Macro, Money and Finance Lecture 02: A Simple Macro-Finance Model

Markus Brunnermeier, Lars Hansen, Yuliy Sannikov

Course on Continuous-time Macro

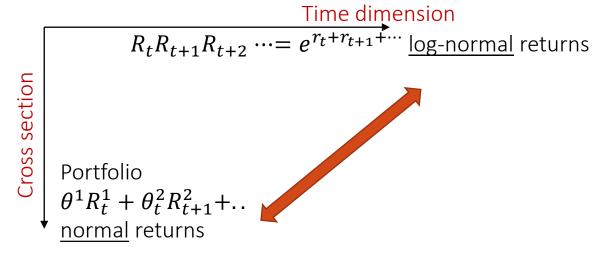
1. Introduction: Liquidity, Run-up, Crisis-Amplification, Recovery

Real Macro-Finance Models with Heterogeneous Agents

- 2. A Simple Model
- 3. General Solution Technique for Real Models
- 4. International Macro-Finance Model with Sudden Stops/Runs *Money Models*
- 5. A Simple Money Model
- 6. General Solution Technique for Money Models
- 7. The I Theory of Money
- 8. Welfare Analysis & Optimal Policy
 - Monetary and Macroprudential Policy
- 9. International Financial Architecture*
- 10. Robust Computational Methods Comparing Nonlinear Models
- 11. Calibration and Empirical Implications

Why Continuous Time Modeling?

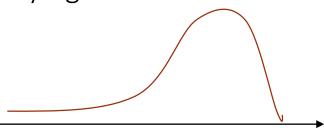
- Discrete time consumption
 - IES/RA within period = ∞ , but across periods = $1/\gamma$
- Discrete time: Portfolio choice



- ullet Linearize: kills σ -term and all assets are equivalent
- 2^{nd} order approximation: kills time-varying σ
- Log-linearize a la Campbell-Shiller
- \blacksquare As $\Delta t \rightarrow 0$ (net)returns converge to normal distribution
 - Constantly adjust the approximation point
 - Continuous compounding

■ Why Continuous Time Modeling?

- Ito processes... fully characterized by drift and volatility
 - Geometric Ito Process $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
- Characterization for full volatility dynamics on Prob.-space
 - Discrete time: Probability-loading on states
 - Cts. time: Loading on a Brownian Motion dZ_t (captured by σ)
- lacktriangle Normal distribution for dt, yet with skewness for $\Delta t>0$
 - If σ_t is time-varying



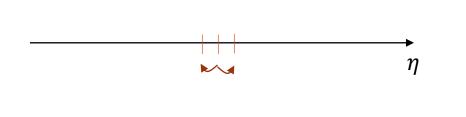
How restrictive?

Why Continuous Time Modeling with Ito?

- Continuous path
 - Information arrives continuously "smoothly" not in lumps
 - Implicit assumption: can react continuously to continuous info flow
 - Never jumps over a specific point, e.g. insolvency point
 - Simplifies numerical analysis:
 - Only need change from grid-point to grid-point (since one never jumps beyond the next grid-points)
 - No default risk
 - Can continuously delever as wealth declines
 - Might embolden investors ex-ante
 - Collateral constraint
 - Discrete time: $b_t R_{t,t+1} \le \min\{q_{t+1}\}k_t$
 - Cts. time: $b_t \leq (p_t + \underline{dp_t})k_t$
 - For short-term debt not for long-term debt ... or if there are jumps
- Levy processes... with jumps

Why Continuous Time Modeling with Ito?

$$E[dV(\eta)] = V'(\eta)\mu^{\eta}\eta dt + \frac{1}{2}V''(\eta)(\sigma^{\eta})^2\eta^2 dt$$



Just need the two points
Just need the function)
neighboring function
(not whole function)

- More analytical steps
 - Return equations
 - Next instant returns are essentially normal (easy to take expectations)
 - Explicit net worth and state variable dynamics
 - Continuous: only slope of price function determines amplification
 - Discrete: need whole price function (as jump size can vary)

Basics of Ito Calculus

- Geometric Ito Process $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
 - Stock goes up 32% or down 32% over a year. 256 trading days $\frac{32\%}{\sqrt{256}} = 2\%$
- Ito's Lemma:

$$df(X_t) = f'(X_t)\mu_t^X X_t dt + \frac{1}{2}f''(X_t)(\sigma_t^X X_t)^2 dt + f'(X_t)\sigma_t^X X_t dZ_t$$

$$\bullet u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}, u'(c) = c^{-\gamma} \quad \text{volatility of process } \frac{dc_t^{-\gamma}}{c_t^{-\gamma}} \text{ is } -\gamma \sigma_t^c$$

■ Ito product rule: stock price * exchange rate

$$\frac{d(X_t Y_t)}{X_t Y_t} = (\mu_t^X + \mu_t^Y + \sigma_t^X \sigma_t^Y) dt + (\sigma_t^X + \sigma_t^Y) dZ_t$$

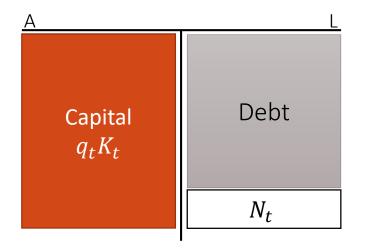
Ito ratio rule:

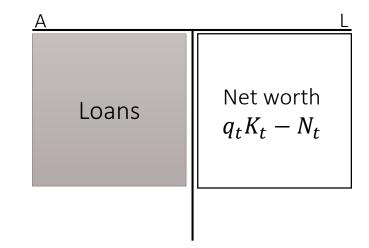
$$\frac{d(X_t/Y_t)}{X_t/Y_t} = \mu_t^X - \mu_t^Y + \sigma_t^Y (\sigma_t^Y - \sigma_t^X) dt + (\sigma_t^X - \sigma_t^Y) dZ$$

■ Simple Two Sector Model: Basak Cuoco (1998)

Expert sector

Household sector





Two Sector Model Setup

Expert sector

Household sector

• Output:
$$y_t = ak_t$$

Two Sector Model Setup

Expert sector

Household sector

- Output: $y_t = ak_t$
- lacktriangle Consumption rate: c_t

lacktriangle Consumption rate: \underline{c}_t

■ Investment rate: ι_t

$$\frac{dk_t^{\tilde{l}}}{k_t^{\tilde{l}}} = (\Phi(\iota_t) - \delta)dt + \sigma dZ_t$$

agent \tilde{i} of type i (expert, HH)

Two Sector Model Setup

Expert sector

- Output: $y_t = ak_t$
- lacktriangle Consumption rate: c_t
- Investment rate: l_t $\frac{dk_t^{\tilde{l}}}{k_t^{\tilde{l}}} = (\Phi(l_t) \delta)dt + \sigma dZ_t$

Household sector

 \blacksquare Consumption rate: $\underline{c_t}$

$$-E_0\left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt\right]$$

Log-utility in Basak Cuoco 1998

Two Sector Model Setup

Expert sector

- Output: $y_t = ak_t$
- lacktriangle Consumption rate: c_t
- Investment rate: ι_t

$$\frac{dk_t^{\tilde{l}}}{k_t^{\tilde{l}}} = (\Phi(\iota_t) - \delta)dt + \sigma dZ_t$$

Household sector

 \blacksquare Consumption rate: $\underline{c_t}$

$$\bullet E_0\left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt\right]$$

$$-E_0\left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt\right]$$

Friction: Can only issue

■ Risk-free debt

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - *Toolbox 1:* Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem

2. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς price of risk, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - b. Value function iteration by solving PDE

0. Postulate Aggregates and processes

Individual capital evolution

$$\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = (\Phi(\iota_t^{\tilde{i}}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i}}$$

- lacksquare Where $\Delta_t^{k, ilde{\iota}}$ is the individual cumulative capital purchase process
- Capital aggregation: $K \equiv \int k_t^{\tilde{\iota}} d\tilde{\iota}$ $\frac{dK_t}{K_t} = \int \left(\Phi(\iota_t^{\tilde{\iota}}) \delta\right) d\tilde{\iota} dt + \sigma dZ_t$

0. Postulate Aggregates and processes

Individual capital evolution

$$\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = (\Phi(\iota_t^{\tilde{i}}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i}}$$

- Where $\Delta_t^{k,\tilde{\iota}}$ is the individual cumulative capital purchase process
- $\frac{dK_t}{K_t} = \int \left(\Phi(\iota_t^{\tilde{\iota}}) \delta\right) d\tilde{\iota} dt + \sigma dZ_t$ egation: ■ Capital aggregation: $K \equiv \int k_t^{\tilde{i}} d\tilde{i}$
- Networth aggregation:
 - $N_t \equiv \int n_t^{\tilde{\imath}} d\tilde{\imath}, \quad \underline{N_t} \equiv \int \underline{n_t^{\tilde{\imath}}} d\tilde{\imath}$ Within sector:
 - $\eta_t \equiv N_t/(N_t+N_t)$ ■ Wealth share:

0. Postulate Aggregates and processes

Individual capital evolution

$$\frac{dk_t^{\tilde{i}}}{k_t^i} = (\Phi(\iota_t^{\tilde{i}}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i}}$$

- Where $\Delta_t^{k,\tilde{\iota}}$ is the individual cumulative capital purchase process
- Capital aggregation: $K \equiv \int k_t^{\tilde{\imath}} d\tilde{\imath}$ $\frac{dK_t}{K_t} = \int \left(\Phi(\iota_t^{\tilde{\imath}}) \delta\right) d\tilde{\imath} dt + \sigma dZ_t$
- Networth aggregation:
 - Within sector:
 - Wealth share:
- Value of capital stock:
 - Postulate

$$N_t \equiv \int n_t^{\tilde{\imath}} d\tilde{\imath}, \quad \underline{N_t} \equiv \int \underline{n_t^{\tilde{\imath}}} d\tilde{\imath}$$

$$\eta_t \equiv N_t/(N_t + \underline{N}_t)$$

$$q_t K_t$$

$$dq_t/q_t = \mu_t^q dt + \sigma_t^q dZ_t$$

0. Postulate Aggregates and processes

Individual capital evolution

$$\frac{dk_t^{\tilde{i}}}{k_t^i} = (\Phi(\iota_t^{\tilde{i}}) - \delta)dt + \sigma dZ_t + d\Delta_t^{k,\tilde{i}}$$

- Where $\Delta_t^{k,\tilde{\iota}}$ is the individual cumulative capital purchase process
- Capital aggregation: $K \equiv \int k_t^{\tilde{i}} d\tilde{i}$

$$\frac{dK_t}{K_t} = \int \left(\Phi(\iota_t^{\tilde{\iota}}) - \delta\right) d\tilde{\iota} dt + \sigma dZ_t \int_{\mathcal{N}_t}^{\mathcal{N}_t} d^{d} dt$$

Networth aggregation:

- $N_t \equiv \int n_t^{\tilde{\iota}} d\tilde{\iota}, \quad \underline{N}_t \equiv \int \underline{n}_t^{\tilde{\iota}} d\tilde{\iota}$ Within sector:
- $\eta_t \equiv N_t/(N_t + N_t)$ Wealth share:
- Value of capital stock: $q_t K_t$

 $dq_t/q_t = \mu_t^q dt + \sigma_{t}^q dZ_t$ Postulate

■ Postulate SDF-process: $\frac{d\xi_t}{\xi_t} = -r_t dt - \varsigma_t dZ_t$, $\frac{d\xi_t}{\underline{\xi_t}} = -r_t dt - \underline{\varsigma_t} dZ_t$ Price of risk

Price of risk

Aside: Basics of Ito Calculus

■ Geometric Ito Process $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$

■ Ito's Lemma:

■ Ito product rule: stock price * exchange rate

$$\frac{d(X_t Y_t)}{X_t Y_t} = (\mu_t^X + \mu_t^Y + \sigma_t^X \sigma_t^Y) dt + (\sigma_t^X + \sigma_t^Y) dZ_t$$

0. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
 - Use Ito product rule to obtain capital gain rate (in absence of purchases/sales)

■ Define
$$\check{k}_t^{\tilde{\imath}}$$
: $\frac{d\check{k}_t^{\tilde{\imath}}}{\check{k}_t^{\tilde{\imath}}} = \left(\Phi(\iota_t^{\tilde{\imath}}) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{\tilde{\imath},\tilde{\imath}}$ without purchases/sales

$$dr_t^K(\iota_t^{\tilde{\imath}}) = \left(\frac{a - \iota_t^i}{q} + \Phi(\iota_t^i) - \delta + \mu_t^q + \sigma \sigma_t^q\right) dt + (\sigma + \sigma_t^q) dZ_t$$

■ Postulate SDF-process: (Example: $\xi_t = e^{-\rho t}u'(c_t)$)

$$\frac{d\xi_t}{\xi_t} = -r_t dt - \varsigma_t dZ_t \qquad \frac{d\underline{\xi}_t}{\underline{\xi}_t} = -r_t dt - \underline{\varsigma}_t dZ_t$$
Price of risk

Recall discrete time $e^{-r^F} = E[SDF]$

0. Postulate Aggregates and Processes

- ... from price processes to return processes (using Ito)
 - Use Ito product rule to obtain capital gain rate (in absence of purchases/sales)

■ Define
$$\check{k}_t^{\tilde{\imath}}$$
: $\frac{d\check{k}_t^{\tilde{\imath}}}{\check{k}_t^{\tilde{\imath}}} = \left(\Phi(\iota_t^{\tilde{\imath}}) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{\tilde{\imath},\tilde{\imath}}$ without purchases/sales

$$dr_t^K(\iota_t^{\tilde{\imath}}) = \left(\frac{a - \iota_t^i}{q} + \Phi(\iota_t^i) - \delta + \mu_t^q + \sigma \sigma_t^q\right) dt + (\sigma + \sigma_t^q) dZ_t$$

■ Postulate SDF-process: (Example: $\xi_t = e^{-\rho t}u'(c_t)$)

$$\frac{d\xi_t}{\xi_t} = -r_t dt - \varsigma_t dZ_t \qquad \frac{d\underline{\xi}_t}{\underline{\xi}_t} = -r_t dt - \underline{\varsigma}_t dZ_t \qquad \text{Poll 20:} \\ \text{Why is } r_t \text{ for HH not underlined?} \\ \text{Price of risk} \qquad \text{Pri$$

Recall discrete time $e^{-r^F} = E[SDF]$

b) Debt can be traded

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio $\boldsymbol{\theta}$, & consumption choice of each agent)
 - *Toolbox 1:* Martingale Approach
- b. Asset/Risk Allocation *across types/sectors* & asset market clearing
 - *Toolbox 2:* "price-taking social planner approach" Fisher separation theorem
- 2. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς price of risk, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - b. Replace endogenous μ s, σ s with f, f', $f''(\eta)$
 - c. Value function iteration by solving PDE

\blacksquare 1. Individual Agent Choice of ι , θ , c

• Choice of ι is static problem (and separable) for each t

$$= \max_{\iota^{i}} dr^{K}(\iota^{i})$$

$$= \max_{\iota^{i}} \left(\frac{a - \iota^{i}}{q} + \Phi(\iota^{i}) - \delta + \mu^{q} + \sigma\sigma^{q} \right)$$

■ FOC: $\frac{1}{a} = \Phi'(\iota^i)$ Tobin's q

- All agents $\iota^i = \iota$ $\Rightarrow \frac{dK_t}{K_t} = (\Phi(\iota) \delta) dt + \sigma dZ_t$
- Special functional form:
 - $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q 1$

■ 1a. Martingale Approach – Discrete Time

$$\max_{\{c,\boldsymbol{\theta}\}} E_t \left[\sum_{\tau=t}^T \frac{1}{(1+\rho)^{\tau-t}} u(c_{\tau}) \right]$$

s.t.
$$\boldsymbol{\theta}_t \boldsymbol{p}_t = \boldsymbol{\theta}_{t-1} (\boldsymbol{p}_t + \boldsymbol{d}_t) - c_t$$
 for all t

■ FOC w.r.t. θ_t : (deviate from optimal at t and t+1)

$$\xi_t p_t = E_t [\xi_{t+1} (p_{t+1} + d_{t+1})]$$

- where $\xi_t = \frac{1}{(1+\rho)^t} \frac{u'(c_t)}{u'(c_0)}$ is the (multi-period) stochastic discount factor (SDF)
- lacktriangle If projected on asset span, then pricing kernel ξ_t^*
- Note: $MRS_{t,\tau} = \xi_{t+\tau}/\xi_t$
- lacktriangle Consider portfolio, where one reinvests dividend d
 - Portfolio is a self-financing trading strategy, A, with price, p_t^A

$$\xi_t p_t^A = E_t [\xi_{t+1} p_{t+1}^A]$$

• Stochastic process, $\xi_t p_t^A$, is a martingale

■ 1a. Martingale Approach – Cts. Time

$$\max_{\{\iota_t, \boldsymbol{\theta}_t, c_t\}_{t=0}^{\infty}} E\left[\int_0^{\infty} e^{-\rho} u(c_t) dt\right]$$
 s.t. $\frac{dn_t}{n_t} = -\frac{c_t}{n_t} dt + \sum_j \theta_t^j dr_t^j$ + labor income/endow/taxes n_0 given

- Portfolio Choice: Martingale Approach
 - Let x_t^A be the value of a "self-financing trading strategy" (reinvest dividends)
- Theorem: $\xi_t x_t^A$ follows a Martingale, i.e. drift = 0.

Let
$$\frac{dx_t^A}{x_t^A} = \mu_t^A dt + \sigma_t^A dZ_t,$$

$$\mathbb{R} \text{Recall} \qquad \frac{d\xi_t^i}{\xi_t^i} = -r_t dt - \varsigma_t^i dZ_t$$

By Ito product rule

$$\frac{\frac{d(\xi_t^i x_t^A)}{\xi_t^i x_t^A}}{\xi_t^i x_t^A} = \left(\underbrace{-r_t + \mu_t^A - \varsigma_t^i \sigma_t^A}\right) dt + \text{volatility terms}$$

- Expected return: $\mu_t^A = r_t + \varsigma_t^i \sigma_t^A$ For risk-free asset, i.e. $\sigma_t^A = 0$: $r_t^F = r_t$ Excess expected return to risky asset B: $\mu_t^A \mu_t^B = \varsigma_t^i (\sigma_t^A \sigma_t^B)$

$$r_t^F = r_t$$

$$\mu_t^A - \mu_t^B = \varsigma_t^i (\sigma_t^A - \sigma_t^B)$$

■ 1a. Martingale Approach – Cts. Time

- Proof 1: Stochastic Maximum Principle (see Handbook chapter)
- lacktriangle Proof 2: Intuition (calculus of variation) remove from optimum Δ at t_1 and add back at t_2

$$V(n,\omega,t) = \max_{\{\iota_S,\boldsymbol{\theta}_S,c_S\}_{S=t}^{\infty}} E_t \left[\int_0^{\infty} e^{-\rho(s-t)} u(c_S) ds | \omega_t = \omega \right]$$

• s.t. $n_t = n$

$$e^{-\rho t_1} \frac{\partial V}{\partial n} (n_{t_1}^*, x_{t_1}, t_1) x_{t_1}^A = E_{t_1} \left[e^{-\rho t_2} \frac{\partial V}{\partial n} (n_{t_2}^*, x_{t_2}, t_2) x_{t_2}^A \right]$$

■ See Merkel Handout

1a. Optimal Portfolio Choice

• Using $\mu_t^A - r_t = \varsigma_t^i \sigma_t^A$ for capital return (instead of generic asset A)

$$\frac{a-\iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t = \varsigma_t (\sigma + \sigma_t^q)$$

- Recall
 - ullet portfolio share in risk-free debt (short position)
 - lacksquare $(1- heta_t)$ portfolio share in (physical) capital k_t

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - *Toolbox 1:* Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem

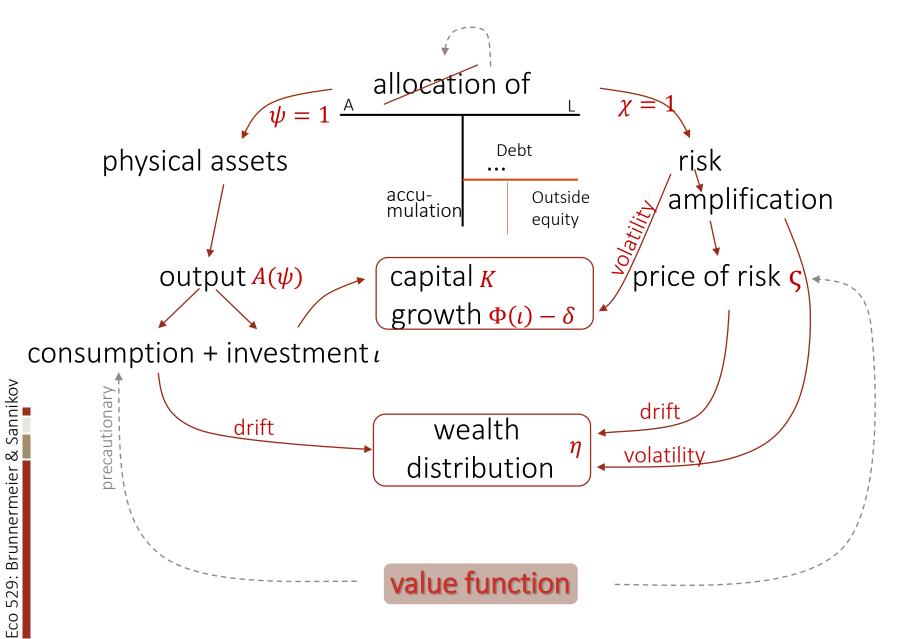
2. Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς price of risk, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - b. Value function iteration by solving PDE



Forward equation

Backward equation with expectations

\blacksquare 2a. CRRA Value Function: relate to ω

Applies separately for each type of agent

- ω_t Investment opportunity/ "networth multiplier"
- CRRA/power utility $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$
 - ⇒ increase networth by factor, optimal consumption for all future states increases by same factor
 - $\Rightarrow \left(\frac{c}{n}\right)$ -ratio is invariant in n
- ⇒ value function can be written as $\frac{u(\omega_t n_t)}{\rho}$, that is

$$= \frac{1}{\rho} \frac{(\omega_t n_t)^{1-\gamma} - 1}{1-\gamma} = \frac{1}{\rho} \frac{\omega_t^{1-\gamma} n_t^{1-\gamma} - 1}{1-\gamma}$$

$$\frac{\partial V}{\partial n} = u'(c) \text{ by optimal consumption (if no corner solution)}$$

$$\frac{\omega_t^{1-\gamma} n_t^{-\gamma}}{\rho} = c_t^{-\gamma} \Leftrightarrow c_t \frac{c_t}{n_t} = \rho^{1/\gamma} \omega_t^{1-1/\gamma}$$

2a. CRRA Value Function: Special Cases

$$\frac{c_t}{n_t} = \rho^{1/\gamma} \omega_t^{1 - 1/\gamma}$$

• For log utility $\gamma = 1: \left| \frac{c_t}{n_t} = \rho \right|$

$$\xi_t = e^{-\rho t}/c_t = e^{-\rho t}/(\rho n_t)$$
 for any $\omega_t \Rightarrow \sigma_t^n = \sigma_t^c = \varsigma_t$

Expected excess return: $\mu_t^A - r_t^F = \sigma_t^n \sigma_t^A$

- Recall $\frac{dn_t}{n_t} = -\frac{c_t}{n_t}dt + (1-\theta)dr_t^K + \theta dr_t$
- For both types: experts and HHs,

$$lacksquare rac{\underline{c}_t}{\underline{n}_t} =
ho ext{ and } \sigma_t^{\underline{n}} = \sigma_t^{\underline{c}} = \underline{\varsigma}_t$$

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - *Toolbox 1:* Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem

Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς price of risk, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - b. Value function iteration by solving PDE

3. GE: Markov States and Equilibria

Equilibrium is a map Histories of shocks

Histories of shocks ------ prices $q_t, \varsigma_t, \underline{\varsigma}_t, \iota_t, \underline{\theta}_t, \underline{\theta}_t$

$$\{\pmb{Z}_{\tau}, 0 \leq \tau \leq t\}$$

wealth distribution

$$\eta_t = \frac{N_t}{q_t K_t} \in (0,1)$$

wealth share

Aside: Basics of Ito Calculus

- Geometric Ito Process $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
- Ito's Lemma:

$$df(X_t) = f'(X_t)\mu_t^X X_t dt + \frac{1}{2}f''(X_t)(\sigma_t^X X_t)^2 dt + f'(X_t)\sigma_t^X X_t dZ_t$$

■ Ito product rule:

$$\frac{d(X_tY_t)}{X_tY_t} = (\mu_t^X + \mu_t^Y + \sigma_t^X\sigma_t^Y)dt + (\sigma_t^X + \sigma_t^Y)dZ_t$$

Ito ratio rule:

$$\frac{d(X_t/Y_t)}{X_t/Y_t} = \mu_t^X - \mu_t^Y + \sigma_t^Y (\sigma_t^Y - \sigma_t^X) dt + (\sigma_t^X - \sigma_t^Y) dZ_t$$

\blacksquare 3. Law of Motion of Wealth Share η_t

■ Method 1: Using Ito's quotation rule $\eta_t = N_t/(q_t K_t)$

- Note that $\varsigma_t = \sigma_t^n = (1 \theta_t)(\sigma + \sigma_t^q)$
- Ito ratio rule:

$$\frac{d(X_t/Y_t)}{X_t/Y_t} = \mu_t^X - \mu_t^Y + \sigma_t^Y (\sigma_t^Y - \sigma_t^X) dt + (\sigma_t^X - \sigma_t^Y) dZ_t$$

$$= \frac{d\eta_t}{\eta_t} = \left(\frac{a - \iota_t}{q_t} - \rho + \theta_t^2 \left(\sigma + \sigma_t^q\right)^2\right) dt - \underbrace{\theta_t}_{\leq 0} \left(\sigma + \sigma_t^q\right) dZ_t$$

■ Method 2: Change of numeraire + Martingale (Lecture 03)

Solving MacroModels Step-by-Step

- O. Postulate aggregates, price processes & obtain return processes
- 1. For given SDF processes

static

- a. Real investment ι , (portfolio θ , & consumption choice of each agent)
 - *Toolbox 1:* Martingale Approach
- b. Asset/Risk Allocation across types/sectors & asset market clearing
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem

Value functions

backward equation

- a. Value fcn. as fcn. of individual investment opportunities ω
 - Special cases
- b. De-scaled value fcn. as function of state variables η
 - Digression: HJB-approach (instead of martingale approach & envelop condition)
- c. Derive ς price of risk, C/N-ratio from value fcn. envelop condition
- 3. Evolution of state variable η

forward equation

- Toolbox 3: Change in numeraire to total wealth (including SDF)
- ("Money evaluation equation" μ^{ϑ})
- 4. Value function iteration & goods market clearing
 - a. PDE of de-scaled value fcn.
 - b. Value function iteration by solving PDE

4a. Market Clearing

Output good market

$$C_t = (a - \iota)K_t$$

$$\rho q_t K_t = (a - \iota(q_t))K_t$$

$$\rho q_t = (a - \iota(q_t)) \implies q_t = q \ \forall t$$

Capital market

$$1 - \theta_t = \frac{q_t K_t}{\underbrace{N_t}_{=1/\eta_t}}$$

Money market (by Walras Law)

4b. Model Solution

Using
$$\rho q_t = (a - \iota(q_t))$$
, $\kappa \iota_t = q_t - 1$, $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1)$

$$q = \frac{1 + \kappa a}{1 + \kappa \rho}$$

Using portfolio choice, goods & capital market clearing

$$r_{t} = \frac{a - \iota_{t}}{q_{t}} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q} + \sigma \sigma_{t}^{q} - \varsigma_{t}(\sigma + \sigma_{t}^{q})$$

$$= \rho + \Phi(\iota_{t}) - \delta - (1 - \theta_{t})\sigma^{2}$$

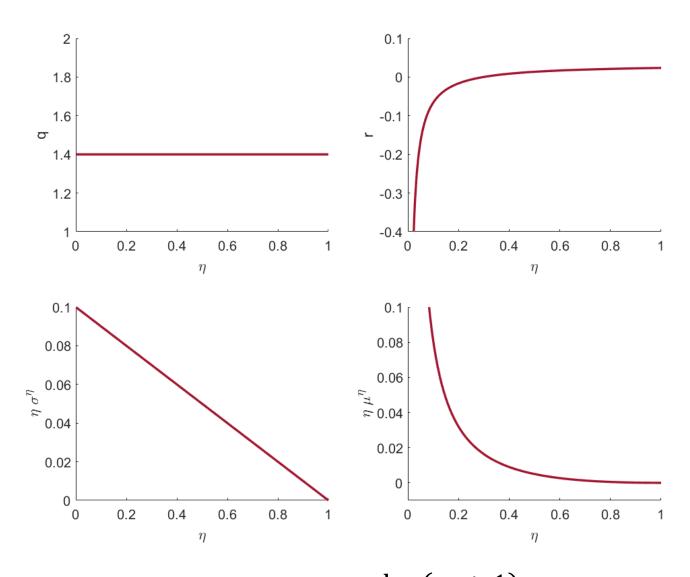
$$= \rho + \Phi(\iota_{t}) - \delta - \frac{\sigma^{2}}{\eta_{t}} \qquad \text{from capital market clearing}$$

$$r_{t} = \rho + \frac{1}{\kappa} \log(\frac{1 + \kappa a}{1 + \kappa \rho}) - \delta - \frac{\sigma^{2}}{\eta_{t}}$$

■ Goods & capital market clearing and η -evolution

$$\frac{d\eta_t}{\eta_t} = \frac{(1 - \eta_t)^2}{\eta_t^2} \sigma^2 dt + \frac{1 - \eta_t}{\eta_t} \sigma dZ_t$$

Numerical Example



$$a=.11, \rho=5\%, \sigma=.1, \Phi(\iota)=rac{\log(\kappa\iota+1)}{\kappa}, \kappa=10$$

Observation of Basak-Cuoco Model

- lacktriangledown η_t fluctuates with macro shocks, since experts are levered
- Price of risk, i.e. Sharpe ratio, is

$$\frac{\sigma}{\eta_t} = \frac{\rho + \Phi(\iota) - \delta - r_t}{\sigma}$$

- Goes to ∞ as η_t goes to zero
- Achieved via risk-free rate

$$r_t = \rho + \Phi(\iota) - \delta - \sigma^2/\eta_t \to -\infty$$

- lacktriangle Rather than depressing price of risky asset, $q_t=q \; orall t$
- lacksquare No endogenous risk $\sigma^q=0$
 - No amplification
 - No volatility effects
- $\mu_t^{\eta} = \frac{(1-\eta_t)^2}{\eta_t^2} \sigma^2 > 0 \Rightarrow$ in the long run HH vanish
 - Way out:
 - Different discount rates ho (KM)
 - Switching types (BGG)

Desired Model Properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Endogenous risk
 - Fire-sales, liquidity spirals, fat tails
 - Spillovers across assets and agents
 - Market and funding liquidity connection
 - SDF vs. cash-flow news
- Volatility paradox
- Financial innovation less stable economy
- ("Net worth trap" double-humped stationary distribution)