

Macro, Money and Finance Lecture 01: Introduction

Markus Brunnermeier, Lars Hansen, Yuliy Sannikov

Motivation

- Aim: Bridge the gap between
 - Macro/monetary research
 - Finance research

- Financial sector helps to
 - overcome financing frictions and
 - channels resources
 - creates money
 - ... but
 - Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics
- New insights to monetary and international economics

Based on Brunnermeier, Eisenbach
Brunnermikov

8 Sannikov

8 Sannikov

8 Reis

8 Sannikov

8 Reis

9 Reis

1 R

- Price stabilityMonetary policy
- Financial stability Macroprudential policy
- Fiscal debt sustainabilityFiscal policy

- Short-term interest
- inter-<-------> action
- Policy rule (terms structure)

- Reserve requirements
- Collateral policy Margins/haircuts
- Capital controls

Methodology

Verbal Reasoning (qualitative)

Macro

- Growth theory
 - Dynamic (cts. time)

Deterministic[®]

- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models

Portfolio theory

Finance

- Static
- Stochastic

- Introduce dynamics
 - Continuous time
 - **Options**

Black Scholes

- Term structure CIR
- Agency theory Sannikov

Cts. time macro with financial frictions

Pre-crisis Macro

Post-crisis Macro&Finance

Price/wage rigidities

Financial frictions

- Expectations of
 - cash flow
 - "the" short-term interest rate
- Endogenous risk/volatility e.g. runs, sudden stops, ...
- Risk premia time varying

 $\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia})_{\substack{\text{premium news} \\ \text{Risk premia} \\ \text{the main driver}}}$ pectation hypothesis edit spread = expected default

- Expectation hypothesis
- Credit spread = expected default
- Euler equation
 - Substitution effects

- Credit risk premia
- Wealth redistribution
 - Income/wealth effect

Heterogeneous Agents & Frictions

- Lending-borrowing/insuring since agents are different
 - Poor-rich
 - Productive
 - Less patient
 - Less risk averse
 - More optimistic

Limited direct lending due to frictions

- Rich-poor
- Less productive
- More patient
- More risk averse
- More pessimistic

- Friction \rightarrow p_sMRS_s different even after transactions
- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil

Types of Distortions

- Belief distortions
 - Match "belief surveys" (BGS)
- Incomplete markets
 - "natural" leverage constraint (BruSan)
 - Costly state verification (BGG)
- + Leverage constraints (no "liquidity creation")
 - Exogenous limit (Bewley/Ayagari)
 - Collateral constraints
 - Next period's price (KM) $Rb_t \leq q_{t+1}k_t$
 - Next periods volatility (VaR, JG)
 - Current price

(DGP)

Course on continuous time macro

- 1. Introduction: Liquidity, Run-up, Crisis-Amplification, Recovery Real Macro-Finance Models with Heterogeneous Agents
- 2. A Simple Model
- 3. General Solution Technique
- 4. International Macro-Finance Model with Sudden Stops/Runs *Money Models*
- 5. A Simple Money Model
- 6. General Solution Technique
- 7. The I Theory of Money
- 8. Welfare Analysis & Optimal Policy
 - Monetary and Macroprudential Policy
- 9. International Financial Architecture*
- 10. Robust Computational Methods Comparing Nonlinear Models
- 11. Calibration and Empirical Implications

Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening
- Crash phase
 - Fire-sales
 - Paradox of Prudence
 - Spillovers
- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox

Externalities

Strategic Complements/Substitutes

cross sectional

■ The 2 Components of Systemic Risk

- Systemic risk build-up during (credit) bubble
 and materializes in a crisis time-series
 - "Volatility Paradox" contemp. measures inappropriate
 - Vulnerability focus instead of timing focus
- 2. Spillovers/contagion
 - Direct contractual: domino effect network
 - Indirect: price effect (fire-sale externalities)
 credit crunch, liquidity spirals

Shock to capital

Precaution + tighter margins

volatility price

3. Persistence/Slow recovery

■ The 2 Components of Systemic Risk

- Systemic risk build-up during (credit) bubble
 ... and materializes in a crisis time-series
 - "Volatility Paradox" → contemp. measures inappropriate
 - Vulnerability-focus instead of timing-focus

Run-up 1: Bubbles due to Beliefs "Distortions"

- Extrapolative Expectations
 - Representativeness heuristic
 - Overestimate of productivity after good shock
 - Bubbles/overinvestment driven by level of beliefs a la Miller (1977)
 - AS: Surveys consistent with each other, mutual fund flows
 - Local thinking "neglect of tail risk" ≈ VaR

overshooting

- Heterogeneous beliefs: optimists and pessimists
 - + limited commitment ⇒ Leverage cycle
 - "Marginal buyer" vary with shocks
 - Surveys elicit "consensus beliefs" ≠ marginal buyer's beliefs
- Switching heterogeneous beliefs ⇒ Speculation (Resale option a la Harrison-Kreps/Scheinkman-Xiong):
 - optimist/pessimist "switching" + short-sale constraint
 - ⇒ Bubbles, volatility, and transaction volume

Run-up 2: Concentration of Risk

HH Experts

- Financial frictions models:
 - "Experts" hold most of aggregate risk in good times
 - Low volatility, but risk builds up in background
 - Credit cycle: (BGG/KM/BruSan)

Leverage cycle: (JG/BruPed)

extreme leverage in cts. time limit

Run-up 3: Maturity Mismatch

- Brunnermeier-Oehmke: Maturity "rat race"
 - Incentive to dilute creditors
- Diamond-Dybvig: Demand for liquidity
- Calomiris-Kahn: Discipline for banker

Run-up 3: Maturity Mismatch

- Brunnermeier-Oehmke: Maturity "rat race"
 - Incentive to dilute creditors
- Diamond-Dybvig: Demand for liquidity
- Calomiris-Kahn: Discipline for banker

Run-up 4: Build-up of Interlinkages

Kopytov (2018)

Run-up 5: Build-up Strategic Complementarity

In payoffs

externalities

$$\frac{\partial u^i}{\partial x^{-i}}$$

- If others sell, I suffer a negative shock
- Pecuniary externalities
 - Incomplete markets setting
 - Price affects collateral constraint
- Normative theory (welfare implications)

In response

strategic substitutes/complements

$$\frac{\partial \frac{\partial u^{l}}{\partial x^{i}}}{\partial x^{-i}}$$

- If others sell, it is more profitable for me to also sell
- Descriptive/positive theory

Run-up 5: Build-up Strategic Complementarity

A "strategic-substitute-externality"

(we Germans like long words ②)

- Externality: individual ignores that his action leads to a build-up of strategic complementarities
 - With potential large price swings/fire sales

Pecuniary externality: e.g. fire-sale externality

■ Externality: negative

Eco 529: Brunnermeier

■ Externality: positive

Strategic substitutability

Strategic Complementarity

Externalities vs. Strategic Complemetarities

Externalities (payoff spillovers)and

$$\frac{\partial u^i}{\partial x^{-i}}$$

■ Strategic Complementarity/Substitutability $\frac{\partial \frac{\partial u^{\iota}}{\partial x^{-i}}}{\partial x^{-i}} = \frac{\partial \frac{\partial u^{\iota}}{\partial x^{-i}}}{\partial x^{i}}$

- can be independent of each other
- ...but note: if $\frac{\partial u^i}{\partial x^{-i}} = 0$, then $\frac{\partial \frac{\partial u^i}{\partial x^i}}{\partial x^{-i}} = 0$
- Connection:
 - Due to strategic complementarities x^{-i} changes a lot
 - Which causes large externality (spillover)

Shock prior to run-up of imbalances

Eco 529: Brunnermeier

Shock prior to run-up of imbalances

Run up of imbalances

Run up of imbalances

■ Shock after run-up

Initial fundamental shock/trigger is amplified

Amplification of Fundamental Shock

Multiplicity: without Fundamental Shock

■ 2nd, 3rd round effects: Amplification Multiplicity

Multiplicity – Crisis vulnerability without shock

Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening
- Crash phase
 - Traditional Bank Runs
 - Modern Banks and Liquidity Spirals
 - Fire-sales
 - Spillovers
- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox

Externalities

Strategic Complements/Substitutes

cross sectional

■ The 2 Components of Systemic Risk

- Systemic risk build-up during (credit) bubble
 and materializes in a crisis time-series
 - "Volatility Paradox" contemp. measures inappropriate
 - Vulnerability focus instead of timing focus
- 2. Spillovers/contagion
 - Direct contractual: domino effect network
 - Indirect: price effect (fire-sale externalities)

credit crunch, *liquidity* spirals

3. Persistence/Slow recovery

■ Traditional vs. modern banks

Tradable assets

Deposits

Equity

Whole sale funding liq. risk

Government

bonds

Loans

- Bank runa la Diamond-Dybvig
 - ... but inertia also due to demand deposit insurance
- Whole sale funding liq. risk like in Brunnermeier-Pedersen
 - Short-term No inertia
 - Collateralized

Essentially senior

Whole sale

funding

- Fire-sales of tradable assets
- Risk shifting towards depositors (insurance)

Bank Runs

+ Silent bank run (via internet)

Example: Bank Run – Multiple Equilibria

■ Best response of agents at t=1 who learned that they are "late consumers"

■ Traditional vs. modern banks

- Bank runa la Diamond-Dybvig
 - Demand deposit
 - FDIC insurance -- inertia
 - Illiquid loans

- Whole sale funding liq. risk like in Brunnermeier-Pedersen
 - Short-term No inertia
 - Collateralized

Essentially senior

- Fire-sales of tradable assets
- Risk shifting towards depositors (insurance)

Financial Frictions

- Incomplete markets
 - E.g. only debt contracts due to adverse selection

- Leverage constraints
 - Exogenous limit (Bewley/Ayagari)
 - Collateral constraints
 - (Current price)
 - Next period's price (KM) $Rb_t \le q_{t+1}k_t$
 - Next periods volatility (VaR)

Liquidity Concepts

Financial instability arises from the fragility of liquidity

A

Market liquidity

Specificity of capitalPrice impact of capital sale

Funding liquidity

- Maturity structure of debt
 - Can't roll over short term debt
- Sensitivity of margins
 - Margin-funding is recalled

Liquidity - Maturity mismatch

 Liquidity mismatch determines severity of amplification, (sunspot) runs, ... "strategic complementarities"

Margins/Haircuts Spirals

How are margins set by brokers/exchanges?

- For collateralized lending, debt constraints are directly linked to the volatility of collateral
 - Constraints are more binding in volatile environments
 - Feedback effect between volatility and constraints
- Margin spiral force agents to delever in times of crisis
 - Collateral runs

counterparty bank run

Multiple equilibria

Leverage with Margin Funding

action/holdings of "expert traders"

Eco 529: Brunnermeier

higher holding, ⇒ higher price

Leverage with Margin Funding

action/holdings of "expert traders"

Eco 529: Brunnermeier

higher holding, ⇒ higher price

Leverage with Margin Funding

action/holdings of "expert traders"

Eco 529: Brunnermeier

higher holding, ⇒ higher price

average

Leverage with Margin Funding

action/holdings of "expert traders"

Leverage with Margin Funding

action/holdings of "expert traders"

■ Liquidity Spirals – Amplification effects

- Loss Spiral
- Margin Spiral

Amplification/Destabilizing after Large Shock

After a large (fundamental) shock

■ Stabilizing after Small Shocks

After a small (fundamental shock)

DeStabilizing after Large Shock

After a large (fundamental) shock

■ Crash 2: Endogenous Fat Tails

- Initial shock is normally distributed
- Return distribution due to strategic complementarities

Impact of Higher Leverage due to Stock Repurchase

Starting point

Impact of More Liquidity Mismatch

Starting point

III Impact of More Liquidity Mismatch

Higher leverage

Impact of More Liquidity Mismatch

■ Margin spiral ⇒ more strategic complementarity

Leverage Dynamics

- Credit cycle: (Loss spiral)
 - Constant volatility exog. shocks
 - ⇒ Countercyclical leverage
 - Underinvestment (second best user problem)
- funding problems lower market liquidity

 higher margins

 losses on existing positions
- Leverage cycle: (Margin spiral/Repo run)
 - Exogenously time-varying volatility
 ARCH/Scary bad news ⇒ Destabilizing Margins
 - ⇒ Pro-cyclical leverage
- Evidence: Pro- vs. countercyclical leverage depends on
 - investor type, book vs. market, new issuance vs. overall

Pro- vs. Counter-cyclical Leverage

- Adrian-Shin (2014): Book vs. market leverage
 - Intermediaries finance new assets with debt ⇒ Procyclical
- Geanakoplos-Pedersen (2014): New vs. old leverage
 - Margins spike in crisis ⇒ Procyclical
- He, Kelly, Manela (2017): Different constraints
 - "Equity constraint": BGG/BruSan, countercyclical leverage
 - "Debt constraint": Leverage cycle, procyclical leverage
 - Book/market leverage positively correlated for dealers
 - Evidence from HFs in Ang et al. (2011)
 - HFs procyclical, investment banks countercyclical

Run on Repo or not?

- 1. Not system-wide
- 2. Tri-party and bilateral repo markets behaved very differently
- 3. In tri-party market, runs on
 - a. select counterparties (Lehman)
 - Diamond-Dybvig run
 - b. select collateral (private label MBS/ABS)
 - Brunnermeier-Pedersen run

Gorton & Metrick (2011)

Bilateral repo data (private date by Gorton)

US Repo Run? 2008/9

- Margins on collateral assets
 - very stable in tri-party repo market
 - Copeland, Martin, Walker (2011)
 http://www.ny.frb.org/research/staff_reports/sr477.pdf
 - Opposing view: Gorton, Metrick (2011)
 - Not stable on <u>private</u> MBS/ABS
 - but small relative to overall MBS/ABS market (3%)
 - ABCP was a much bigger part...
 - Krishnamurthy, Nagel, Orlov (2011)
- Margin jump/run on selected counterparties
 - Bear Stearns (anecdotally)
 - Lehman (in data)
 - Not in Krishnamurthy et al.

Figure 6: Stacked Graph of Collateral

Note: July 17, 2008 excluded because no data was available for BNYM on that date. Red lines correspond to important market events. From left to right: 9/15/08 (Lehman), 10/14/08 (9 banks receive aid), 10/16/08 (UBS), 11/23/08 (Citi), 1/16/09 (B of A), 1/24/09 (Citi).

Figure 7: Median Haircuts by Asset Type

Note: Red lines correspond to important market events. From left to right: 9/15/08 (Lehman), 10/14/08 (9 banks receive aid), 10/16/08 (UBS), 11/23/08 (Citi), 1/16/09 (B of A), 1/24/09 (Citi).

■ Bilateral and Tri-party Haircuts/Margins?

Differences in Median Haircuts

■ ABCP collapse – rollover risk

- ABCP dries up
 - no rollover, esp. by money market funds ("Break the Buck" Rule 2a-7)
- SIVs draw on credit lines of sponsoring bank
- Banking Crisis: IKB, SachsenLB, Northern Rock, IndyMac,

ABCP: Composition

Crash 3: Spillover across Institutions

Financial Contagion

- Broadly, two types:
 - Contractual linkages: (Direct) cross-exposures
 - General equilibrium linkages: (Indirect) price effects.

Innermeier

Absorbers vs. amplifier

Direct	Indirect
Contractual links	"Virtual links"
Loss through bankruptcy/default	Similar exposure than other levered players
Position data	Response indicator - expectations/ constraints

Fat tails

Shock absorber

Shock amplifier

Depends on strategic substitutability/complementarity

Market Connectedness and Contagion

Connected Interbank market

Not fully connected market

- The more connected the larger is the scope for contagion
- Trade-off: Spillover/contagion vs. diversification!

III Systemic Risk Measure: $\Delta CoVaR$

- In returns
- VaR_q^j is defined as quantile

$$\Pr(X^j \le VaR_q^j) = q$$

• $CoVaR_q^{j|C(X^l)}$ is the conditional quantile

$$\Pr\left(X^{j} \le CoVaR_{q}^{j|C(X^{i})}|C(X^{i})\right) = q$$

■ The contribution

$$\Delta CoVaR_q^{j|i} = CoVaR_q^{j|X^i = VaR_q^i} - CoVaR^{j|X^i = VaR_{50}^i}$$

■ In dollars

$$\Delta^{\$}CoVaR_q^{j|i} = \text{Size}^{i} * \Delta CoVaR_q^{j|i}$$

$\blacksquare \Delta CoVaR$ vs. VaR

- Probability of a tree catching fire
- Probability of a tree on fire spilling over to forest

Various conditionings

- $\blacksquare \Delta CoVaR$
 - Q1: Which institutions move system (in a non-causal sense)
 - VaR^{system} | institution i in distress
- Exposure $\triangle CoVaR$
 - Q2: Which institutions are most exposed if there is a systemic crisis?
 - VaR^i | system in distress
- Network $\triangle CoVaR$
 - lacktriangle VaR of institution j conditional on i
- Asset by asset $\triangle CoVaR$

in non-causal sense!

Crash 3: Paradox of Prudence

- Two "spirals" amplify
 - Liquidity spiral (price of capital)
 - Disinflationary spiral (price of money)

Jdent", paradox of Thriti-

Crash 3: Paradox of Prudence

- like Keynes' Paradox of Thrift, but in risk-space "Micro-prudence" of bank is "macro-imprudent"
- Two "spirals" amplify
 - Liquidity spiral (price of capital)
 - Disinflationary spiral (price of money)
 - Banks issue less inside money (& diversify less risk risk)
 - HH demand more money

⇒Lower inflation

Crash 4: Spillovers Across Assets

- Net worth channel:
 - Expert net worth affects all assets
 BGG/KM/BruSan/Diamond-Rajan (2005)
 - Leverage cycle: Spillovers from "crossover" investors JG
 - Margins spike in one market
 - ⇒ Crossover investors transfer capital from other markets
 - BruPed: Multiple equilibria:

Joint jump in price across assets

- Even assets with uncorrelated payoffs jump together
- Could also be integrated in a DD-model

■ Measurement: *CoVaR*

Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening
- Crash phase
 - Traditional Bank Runs
 - Modern Banks and Liquidity Spirals
 - Fire-sales
 - Spillovers
- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox

Persistence

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects
- Due to feedback effects, persistence is much stronger in models with financial frictions
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods

CF: Persistence & Dampening

- lacktriangle Negative shock in period t decreases N_t
 - lacktriangle This increases financial friction and decreases I_t
- Decrease in capital supply leads to
 - Lower capital: K_{t+1}
 - Lower output: Y_{t+1}
 - Lower net worth: N_{t+1}
 - Feedback effects in future periods t + 2, ...
- Decrease in capital supply also leads to
 - Increased price of capital q_t
 - Dampening effect on propagation of net worth shock

■ Persistence ⇒ Dynamic Amplification

- Bernanke, Gertler and Gilchrist (1999) introduce technological illiquidity in the form of nonlinear adjustment costs to capital
- lacktriangle Negative shock in period t decreases N_t
 - lacktriangle This increases financial friction and decreases I_t
- In contrast to the dampening mechanism present in CF, now decrease in capital demand (not supply) leads to
 - Decreased price of capital due to adjustment costs
 - Amplification effect on propagation of net worth shock

Bernanke, Gertler & Gilchrist (BGG)

- BGG assume separate investment sector
 - This separates entrepreneurs' capital decisions from adjustment costs
- $\blacksquare \Phi(\cdot)$ represents *technological illiquidity*
 - Increasing and concave with $\Phi(0) = 0$
 - $K_{t+1} = \Phi\left(\frac{I_t}{K_t}\right)K_t + (1 \delta)K_t$
- FOC of investment sector

Kiyotaki & Moore (KM) '97

- Kiyotaki, Moore (1997) adopt a
 - collateral constraint, $Rb_t \leq q_{t+1}k_t$, instead of CSV
 - market illiquidity second best use of capital
- Output is produced in two sectors, differ in productivity
- Aggregate capital is fixed, resulting in
 - extreme technological illiquidity
 - Investment is completely irreversible
- Durable asset has two roles:
 - Collateral for borrowing
 - Input for production

KM Amplification

- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of market liquidity of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward

grow networth via retained earnings

Backward

asset pricing

"Kocherlakota Critique"

- Amplification for negative shocks differs from positive shocks
 - In Kocherlakota (2000) optimal scale of production (positive shock does not lead to expansion)
- Amplification is quantitatively too small
 - Capital share is only 1/3 and hence GDP is too small
 - Cordoba and Ripoll (2004)
 - Needs sizeable capital share plus
 - Low intertemporal substitution

"Single Shock Critique"

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
 - In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis
- Impulse response vs. volatility dynamics

Endogenous Volatility & Volatility Paradox

- Endogenous Risk/Volatility Dynamics in BruSan
 - Beyond Impulse responses

Input: constant volatility

Output: endogenous risk

time-varying volatility

- ⇒Precautionary savings
 - Role for money/safe asset
- ⇒ Nonlinearities in crisis ⇒ endogenous fait tails, skewness
- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility

(Minksy)

Conclusion

- "Run-up", "Crisis", and "Recovery"-mechanisms
 - Belief-focused (representative + heterogeneous)
 - Friction-focused, where risk is central
- Risk concentration, fire-sales, spillovers, ...
- Paradox of Prudence
- Volatility Paradox
 - Mean-Amplification, Exog. ARCH, Endog. Volatility Dynamics

- Macro/Monetary models with financial sector should include
 - physical investment
 - inside money creation

Extra Slides