The Reversal Interest Rate

Markus Brunnermeier¹ Yann Koby¹

 $^{1}\mathsf{Princeton}\ \mathsf{University}$

Bank of Canada Annual Conference November 2018

Motivation

- NIRP: in DK, SWE, JP, CHE, ECB, ...
- Fear: NIRPs erode banks' Net Interest Income (NII)
 "Low interest rates squeeze Q4 profits by 67% at Credit Agricole" (FT, 2017/03)
- ightarrow potentially eroding lending channel

Motivation

- NIRP: in DK, SWE, JP, CHE, ECB, ...
- Fear: NIRPs erode banks' Net Interest Income (NII)
 "Low interest rates squeeze Q4 profits by 67% at Credit Agricole" (FT, 2017/03)
- ightarrow potentially eroding lending channel
 - Evidence of eroding profits
 - o Borio et al. (2017)
 - Claessens et al. (2017)
 - Ampudia and Van den Heuvel (2017)
 - Direct evidence for lending too:
 - Heider et al. (2017)
 - Basten and Mariathasan (2017)

Mechanism

Reversal Interest Rate:

Interest rate at which accommodative policy becomes contractionary

Mechanism:

- interest rate cut: $i \downarrow$
 - capital gains (CG) ↑

(The I Theory of Money)

banks' NII on new business ↓

(Market Power)

- if $|\Delta NII| > |\Delta CG|$, banks net worth $N_1 \downarrow$
- decrease in risk-weighted assets: $L(i^L) \downarrow$
 - o capital constraint

Partial Equilibrium, Two Periods

- 1. Reversal Interest Rate iRR:
 - o Further policy rate cuts contract bank lending
- 2. i^{RR} determinants:
 - Capital Gains (-), bank profitability/capitalization (-)
 - Capital constraint (+), Deposit Stickiness (+)
- Optimal QE-Sequencing: cut before QE

Partial Equilibrium, Three Periods

4. Creeping-up: Long-lasting low-rate environment harmful

- 5. i^{RR} in GE $< i^{RR}$ in PE: intermediation boom
- 6. Low r^* : less leeway for MP as $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Partial Equilibrium, Two Periods

- 1. Reversal Interest Rate iRR:
 - o Further policy rate cuts contract bank lending
- 2. i^{RR} determinants:
 - o Capital Gains (-), bank profitability/capitalization (-)
 - \circ Capital constraint (+), Deposit Stickiness (+)
- Optimal QE-Sequencing: cut before QE

Partial Equilibrium, Three Periods

4. Creeping-up: Long-lasting low-rate environment harmful

- 5. i^{RR} in GE $< i^{RR}$ in PE: intermediation boom
- 6. Low r^* : less leeway for MP as $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Partial Equilibrium, Two Periods

- 1. Reversal Interest Rate i^{RR}:
 - o Further policy rate cuts contract bank lending
- 2. i^{RR} determinants:
 - o Capital Gains (-), bank profitability/capitalization (-)
 - \circ Capital constraint (+), Deposit Stickiness (+)
- 3. Optimal QE-Sequencing: cut before QE

Partial Equilibrium, Three Periods

4. Creeping-up: Long-lasting low-rate environment harmful

- 5. i^{RR} in GE $< i^{RR}$ in PE: intermediation boom
- 6. Low r^* : less leeway for MP as $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Partial Equilibrium, Two Periods

- 1. Reversal Interest Rate iRR:
 - o Further policy rate cuts contract bank lending
- 2. i^{RR} determinants:
 - o Capital Gains (-), bank profitability/capitalization (-)
 - \circ Capital constraint (+), Deposit Stickiness (+)
- 3. Optimal QE-Sequencing: cut before QE

Partial Equilibrium, Three Periods

4. Creeping-up: Long-lasting low-rate environment harmful

- 5. i^{RR} in GE $< i^{RR}$ in PE: intermediation boom
- 6. Low r^* : less leeway for MP as $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Partial Equilibrium, Two Periods

- 1. Reversal Interest Rate iRR:
 - o Further policy rate cuts contract bank lending
- 2. i^{RR} determinants:
 - Capital Gains (-), bank profitability/capitalization (-)
 - \circ Capital constraint (+), Deposit Stickiness (+)
- 3. Optimal QE-Sequencing: cut before QE

Partial Equilibrium, Three Periods

4. Creeping-up: Long-lasting low-rate environment harmful

General Equilibrium, ∞ Periods

- 5. i^{RR} in GE $< i^{RR}$ in PE: intermediation boom
- 6. Low r^* : less leeway for MP as $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Results Preview I

Response to marginal shock (0.1%), in steady-state and at loan rate reversal

Results Preview II

- Can compare $i^{SS} = 2.0\%$ vs. 1.5% (e.g. $r^* \downarrow$, π^* constant)
- Worse response to large shock ($i^{SS} = 2.0\%$ reversal)
- Take-away: $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Outline

1. Reversal Rate in Two-Period Model

2. Creeping up Result

3. New Keynesian DSGE

4. Conclusion

Outline

1. Reversal Rate in Two-Period Model

2. Creeping up Result

3. New Keynesian DSGE

4. Conclusion

Continuum of identical banks with Balance Sheet:

Timing of events:

- 1. Central Bank unexpectedly changes i
- 2. Banks realize capital gains
- 3. Banks choose L, i^L, D, i^D, S
- 4. Next period profits realized

Continuum of identical banks with Balance Sheet:

Timing of events:

- 1. Central Bank unexpectedly changes i
- 2. Banks realize capital gains
- 3. Banks choose L, i^L, D, i^D, S
- 4. Next period profits realized

Safe assets:

• Rate i is chosen by the Central Bank

Loans

• Demand function $L(i^L)$, $L'(\cdot) < 0$, elasticity $\varepsilon^L(\cdot)$

Deposits

- Each bank associated with depositors with intensive margin deposit supply $d(i^D)$, $d'(i^D) > 0$, elasticity $\varepsilon^D(\cdot)$
- Depositors tolerate spread up to $\eta(i)$ ("wake up & search"), "activation spread threshold" bounds banks' market power:

$$D(i^D) = d(i^D) \times \mathbf{1}_{\{i-i^D \leq \eta(i) \ \lor \ i^D > \max_{j'} i_j^D\}}$$

- $E_0(i)$ with $E'_0(i) < 0$: capital gains/asset re-evaluation from unexpected i change
 - o e.g. maturity mismatch on initial balance sheet

Safe assets:

• Rate i is chosen by the Central Bank

Loans:

• Demand function $L(i^L)$, $L'(\cdot) < 0$, elasticity $\varepsilon^L(\cdot)$

Deposits

- Each bank associated with depositors with intensive margin deposit supply $d(i^D)$, $d'(i^D) > 0$, elasticity $\varepsilon^D(\cdot)$
- Depositors tolerate spread up to $\eta(i)$ ("wake up & search"), "activation spread threshold" bounds banks' market power:

$$D(i^D) = d(i^D) \times \mathbf{1}_{\{i-i^D \leq \eta(i) \ \lor \ i^D > \max_{j'} i_j^D\}}$$

- $E_0(i)$ with $E'_0(i) < 0$: capital gains/asset re-evaluation from unexpected i change
 - o e.g. maturity mismatch on initial balance sheet

Safe assets:

• Rate i is chosen by the Central Bank

Loans:

• Demand function $L(i^L)$, $L'(\cdot) < 0$, elasticity $\varepsilon^L(\cdot)$

Deposits:

- Each bank associated with depositors with intensive margin deposit supply $d(i^D)$, $d'(i^D) > 0$, elasticity $\varepsilon^D(\cdot)$
- Depositors tolerate spread up to $\eta(i)$ ("wake up & search"), "activation spread threshold" bounds banks' market power:

$$D(i^D) = d(i^D) \times \mathbf{1}_{\{i-i^D \le \eta(i) \ \lor \ i^D > \max_{j'} i_{j'}^D \}}$$

- $E_0(i)$ with $E_0'(i) < 0$: capital gains/asset re-evaluation from unexpected i change
 - o e.g. maturity mismatch on initial balance sheet

Safe assets:

• Rate *i* is chosen by the Central Bank

Loans:

• Demand function $L(i^L)$, $L'(\cdot) < 0$, elasticity $\varepsilon^L(\cdot)$

Deposits:

- Each bank associated with depositors with intensive margin deposit supply $d(i^D)$, $d'(i^D) > 0$, elasticity $\varepsilon^D(\cdot)$
- Depositors tolerate spread up to $\eta(i)$ ("wake up & search"), "activation spread threshold" bounds banks' market power:

$$D(i^D) = d(i^D) \, imes \, {\bf 1}_{\{i-i^D \leq \eta(i) \, \lor \, i^D > \, \max_{j'} i^D_{j'} \}}$$

- $E_0(i)$ with $E_0'(i) < 0$: capital gains/asset re-evaluation from unexpected i change
 - o e.g. maturity mismatch on initial balance sheet

Financial frictions:

- Capital constraint $\psi^L L \leq N_1$
 - o Regulations (e.g. Basel III)
 - o Endogenous risk-taking behavior, agency problems
- Liquidity constraint $\psi^D D \leq S$
 - o Reserve requirements
 - o Bank runs

Banks' problems

$$\max_{i^{L}, i^{D}, L, D, S, N_{1}} N_{1} = (1 + i^{L})L(i^{L}) + (1 + i)S - (1 + i^{D})D(i^{D})$$

$$L + S = D + E_{0}(i)$$

$$\psi^{L}L < N_{1}, \ \psi^{D}D < S$$

Financial frictions:

- Capital constraint $\psi^L L \leq N_1$
 - o Regulations (e.g. Basel III)
 - o Endogenous risk-taking behavior, agency problems
- Liquidity constraint $\psi^D D \leq S$
 - Reserve requirements
 - Bank runs

Banks' problem:

$$\max_{i^{L}, i^{D}, L, D, S, N_{1}} N_{1} = (1 + i^{L})L(i^{L}) + (1 + i)S - (1 + i^{D})D(i^{D})$$

$$L + S = D + E_{0}(i)$$

$$\psi^{L}L \leq N_{1}, \ \psi^{D}D \leq S$$

Activation Spread Threshold $\eta^D(i)$ (Sharpe 1997, Yankov 2017)

- if $i^D < i \eta^D(i) \Rightarrow$ start searching for other bank
- $\eta^D(i)$ is increasing in i

Activation Spread Threshold $\eta^D(i)$ (Sharpe 1997, Yankov 2017)

- if $i^D < i \eta^D(i) \Rightarrow$ start searching for other bank
- $\eta^D(i)$ is increasing in i

Activation Spread Threshold $\eta^D(i)$ (Sharpe 1997, Yankov 2017)

- if $i^D < i \eta^D(i) \Rightarrow$ start searching for other bank
- $\eta^D(i)$ is increasing in iHainz et al. 2017 (Survey evidence: Germany)

Figure 3
Firms' Measures to Avoid Negative Interest Rate

13

Activation Spread Threshold $\eta^D(i)$ (Sharpe 1997, Yankov 2017)

- if $i^D < i \eta^D(i) \Rightarrow$ start searching for other bank
- $\eta^D(i)$ is increasing in i Hainz et al. 2017 (Survey evidence: Germany)

Activation Spread Threshold $\eta^D(i)$ (Sharpe 1997, Yankov 2017)

- if $i^D < i \eta^D(i) \Rightarrow$ start searching for other bank
- $\eta^D(i)$ is increasing in i Hainz et al. 2017 (Survey evidence: Germany)

Two-Period model: Optimal Rates

Optimal loan rate:

$$i^{L*} = \underbrace{i}_{\substack{\text{Marginal} \\ \text{opportunity cost}}} + \underbrace{\frac{1}{\varepsilon^{L*}}}_{\substack{\text{Mark-up}}} + \underbrace{\frac{\psi^L}{1+\psi^L}\lambda^{L*}}_{\substack{\text{capital constraint}}}$$

Optimal deposit rate

$$i^{D*} = i - \eta(i)$$
Marginal Mark-down benefit

Two-Period model: Optimal Rates

Optimal loan rate:

$$i^{L*} = \underbrace{i}_{\substack{\text{Marginal} \\ \text{opportunity cost}}} + \underbrace{\frac{1}{\varepsilon^{L*}}}_{\substack{\text{Mark-up}}} + \underbrace{\frac{\psi^L}{1+\psi^L}\lambda^{L*}}_{\substack{\text{capital constraint}}}.$$

Optimal deposit rate

$$i^{D*} = i - \eta(i)$$
Marginal Mark-down benefit

Two-Period model: Existence of i^{RR}

Reversal interest rate i^{RR} defined as:

•
$$\frac{dL^*}{di} \le 0$$
 iff $i \ge i^{RR}$

Proposition:

• For $E_0(i)$ & $E_0'(i)$ (capital gains) small enough, $i^{RR} > -\infty$ exists.

Intuition

• Envelope theorem:

$$\frac{dN_1^*}{di} = \frac{1}{1 + \lambda^{L*}} \left(\underbrace{\frac{dNII}{di}}_{S>0} + (1+i) \underbrace{\frac{dE_0(i)}{di}}_{\leq 0} \right)$$

where: NII =
$$i^{L*}L^* + iS^* - i^{D*}D^*$$

• Key question: How much hedging/capital gains?

Two-Period model: Existence of *i*^{RR}

Reversal interest rate i^{RR} defined as:

• $\frac{dL^*}{di} \le 0$ iff $i \ge i^{RR}$

Proposition:

• For $E_0(i)$ & $E_0'(i)$ (capital gains) small enough, $i^{RR} > -\infty$ exists.

Intuition:

• Envelope theorem:

$$\frac{dN_1^*}{di} = \frac{1}{1 + \lambda^{L*}} \left(\underbrace{\frac{d\mathsf{NII}}{di}}_{S>0} + (1+i) \underbrace{\frac{dE_0(i)}{di}}_{<0} \right)$$

where: NII =
$$i^{L*}L^* + iS^* - i^{D*}D^*$$
 interest income interest expenses

• Key question: How much hedging/capital gains?

Two-Period model: Existence of i^{RR}

Main Insight

• As long as capital constraint is slack, $\psi^L L(i^L) < N_1$,

$$\frac{dL(i^L)}{di^L}\frac{di^L}{di} < 0 \text{ and } \frac{dN_1}{di} > 0.$$

• When capital constraint binds, $\psi^L L(i^L) = N_1$,

$$\frac{dL(i^L)}{di^L}\frac{di^L}{di} = \frac{1}{\psi^L}\frac{dN_1}{di} > 0$$

- Reversal interest rate, i^{RR}
 - below which capital constraint binds and
 - loan supply contracts with interest rate cuts.

Two-Period model: Comparative Static

Determinants of i^{RR} :

1. Let
$$E_0(i) = \overline{e}_0 + CG_0(i)$$
.

- i^{RR} decreases in \bar{e}_0 .
- i^{RR} increases in $\partial CG_0(i)/\partial i$ holding $E_0(i)$ fixed and assuming $i > i^{RR}$.

2. Let
$$E_0(i) = \bar{e}_0 + (1 - \chi_0) CG_0(i)$$

 i^{RR} increases with dividend rate χ_0 . (dividend)

3.
$$i^{RR}$$
 increases in ψ^L and ψ^D . (regulation)

4.
$$i^{RR}$$
 decreases in $\eta^D(i)$. (market power)

Optimal sequencing of QE result from 1. above:

- QE decreases maturity mismatch on banks' balance sheets
- First cut rates, then do QE

Two-Period model: Comparative Static

Determinants of i^{RR} :

- 1. Let $E_0(i) = \overline{e}_0 + CG_0(i)$.
 - i^{RR} decreases in \bar{e}_0 .
 - i^{RR} increases in $\partial CG_0(i)/\partial i$ holding $E_0(i)$ fixed and assuming $i > i^{RR}$.
- 2. Let $E_0(i) = \overline{e}_0 + (1 \chi_0) CG_0(i)$ i^{RR} increases with dividend rate χ_0 . (dividend)
- 3. i^{RR} increases in ψ^L and ψ^D . (regulation)
- 4. i^{RR} decreases in $\eta^D(i)$. (market power)

Optimal sequencing of QE result from 1. above:

- QE decreases maturity mismatch on banks' balance sheets
- First cut rates, then do QE

Outline

1. Reversal Rate in Two-Period Model

2. Creeping up Result

3. New Keynesian DSGE

4. Conclusion

Creeping-up result

• *i*^{RR} creeps up over time (as bonds mature)

Intuition:

- Loss in NII last as long as low-interest rate environment does
- Capital gains last only until bonds mature

Profit determinants	<i>t</i> = 1	t=2	t = 3	t = 4
NII (new business)	dNII/di (−)	dNII/di (−)	dNII/di (−)	dNII/di (−)
Capital gains	dE_0/di (+)	dE_0/di (+)		

Outline

1. Reversal Rate in Two-Period Model

2. Creeping up Result

3. New Keynesian DSGE

4. Conclusion

NK DSGE with Banks

"Banks with market power" in NK DSGE model

- Embeds standard NK model as frictionless case
- · Adds banks and bank-dependent production sector

Main insights:

- Impact: i^{RR} in G.E. $< i^{RR}$ in P.E.
 - o intermediation boom
- Low rate/inflation env.: less lee-way for MP

$$\circ$$
 $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

NK DSGE Overview

Key additions:

- "SMEs" need bank loans until retained earnings suffice
- Bank maturity structure: LT bonds (3.4 yr.), loans (1.9 yr.)
- Imperfect deposit pass-through

Loan rate i^L response

Innovations (0.5%, 1.0%, ..., 3.5%) to the Taylor Rule ($i_{SS} = 2.0\%$)

Brunnermeier - Koby

Other Outcomes at Loan Rate Reversal

Response to marginal shock, in steady-state and at loan rate reversal (post -3.5% shock)

Other Outcomes at Loan Rate Reversal

Response to marginal shock, in steady-state and at loan rate reversal (post -3.5% shock)

Other Outcomes at Loan Rate Reversal

Response to marginal shock, in steady-state and at loan rate reversal (post -3.5% shock)

Low r* environment

- Can compare $i^{SS} = 2.0\%$ vs. 1.5% (e.g. $r^* \downarrow$, π^* constant)
- Worse response to 350bps shock ($i^{SS} = 2.0\%$ reversal)
- Take-away: $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

Brunnermeier - Koby

Outline

1. Reversal Rate in Two-Period Mode

2. Creeping up Result

3. New Keynesian DSGE

- Existence of Reversal Interest Rate:
 - Lower bank NII & profits
 - Lower lending due to capital/liquidity constraint
- Reversal rate determinants:
 - Regulatory constraints, capitalization, profitability, dividends
- QE only after exhaustion of interest rate cuts
- Creeping up effect: Long-lasting low-rate environment harmful
- Intermediation boom weakens i^{RR} in GE
- Low rate/inflation env.: less lee-way for MP $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

- Existence of Reversal Interest Rate:
 - Lower bank NII & profits
 - Lower lending due to capital/liquidity constraint
- Reversal rate determinants:
 - Regulatory constraints, capitalization, profitability, dividends
- QE only after exhaustion of interest rate cuts
- Creeping up effect: Long-lasting low-rate environment harmful
- Intermediation boom weakens i^{RR} in GE
- Low rate/inflation env.: less lee-way for MP $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

- Existence of Reversal Interest Rate:
 - Lower bank NII & profits
 - Lower lending due to capital/liquidity constraint
- Reversal rate determinants:
 - Regulatory constraints, capitalization, profitability, dividends
- QE only after exhaustion of interest rate cuts
- Creeping up effect: Long-lasting low-rate environment harmful
- Intermediation boom weakens i^{RR} in GE
- Low rate/inflation env.: less lee-way for MP $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

- Existence of Reversal Interest Rate:
 - Lower bank NII & profits
 - Lower lending due to capital/liquidity constraint
- Reversal rate determinants:
 - Regulatory constraints, capitalization, profitability, dividends
- QE only after exhaustion of interest rate cuts
- Creeping up effect: Long-lasting low-rate environment harmful
- Intermediation boom weakens i^{RR} in GE
- Low rate/inflation env.: less lee-way for MP $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

- Existence of Reversal Interest Rate:
 - Lower bank NII & profits
 - Lower lending due to capital/liquidity constraint
- Reversal rate determinants:
 - Regulatory constraints, capitalization, profitability, dividends
- QE only after exhaustion of interest rate cuts
- Creeping up effect: Long-lasting low-rate environment harmful
- Intermediation boom weakens i^{RR} in GE
- Low rate/inflation env.: less lee-way for MP $i^{SS} \downarrow \Rightarrow i^{RR} \downarrow$

- Existence of Reversal Interest Rate:
 - Lower bank NII & profits
 - Lower lending due to capital/liquidity constraint
- Reversal rate determinants:
 - Regulatory constraints, capitalization, profitability, dividends
- QE only after exhaustion of interest rate cuts
- Creeping up effect: Long-lasting low-rate environment harmful
- Intermediation boom weakens i^{RR} in GE
- Low rate/inflation env.: less lee-way for MP $i^{SS}\downarrow \Rightarrow i^{RR}\downarrow$