an optimal consensus algorithm?

Blockchain Trilemma

Self-sufficiency and external trust

- External trust: Capacity to **punish** other agents
 - a. Mutually beneficial relationships
 - Business relationships (news media, non-ledger related business)
 - Social connections (friends, colleagues)
 - Elected officials
 - b. Legal enforcement relationships
- Tradeoff: Lose social trust ⇒ System collapses
- Different from traditional centralized trust model! Local trust can be scaled globally

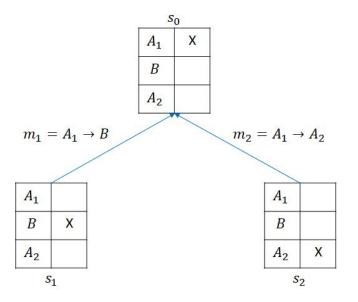
Summary of Trilemma

- Economic reasoning behind trilemma?
 - Three ways of distorting consensus Ο
 - Digital signatures (lose **rents**) i.
 - ii. Social messages (lose external trust)
 - iii. PoW

- (pay resource cost)
- Guiding framework about optimal record-keeping system
 - Small rent distortions \bigcirc
 - Robust external trust Ο
 - No external trust + large rent distortions \Rightarrow PoW Ο
- \Rightarrow Centralized/Permissioned
- \Rightarrow PoS, Ripple

Roadmap

- Challenge of digital record-keeping
- Key model ingredients
- Benchmark example
 - a. Centralized
 - b. PoS blockchain
 - c. PoW blockchain
- Proof idea



Challenge of digital record-keeping

- Key issue: No scarcity of digital "assets"
 - Unlike physical tokens
 - Ordering of messages matters

Solution: Consensus algorithm

- Three types: Differ in **info. requirements** to determine state
 - **Objective**: Set of messages sufficient for all users to achieve consensus
 - E.g. PoW "longest chain rule"
 - Weakly subjective: Set of messages + recent past state needed
 - Attacker votes twice ⇒ "Checkpoint" might be necessary
 - E.g. PoS "supermajority rule"
 - **Subjective**: Different users can come to different conclusions
 - E.g. Centralized system, Ripple
- Consensus guaranteed by incentive schemes
 - **Objective**: Cost of participation
 - Weakly subjective: Short-run punishments + Long-run reputation
 - **Subjective**: Long-run reputation

Roadmap

- Challenge of digital record-keeping
- Key model ingredients
- Benchmark example
 - a. Centralized
 - b. PoS blockchain
 - c. PoW blockchain
- Proof idea

Model: Users and mechanism

- Users: (Large number N)
 - External trust relationships between users *i*, *j* \Rightarrow Bilateral utilities u_{ii}
 - Underlying graph G of social connections
 - Users may pay physical cost κw to produce w units of PoW
 - Two types of communication: Social messages + (pseudonymous) digital messages

• Mechanism:

- State *s* summarized by token holdings in pseudonymously-owned addresses
- Mechanism M specifies actions $a_i(s)$ as a function of state, address ownership
 - Implicitly defines rents r_{ii} extracted by user *i* when *j* is present
- Utility of user *i*:

$$U_{i} = \underbrace{V_{i}(s)}_{\text{Tokens}} + \underbrace{\sum_{j} r_{ij}}_{\text{Rents}} + \underbrace{\sum_{j} u_{ij}}_{\text{Social trust}} - \underbrace{\kappa W_{i}(s)}_{\text{Exp. Pow}}$$

Model: Blocks and record-keeping

- **State** *s*: Allocation of tokens to addresses
 - Purpose of blockchain: Generate consensus on current state
- **Token transfer messages**: Message (*n*, *n*', *q*) transfers *q* tokens from *n* to *n*'
 - Also incorporate seignorage/block rewards
- Votes: Arbitrary collection of messages *V* used to update state
 - Two types of permissions:
 - **Digital signatures:** E.g. PoS: Fraction of validators who sign a checkpoint
 - **External Proof:** E.g. PoW: Expected quantity of work required
- **Blocks**: Tuple *b* = (*m*, *v*, *p*)
 - *m* Token transfer messages,
 - v Votes cast on block
 - *p* Pointer to previous block

Model: Consensus

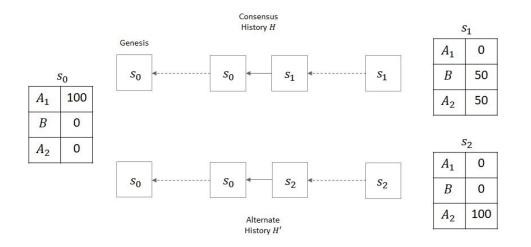
- Block tree: Partially ordered set B of blocks
 - Ordering induced by block pointers p
 - Blockchain: Ordered subset $C \subset B$
- **Consensus algorithm**: Update consensus chain given previous consensus C_{t}^* , blocks B_{t+1}
 - Function $C^*_{t+1} = g(C^*_{t}, B_{t+1})$
 - Previous state may be needed to determine consensus chain
- Fundamental problem: Desire to distort consensus
 - Three ways of distorting consensus \Rightarrow Three types of costs

 $U_i = V_i(s) + r_i + u_i - \kappa W_i(s)$

 $\Rightarrow \Delta V_i \leq \Delta r_i + \Delta u_i - \kappa \Delta W_i$

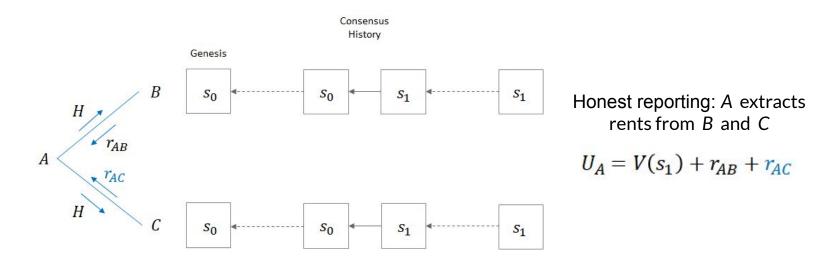
Roadmap

- Challenge of digital record-keeping
- Key model ingredients
- Benchmark example
 - a. Centralized
 - b. PoS blockchain
 - c. PoW blockchain
- Proof idea



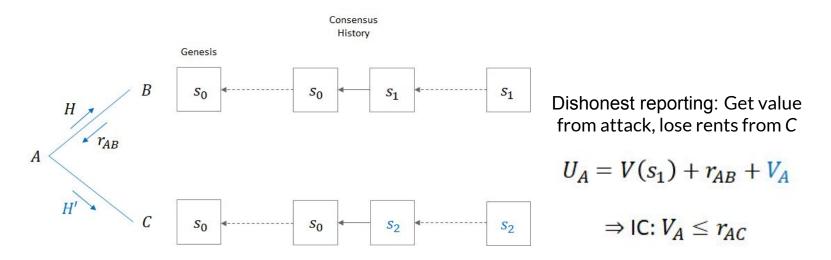
Benchmark example

- Consensus history (*H*): A sent 50 tokens to *B* and 50 tokens to own account
- Alternate history (*H'*): A sent tokens to own account only
 - Can A convince a new user C of the alternate history?
 - Can A generate consensus on alternate history?



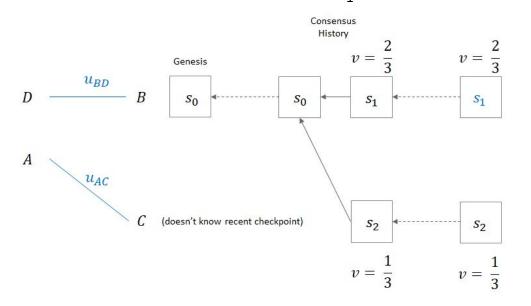
Example: Centralized ledger

- Monopolist A communicates history to users (subjective)
 - Old user B: Knows state transitioned from s_0 to s_1
 - New user C: Can be fooled by fraudulent report



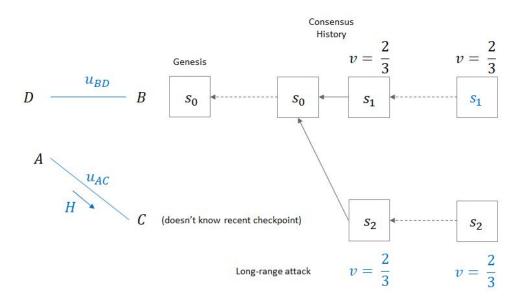
Example: Centralized ledger

- Dishonest reporting: Send entirely different ledger to C
 - C is fooled by A initially but stops using the system afterwards



Example: PoS blockchain

- PoS consensus algorithm: Supermajority rule (weakly subjective)
 - Old user B: Knows state transitioned from s_0 to s_1
 - New user C: Concludes state is s_1 by supermajority rule

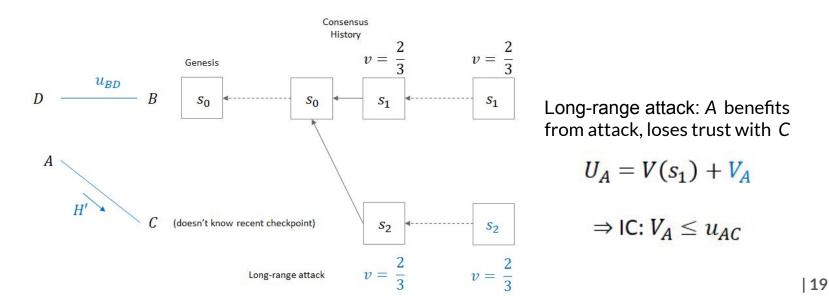


Example: PoS blockchain

- PoS consensus algorithm: Supermajority rule (weakly subjective)
 - Old user B: Knows state transitioned from s_0 to s_1
 - New user C: Needs input from trusted connection Å

Honest reporting: A benefits from trust relationship with *C*

 $U_A = V(s_1) + u_{AB} + u_{AC}$



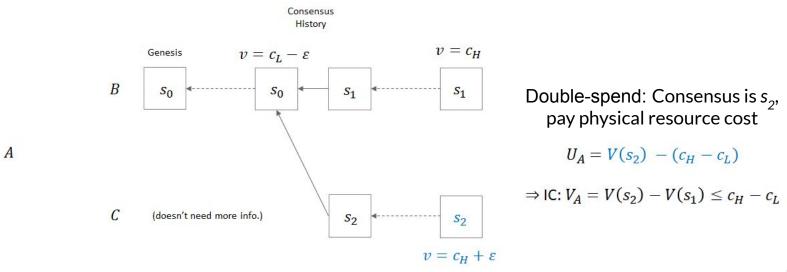
Example: PoS blockchain

- PoS consensus algorithm: Supermajority rule (weakly subjective)
 - Old user B: Knows state transitioned from s_0 to s_1
 - NNew user C: Needs input from trusted connection A

A

Example: PoW blockchain

- PoW consensus algorithm: Longest chain rule (objective)
 - Any user (old or new) can determine current state

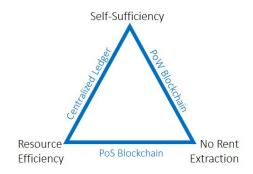


Example: PoW blockchain

- PoW consensus algorithm: Longest chain rule (objective)
 - Any user (old or new) can determine current state

Roadmap

- Challenge of digital record-keeping
- Key model ingredients
- Benchmark example
 - a. Centralized
 - b. PoS blockchain
 - c. PoW blockchain
- Proof idea



Statement of Blockchain Trilemma

• In order to achieve consensus in equilibrium, it must be that for any attacking coalition,

$$V_A \leq \underbrace{r}_{rents} + \underbrace{u}_{ext. trust} + \underbrace{c}_{resource cost}$$

• Impossible to have all three properties:

Statement of Blockchain Trilemma

• In order to achieve consensus in equilibrium, it must be that for any attacking coalition,

$$V_A \leq \underbrace{r}_{rents} + \underbrace{u}_{ext. trust} + \underbrace{c}_{resource cost}$$

- Depends on features of mechanism, external environment, and consensus algorithm
 - Rents/value of attack: Features of mechanism
 - External trust: Feature of environment
 - Resource cost: Feature of consensus algorithm

Proof sketch: Mimicking Lemma

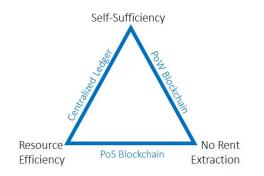
- Always possible to present new user with a cryptographically valid alternate history
 - Centralized system: Give new user entirely different ledger
 - PoS blockchain: Long-range attack
 - PoW blockchain: Standard double-spend
- Extends to arbitrary hybrid consensus algorithms
 - Social messages + digital signatures + PoW are sufficient to create valid ledger
 - Who can attack?
 - Depends on writing permissions/possibilities for collusion
 - How much does it cost to attack?
 - Digital signature: Ex-post loss of rents
 - Social message: Ex-post loss of external trust
 - PoW: Ex-ante resource cost

Possession vs. Ownership: Enforcement

- Blockchain as a ledger for all kinds of assets not just cryptocurrencies
- Who will enforce the ledger?

You see, in this world, there are two types of people, my friend– those with loaded guns, and those who dig. You dig.

- So far: Ignored distinction between **ownership** and **possession**
 - Ownership is traded in a market
 - Possession is conferred by previous possessor and must be enforced
 - E.g. Owning a house with squatters inside
- Cryptocurrency is special: No need to enforce any agreements



Conclusion

• Blockchain Trilemma:

- Guiding framework to answer questions about how records should be kept
 - What security assumptions underlie different models of record-keeping?
 - Local external trust: Globally scalable with blockchain
- Ownership vs. possession: Record-keeping is useful only if there's enforcement