

Lecture 05 One Sector Money Model with Idio Risk

Markus Brunnermeier & Yuliy Sannikov

Eco 529: Financial and Monetary Economics

Princeton, Feb. 2019

■ The 4 Roles of Money

- Store of value
 - "I Theory of Money without I" Less risky than other "capital" – no idiosyncratic risk
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence of wants problem

- Unit of account
- Record keeping device
 - Virtual ledger

Models on Money as Store of Value

\Friction	OLG	Incomplete Markets +	idiosyncratic risk
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
With capital	Diamond	Aiyagari	Angeletos
		Risk tied up with individual	capital

Eco 529: Brunnermeier & Sannikov

Models on Money as Store of Value

\Frict	ion	OLG	Incomplete Markets + i	diosyncratic risk
Risk		deterministic	endowment risk borrowing constraint	investment risk
				_
Only money		Samuelson	Bewley	
				"I Theory without I"
With capital		Diamond	Aiyagari	cash flow shock
		$f'(k^*) = r^*$, Dynamic inefficiency $r < r^*$, $K > K^*$	Inefficiency $r < r^*$, $K > K^*$	Pecuniary externality Inefficiency $r > r^*$, $K < K^*$
	•	noney) bubbles if $r < g$ bel et al. vs. Geerolf		$r^M = g$

One Sector Model with Money

■ Agent \tilde{i} 's preferences

- Each agent operates one firm
 - Output

$$y_t^{\tilde{\iota}} = ak_t^{\tilde{\iota}}$$

■ Physical capital *k*

$$\frac{dk_t^{\tilde{l}}}{k_t^{\tilde{l}}} = (\Phi(\iota_t^i) - \delta)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t$$

 $\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = (\Phi(\iota_t^i) - \delta)dt + \sigma dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}}$

■ Agent \tilde{i} 's preferences

$$E\left[\int_0^\infty e^{-\rho t} \frac{\left(c_t^{\tilde{l}}\right)^{1-\gamma}}{1-\gamma} dt\right]$$

- Each agent operates one firm
 - Output

$$y_t^{\tilde{i}} = ak_t^{\tilde{i}}$$

■ Physical capital *k*

- lacktriangle Financial Friction: Incomplete markets: Agents cannot share $d ilde{Z}_t^i$
- Outside money
 - Money supply growth rate $(\mu^M + \mu^{Mi})$
 - μ^{Mi} used to pay interest on money (reserves)
 - μ^M generates seignorage
 - \Rightarrow transfers to agents proportional to networth $n^{\tilde{i}}$

Net worth $u_{\tilde{\iota}}$

Money

Postulate Aggregates and Processes

- $lack q_t K_t$ value of physical capital
- $p_t K_t$ value of nominal capital/outside money
 - $\frac{p_t K_t}{M_t}$ value of one unit of (outside) money
- $\vartheta_t = \frac{p_t}{q_t + p_t}$ fraction of nominal wealth

Postulate Aggregates and Processes

- $lack q_t K_t$ value of physical capital
- $\blacksquare p_t K_t$ value of nominal capital/outside money
 - $\frac{p_t K_t}{M_t}$ value of one unit of (outside) money
- $\vartheta_t = \frac{p_t}{q_t + p_t}$ fraction of nominal wealth
- 0. Postulate
 - *q*-price process
 - *p*-price process
 - SDF for each $\tilde{\imath}$ agent
- $dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$
- $dp_t/p_t = \mu_t^p dt + \sigma_t^p dZ_t,$
- $d\xi_t^{\tilde{i}}/\xi_t^{\tilde{i}} = -r_t^{f,\tilde{i}}dt \varsigma_t^{\tilde{i}}dZ_t \tilde{\varsigma}_t^{\tilde{i}}d\tilde{Z}_t^{\tilde{i}}$

0. Return processes

$$dr_t^{K,\tilde{\imath}} = \left(\frac{a - \iota_t^{\tilde{\imath}}}{q_t} + \Phi(\iota_t^{\tilde{\imath}}) - \delta + \mu_t^q + \sigma \sigma_t^q\right) dt + \left(\sigma + \sigma_t^q\right) dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{\imath}}$$

$$dr_t^M = \left(\Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu_t^M - \mu_t^{Mi} + r^{\mu Mi}\right) dt + \left(\sigma + \sigma_t^p\right) dZ_t$$

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

$$rac{1}{q_t} = \Phi'(\iota_t^{\tilde{\iota}})$$
 Tobin's q
All agents $\iota_t^{\tilde{\iota}} = \iota_t$
Special functional form:
 $\Phi(\iota_t) = rac{1}{\kappa} \log(\kappa \iota_t + 1) \Rightarrow \kappa \iota_t = q - 1$

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{v\tilde{\sigma}^2} + \frac{\mu^M}{v\tilde{\sigma}^2}$$

$$E[dr_t^{K,\tilde{\iota}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

$$\frac{a - \iota_t}{q_t} + \mu_t^q - \mu_t^p + \sigma(\sigma_t^q - \sigma_t^p) + \mu^M = \varsigma_t(\sigma_t^q - \sigma_t^p) + \tilde{\varsigma}_t\tilde{\sigma}$$

Price of Risk: $\zeta_t = -\sigma_t^v + \sigma_t^{p+q} + \gamma \sigma$, $\tilde{\zeta}_t = \gamma \tilde{\sigma}_t^n = \gamma (1 - \theta_t) \tilde{\sigma}$

so 529: Brunnermeier & Sanni

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2}$$

$$E[dr_t^{K,\tilde{\mathbf{l}}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q \qquad = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

In Steady State $\frac{a-\iota_{\mathcal{X}}}{q_{\mathcal{X}}} + \mu_{t}^{q} - \mu_{t}^{p} + \sigma(\sigma_{t}^{q} - \sigma_{t}^{p}) + \mu^{M} = \varsigma_{t}(\sigma_{t}^{q} - \sigma_{t}^{p}) + \tilde{\varsigma}_{t}\tilde{\sigma}$ yields $1-\theta=\ldots$ Price of Risk: $\varsigma_{\mathcal{X}} = -\sigma_{t}^{v} + \sigma_{t}^{p+q} + \gamma\sigma, \quad \tilde{\varsigma}_{t} = \gamma\tilde{\sigma}_{t}^{n} = \gamma(1-\theta_{t})\tilde{\sigma}$

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2}$$

$$E[dr_t^{K,\tilde{\iota}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q \qquad = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

$$r = \gamma (1 - \theta) \hat{\sigma}$$

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2}$$

$$E[dr_t^{K,\tilde{\iota}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

In Steady State constant q, p $\frac{a - \iota}{q} + \mu^{M} = \tilde{\varsigma}_{t} \tilde{\sigma}$ Price of Risk: $\varsigma = \gamma \sigma, \quad \tilde{\varsigma} = \gamma \tilde{\sigma}^{n} = \gamma (1 - \theta) \tilde{\sigma}$ yields $1 - \theta = \dots$

Risk-free rate: $r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2$

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

Poll 18: r^f is

- a) Risk-free rate
- b) Shadow risk-free rate
- c) Differs across individuals

$$E[dr_t^{K,\tilde{\iota}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q \qquad = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

In Steady State
$$\frac{a-\iota}{q} + \mu^M = \tilde{\varsigma}_t \tilde{\sigma}$$
 constant q, p

Price of Risk: $\zeta = \gamma \sigma$, $\tilde{\zeta} = \gamma \tilde{\sigma}^n = \gamma (1-\theta) \tilde{\sigma}$ $\tilde{\sigma}^n = \gamma (1-\theta) \tilde{\sigma}$ Risk-free rate: $\gamma^f = \Phi(r)$

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

Poll 18: why does real r^f decline with μ^M

- a) Because investment rate ι changes
- b) Insurance via money becomes more costly
- c) Prices are not sticky, money is neutral, and hence the real rate should not be affected

$$E[dr_t^{K,\tilde{\iota}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q \qquad = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

In Steady State constant
$$q, p$$

$$\frac{a - \iota}{q} + \mu^{M} = \tilde{\varsigma}_{t} \tilde{\sigma}$$

Price of Risk: $\varsigma = \gamma \sigma$, $\tilde{\varsigma} = \gamma \tilde{\sigma}^n = \gamma (1 - \theta) \tilde{\sigma}$

Risk-free rate: $r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2$

 $1-\theta=...$

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2}$$

Poll 17: the real r^f does not depend on $ilde{\sigma}$

- a) Because determined by growth rate of K
- b) Because it is a shadow price/rate
- c) Because return on money $E[dr_t^M]/dt$ doesn't

$$E[dr_t^{K,\tilde{\iota}}]/dt = \frac{a - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q \qquad = r_t^f + \varsigma_t (\sigma + \sigma_t^q) + \tilde{\varsigma}_t \tilde{\sigma}$$

$$E[dr_t^M]/dt = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p)$$

In Steady State $\frac{a-\iota}{q} + \mu^M = \tilde{\varsigma}_t \tilde{\sigma}$ constant q, p

Price of Risk: $\varsigma = \gamma \sigma$, $\tilde{\varsigma} = \gamma \tilde{\sigma}^n = \gamma (1 - \theta) \tilde{\sigma}$

Risk-free rate: $r^f = \Phi(\iota) - \delta - \mu^M - \gamma \sigma^2$

 $1 - \theta = ...$

1

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2}$$

Optimal consumption

 $\frac{c}{n} =: \zeta$ is a constant

• Why a constant? Recall $\frac{c}{n} = \rho^{1/\gamma} \omega^{1-1/\gamma}$ and investment opportunity/networth multiplier is constant over time in steady state

One Sector Model with Money

1b. Optimal Choices

4. Market Clearing

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \tilde{\sigma}^2} + \frac{\mu^M}{\gamma \tilde{\sigma}^2}$$

$$=1-\vartheta=\frac{qK_t}{(p+q)K_t}$$

Optimal consumption

$$\frac{c}{n} =: \zeta \Rightarrow C = \zeta(p+q)K_t = (a-\iota)K_t$$

$$=(a-\iota)K_t$$

One Sector Model with Money

1b. Optimal Choices

4. Market Clearing

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

$$=1-\vartheta=\frac{q\kappa_t}{(p+q)K_t}$$

Optimal consumption

$$\frac{c}{n} =: \zeta \Rightarrow C = \zeta (\underline{p+q}) \cancel{K}_t = (\underline{a-\iota}) \cancel{K}_t$$

$$= (\underline{a-\iota}) K_t$$

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

Optimal consumption

$$\frac{c}{n} =: \zeta \Rightarrow C = \zeta (\underline{p+q})$$

$$\frac{q}{1/(1-\vartheta)}$$

4. Market Clearing

$$=1-\vartheta=\frac{qK_t}{(p+q)K_t}$$

$$= \underbrace{(a-\iota)}_{q} \Rightarrow \iota = \frac{(1-\vartheta)a-\zeta}{1-\vartheta+\kappa\zeta}$$

One Sector Model with Money

1b. Optimal Choices

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

Optimal consumption

$$\frac{c}{n} =: \zeta \Rightarrow C = \zeta (\underline{p+q})$$

$$\frac{q}{1/(1-\vartheta)}$$

4. Market Clearing

$$=1-\vartheta=\frac{qK_t}{(p+q)K_t}$$

$$= \underbrace{(a - \iota)}_{q}$$

$$\Rightarrow \iota = \frac{(1 - \vartheta)a - \zeta}{1 - \vartheta + \kappa \zeta}$$

$$q = (1 - \theta) \frac{1 + \kappa a}{1 - \theta + \kappa \zeta}$$

1b. Optimal Choices

4. Market Clearing

Optimal investment rate

$$\kappa \iota_t = q_t - 1$$

Let $\hat{\mu}^M \coloneqq (1 - \vartheta)\mu^M$ (monotone transformation)

Optimal portfolio

$$1 - \theta = \frac{(a - \iota)/q}{\gamma \widetilde{\sigma}^2} + \frac{\mu^M}{\gamma \widetilde{\sigma}^2}$$

Optimal consumption

$$\frac{c}{n} =: \zeta \Rightarrow C = \zeta (\underline{p+q})$$

$$\frac{q}{1/(1-\vartheta)}$$

$$(1 - \vartheta) = \sqrt{\frac{\zeta + \hat{\mu}^M}{\gamma \tilde{\sigma}^2}} = \frac{q}{q + p} \qquad q = (1 - \vartheta) \frac{1 + \kappa a}{1 - \vartheta + \kappa \zeta}$$

$$=1-\vartheta=\frac{qK_t}{(p+q)K_t}$$

$$q = (1 - \theta) \frac{1 + \kappa a}{1 - \theta + \kappa \zeta}$$

■ Two Stationary Equilibria

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{(1 + \kappa a) \left(\sqrt{\gamma}\tilde{\sigma} - \sqrt{\zeta + \hat{\mu}^M}\right)}{\sqrt{\zeta + \hat{\mu}^M} + \kappa\sqrt{\gamma}\tilde{\sigma}\zeta}$
$q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta}$	$q = \frac{(1 + \kappa a)\sqrt{\zeta + \hat{\mu}^M}}{\sqrt{\zeta + \hat{\mu}^M} + \kappa\sqrt{\gamma}\tilde{\sigma}\zeta}$
$\iota = \frac{a - \zeta}{1 + \kappa \zeta}$	$\iota = \frac{\sqrt{\zeta + \hat{\mu}^M} a - \sqrt{\gamma} \tilde{\sigma} \zeta}{\sqrt{\zeta + \hat{\mu}^M} + \kappa \sqrt{\gamma} \tilde{\sigma} \zeta}$

■ Two Stationary Equilibria

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{(1 + \kappa a) \left(\sqrt{\gamma}\tilde{\sigma} - \sqrt{\zeta + \hat{\mu}^M}\right)}{\sqrt{\zeta + \hat{\mu}^M} + \kappa\sqrt{\gamma}\tilde{\sigma}\zeta}$
$q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta}$	$q = \frac{(1 + \kappa a)\sqrt{\zeta + \hat{\mu}^M}}{\sqrt{\zeta + \hat{\mu}^M} + \kappa\sqrt{\gamma}\tilde{\sigma}\zeta}$
$\iota = \frac{a - \zeta}{1 + \kappa \zeta}$	$\iota = \frac{\sqrt{\zeta + \hat{\mu}^M} a - \sqrt{\gamma} \tilde{\sigma} \zeta}{\sqrt{\zeta + \hat{\mu}^M} + \kappa \sqrt{\gamma} \tilde{\sigma} \zeta}$

Poll 25: Why does aggregate risk σ not show up in solution

- a) We had to set it to zero to solve
- b) It scales everything in AK
- c) It is hidden in ζ
- d) It is hidden in $\hat{\mu}^M$

■ Two Stationary Equilibria

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{(1 + \kappa a) \left(\sqrt{\gamma}\tilde{\sigma} - \sqrt{\zeta + \hat{\mu}^M}\right)}{\sqrt{\zeta + \hat{\mu}^M} + \kappa\sqrt{\gamma}\tilde{\sigma}\zeta}$
$q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta}$	$q = \frac{(1 + \kappa a)\sqrt{\zeta + \hat{\mu}^M}}{\sqrt{\zeta + \hat{\mu}^M} + \kappa\sqrt{\gamma}\tilde{\sigma}\zeta}$
$\iota = \frac{a - \zeta}{1 + \kappa \zeta}$	$\iota = \frac{\sqrt{\zeta + \hat{\mu}^M} a - \sqrt{\gamma} \tilde{\sigma} \zeta}{\sqrt{\zeta + \hat{\mu}^M} + \kappa \sqrt{\gamma} \tilde{\sigma} \zeta}$

Poll 26: Why is p moving in the opposite direction to q in $\tilde{\sigma}$?

- a) Flight to safety
- b) With high $\tilde{\sigma}$ insurance role of money is more important

\blacksquare Equilibrium consumption/networth ratio ζ

■ Recall
$$\zeta = \rho + \frac{\gamma - 1}{\gamma} \left(r_t^f - \rho + \frac{\gamma \left(\sigma^2 + \left((1 - \vartheta) \widetilde{\sigma} \right)^2 \right)}{2} \right)$$
 and using $\widetilde{\varsigma} = \gamma (1 - \vartheta) \widetilde{\sigma}$

- Since $r_t^f = \Phi(\iota_t) \delta \mu^M \gamma \sigma^2$ (from previous slide above) and using $\iota = \frac{\sqrt{\zeta + \widehat{\mu}^M} a \sqrt{\gamma} \widetilde{\sigma} \zeta}{\sqrt{\zeta + \widehat{\mu}^M} + \kappa \sqrt{\gamma} \widetilde{\sigma} \zeta}$
- lacktriangle ... we obtain ζ
- Of course for log utility ($\gamma=1$), simply $\zeta=\rho$

Poll 27: precautionary savings for $\gamma > 1$

- a) Consumption-wealth ratio ζ decreases in σ , only for $\gamma < 1$
- b) Risk σ affects r^f
- c) Risk $\tilde{\sigma}$ affects r^f
- d) Precautionary savings only exists with borrowing constraints

Moneyless equilibrium	Money equilibrium	
$p_0 = 0$	$p = \frac{(1 + \kappa a)(\tilde{\sigma} - \sqrt{\zeta})}{\sqrt{\zeta} + \kappa \tilde{\sigma} \zeta}$	
$q_0 = \frac{1 + \kappa a}{1 + \kappa \zeta}$	$q = \frac{(1 + \kappa a)\sqrt{\zeta}}{\sqrt{\zeta} + \kappa \tilde{\sigma} \zeta}$	
$\iota = \frac{a - \zeta}{1 + \kappa \zeta}$	$\iota = \frac{\sqrt{\zeta}a - \tilde{\sigma}\zeta}{\sqrt{\zeta} + \kappa\tilde{\sigma}\zeta}$	

where $\zeta = \rho$

Welfare

Value function for log utility

$$V = \int_0^\infty e^{-\rho t} E[\log c_t] dt = \frac{1}{\rho} \log \rho + \int_0^\infty e^{-\rho t} E[\log n_t] dt$$

By Ito:

$$\begin{split} \log n_t &= \log n_0 + \int_0^t \left(\frac{dn_s}{n_s} - \frac{1}{2}\frac{d < n >_s}{n_s^2}\right) \\ &= \log n_0 + \int_0^t \left(\mu_s^n - \frac{1}{2}(\sigma_s^n)^2 - \frac{1}{2}(\tilde{\sigma}_s^n)^2\right) ds + \int_0^t \sigma_s^n dZ_s + \int_0^t \tilde{\sigma}_s^n d\tilde{Z}_s \end{split}$$

- $V = \frac{\log \rho}{\rho} + \frac{\log n_0}{\rho} + \int_0^\infty e^{-\rho t} \int_0^t E\left[\mu_S^n \frac{1}{2}(\sigma_S^n)^2 \frac{1}{2}(\tilde{\sigma}_S^n)^2\right] ds dt$
- in steady state $\mu_s^n = \mu^n = \Phi(\iota) \delta$, $\sigma_s^n = \sigma^n = \sigma$, $\tilde{\sigma}_s^n = \tilde{\sigma}^n = (1 \vartheta)\tilde{\sigma}$

■ Hence,
$$\int_0^\infty e^{-\rho t} \int_0^t E[...] ds \, dt = \int_0^\infty e^{-\rho t} \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right) t \, dt$$

$$= \frac{1}{\rho} \int_0^\infty e^{-\rho t} dt \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right)$$
 (integration by parts)
$$= \frac{1}{\rho^2} \left(\Phi(\iota) - \delta - \frac{1}{2} \sigma^2 - \frac{1}{2} (1 - \vartheta)^2 \tilde{\sigma}^2 \right)$$

Welfare

Value function

$$V = \frac{\log \rho}{\rho} - \frac{\delta + \frac{1}{2}\sigma^2}{\rho^2} + \frac{\log K_0}{\rho} + \frac{\log(p+q)}{\rho} + \frac{\Phi(\iota) - \frac{1}{2}(1-\vartheta)^2 \tilde{\sigma}^2}{\rho^2}$$

$$V_0 \coloneqq \qquad \text{Effect of } \hat{\mu}^M \text{on} \qquad \text{Growth-risk trade-off total (initial) wealth}$$

■ Plug in model solution for p+q, $\Phi(\iota)$, and ϑ

$$V = V_0 + \frac{1}{\rho} \left(\frac{1}{\kappa} \log \frac{(1 + \kappa a)\tilde{\sigma}}{\kappa \rho \tilde{\sigma} + \sqrt{\rho + \hat{\mu}^M}} \right) + \frac{1}{\rho^2} \left(\frac{1}{\kappa} \log \frac{(1 + \kappa a)\sqrt{\rho + \hat{\mu}^M}}{\kappa \rho \tilde{\sigma} + \sqrt{\rho + \hat{\mu}^M}} \right) - \frac{1}{2} \left(\rho + \mu^M \right)$$

Eco 529: Brunnermeier & Sanniko

Closed form!

(up to $\hat{\mu}^{M}$ -transformation)

Optimal Inflation Rate

- Money growth μ^M affects
 - Shadow risk-free rate
 - (Steady state) inflation in two ways

$$\pi = \mu^{M} + \mu^{Mi} - \underbrace{(\Phi(\iota(\mu^{M})) - \delta)}_{g}$$

Proposition:

- For sufficiently large $\tilde{\sigma}$ and $\kappa < \infty$ welfare maximizing $\mu^{M^*} > 0$.
 - Laissez-faire Market outcome is not even constrained Pareto efficient
 - Economic growth rate g is also higher
- Growth maximizing $\mu^{g*} \ge \mu^{M*}$, s.t. $p^{g*} = 0$, Tobin (1965)
- Corollary: No super-neutrality of money
 - μ^{Mi} : Super-neutrality only w.r.t. part of money growth rate that is used to pay interest on money
 - μ^M : Nominal money growth rate affects real economic growth by distorting portfolio choice if $\kappa < \infty$
 - No price/wage rigidity, no monopolistic competition

Optimal Inflation Rate

- Pecuniary Externalities
 - Individual agent takes prices, including interest rate as given
 - Tilt portfolio towards (physical capital)
 - $\blacksquare \Rightarrow q \text{ rises}$
 - Investment rate ι rises, growth rate is higher increases r^M
 - Idiosyncratic risk increases reduces welfare
 - After negative shock, replacing lost capital is cheaper
 - due to "capital shocks"
 - Not with "cash flow shock" (in consumption units) as in Brunnermeier & Sannikov (2016) AER P&P

Optimal Inflation Rate: Emerging Markets

- Proposition: (comparative static) μ^{M*} and optimal inflation target
 - \blacksquare does not depend on depreciation rate δ , but inflation does
 - lacktriangle is strictly increasing in idiosyncratic risk $\tilde{\sigma}$ "Emerging markets should have higher inflation target"

In sum..

- What should the (long-run) optimal inflation rate be?
 - Competitive market outcome is constrained Pareto inefficient.
 - Inflation is Pigouvian & internalizes pecuniary externality!
 - HH take real interest rate as given, but
 - Portfolio choice affects economic growth and real interest rate
- What role do financial frictions play?
 - incomplete markets ⇒ no superneutrality of money
 - No price/wage rigidity needed
- Emerging markets, with less developed financial markets, should have higher inflation rate/target
 - Higher idiosyncratic risk ⇒ higher pecuniary externality

■ The 4 Roles of Money

- Store of value
 - "I Theory of Money without I" Less risky than other "capital" — no idiosyncratic risk
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence of wants problem

- Unit of account
- Record keeping device
 - Virtual ledger

Fiscal Theory of the Price Level

- Money in a broad sense (includes government debt)
 - store of value emphasis!
- Suppose one can pay taxes with money (fiscal backing)
 - HH can pay with money instead of real goods
- Central bank might "print money" to pay expenditures and dilute real value of government debt
- FTPL equation: What is the real value of government debt
 - Like asset pricing equation (in discrete time)

$$\frac{M_t + B_t}{\mathcal{D}_t} = E\left[\sum_{\tau=t}^{\infty} \frac{\xi_{\tau}}{\xi_t} s_{\tau} K_{\tau}\right]$$

- lacksquare B_t all nominal government debt (long-term government bond $B_t=0$
- $s_{\tau}K_{\tau}$ is primary surplus (tax revenue minus government expenditure (without interest payments))
- $\wp_t = M_t/p_t K_t$ price level (inverse of "value of money")

FTPL Equation

■ Fiscal budget with $B_t = 0 \ \forall t$ $\frac{p_t K_t}{M_L} \mu^M M_t dt + \tau a K_t = g K_t$

- lacksquare $p_t K_t \mu^M dt$ seignorage (Recall μ^M is money growth rate that excludes the part used to pay interest)
- $\blacksquare \tau$ tax minus transfers per unit of output
- g government expenditures per unit of K_t (totally wasted)
- If $q_t = 0$, then $\tau a K_t$ is primary surplus, denoted by $s K_t$

■ FTPL equation:
$$\frac{M_t + B_t}{\wp_t} = E\left[\sum_{\tau=t}^{\infty} \frac{\xi_{\tau}}{\xi_t} s_{\tau} K_{\tau}\right]$$

$$p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]$$
Bubble

FTPL equation:

$$p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]$$
Bubble

• w/o aggregate risk, $\sigma = 0$:

$$\Rightarrow \frac{\xi_{\tau}}{\xi_{t}} = e^{-r^{f}(\tau - t)} \text{ and } r^{f} = \underbrace{(\Phi(\iota) - \delta)}_{=g \text{ growth rate, not } g} - \mu^{M}$$

$$\bullet \text{ If } \mu^{M} = 0 \qquad \Rightarrow s = 0 \qquad r^{f} = g \text{, bubble can exist}$$

FTPL equation:

$$p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]$$
Bubble

• w/o aggregate risk, $\sigma = 0$:

$$\Rightarrow \frac{\xi_{\tau}}{\xi_{t}} = e^{-r^{f}(\tau - t)} \text{ and } r^{f} = \underbrace{(\Phi(\iota) - \delta)}_{=g \text{ growth rate, not } g} - \mu^{M}$$

$$\bullet \text{ If } \mu^{M} = 0 \qquad \Rightarrow s = 0 \qquad r^{f} = g \text{, bubble can exist}$$

Poll 39: What pins down the size of the money bubble?

- a) For $r^f = g$ bubble can take on any size
- b) Asset pricing/Euler equation
- c) Output good market clearing equation

FTPL equation:

$$p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]$$
Bubble

• w/o aggregate risk, $\sigma = 0$:

$$\Rightarrow \frac{\xi_{\tau}}{\xi_t} = e^{-r^f(\tau - t)} \text{ and } r^f = \underbrace{(\Phi(\iota) - \delta)}_{=g} - \mu^M$$

$$\bullet \text{ If } \mu^M = 0 \qquad \Rightarrow s = 0 \qquad r^f = g \text{, bubble can exist}$$

$$\bullet \text{ If } \mu^M > 0 \Rightarrow \text{transfers} \qquad \Rightarrow s < 0 \qquad r^f < g \text{, fundamtl<0, bubble>0}$$

$$\bullet \text{ If } \mu^M < 0 \Rightarrow \text{taxes} \qquad \Rightarrow s > 0 \qquad r^f > g \text{, fundamental only}$$

- w/ aggregate risk similar
 - homework

FTPL equation:

$$p_t K_t = \lim_{T \to \infty} \int_t^T E_t \left[\frac{\xi_\tau}{\xi_t} s_\tau K_\tau \right] d\tau + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} p_T K_T \right]$$
Bubble

• w/o aggregate risk, $\sigma = 0$:

$$\Rightarrow \frac{\xi_{\tau}}{\xi_{t}} = e^{-r^{f}(\tau - t)} \text{ and } r^{f} = \underbrace{(\Phi(\iota) - \delta)}_{=g \text{ growth rate, not } g} - \mu^{M}$$

• If $\mu^{M} = 0$

- $\Rightarrow s = 0$ $r^f = g$, bubble can exist
- If $\mu^M > 0 \Rightarrow$ transfers $\Rightarrow s < 0$ $r^f < g$, fundamtl<0, bubble>0
- If $\mu^M < 0 \Rightarrow \text{taxes} \Rightarrow s > 0$

 $r^f > g$, fundamental only

- w/ aggregate risk similar
 - homework

- Poll 41: Suppose gov. g > 0 (and wasted)
- a) Analysis doesn't change
- b) Only goods market clearing changes
- c) SDF ξ_t is different, and so is r^f

FTPL: Resolving Equilibrium Multiplicity

- Equilibria
 - Moneyless steady state with $p^0 = 0$
 - Price p_t converges over time to zero (hyperinflation)
- With $\varepsilon > 0$ fiscal backing $p_t > \varepsilon$, these equilibria are eliminated \Rightarrow only steady state money equilibrium remains
- Off equilibrium fiscal backing suffices to rule out moneyless and hyperinflation equilibria
 - If after a hypothetical jump into the moneyless equilibrium, one can pay (a small amount) of taxes with money. Hence, money is not worthless and the moneyless equilibrium does not exist.

■ FTPL: Who controls inflation?

- Monetary dominance
 - Fiscal authority is forced to adjust budget deficits
- Fiscal dominance
 - Inability or unwillingness of fiscal authorities to control long-run expenditure/GDP ratio
 - Limits monetary authority to raise interest rates
- 0/1 Dominance vs. battle: "dynamic game of chicken"

■ The 4 Roles of Money

- Store of value
 - "I Theory of Money without I"
 Less risky than other "capital" no idiosyncratic risk
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence of wants problem

- Unit of account
- Record keeping device
 - Virtual ledger

■ Medium of Exchange – Transaction Role

Overcome double-coincidence of wants

• Quantity equation: $\wp_t T_t = \nu M_t$

■ Medium of Exchange – Transaction Role

Overcome double-coincidence of wants

- Quantity equation: $\wp_t T = \nu M_t$
 - ν (nu) is velocity (Monetarism: ν exogenous, constant)
 - *T* transactions
 - Consumption
 - New investment production
 - Transaction of physical capital
 - Transaction of financial claims

$$\begin{bmatrix} C \\ V \end{bmatrix}$$

 $d\Delta^k$

 $d \theta^{j \notin M}$

■ Medium of Exchange – Transaction Role

Overcome double-coincidence of wants

- Quantity equation: $\wp_t T_t = \nu M_t$
 - ν (nu) is velocity (Monetarism: ν exogenous, constant)
 - *T* transactions

	Consumption	C
_	Now investment production	- 1

lacktriangle New investment production ιK

Transaction of physical capital

Transaction of financial claims

 $d\Delta^k$

 $d\theta^{j\notin M}$

produce own machines

infinite velocity

infinite velocity

Models of Medium of Exchange

- Reduced form models
 - Cash in advance

- Shopping time models
- Money in the utility function
 - New Keynesian Models
 - No satiation point
- New Monetary Economics

Only asset with
$$T_t = \nu \frac{M_t}{\wp_t}$$
 money-like features
$$c_t \leq \sum_{j \in M} \nu^j \theta^j n_t$$

$$c = (c^c, l)$$
 consume money CES

For general setting: see Brunnermeier-Niepelt 2018

529: Brunnermeier & Sannik

Cash in Advance

- Liquidity/cash in advance constraint
 - $c_t \leq \sum_{j \in M} v^j \theta^j n_t$ Lagrange multiplier $\hat{\lambda}_t$
 - Asset $j \in M$ which relaxes liquidity/CIA constraint

Money yields extra "liquidity service" (relaxes constraint)

Price of liquid/money asset

$$p_t^{j \in M} = E_t \left[\frac{\xi_{t+\Delta}}{\xi_t} (x_{t+\Delta} + p_{t+\Delta}) \right] - \hat{\lambda}_t v^j p_t^{j \in M}$$

$$i \in M \qquad \left[\xi_{t+\Delta} \quad 1 \right]$$

$$p_t^{j \in M} = E_t \left[\frac{\xi_{t+\Delta}}{\xi_t} \frac{1}{\underbrace{1 + \hat{\lambda}_t \nu^j}_{\Lambda_{t+\Delta}^j / \Lambda_t^j :=}} (x_{t+\Delta} + p_{t+\Delta}) \right]$$

$$p_t^{j \in M} = \lim_{T \to \infty} E_t \left[\sum_{\tau=1}^{(T-t)/\Delta} \frac{\xi_{t+\tau\Delta}}{\xi_t} \frac{\Lambda^j_{t+\tau\Delta}}{\Lambda^j_t} x_{t+\tau\Delta} \right] + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} \frac{\Lambda^j_T}{\Lambda^j_t} p_T \right]$$

As if SDF is multiplied by "liquidity multiplier" (Brunnermeier Niepelt)

Cash in Advance

- Liquidity/cash in advance constraint
 - $c_t \leq \sum_{j \in M} v^j \theta^j n_t$ Lagrange multiplier $\hat{\lambda}_t$
 - Asset $j \in M$ which relaxes liquidity/CIA constraint

$$p_t^{j \in M} = \lim_{T \to \infty} E_t \left[\int_t^T \frac{\xi_\tau}{\xi_t} \frac{\Lambda^j_\tau}{\Lambda^j_t} x_\tau d\tau \right] + \lim_{T \to \infty} E_t \left[\frac{\xi_T}{\xi_t} \frac{\Lambda^j_\tau}{\Lambda^j_t} p_T \right]$$
Bubble

- "Money bubble" easier to obtain due to liquidity service
 - Condition absent aggregate risk: $r^M < g$ easier to obtain since $r^M < r^f$
- HJB approach (Problem Set #3)

$$\mu_t^{r,j} = r_t^f + \varsigma_t \sigma_t^{r,j} + \tilde{\varsigma}_t \tilde{\sigma}^{r,j} - \frac{\lambda_t \nu^j}{\text{where } \lambda_t = \hat{\lambda}_t / V'(n_t)}$$

(Shadow) risk-free rate of illiquid asset

Add Cash in Advance to BruSan Model

- Return on money
 - Store of value as before
 - Liquidity service

$$\frac{E[dr_t^M]}{dt} = \Phi(\iota_t) - \delta + \mu_t^p + \sigma \sigma_t^p - \mu^M = r_t^f + \varsigma_t (\sigma + \sigma_t^p) - \lambda_t \nu^M$$

In steady state

$$\Phi(\iota) - \delta - \underbrace{(\mu^{M} - \lambda \nu^{M})}_{\widecheck{\mu}^{M} :=} = r^{f} + \varsigma \sigma$$

- Solving the model as before ...
 - By simply replace μ^M with $\mu^M \lambda_t v_t^M$
 - Special case: $\mu^M = 0$, i.e. $\mu^M = \lambda \nu^M$, $\gamma = 1 \Rightarrow$ explicit solution as fcn of ζ
 - Same q and p as a function of ζ ,
 - But $\zeta \neq \rho$ if CIA constraint binds in steady state
 - Check:
 - 1. Assume it binds, i.e. $\zeta = \nu \vartheta$
 - 2. Recall from slide 21 for $\hat{\mu}^M=0$ and $\gamma=1$, $\vartheta=\frac{\widetilde{\sigma}-\sqrt{\zeta}}{\widetilde{\sigma}}$
 - 3. Equate 1. and 2. to obtain quadratic solution for ζ
 - 1. If $< \rho$, then solution equals ζ
 - 2. If $> \rho$, then $\zeta = \rho$ and hence CIA doesn't bind, $\lambda = 0$, above solution
- "Occasionally" binding CIA constraint (outside of steady state) since for sufficiently high $\tilde{\sigma}$ agents hold money as store of value (insurance motive) $\Rightarrow \lambda_t = 0$
- Money in the utility function is as if constraint always binds, see DiTella (2018)

The 4 Roles of Money

- Store of value
 - "I Theory of Money without I"
 Less risky than other "capital" no idiosyncratic risk
 - Fiscal theory of the price level
- Medium of exchange
 - Overcome double-coincidence of wants problem

- Unit of account
 - Benchmark price to have agreed upon/fewer relative prices
 - Price stickiness in New Keynesian Models
- Record keeping device
 - Virtual ledger

Extra Slides