Lecture 04 A Symmetric International Model with Runs/Sudden Stops

Markus Brunnermeier & Yuliy Sannikov

Eco 529: Financial and Monetary Economics

Princeton, Feb. 2019

Overview

- So far
 - Multi/two-type/sector model asymmetric
 - Experts: more productive ak_t less patient ρ
 - ullet Households: less productive \underline{ak}_t more patient ho <
 ho
 - Focus on equilibrium without jumps/runs

Now

- Two type/sector model symmetric
 - Symmetric productivity 2 goods, one country more productive in one
 - Same preference discount rates
- 2 Brownian shocks
- $A(\psi)$ is micro-founded with 2 good economy
- Asset price run ≠ depositor run a la Diamond-Dybvig

Role of (international) financial markets

- 1. Better allocation of physical capital/resources
 - ψ
- Better allocation of risk (sharing)

• χ

depends on future

- Complete markets
 - (1) and (2) can be controlled separately
 - Pecuniary externalities have 2nd order w-effects
- Frictions/incomplete markets $F(\psi, \chi) \leq 0$, e.g. $\psi = \chi$
 - (1) and (2) are interlinked
 - Pecuniary externalities have welfare effects

First Best

Second Best

Pecuniary Externalities: Some Literature

- Constrained inefficiency, pecuniary/firesale externalities
 - Incomplete markets:
 - Stiglitz 1982, Newsbury & Stiglitz 1984, Geanakoplos & Polemarchakis 1986, He
 & Kondor 2013
 - Debt collateral constraint (that depends on price):
 - Stiglitz & Greenwald, Lorenzoni 2005, Bianchi 2011, Bianchi & Mendozza 2012, Jeanne & Korinek 2012, Stein 2012,
 - Davilia & Korinek 2017, ...
- "terms of trade hedge"
 - Cole & Obstfeld 1991, Martin 2010

International Macro Interpretation

Old "Washington consensus" in decline

Free trade: flow of goods/services intratemporal

Free finance: flow of capital intertemporal

When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?

> Brunnermeier, Markus & Yuliv Sannikov.
>
> Brunnermeier, Markus & Yuliv Sand Pecuniary Externalities".
>
> "International Credit Flows and Pecuniary Externalities".
>
> "International Credit Flows and Pecuniary Externalities".
>
> American Economic Journal: Macroeconomics 71 (2015): , 7, 1, 291-338. Brunnermeier, Markus & Yuliy Sannikov.

International Macro Interpretation

Old "Washington consensus" in decline

Free trade: flow of goods/services intratemporal

Free finance: flow of capital intertemporal

When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?

Sudden stop including runs due to liquidity mismatch

Technological illiquidity: irreversibility (adjustment costs)

Market illiquidity: redeployability/specificity — not this paper

Funding illiquidity: short-term debt, "hot money"

Type of capital flow matters: FDI, portfolio flows (equity), long-term debt

Brunnermeier & Sannikov

International Macro Interpretation

- Old "Washington consensus" in decline
 - Free trade: flow of goods/services intratemporal
 - Free finance: flow of capital intertemporal
- When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?
- 1. Sudden stop including runs due to liquidity mismatch
 - Technological illiquidity: irreversibility (adjustment costs)
 - Market illiquidity: redeployability/specificity not in this paper
 - Funding illiquidity: short-term debt, "hot money"
 - Type of capital flow matters: FDI, portfolio flows (equity), long-term debt
- 2. "Terms of trade hedge" (Cole-Obstfeld) can be undermined when
 - Industry's output is not easily substitutable.
 Consumers cannot easily find substitutes
 - No strong competitors in other countries
 - Natural resources: oil, copper for Chile,
 - Hard drives in Thailand, Bananas in Ecuador

Model setup - symmetric

Preferences

$$E\left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt\right]$$

- Same preference discount rate ρ "saving out of constraint"
- lacktriangle Two output goods y^a and y^b imperfect substitutes

$$y_t = \left[\frac{1}{2} (y_t^a)^{\frac{s-1}{s}} + \frac{1}{2} (y_t^b)^{\frac{s-1}{s}} \right]^{s/(s-1)}$$

(Comparative) advantages:

	Good $oldsymbol{a}$	Good b		
Country A	$\bar{a}k_t$	$\underline{a}k_t$		
Country B	$\underline{a}k_t$	$\bar{a}k_t$		

Two country/sector/type model

World capital shares:

$$\psi_t^{Aa} + \psi_t^{Ab} + \psi_t^{Ba} + \psi_t^{Bb} = 1$$

World supply of (output) goods:

$$Y_t^a = (\psi_t^{Aa}\overline{a} + \psi_t^{Ba}\underline{a})K_t \quad Y_t^b = (\psi_t^{Bb}\overline{a} + \psi_t^{Ab}\underline{a})K_t$$

• Plug into
$$y_t = \left[\frac{1}{2}(y_t^a)^{\frac{s-1}{s}} + \frac{1}{2}(y_t^b)^{\frac{s-1}{s}}\right]^{s/(s-1)}$$
 to get $A(\psi_t)$

Two country/sector/type model

World capital shares:

$$\psi_t^{Aa} + \psi_t^{Ab} + \psi_t^{Ba} + \psi_t^{Bb} = 1$$

World supply of (output) goods:

$$Y_t^a = (\psi_t^{Aa}\overline{a} + \psi_t^{Ba}\underline{a})K_t \quad Y_t^b = (\psi_t^{Bb}\overline{a} + \psi_t^{Ab}\underline{a})K_t$$

• Plug into $y_t = \left[\frac{1}{2}(y_t^a)^{\frac{s-1}{s}} + \frac{1}{2}(y_t^b)^{\frac{s-1}{s}}\right]^{s/(s-1)}$ to get $A(\psi_t)$

10

Two country/sector/type model

World capital shares:

$$\psi_t^{Aa} + \psi_t^{Ab} + \psi_t^{Ba} + \psi_t^{Bb} = 1$$

World supply of (output) goods:

$$Y_t^a = (\psi_t^{Aa}\overline{a} + \psi_t^{Ba}\underline{a})K_t \quad Y_t^b = (\psi_t^{Bb}\overline{a} + \psi_t^{Ab}\underline{a})K_t$$

• Plug into
$$y_t = \left[\frac{1}{2}(y_t^a)^{\frac{s-1}{s}} + \frac{1}{2}(y_t^b)^{\frac{s-1}{s}}\right]^{s/(s-1)}$$
 to get $A(\psi_t)$

ullet Price of output goods a and b in terms of price of y

$$P_t^a = \frac{1}{2} \left(\frac{Y_t}{Y_t^a}\right)^{1/s}$$
 and $P_t^b = \frac{1}{2} \left(\frac{Y_t}{Y_t^b}\right)^{1/s}$

• Terms of trade P_t^a/P_t^b

Two country/sector/type model

- Capital evolution for
 - $dk_t = (\Phi(\iota_t) \delta)k_t dt + \sigma^A k_t dZ_t^A$ in country A
 - $dk_t = (\Phi(\iota_t) \delta)k_t dt + \sigma^B k_t dZ_t^B$ in country B
 - Φ concavity technological illiquidity
 - Single type of capital
 - Investment in composite good
- Shocks are
 - Two dimensional
 - Affect global capital stock $dZ_t^A + dZ_t^B$
 - lacktright Redistributive (initial shock + amplification) ightharpoonup affects ${\sf wealth}$ share, ${\eta}_t$
 - Example: Apple vs. Samsung lawsuit

Market structures

	Trade		Finance	
Markets	Output y^a , y^b	Physical capital <i>K</i>	Debt	Equity
Complete Markets Full integration/First Best	X	X	X	X
Open credit account (equity home bias)	X	X	X	
Closed credit account	X	X		
Add taxes/capital controls	intratemporal		intertemporal	

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

- static
- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - Toolbox 1: Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
- 2. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς -risk premia, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - Value function iteration by solving PDE

0. Postulate price process & derive returns

•
$$dk_t/k_t = (\Phi(\iota_t) - \delta)dt + \sigma^A dZ_t^A$$

- Postulate
 - $dq_t/q_t =$
 - $d\xi_t^A/\xi_t^A =$
 - $d\xi_t^B/\xi_t^B =$

Poll 15: Do these postulated processes depend on

- a) For $\frac{d\xi_t^A}{\xi_t^A}$ on dZ^A
- b) For $\frac{d\xi_t^B}{\xi_t^B}$ on dZ^B
- c) On both Brownians

0. Postulate price process & derive returns

•
$$dk_t/k_t = (\Phi(\iota_t) - \delta)dt + \sigma^A dZ_t^A$$

Postulate

- $dq_t/q_t = \mu_t^q dt + \sigma_t^{qA} dZ_t^A + \sigma_t^{qB} dZ_t^B$
- $d\xi_t^A/\xi_t^A = -r_t^{A,F}dt \varsigma_t^{AA}dZ_t^A \varsigma_t^{AB}dZ_t^B$
- $d\xi_t^B/\xi_t^B = -r_t^{B,F}dt \varsigma_t^{BA}dZ_t^A \varsigma_t^{BB}dZ_t^B$

■ 0. Postulate price process & derive returns

•
$$dk_t/k_t = (\Phi(\iota_t) - \delta)dt + \sigma^A dZ_t^A$$

- Postulate
 - $dq_t/q_t = \mu_t^q dt + \sigma_t^{qA} dZ_t^A + \sigma_t^{qB} dZ_t^B$
- Returns from holding physical capital

•
$$dq_t/q_t = \mu_t^q dt + \sigma_t^{qA} dZ_t^A + \sigma_t^{qB} dZ_t^B$$

• $d\xi_t^A/\xi_t^A = -r_t^{A,F} dt + \varsigma_t^{AA} dZ_t^A + \varsigma_t^{AB} dZ_t^B$
• $d\xi_t^B/\xi_t^B = -r_t^{B,F} dt + \varsigma_t^{BA} dZ_t^A + \varsigma_t^{BB} dZ_t^B$
Returns from holding physical capital
• $dr_t^{Aa} = \left(\frac{\overline{a}P_t^a - \iota_t}{q_t} + \mu_t^q + \Phi(\iota_t) - \delta + \sigma^A \sigma_t^{qA}\right) dt + \frac{\overline{c}Q_t^{AB}}{\overline{c}Q_t^A}$
• $dr_t^{AB} = \left(\frac{\underline{a}P_t^b - \iota_t}{q_t} + \mu_t^q + \Phi(\iota_t) - \delta + \sigma^A \sigma_t^{qA}\right) dt + \frac{\overline{c}Q_t^A}{\overline{c}Q_t^A}$

•
$$dr_t^{Ab} = \left(\frac{\underline{a}P_t^b - \iota_t}{q_t} + \mu_t^q + \Phi(\iota_t) - \delta + \sigma^A \sigma_t^{qA}\right) dt + \left(\sigma^A + \sigma_t^{qA}\right) dZ_t^A + \sigma_t^{qB} dZ_t^B$$

■ Step 1a. Optimal Reinvestment Rate ι

Tobin's q -- as before a simple static problem

$$\Phi'(\iota_t) = 1/q_t$$

- All agents $\iota^i = \iota$
- Special functional form:
 - Quadratic adjustment cost
 - Investment rate of $\iota = \Phi + \frac{1}{\kappa} \Phi^2$ generates new capital at rate Φ
 - $\Phi(\iota) = \frac{1}{\kappa} \left(\sqrt{1 + 2\kappa \iota} 1 \right)$
 - Alternative specification: $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q 1$

■ Step 1a. Asset pricing equations

- Martingale approach
 - recall discrete time analog
 - $\xi_t^A p_t = E_t[\xi_{t+s}^A(p_{t+s} + d_{t+s})]$ follows a martingale
- Pricing of self-financing asset X:
 If wealth ϵ_t is invested in X, s.t. $\frac{d\epsilon_t}{\epsilon_t} = dr_t^X$, $\xi_t^A \epsilon_t$ must follow a
 - Martingale $E_t[\xi_{t+s}^A \epsilon_{t+s}] = \xi_t^A \epsilon_t$ if portfolio position > 0
 - Supermartingale $E_t[\xi_{t+s}^A \epsilon_{t+s}] < \xi_t^A \epsilon_t$ if portfolio position = 0
- Risk premium

$$\begin{split} & \bullet \frac{E[dr_t^{Aa}]}{dt} - r_t^{F,A} = \varsigma_t^{AA} \big(\sigma_t^{qA} + \sigma^A \big) + \varsigma_t^{AB} \sigma_t^{qB} \\ & \bullet \frac{E[dr_t^{Ab}]}{dt} - r_t^{F,A} \leq \varsigma_t^{AA} \big(\sigma_t^{qA} + \sigma^A \big) + \varsigma_t^{AB} \sigma_t^{qB} \quad \text{(equality if } \psi^{Ab} > 0 \text{)} \end{split}$$

- Analog for citizens in country B
- Risk free rate
 - Drift of $d\xi_t/\xi_t$

Market structures

	Trade		Finance	
Markets	Output y^a, y^b	Physical capital <i>K</i>	Debt	Equity
Complete Markets Full integration/First Best	X	X	X	X
Open credit account (equity home bias)	X	X	X	
Closed credit account	X	X		
Add taxes/capital controls	intratem	poral	interter	mporal

Market structures

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered short-term debt financing
 - Sudden stops: (varying technological illiquidity)
 - Amplification
 - Runs due to sunspots
- 3. No equity, no debt
 - Closed capital account: capital controls)
- 4. Welfare analysis

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - Toolbox 1: Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
- 2. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς -risk premia, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - Value function iteration by solving PDE

■ Step 1b. First Best: Planner's allocation

- First-best:
 - ullet Capital allocation ψ s and
 - Risk allocation χ s can be chosen independently

1. Complete markets: First Best

1. Perfect specialization

- Investment rate equalization
- Full specialization
- Output equalization

$$\iota_t^A = \iota_t^B
\psi_t^{Aa} = \psi_t^{Bb} = 1/2
y_t^a = y_t^b Y_t = \overline{a} \frac{K_t}{2}$$

2. Perfect risk sharing

• Consumption (intensity) shares where λ^A and λ^B are Pareto weights

•
$$\frac{dZ_t^A + dZ_t^B}{\sqrt{2}} \equiv dZ_t$$
 (standard Brownian)

Global capital evolution

$$dK_t = [\Phi(\iota_t) - \delta] K_t dt + \frac{\sigma}{\sqrt{2}} K_t \underbrace{\frac{dZ_t^A + dZ_t^B}{\sqrt{2}}}_{:=dZ_t}$$

$$\frac{d\xi_t^A}{\xi_t^A} = \frac{d\xi_t^B}{\xi_t^B} = \underbrace{\left\{ -\rho - \gamma \left[\Phi(\iota_t) - \delta \right] + \frac{\gamma(\gamma + 1)\sigma^2}{4} \right\}}_{=E\left[\frac{d\xi_t}{\xi_t dt}\right]} dt - \frac{\gamma\sigma}{\sqrt{2}} dZ_t$$

Poll 25: Where does the 4 in the denominator come from?

- a) From $\left(\frac{1}{2}\right)^2$
- b) From 4 parts of ψ^{Aa} , ...
- c) From $\left(\frac{1}{\sqrt{2}}\right)^2 * \frac{1}{2}$, where second term comes from Ito's lemma

$$\frac{d\xi_t^A}{\xi_t^A} = \frac{d\xi_t^B}{\xi_t^B} = \underbrace{\left\{-\rho - \gamma[\Phi(\iota_t) - \delta] + \frac{\gamma(\gamma + 1)\sigma^2}{4}\right\}}_{=E\left[\frac{d\xi_t}{\xi_t dt}\right]} dt - \frac{\gamma\sigma}{\sqrt{2}} dZ_t$$

Risk-free rate:

$$r^F = \rho + \gamma [\Phi(\iota) - \delta] - \frac{\gamma(\gamma+1)\sigma^2}{4}$$

a) Not at all

- Poll 26: If we had one country in autarky, how would r^F change?
- b) 4 is replaced by 2 since we can't diversify
- c) None of the above

$$\frac{d\xi_t^A}{\xi_t^A} = \frac{d\xi_t^B}{\xi_t^B} = \underbrace{\left\{-\rho - \gamma[\Phi(\iota_t) - \delta] + \frac{\gamma(\gamma + 1)\sigma^2}{4}\right\}}_{=E\left[\frac{d\xi_t}{\xi_t dt}\right]} dt - \frac{\gamma\sigma}{\sqrt{2}} dZ_t$$

Risk-free rate:

$$r^F = \rho + \gamma [\Phi(\iota) - \delta] - \frac{\gamma(\gamma+1)\sigma^2}{4}$$

- Price of capital:
 - Since we know r^F and have constant investment opportunities, we can use $\frac{c_t}{n_t} = \rho + \frac{\gamma 1}{\nu} \left(r^F \rho + \frac{\varsigma^2}{2\nu} \right)$ (from slide 45 in lecture 03).
 - Together with goods market clearing condition yields

Gordon Growth Formula
$$\frac{d}{r-g}$$

$$q = \frac{\overline{a} - \iota_t}{r_t^F + \frac{\gamma}{2}\sigma^2 - [\Phi(\iota) - \delta]}$$

$$\frac{d\xi_t^A}{\xi_t^A} = \frac{d\xi_t^B}{\xi_t^B} = \underbrace{\left\{-\rho - \gamma[\Phi(\iota_t) - \delta] + \frac{\gamma(\gamma + 1)\sigma^2}{4}\right\}}_{=E\left[\frac{d\xi_t}{\xi_t dt}\right]} dt - \frac{\gamma\sigma}{\sqrt{2}} dZ_t$$

 $r^{F} = \rho + \gamma [\Phi(\iota) - \delta] - \frac{\gamma(\gamma+1)\sigma^{2}}{\epsilon}$ Risk-free rate:

- Price of capital:
 - Since we know r^F and have constant investment opportunities, we can use $\frac{c_t}{r_t} = \rho + \frac{\gamma - 1}{\nu} \left(r^F - \rho + \frac{\varsigma^2}{2\nu} \right)$ (from slide 45 in lecture 03).
 - Together with goods market clearing condition yields *Poll 28: Why* $\frac{\gamma}{2}\sigma^2$ -term?

Gordon Growth Formula
$$\frac{d}{r-a}$$

$$q = \frac{a - \iota_t}{r_t^F + \frac{\gamma}{2}\sigma^2 - [\Phi(\iota) - \delta]}$$
 a) Risk adjustment for risky capital I b) Term reflects $\varsigma \sigma$

a) Risk adjustment for risky capital K

1. Complete markets: First Best Remarks

Perfect capital allocation + perfect risk sharing

- Prices are constant and independent of shocks
- Economy shrinks/expands with (multiplicative) shocks
- Elasticity of substitution, s, has no impact on prices

Market structures

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered (short-term) debt financing
 - Sudden stops: (varying technological illiquidity, irreversibility)
 - Amplification
 - Runs due to sunspots
- 3. No equity, no debt
 - Closed capital account: capital controls
- 4. Welfare analysis

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

- static
- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - Toolbox 1: Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
- 2. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς -risk premia, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - Value function iteration by solving PDE

Step 1b. Price Taking Planners Problem

A-risk premia

max

$$E[dr_t^{\overline{N}}](\boldsymbol{\psi}_t) - (\varsigma_t^{AA}\chi_t^{AA} + \varsigma_t^{BA}\chi_t^{BA})\sigma_t^{\overline{N}A}(\boldsymbol{\psi}_t) - (\varsigma_t^{AB}\chi_t^{AB} + \varsigma_t^{BB}\chi_t^{BB})\sigma_t^{\overline{N}B}(\boldsymbol{\psi}_t)$$

B-risk premia

• Where
$$\sigma_t^{\overline{N}A}(\pmb{\psi}_t)=\psi_t^A\sigma^A+\sigma_t^{qA}$$
, $\sigma_t^{\overline{N}B}(\pmb{\psi}_t)=\psi_t^B\sigma^B+\sigma_t^{qB}$

Frictions: no outside equity issuance

$$\chi_t^{AA} = \frac{\psi_t^A \left(\sigma^A + \sigma_t^{qA}\right)}{\sigma_t^{\overline{N}A}(\psi_t)} \qquad \chi_t^{BB} = \frac{\psi_t^B \left(\sigma^B + \sigma_t^{qB}\right)}{\sigma_t^{\overline{N}B}(\psi_t)}$$

$$\chi_t^{AB} = \frac{\psi_t^A \sigma_t^{qB}}{\sigma_t^{\overline{N}A}(\psi_t)} \qquad \chi_t^{BA} = \frac{\psi_t^B \sigma_t^{qA}}{\sigma_t^{\overline{N}B}(\psi_t)}$$

$$\chi_t^{BA} = \frac{\psi_t^B \sigma_t^{qA}}{\sigma_t^{\overline{N}B}(\psi_t)}$$

\blacksquare Step 2. Get ς s from Value Function Envelop

As in previous lecture, but with 2 Brownian

A's value function

$$v_t \frac{K_t^{1-\gamma}}{1-\gamma}$$

■ To obtain $\frac{\partial V_t^A(n^A)}{\partial n_t^A}$ use $K_t = \frac{N_t^A}{\eta_t q_t} = \frac{n_t^A}{\eta_t q_t}$

$$V_t^A(n_t^A) = v_t^A \frac{(n_t^A)^{1-\gamma}/(\eta_t q_t)^{1-\gamma}}{1-\gamma}$$

 $V_t^A(n_t^A) = v_t^A \frac{\left(n_t^A\right)^{1-\gamma}/(\eta_t q_t)^{1-\gamma}}{1-\gamma}$ • Envelop condition $\frac{\partial V_t^A(n_t^A)}{\partial n_t^A} = \frac{\partial u(c_t^A)}{\partial c_t^A}$ $v_t^A \frac{\left(n_t^A\right)^{-\gamma}}{(\eta_t q_t)^{1-\gamma}} = (c_t^A)^{-\gamma}$

$$v_t^A \frac{(n_t^A)^{-\gamma}}{(\eta_t q_t)^{1-\gamma}} = (c_t^A)^{-\gamma}$$

• Using $K_t = \frac{n_t^A}{\eta_t q_t}$, $C_t^A = c_t^A$

$$\frac{v_t^A}{n_t q_t} (K_t^A)^{-\gamma} = (C_t^A)^{-\gamma}$$

$$\frac{v_t^A}{\eta_t q_t} (K_t^A)^{-\gamma} = (C_t^A)^{-\gamma}$$

$$\sigma_t^{vA} - \sigma_t^{\eta A} - \sigma_t^{qA} - \gamma \psi_t^A \sigma^A = -\gamma \sigma_t^{cA} = -\zeta_t^{AA}$$

$$\sigma_t^{vB} - \sigma_t^{\eta B} - \sigma_t^{qB} - \gamma \psi_t^B \sigma^B = -\gamma \sigma_t^{cB} = -\zeta_t^{AB}$$

B's value function

Analogous for B

Markov equilibrium

Equilibrium is a map Histories of shocks

$$\{Z_s^A,Z_s^B,s\leq t\}$$

prices allocation

$$q_t, \psi_t^{Aa} ..., \iota_t^A, \iota_t^B, \zeta_t^A, \zeta_t^B$$

wealth distribution

$$\eta_t = \frac{N_t^A}{q_t K_t} \in (0,1)$$
 A's wealth share

\blacksquare Step 3. μ^{η} Drift of Wealth Share

Martingale condition (relative to benchmark asset)

$$\mu_t^{\eta} + \frac{C_t^A}{N_t^A} - r_t^M = \left(\varsigma_t^{AA} - \sigma_t^{\bar{N}A}\right) \left(\sigma_t^{\eta A} - \underbrace{\sigma_t^{MA}}_{=0}\right) + \left(\varsigma_t^{AB} - \sigma_t^{\bar{N}B}\right) \left(\sigma_t^{\eta B} - \sigma_t^{MB}\right)$$

Add up across types (weighted),
 (capital letters with bars are aggregates for total world economy)

$$\underbrace{(\eta_t \mu_t^{\eta} + (1 - \eta_t) \mu_t^{1 - \eta})}_{=0} + \underbrace{\frac{\overline{C}_t}{\overline{N}_t}}_{=0} - r_t^M = \eta_t \left(\varsigma_t^{AA} - \sigma_t^{\overline{N}A}\right) \sigma_t^{\eta A} \\ + (1 - \eta_t) \left(\varsigma_t^{BA} - \sigma_t^{\overline{N}A}\right) \sigma_t^{1 - \eta, A} + \eta_t \left(\varsigma_t^{AB} - \sigma_t^{\overline{N}B}\right) \sigma_t^{\eta B} + (1 - \eta_t) \left(\varsigma_t^{BB} - \sigma_t^{\overline{N}B}\right) \sigma_t^{1 - \eta, B}$$

Subtract from each other yields wealth share drift

$$\mu_t^{\eta'} = (1 - \eta_t) \left(\varsigma_t^{AA} - \sigma_t^{\overline{N}A} \right) \sigma_t^{\eta A}$$

$$- (1 - \eta_t) \left(\varsigma_t^{BA} - \sigma_t^{\overline{N}A} \right) \sigma_t^{1 - \eta_t A}$$

$$+ (1 - \eta_t) \left(\varsigma_t^{AB} - \sigma_t^{\overline{N}B} \right) \sigma_t^{\eta B}$$

$$- (1 - \eta_t) \left(\varsigma_t^{BB} - \sigma_t^{\overline{N}B} \right) \sigma_t^{1 - \eta_t B} - \left(\frac{C_t}{N_t} - \frac{C_t + C_t}{q_t K_t} \right)$$

\blacksquare Step 3. $\sigma^{\eta A}$, $\sigma^{\eta B}$ Volatility of Wealth Share

In general for multi-sector models, since $\eta_t^i = N_t^i/\overline{N}_t$, $\sigma_t^{\eta^i A} = \sigma_t^{N^i A} - \sigma_t^{\overline{N}A} = \sigma_t^{N^i A} - \sum_{i'} \eta_t^{i'} \sigma_t^{N^{i'} A} = (1 - \eta_t^i) \sigma_t^{N^i A} - \sum_{i^- \neq i} \eta_t^{i^-} \sigma_t^{N^{i^-} A}$ $\sigma_t^{\eta^i B} = \cdots$

Recall notation in our setting: $\eta_t=\eta_t^A$ and $1-\eta_t=\eta_t^B$ $\sigma_t^{\eta A}=(1-\eta_t)(\sigma_t^{n^AA}-\sigma_t^{n^BA})$

$$\sigma_t^{n^A A} = \frac{(\psi_t^{Aa} + \psi_t^{Ab})}{\eta_t} (\sigma^A + \sigma_t^{qA}) \qquad \sigma_t^{n^B A} = \frac{1 - (\psi_t^{Aa} + \psi_t^{Ab})}{1 - \eta_t} (\sigma_t^{qA})$$

- Hence, $\sigma_t^{\eta A} = \frac{1}{\eta_t} [(1 \eta_t) (\psi_t^{Aa} + \psi_t^{Ab}) \sigma^A + ((\psi_t^{Aa} + \psi_t^{Ab}) \eta_t) \sigma_t^{qA}]$
- Similarly,

$$\sigma_t^{\eta B} = (1-\eta_t)(\sigma_t^{n^AB} - \sigma_t^{n^BB})$$

$$\sigma_t^{n^AB} = \frac{(\psi_t^{Aa} + \psi_t^{Ab})}{\eta_t}(\sigma_t^{qB})$$

$$\sigma_t^{n^BB} = \frac{1 - (\psi_t^{Aa} + \psi_t^{Ab})}{1 - \eta_t}(\sigma^B + \sigma_t^{qB})$$
 • Hence,
$$\sigma_t^{\eta B} = \cdots$$

\blacksquare Step 3. $\sigma^{\eta A}$, $\sigma^{\eta B}$ Volatility of Wealth Share

From previous slide

$$\bullet \ \sigma_t^{\eta A} = \frac{1}{\eta_t} \left[(1 - \eta_t) \left(\psi_t^{Aa} + \psi_t^{Ab} \right) \sigma^A + \left(\left(\psi_t^{Aa} + \psi_t^{Ab} \right) - \eta_t \right) \sigma_t^{qA} \right]$$

 $\sigma_t^{\eta B} = \cdots$

Note also,

$$\eta_t \sigma_t^{\eta A} + (1 - \eta_t) \sigma_t^{1 - \eta, A} = 0 \Rightarrow \sigma_t^{1 - \eta, A} = -\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta A}$$

${ lap{1}}$ 2. Three regions of state variable η

- Wealth share η
 - Three regions

		Full specialization	
A produces	а	a	a, b
B produces	a, b	b	b
	0	1/2	1

Symmetric

$$\psi_t^{Aa} = \eta_t$$

$$\psi_t^{Bb} = 1 - \eta_t$$

$$\psi_t^{Ba} = \psi_t^{Ab} = 0$$

2. Capital share, terms of trade, price of capital

• Numerical: $\rho=5\%$, $\gamma=1$, $\overline{a}=14\%$, $\underline{a}=4\%$, $\delta=5\%$, $\kappa=2$, $\sigma^A=\sigma^B=10\%$

■ Three different elasticities of substitution: $s = \{.5, 1, \infty\}$

■ 2. TOT: Supply vs. demand shock

Supply versus demand shock

TOT improve for A as η_t declines for $\eta_t \in [\overline{\eta}, .5)$ can be due to

• $dZ^A < 0$: Negative supply shock

World recession

• $dZ^B > 0$: Positive demand shock

World boom

TOT: Output price

lacktriangle ...but fire-sale of (physical) capital stock k_t

2. Stability, Phoenix Miracle for different s

Stationary distribution drift volatility 0.045 2.5 Masspoint Phoenix 0.04 at {0,1} 0.025 miracle 0.035 0.02 0.03 Stationary Distribution 1.5 0.025 돌 0.015 0.02 0.01 0.015 0.01 0.5 0.005 0.005 wealth share 0.2 0.3 0.4 0.3 0.4

• Three different elasticities of substitution: $s = \{.5, 1, \infty\}$

Brunnel

■ Difference to Cole & Obstfeld 1991: persistence of capital, $\delta < \infty$

Overview

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered short-term debt financing
 - Sudden stops: (varying technological illiquidity)
 - Amplification
 - Runs due to sunspots
- 3. No equity, no debt
 - Closed capital account: capital controls
- 4. Welfare analysis

2. Amplification

Leverage: debt-equity ratio

Leverage effect
$$\psi_t^{Aa}/\eta_t$$
, $(\psi_t^{Aa}-\eta_t)/\eta_t$

2. Amplification

Leverage: debt-equity ratio

Leverage effect
$$\psi_t^{Aa}/\eta_t$$
, $(\psi_t^{Aa}-\eta_t)/\eta_t$

Loss spiral

$$1/\{1-\frac{\psi_t^{Aa}-\eta_t}{\eta_t}\frac{q'(\eta_t)}{q(\eta_t)/\eta_t}\}$$

(infinite sum)

2. Amplification

Leverage: debt-equity ratio

$$lacktriangle$$
 Leverage effect ψ_t^{Aa}/η_t , $(\psi_t^{Aa}-\eta_t)/\eta_t$

Loss spiral

$$1/\{1 - \frac{\psi_t^{Aa} - \eta_t}{\eta_t} \frac{q'(\eta_t)}{q(\eta_t)/\eta_t}\}$$
 (ir

(infinite sum)

- Technological illiquidity $(\kappa, \delta) \Rightarrow$ market illiquidity $q'(\eta)$
 - (dis)investment adjustment cost

1 2. Technological $(\kappa, \delta) \Rightarrow$ market illiquidity $q'(\eta)$

- Quadratic adjustment cost
- Investment rate of $\iota = \Phi + \frac{1}{\kappa}\Phi^2$ generates new capital at rate Φ

$$\Phi(\iota) = \frac{1}{\kappa} \left(\sqrt{1 + 2\kappa \iota} - 1 \right)$$

Three cases

•
$$\kappa = 0 \Rightarrow q = 1$$

•
$$\kappa = 2$$

• $\kappa_{\iota < 0} = 100$ and $\kappa_{\iota > 0} = 2$

2. Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage

2. Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage

tangent vs. secant

2. Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage

• An unanticipated sunspot triggers a sudden capital price drop from q to \tilde{q} , accompanied by a drop in η to $\tilde{\eta}$.

$$\tilde{q}\tilde{\eta} = \max\{\eta q + \psi^{Aa}(\tilde{q} - q), 0\}$$

2. Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta} \Leftrightarrow$ pro-cyclical leverage

• An unanticipated sunspot triggers a sudden capital price drop from q to \tilde{q} , accompanied by a drop in η to $\tilde{\eta}$.

$$\tilde{q} = \frac{\max\{\eta q + \psi^{Aa}(\tilde{q} - q), 0\}}{\tilde{\eta}}$$

hyperbola

2. Sudden stops: amplification & runs

2. Sudden stop due to run: Zoomed in

Overview

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered short-term debt financing
 - Sudden stops: (varying technological illiquidity)
 - Amplification
 - Runs due to sunspots
- 3. No equity, no debt
 - Closed capital account: capital controls
- 4. Welfare analysis

Market structures

	Trade		Finance	
Markets	Output y^a , y^b	Physical capital <i>K</i>	Debt	Equity
Complete Markets Full integration/First Best	X	X	X	X
Open credit account (equity home bias)	X	X	X	
Closed credit account	X	X		
Add taxes/capital controls	intratemporal		interter	mporal

3. Credit account: open vs. closed

$$\rho = 5\%, \gamma = 1, \overline{a} = 14\%, \underline{a} = 4\%, \delta = 5\%, \kappa = 2, \sigma^A = \sigma^B = 10\%, s = 1$$

3. Credit account: open vs. closed

• $\rho = 5\%$, $\overline{a} = 14\%$, $\underline{a} = 4\%$, $\delta = 5\%$, $\kappa = 2$, $\sigma^A = \sigma^B = 10\%$, s = 1

■ 3. Efficiency trade-off

Affect all subsequent dynamics

Overview

- 1. Complete markets ⇒ First best
- Incomplete markets (equity home bias)
- 3. No equity, no debt: Closed capital account
- 4. Welfare analysis
 - Pecuniary externalities
 - Welfare calculations + Pareto improving redistributions

4. When are credit flows excessive?

- Constrained inefficiency (in incomplete market setting) due to pecuniary externalities
 - Price of capital: fire sale externality if leverage is high
 - Price of output good: "terms of trade hedge" restrained competition
 - Price taking behavior undermined this hedge

4. When are credit flows excessive?

- Constrained inefficiency (in incomplete market setting) due to pecuniary externalities
 - Price of capital: fire sale externality if leverage is high
 - Price of output good: "terms of trade hedge" restrained competition
 - Price taking behavior undermined this hedge

4. When are credit flows excessive?

- Constrained inefficiency (in incomplete market setting) due to pecuniary externalities
 - Price of capital: fire sale externality if leverage is high
 - Price of output good: "terms of trade hedge" restrained competition
 - Price taking behavior undermined this hedge

Brunnermeier & Sannikov	Price	Intention	Depends on	
	Capital price (input)	Buy cheaper but capital losses on existing k_t	Adjustment cost, $\Phi(\iota)$, κ	
	Output price	Sell output more expensive	Elasticity of substitution, s	
	Interest rate	Borrow cheaper	Intertemporal preference	

4. Welfare comparison

 \bullet $\rho=5\%$, $\gamma=1$, $\overline{a}=14\%$, $\underline{a}=4\%$, $\delta=5\%$, $\kappa=2$, $\sigma^A=\sigma^B=10\%$

- No friction, first best
- No equity
- No equity, no debt

4. Welfare comparison

$$ho=5\%$$
, $\gamma=1$, $\overline{a}=14\%$, $\underline{a}=4\%$, $\delta=5\%$, $\kappa=2$, $\sigma^A=\sigma^B=10\%$

4. Welfare comparison

 \bullet $\rho=5\%$, $\gamma=1$, $\overline{a}=14\%$, $\underline{a}=4\%$, $\delta=5\%$, $\kappa=2$, $\sigma^A=\sigma^B=10\%$

4. Welfare comparison

lacktriangle Any monotone transformation of η would be equally good state variable

• Normalization: take CDF of η

Uniform stationary distribution!

Conclusion

- Symmetric setup (productivity, discount rate, ...)
 - Derive $A(\psi)$
- Sudden stops
 - Amplification of fundamental shock
 - Runs due to sunspots vulnerability region
- Phoenix miracle
- Tradeoff between capital allocation & risk sharing
 - "Terms of trade hedge"
- When are short-term credit flows excessive?
 - When can capital controls (financial liberalization) be welfare enhancing (reducing)?
 - Pecuniary externality
 - Price of physical capital fire-sales externality technological illiquidity
 - Price of output goods: "terms of trade hedge" externality
- Bailout/Restructuring Redistributive policy can be Pareto improving if one country is sufficiently balance sheet impaired
 - Reduces output good price

Next to do ... Problem Set

- Solve model with CRRA utility functions numerically
 - Follow steps from previous lecture
- Allow for idiosyncratic risk in one country

Plot fan charts and distribution impulse response functions

- Allow for anticipated jumps
 - Incorporate (compensated) jump process in probability space/proposed processes