

Eco529: Lecture 07 The I Theory of Money 6.0

Markus Brunnermeier & Yuliy Sannikov

Eco 529: Financial and Monetary Economics

Princeton, Spring 2019

- Banking —— "diversifier" holds risky assets, issues inside money

- Banking —— "diversifier" holds risky assets, issues inside money
- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises
 - Demand for money rises less idiosyncratic risk is diversified

Disinflation spiral a la Fisher

- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)
- Paradox of Thrift (in risk terms)

store of value/safe asset Money

Banking "diversifier"

holds risky assets, issues inside money

Disinflation spiral a la Fisher

- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises
 - less idiosyncratic risk is diversified Demand for money rises
 - Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

(in risk terms)

Brunnermeier & Sannikov

- store of value/safe asset Money
- Banking "diversifier"

holds risky assets, issues inside money

- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises

Disinflation spiral a la Fisher

- less idiosyncratic risk is diversified Demand for money rises
- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

(in risk terms)

Monetary Policy (redistributive)

Some literature

- Roles of money
 - Unit of account
 - Medium of exchange (Clower, Lagos & Wright)
 - Store of value (Samuelson, Bewley, Aiyagari, Scheinkman & Weiss, Kiyotaki & Moore)
- Models without inside money imply inflation in downturns
 - Less money needed to perform fewer transactions
- "Money view" (Friedman & Schwartz)
- "Credit view"
 - Downturns → equity capital → bank cuts assets/credit
 - BGG, Kiyotaki & Moore, He & Krishnamurthy, BruSan2014, Drechsler, Jeanne & Korinek, Savov & Schnabl
- Financial Stability
 - Diamond & Rajan 2010, Curdia & Woodford 2010, Stein 2012

		New Keynesian	I Theory
Brunnermeier & Sannikov	Key friction	Price stickiness & ZLB	Financial friction
	Role of money	Unit of account	Store of value
	Driver	Demand driven as firms are obliged to meet demand at sticky price	Misallocation of funds
	Monetary policy • implementation	Optimal price setting over time	Ex-ante insurance "complete markets"
	First order effects	Affect HH's intertemporal trade-off Nominal interest rate impact	Ex-post: redistributional effects
		real interest rate due to price stickiness	Ex-ante: insurance
	Time consistency	Wage stickiness Price stickiness + monopolistic competition	Moral hazard in risk taking (bubbles) - Greenspan put -
Brui	Yield curve	Expectation hypothesis only	Term/inflation risk premia

Model

Agents

<u>Households</u>

Intermediaries

Preferences

$$E\left[\int_0^\infty e^{-\rho t} \frac{\underline{c_t^{1-\underline{\gamma}}}}{1-\underline{\gamma}} dt\right]$$

- Firm's production technology
- Capital evolution
 - Reinvestment rate ι_t , $\Phi(\iota_t) = \frac{1}{\kappa} \log(\kappa \iota_t + 1)$

•
$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^i$$

- Outside equity issued by firms
- lacksquare Money supply $rac{dM_t}{M_t} = \mu_t^M dt + \sigma_t^M dZ_t$
- Derivatives
- Frictions: Incomplete markets
 - No idiosyncratic risk sharing
 - Limited outside equity issuance (skin in the game constraint)

 ak_t

Portfolio choice

Without "I" Intermediaries

■ Recall from earlier lecture

■ Equilibrium – recall from previous lecture

Collecting the three equations:

$$q = 1 + \kappa \iota$$

$$\rho(p+q) = A - \iota$$

$$\frac{q\tilde{\sigma}^2}{p+q} = \frac{A - \iota}{q}$$

■ Equilibrium solved for $\mu^M = 0$

$$p = \frac{\sigma - \sqrt{\rho}}{\sqrt{\rho}} q,$$
$$q = \frac{1 + \kappa A}{\kappa \sqrt{\rho} \widetilde{\sigma} + 1}.$$

Main insights

- lacktriangle Moneyless equilibrium with p=0 , shadow r^f very low
- lacktriangle Money is a bubble with p>0 if $ilde{\sigma}>\sqrt{
 ho}$
- Money takes on insurance role
 - ullet r^f is higher compared to moneyless equilibrium
 - Increases households' welfare
- Non-stationary equilibria with exploding hyperinflation

- "Tax backing" (even if only tiny ε)
 - Money is not a bubble (p = discounted value of taxes)
 - Eliminates non-stationary equilibria & moneyless equilibrium
 - Off-equilibrium belief alone are sufficient

With Intermediaries: Overview

- Markets are complete w.r.t. aggregate risk
 - dZ-derivatives can be traded, $\varsigma=\varsigma$
 - Incompleteness only w.r.t. idiosyncratic risk
 - Advantages:
 - Clear welfare benchmark
 - Monetary policy does not "complete markets" (no 'chicken model')

- Markets are incomplete w.r.t. aggregate & idio risk
 - dZ-derivatives cannot be traded
 - Advantage:
 - Larger amplification effects
 - Larger pecuniary externalities

With Intermediaries: Incomplete Markets

\blacksquare With Intermediaries: with η -Derivative

Model

Agents

Households

Intermediaries

Preferences

$$E\left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\underline{\gamma}}}{1-\underline{\gamma}} dt\right] E\left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt\right]$$

- Firm's production technology
- Capital evolution
 - Reinvestment rate ι_t , $\Phi(\iota_t) = \frac{1}{\kappa} \log(\kappa \iota_t + 1)$
 - $\frac{dk_t}{k_t} = (\Phi(\iota_t) \delta)dt + \sigma dZ_t + \tilde{\sigma}d\tilde{Z}_t^i$

Portfolio choice

- Outside equity issued by firms
- \blacksquare Money supply $\frac{dM_t}{M_t} = \mu_t^M dt + \sigma_t^M dZ_t$
- **Derivatives**
- Frictions: Incomplete markets
 - No idiosyncratic risk sharing
 - Limited outside equity issuance (skin in the game constraint)

Model

- $lacktriangleq q_t K_t$ value of physical wealth/capital
- $p_t K_t$ value of nominal wealth/money
- $\vartheta_t = \frac{p_t}{q_t + p_t}$ share of (net) wealth due to (outside) money

Now amplification will be

$$\sigma_t^{\eta} \eta_t = \frac{(1-\vartheta)\chi(1-\overline{\chi})}{1-\frac{\chi_t-\eta_t\vartheta'(\eta)}{\eta_t}} \sigma$$

sum of geometric series

- Depends on $q(\eta)$ and $p(\eta)$
- $(1 \bar{\chi})$ is risk of intermediaries' stake relative to economy-wide

\blacksquare Digression: Identical risk aversion $\gamma=\gamma$

- Conjecture that q_t, p_t are not affected by σdZ_t aggregate shocks, i.e. $\sigma^q = \sigma^p = 0$
- $q_t K_t$ value of physical capital

•
$$dr_t^{K,i} = \frac{A-\iota}{q}dt + \mu_t^q dt + (\Phi(\iota_t) - \delta) dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^i$$

• $p_t K_t$ value of outside money

•
$$dr_t^M = \underbrace{(\Phi(\iota) - \delta)}_{g} dt + \mu_t^p dt + \sigma dZ_t$$

- lacktriangle Wealth risk exposure to aggregate risk is σdZ_t independent of portfolio choice
- Hence $\sigma^{\eta} = 0$, which confirms our conjecture.
- Remark:
 - If an aggregate risk asset can be traded, then agents do not want to trade it because $\varsigma = \varsigma = \gamma \sigma$ (absent stochastic investment opportunities)

Consequences of a Shock in 4 Steps

- 1. Shock: destruction of some capital
 - % loss in intermediaries net worth > % loss in assets
 - Leverage shoots up
 - ullet Intermediaries %-loss > Household %-losses, since $\gamma < \gamma$
 - η -derivative shifts losses to intermediaries

Consequences of a Shock in 4 Steps

- 1. Shock: destruction of some capital
 - % loss in intermediaries net worth > % loss in assets
 - Leverage shoots up
 - ullet Intermediaries %-loss > Household %-losses, since $\gamma < \gamma$
 - η -derivative shifts losses to intermediaries
- 2. Response: shrink balance sheet / delever
 - For given prices no impact

Consequences of a Shock in 4 Steps

- 1. Shock: destruction of some capital
 - % loss in intermediaries net worth > % loss in assets
 - Leverage shoots up
 - Intermediaries %-loss > Household %-losses, since $\gamma < \gamma$
 - η -derivative shifts losses to intermediaries
- 2. Response: shrink balance sheet / delever
 - For given prices no impact
- 3. Asset side: asset price q shrinks Liquidity spiral
 - Further losses, leverage , further deleveraging

าทermeier & Sanniko

Consequences of a Shock in 4 Steps

- 1. Shock: destruction of some capital
 - % loss in intermediaries net worth > % loss in assets
 - Leverage shoots up
 - Intermediaries %-loss > Household %-losses, since $\gamma < \gamma$
 - η -derivative shifts losses to intermediaries
- 2. Response: shrink balance sheet / delever
 - For given prices no impact
- 3. Asset side: asset price q shrinks
 - Further losses, leverage , further deleveraging
- 4a. Liability side: money supply declines value of money p rises
- 4b. Households' money demand rises
 - HH face more idiosyncratic risk (can't diversify)

Liquidity spiral

Disinflationary spiral

Consequences of a Shock in 4 Steps

- 1. Shock: destruction of some capital
 - % loss in intermediaries net worth > % loss in assets
 - Leverage shoots up
 - Intermediaries %-loss > Household %-losses, since $\gamma < \gamma$
 - η -derivative shifts losses to intermediaries
- 2. Response: shrink balance sheet / delever PARADOX OF

 For given prices ref.
 - For given prices no impact
- 3. Asset side: asset price q shrinks
 - Further losses, leverage , further deleveraging
- 4a. Liability side: money supply declines value of money p rises
- 4b. Households' money demand rises
 - HH face more idiosyncratic risk (can't diversify)

Liquidity spiral

Disinflationary spiral

\blacksquare Risk-equivalence & $A(\psi)$ -microfoundations

- Risk-equivalent representation
 - ullet Express χ -risk exposure by shifting ψ -capital shares
- $\blacksquare A(\psi)$ interpretation
 - ullet As intermediaries capital share increases $A(\psi)$ declines due to monitoring cost
 - Recall in international paper (lecture 04) with 2 goods and CES aggregation
 - Also feasible, but more complicated
 - 2 sectors are needed of which one is bank independent

\blacksquare With Intermediaries: with Z-Derivative

Brunnermeier & Sannikov

\blacksquare With Intermediaries: with Z-Derivative

Risk-equivalent Representation

Intermediaries hold fraction ψ_t of physical capital

Households hold fraction $1-\psi_t$ of physical capital

Brunnermeier & Sannikov

Allocation

Equilibrium is a map

Histories of shocks------prices q_t, p_t, ψ_t allocation

$$\{\mathbf{Z}_{\tau}, 0 \leq \tau \leq t\}$$

wealth distribution

$$\eta_t = \frac{N_t}{(p_t + q_t)K_t} \in (0,1)$$

intermediaries' wealth share

- All agents maximize utility
 - Choose: portfolio, consumption
- All markets clear
 - Consumption, capital, money, (outside equity)

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - Toolbox 1: Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
- Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς -risk premia, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - b. Value function iteration by solving PDE

Step-by-Step Approach

O. Postulate aggregate, price/return/SDF processes

$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t, dp_t/p_t = ..., d\xi_t/\xi_t = ..., d\underline{\xi}_t/\underline{\xi}_t =$$

- 1. For given SDF processes
 - As before $\kappa \iota_t = q_t 1$

Recall after using market clearing

$$\iota_t = \frac{(1-\vartheta_t)A(\psi_t)-\overline{\zeta}}{1-\vartheta_t+\kappa\overline{\zeta}},$$

This formula is always the same

where $\bar{\zeta}$ is the "average" consumption-networth ratio.

Step-by-Step Approach

O. Postulate aggregate, price/return/SDF processes

$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t, dp_t/p_t = ..., d\xi_t/\xi_t = ..., d\xi_t/\xi_t =$$

static

backward egn

- For given SDF processes
 - a. As before $\kappa \iota_t = q_t 1$
 - b. Asset/Risk allocation via "Price-taking Planner" $\max A(\psi_t) \psi_t \tilde{\varsigma}_t \phi \tilde{\sigma} (1 \psi_t) \tilde{\varsigma}_t \tilde{\sigma}$

FOC:
$$\frac{\mathbf{A'(\psi_t)}}{\sigma} = (\tilde{\varsigma}_t \phi - \tilde{\varsigma}_t) \tilde{\sigma}$$

Aggregate risk is Independent of ψ_t

Value function

$$\tilde{\varsigma}_t = \gamma \tilde{\sigma}_t^n = \gamma \frac{(1 - \vartheta_t) \psi_t}{\eta_t} \phi \tilde{\sigma} \qquad \qquad \underline{\tilde{\varsigma}}_t = \underline{\gamma} \frac{(1 - \vartheta_t) (1 - \psi_t)}{1 - \eta_t} \tilde{\sigma}$$

Idio-risk premium on portfolio

$$\gamma(\tilde{\sigma}_t^N)^2 = \frac{\psi_t^2}{\eta_t^2} (1 - \theta_t)^2 \gamma \phi^2 \tilde{\sigma}^2, \quad \underline{\gamma} \left(\tilde{\sigma}_t^N \right)^2 = \frac{(1 - \psi_t)^2}{(1 - \eta_t)^2} (1 - \theta_t)^2 \gamma \underline{\tilde{\sigma}}^2$$

$$\varsigma_t = \gamma \sigma_t^c = -\sigma_t^v + \sigma_t^\eta + \sigma_t^q + \sigma_t^q + \gamma \sigma = \underline{\varsigma}_t =$$

$$= \underline{\varsigma}_t = \underline{\gamma} \underline{\sigma}_t^c = -\sigma_t^v - \frac{\eta_t \sigma_t^\eta}{1 - \eta_t} + \sigma_t^q + \sigma_t^p - \underline{\gamma} \underline{\sigma}$$

Step-by-Step Approach

2. Value function

$$\tilde{\varsigma}_t = \gamma \tilde{\sigma}_t^n = \gamma \frac{(1 - \vartheta_t) \psi_t}{\eta_t} \phi \tilde{\sigma}$$

Idio-risk premium on portfolio

$$\gamma(\tilde{\sigma}_t^N)^2 = \frac{\psi_t^2}{\eta_t^2} (1 - \theta_t)^2 \gamma \phi^2 \tilde{\sigma}^2, \quad \underline{\gamma} \left(\tilde{\sigma}_t^N \right)^2 = \frac{(1 - \psi_t)^2}{(1 - \eta_t)^2} (1 - \theta_t)^2 \gamma \underline{\tilde{\sigma}}^2$$

$$\varsigma_t = \gamma \sigma_t^c = -\sigma_t^v + \sigma_t^\eta + \sigma_t^q + \sigma_t^q + \gamma \sigma = \underline{\varsigma}_t = \frac{\zeta_t}{1 - \eta_t} = \frac{\gamma}{\eta_t} \underline{\sigma}_t^\eta + \sigma_t^q + \sigma_t^q - \underline{\gamma} \sigma_t^q$$

$$= \underline{\varsigma}_t = \underline{\gamma} \underline{\sigma}_t^c = -\sigma_t^v - \frac{\eta_t}{1 - \eta_t} \underline{\sigma}_t^\eta + \sigma_t^q + \sigma_t^p - \underline{\gamma} \underline{\sigma}$$

backward egn

 $\tilde{\varsigma}_t = \underline{\gamma}^{\frac{(1-\vartheta_t)(1-\psi_t)}{1-\eta_t}} \tilde{\sigma}$

From Ito's Lemma $\sigma_t^v = \frac{v'}{v} \eta_t \sigma_t^{\eta}$ and $\sigma_t^v = \frac{v'}{v} (1 - \eta_t) \frac{\eta_t \sigma_t^{\eta}}{1 - \eta_t}$

$$\frac{C_t}{N_t} = \frac{(\eta_t (q_t + p_t)^{1/\gamma - 1}}{v_t^{1/\gamma}} \qquad \frac{\underline{C}_t}{\underline{N}_t} = \frac{((1 - \eta_t)(q_t + p_t))^{1/\gamma - 1}}{\underline{v}_t^{1/\gamma}}$$

3. Evolution of η η -derivative $\Rightarrow \varsigma_t = \underline{\varsigma}_t, \Rightarrow \sigma_t^{\eta} = \frac{(1-\eta_t)(\underline{\gamma}-\gamma)\sigma}{(1-\eta_t)(\underline{v}'-\underline{v}')+1}$

nermeier & Sanniko

Step-by-Step Approach

2. Value function

forward ean

$$\begin{split} \gamma(\tilde{\sigma}_t^N)^2 &= \frac{\psi_t^2}{\eta_t^2} (1 - \vartheta_t)^2 \gamma \phi^2 \tilde{\sigma}^2, \quad \underline{\gamma} \left(\tilde{\sigma}_t^{\underline{N}} \right)^2 = \frac{(1 - \psi_t)^2}{(1 - \eta_t)^2} (1 - \vartheta_t)^2 \gamma \underline{\tilde{\sigma}}^2 \\ \frac{C_t}{N_t} &= \frac{(\eta_t (q_t + p_t)^{1/\gamma - 1}}{v_t^{1/\gamma}} \\ &\qquad \qquad \underline{\frac{C_t}{N_t}} = \frac{((1 - \eta_t) (q_t + p_t))^{1/\gamma - 1}}{\underline{v}_t^{1/\gamma}} \end{split}$$

3. Evolution of η

$$\eta$$
-derivative $\Rightarrow \varsigma_t = \underline{\varsigma}_t, \Rightarrow \sigma_t^{\eta} = \frac{(1-\eta_t)(\underline{\gamma}-\gamma)\sigma}{(1-\eta_t)(\underline{\underline{v}'}-\underline{v'})+1}$

Recall from earlier lecture (and since $\varsigma_t = \underline{\underline{\varsigma}_t}$ and $r^F = \underline{r}^F$),

$$\mu_t^{\eta} = (1 - \eta_t) \left(\varsigma_t - \sigma_t^{\overline{N}} \right) \left(\sigma_t^{\eta} - \sigma_t^{\underline{\eta}} \right)$$

$$+ (1 - \eta_t) \tilde{\varsigma}_t \tilde{\sigma}_t^n - (1 - \eta_t) \tilde{\varsigma}_t \underline{\tilde{\sigma}}_t^n - \left(\frac{C_t}{N_t} - \frac{C_t + \underline{C}_t}{\sigma_t K_t} \right)$$

$$\mu_t^{\eta} = \frac{1}{1} \frac{\eta_t}{\eta_t} \frac{\eta_t}{\eta_t$$

$$\sigma_t^{\eta} \left(\varsigma_t - \sigma - \sigma_t^q - \sigma_t^p \right) - (1 - \eta_t) \left(\frac{\underline{C_t}}{\underline{N_t}} - \frac{C_t}{N_t} + \gamma (\tilde{\sigma}_t^N)^2 - \underline{\gamma} \left(\tilde{\sigma}_t^{\underline{N}} \right)^2 \right)$$

Step-by-Step Approach

3. Evolution of η

forward eqn

$$\sigma_t^{\eta} = \frac{(1-\eta_t)(\underline{\gamma}-\gamma)}{(1-\eta_t)(\underline{\underline{v}'}-\underline{v'})+1} \sigma$$

$$\mu_{t}^{\eta} = \sigma_{t}^{\eta} (\varsigma_{t} - \sigma - \sigma_{t}^{q+p}) - (1 - \eta_{t}) \left(\frac{\underline{C}_{t}}{\underline{N}_{t}} - \frac{C_{t}}{N_{t}} + \gamma (\tilde{\sigma}_{t}^{N})^{2} - \underline{\gamma} (\tilde{\sigma}_{t}^{\underline{N}})^{2} \right)$$

Money evaluation equation

Use same approach as for wealth share μ_t^η for economy wide "money share" ϑ_t

$$\mu_{t}^{\vartheta} = +\sigma_{t}^{\vartheta} \left(\varsigma_{t} - \sigma - \sigma_{t}^{q+p}\right) + \frac{C_{t} + \underline{C_{t}}}{(q_{t} + p_{t})K_{t}} - \mu^{M} - \eta_{t} \gamma (\tilde{\sigma}_{t}^{N})^{2} - (1 - \eta_{t})\underline{\gamma} \left(\tilde{\sigma}_{t}^{\underline{N}}\right)^{2}$$

$$= \frac{A(\psi) - \iota_{t}}{q_{t} + p_{t}}$$

- 4. Value function $v(\eta)$, $v(\eta) \& \vartheta(\eta)$
 - Solve PDE (growth equation)

Numerical Example

 $A(\psi) = \psi(1 - \psi)$

Assumes more than simply monitoring costs

Numerical Example

• $\vartheta(\eta)$

Poll 40: Why does the value increase as η goes it very high?

Amplification

- What's the right benchmark?
- Assume $\frac{C_t}{N_t}$ and $\frac{C_t}{N_t}$ were constant
 - Would be the case with Epstein-Zin preferences when IES=1, risk aversion still differ

Take log and derivate w.r.t. η

• Then
$$\eta^{\gamma-1}(q+p)^{\gamma-1}v = const.$$
 $\Rightarrow \frac{v'}{v} = (1-\gamma)\left(\frac{1}{\eta} + \frac{q'+p'}{q+p}\right)$
• Similarly for households $\Rightarrow \frac{\underline{v'}}{\underline{v}} = \left(1-\underline{\gamma}\right)\left(\frac{-1}{1-\eta} + \frac{q'+p'}{q+p}\right)$

• Assume also that q + p were constant, then level of risk without amplification (but risk sharing)

$$\sigma_t^{\eta} = \frac{(1 - \eta_t) \left(\underline{\gamma} - \gamma\right)}{\underline{\gamma} \eta_t + \gamma (1 - \eta_t)} \sigma$$

 ${
m I\hspace{-.1em}I}$ With Intermediaries, but no η -Derivative

■ Welfare analysis – I Theory 5.0

- Challenge: Heterogeneous agents with idiosyncratic risks
- Inefficiencies in
 - Production
 - Investment
 - Risk sharing

Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - "On the optimal inflation rate" (inflation target)
- Model with intermediaries
 - Fixed outside money supply Amplification/endogenous risk
 - Liquidity spiral asset side of intermediaries' balance sheet
 - Disinflationary spiral liability side
 - Monetary Policy
 - Macro-prudential policy
- Intermediaries with market power
 - The "Reversal Interest Rate: The Effective Lower Bound"

Monetary Policy: Ex-post perspective

Money view

Friedman-Schwartz

- Restore money supply
 - Replace missing inside money with outside money
- Aim: Reduce deflationary spiral
 - ... but banks extent less credit & diversify less idiosyncratic risk away
 - ... as households have to hold more idiosyncratic risk, money demand rises
 - Undershoots inflation target

Credit view

Tobin

- Restore credit
- Aim: Switch off deflationary spiral & liquidity spiral

Introducing Long-term Gov. Bond

- Introduce long-term (perpetual) bond
 - No default ... held by intermediaries in equilibrium Value $b_t K_t$

• Value of long-term bond is endogenous $dB_t/B_t = \mu_t^B dt + \sigma_t^B dZ_t$

Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price

- ⇒ "stealth recapitalization" redistributive
- ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated

Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price
 - Asset purchase ⇒ asset price
 - → "stealth recapitalization" redistributive
 - ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated

Monetary policy and endogenous risk

Intermediaries' risk (borrow to scale up) fundamental risk

$$\sigma_t^{\eta} = \frac{x_t \left(1^b \sigma^b - \sigma_t^K\right)}{1 + \left(\frac{\chi_t \, \psi_t - \eta}{\eta_t}\right) \frac{\vartheta'(\eta_t)}{\vartheta/\eta_t} - \left(x_t + \vartheta_t \frac{1 - \eta_t}{\eta_t}\right) \frac{b_t}{p_t} \frac{B'(\eta_t)}{B(\eta_t)/\eta_t}}$$
 amplification mitigation

- MoPo works through $\frac{B'(\eta_t)}{B(\eta_t)/\eta_t}$
 - with right monetary policy bond price $B(\eta)$ rises as η drops "stealth recapitalization"
 - Switch off liquidity and disinflationary spiral
- Example: Remove amplification s.t. $\sigma_t^{\eta} = x_t (1^b \sigma^b \sigma_t^K)$

Numerical example with monetary policy

Prices

Numerical example with monetary policy

lacktriangle Drift and volatility of η

Observations

- As interest rate are cut in downturns, bonds held by intermediaries appreciate, this
 - protects intermediaries against shocks
 - increases the supply of asset that can be used as storage (weakens disinflation)
- Ex-post stabilization
 - Liquidity spiral
 - Disinflationary spiral
- Ex-ante
 - Higher leverage
 - (shift in steady state)

Monetary policy ... in the limit

full risk sharing of all aggregate risk

$$\sigma_t^{\eta} = \frac{x_t(1^b \sigma^b - \sigma_t^K)}{1 - \left(\frac{\chi \psi - \eta}{\eta}\right) \frac{-\vartheta'(\eta)}{\vartheta/\eta} + \left((1 - \vartheta) \frac{\psi \chi - \eta}{\eta} + \vartheta \frac{1 - \eta}{\eta}\right) \frac{b_t - B'(\eta)}{p_t B(\eta)/\eta} }{\longrightarrow -\infty}$$

 $\blacksquare \eta$ is deterministic and converges over time towards 0

Redistributive Monetary Policy

(New) Keynesian Demand Management		I Theory of Money Risk (Premium) Management
Stimulate aggregate consumption		Alleviate balance sheet constraints
Woodford (2003)	Tobin (1982)	BruSan
Price <u>stickiness</u> & ZLB Perfect capital markets	Both	Financial <u>frictions</u> Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises	Cut <i>i</i> Changes bond prices Redistributes from low MPC to high MPC consumers	Cut <i>i</i> or QE Changes asset prices Ex-post: Redistributes to balance sheet impaired sector
		Ex-ante: insurance -> reduces endogenous risk
Focus on LEVELS		Focus on levels and RISK DYNAMICS

Monetary policy ... in the limit

- full risk sharing of all aggregate risk
- Aggregate risk sharing makes q determinisitic
- Like in benchmark toy model
 - Excessive *k*-investment
 - Too high q
 (pecuniary externality)
 - Lower capital return
- Endogenous risk corrects pecuniary externality

MacroPru

- MacroPru complements MoPo
 - Not substitutes
- Good MacroPru enables more aggressive MoPo
 - More redistribution ex-post
 - More risk-transfers/insurance ex-ante
 - Lower *q*
 - reduces cost to repurchase capital after shock
 - Lowers importance of idiosyncratic shocks

MacroPru policy

- Regulator can control
 - Portfolio choice ψ s, xs

- cannot control
- investment decision $\iota(q)$
- ullet consumption decision c

of intermediaries and households

MacroPru policy

- Regulator can control
 - Portfolio choice ψ s, xs

- cannot control
- investment decision $\iota(q)$
- ullet consumption decision $\it c$

of intermediaries and households

ullet De-facto controls q and p within some range

distorts

- ullet De-factor controls wealth share η
 - Force agents to hold certain assets and generate capital gains
- In sum, regulator maximizes sum of agents value function
 - Choosing ψ^b , q, η

Recall

- Unified macro "Money and Banking" model to analyze
 - Financial stability Liquidity spiral
 - Monetary stability Fisher disinflation spiral
- Exogenous risk &
 - Sector specific
 - idiosyncratic
- Endogenous risk
 - Time varying risk premia flight to safety
- Capitalization of intermediaries is key state variable "paradox of Prudence"
- Monetary policy rule
 - Risk transfer to undercapitalized critical sectors
 - Income/wealth effects are crucial instead of substitution effect
 - Reduces endogenous risk better aggregate risk sharing
 - Self-defeating in equilibrium excessive idiosyncratic risk taking
- Macro-prudential policies
 - MacroPru + MoPo to achieve superior welfare optimum

■ Flipped Classroom Experience

Series of 4 YouTube videos, each about 10 minutes

Brunnermeier & Sannikov

Redistributive Monetary Policy

	(New) Keynesian Demand Management		I Theory of Money Risk (Premium) Management
	Stimulate aggregate consumption		Alleviate balance sheet constraints
	Woodford (2003)	Tobin (1982)	BruSan
	Price <u>stickiness</u> & ZLB Perfect capital markets	Both	Financial <u>frictions</u> Incomplete markets
	Representative Agent	Heterogeneous Agents	
	Cut i Reduces r due to price stickiness Consumption c rises	Cut <i>i</i> Changes bond prices Redistributes from low MPC to high MPC consumers	Cut <i>i</i> or QE Changes asset prices Ex-post: Redistributes to balance sheet impaired sector
			Ex-ante: insurance -> reduces endogenous risk
	Focus on LEVELS		Focus on levels and RISK DYNAMICS