

Safe Assets

with Valentin Haddad

The I Theory of Money

- Money & Banking with Asset Pricing Tools -

with Yuliy Sannikov

Princeton University

Definitions of Safe Asset

- 1. Safe = risk-free for a particular horizon
 - But inflation risk
 - E.g. holders are infinitely risk aversion Caballero & Farhi
- 2. Safe = informationally insensitive
 - No decline in value due to asymmetric info

Brunnermeier & Haddad

Definitions of Safe Asset

- 1. Safe = risk-free for a particular horizon
 - E.g. holders are infinitely risk aversion
 - ... but inflation risk
- 2. Safe = informationally insensitive
 - No decline in value due to asymmetric info

- 3. Safe = "Good friend analogy"
 - Safe for random horizon
 - Appreciates in times of crisis
 - Safe = "Safe Asset Tautology"
 - Safe because perceived to be safe (multiple equilibria)
 - Bubble

Caballero & Farhi

Holmstrom & Gordon

Brunnermeier

& Haddad

■ Safe asset & money - close cousins

Store of value

store of value

- Held in addition to risky assets
- Held in order to produce (private) safe assets (by banks!)
- Reference/benchmark asset
- Good collateral: stable margins
 - Facilitates financial trade

unit of account

transaction role

Safety versus Risk

- US Treasury downgraded by S&P (due to default risk)
 - ... but yield declines
- German CDS spread versus yield during Euro crisis

- "Money and Banking" (in macro-finance)

 - Banking —— "diversifier" holds risky assets, issues inside money
 - Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises
 - Demand for money rises
 less idiosyncratic risk is diversified

Disinflation spiral a la Fisher

- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)
- Paradox of Thrift (in risk terms)

"Money and Banking" (in macro-finance)

- store of value/safe asset Money
- Banking "diversifier"

holds risky assets, issues inside money

- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises

Disinflation spiral a la Fisher

- Demand for money rises
- less idiosyncratic risk is diversified
- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

(in risk terms)

Brunnermeier & Sannikov

"Money and Banking" (in macro-finance)

- store of value/safe asset Money
- Banking "diversifier"

holds risky assets, issues inside money

- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises

- **Disinflation spiral** a la Fisher less idiosyncratic risk is diversified
- Demand for money rises
- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

(in risk terms)

Monetary Policy (redistributive)

Risk, Monetary & Macropru Policy

- Risk
 - Exogenous risk
 - Sector-specific
 - Idiosyncratic
 - Endogenous risk
 - Shifts in wealth share
 - Variation in risk premia

system<u>atic</u> cash flow risk

→ systemic risk

- Risk management
 - Monetary policy as "risk transfer"
 - Affects (relative) asset prices ——reduces systemic risk
 - Macroprudential policy
 - Affects/limits quantities/risk taking

Roadmap

- Safe assets and money: close cousins
- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model with outside money
 - Adding intermediary sector and inside money
- Model with monetary policy
- The Curse of Safe Assets
- ESBies: securitization and safe assets

One sector basic model

■ Technologies *a*

- Each household can only operate one firm
 - Physical capital $\frac{dk_t^{'}}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$ • Output sector idiosyncratic

risk

$$y_t = Ak_t$$

Demand for money

■ Technologies *a*

- $q_t K_t$ value of physical capital
 - Postulate constant q_t
- $p_t K_t$ value of outside money
 - Postulate value of money changes proportional to K_t

risk

- Each household can only operate one firm
 - Physical capital

$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$
• Output sector idiosyncratic

$$y_t = Ak_t$$

Demand for money

■ Technologies *a*

- $\blacksquare qK_t$ value of physical capital
 - $dr^a = \frac{A-\iota}{a}dt + (\Phi(\iota) \delta) dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$
- $\blacksquare pK_t$ value of outside money

•
$$dr^M = \underbrace{(\Phi(\iota) - \delta)}_{g} dt + \sigma^a dZ_t^a$$

- Each household can only operate one firm
 - Physical capital

$$\frac{dk_t'}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$
• Output sector idiosyncratic

risk

$$y_t = Ak_t$$

Demand for money

\blacksquare Demand with $E\left[\int_0^\infty e^{-\rho t} \log c_t dt\right]$

- $\blacksquare qK_t$ value of physical capital
 - $dr^a = \frac{A-\iota}{a}dt + (\Phi(\iota) \delta) dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$
- pK_t value of outside money

•
$$dr^M = \underbrace{(\Phi(\iota) - \delta)}_{g} dt + \sigma^a dZ_t^a$$

Consumption demand:

$$\rho(p+q)K_t$$

■ Technologies *a*

Demand with log-utility

Outside Money

 $\blacksquare qK_t$ value of physical capital

•
$$dr^a = \frac{A-\iota}{q}dt + (\Phi(\iota) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$

■ pK_t value of outside money

•
$$dr^M = \underbrace{(\Phi(\iota) - \delta)}_{q} dt + \sigma^a dZ_t^a$$

Consumption demand:

$$\rho(p+q)K_t$$

• Asset (share) demand x^a :

$$E[dr^a - dr^M]/dt = Cov[dr^a - dr^M],$$

■ Technologies *a*

$$x^{a} = \frac{E[dr^{a} - dr^{M}]/dt}{\widetilde{\sigma}^{2}} = \frac{\frac{dr^{M} + x^{a}(dr^{a} - dr^{M})}{\widetilde{\sigma}^{2}}}{\frac{(A - \iota)/q}{\widetilde{\sigma}^{2}}}$$

Investment rate: (Tobin's q)

$$\Phi'(\iota) = 1/q$$

Demand with log-utility

Outside Money

 $\blacksquare qK_t$ value of physical capital

•
$$dr^a = \frac{A-\iota}{q}dt + (\Phi(\iota) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$

■ pK_t value of outside money

•
$$dr^M = \underbrace{(\Phi(\iota) - \delta)}_{q} dt + \sigma^a dZ_t^a$$

Consumption demand:

$$\rho(p+q)K_t$$

■ Asset (share) demand x^a :

$$E[dr^a - dr^M]/dt = Cov[dr^a - dr^M]$$

■ Technologies *a*

$$x^{a} = \frac{E[dr^{a} - dr^{M}]/dt}{\tilde{\sigma}^{2}} = \frac{(A - \iota)/q}{\tilde{\sigma}^{2}}$$

Investment rate: (Tobin's q) $\Phi'(\iota) = 1/q$

• For
$$\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \iota = \frac{q-1}{\kappa}$$

Market clearing

Outside Money

Money

Net worth

Technologies a

 $\blacksquare qK_t$ value of physical capital

•
$$dr^a = \frac{A-\iota}{q}dt + (\Phi(\iota) - \delta) dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$

 $\blacksquare pK_t$ value of outside money

•
$$dr^M = \underbrace{(\Phi(\iota) - \delta)}_{g} dt + \sigma^a dZ_t^a$$

Consumption demand:

$$\rho(p+q)K_t = (A-\iota)K_t$$

• For
$$\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \iota = \frac{q-1}{\kappa}$$

Equilibrium

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{\widetilde{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q$
$q_0 = \frac{\kappa A + 1}{\kappa \rho + 1}$	$q = \frac{\kappa A + 1}{\kappa \sqrt{\rho} \widetilde{\sigma} + 1}$

Welfare analysis

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{\widetilde{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q$
$q_0 = \frac{\kappa A + 1}{\kappa \rho + 1}$	
${g}_0$	> g
welfare ₀	< welfare

Roadmap

- Safe assets and money: close cousins
- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model with outside money
 - Adding intermediary sector and inside money
- Model with monetary policy
- The Curse of Safe Assets
- ESBies: securitization and safe assets

Outline of two sector model

■ Technologies *b*

Technologies a

Switch technology

- Households have to
 - Specialize in one subsector for one period

$$\frac{dk_t}{k_t} = \cdots dt + \sigma^b \frac{dZ_t^b}{dZ_t^b} + \tilde{\sigma} \frac{d\tilde{Z}_t^b}{d\tilde{Z}_t^b}$$

Demand for money

sector specific + idiosyncratic risk

$$\frac{dk_t}{k_t} = \cdots dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$

Technologies b

■ Technologies *a*

Switch technology

- Specialize in one subsector for one period
- Demand for money

Roadmap

- Safe assets and money: close cousins
- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model with outside money
 - Adding intermediary sector and inside money
- Model with monetary policy
- The Curse of Safe Assets
- ESBies: securitization and safe assets

Roadmap

- Model absent monetary policy
 - Toy model: one sector with outside money
 - Two sector model with outside money
 - Adding intermediary sector and inside money
- Model with monetary policy

Model with macro-prudential policy

■ Technologies *b*

Technologies a

Net worth

Money 41

Money Land Money And Money Money And Money Money

 Risk can be partially sold off to intermediaries Risk is
 <u>not contractable</u>
 (Plagued with
 moral hazard
 problems)

Technologies b

Technologies a

- Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

Outside Money

Net worth

Technologies b

- Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

Outside Money

HH Net worth

■ Technologies *b*

Outside Money

Pass through

Inside Money
(deposits)

Net worth

Technologies a

A

A

Money

Net worth

- Intermediaries
 - Can hold outside equity
 & diversify within sector b
 - Monitoring
 - Create inside money
 - Maturity/liquidity transformation

■ Shock impairs assets: 1st of 4 steps

■ Technologies *b*

■ Shrink balance sheet: 2nd of 4 steps

"Paradox of Prudence"

Liquidity spiral: asset price drop: 3rd of 4

■ Disinflationary spiral: 4th of 4 steps

■ Technologies *b*

... after an adverse shock

Intermediaries are hit and shrink their balance sheets inducing

Asset side

liquidity spiral

financial stability

Liability side

disinflation spiral

price stability

- Response of intermediaries to adverse shock leads to endogenous risk
 - Amplification
 - Persistence
- Other sectors can also be undercapitalized
 - Japan 1980: corporate sector
 - US 2000s: household sector

Allocation

Equilibrium is a map

Histories of shocks-----prices q_t, p_t, λ_t , allocation

wealth distribution

$$\eta_t = \frac{N_t}{(p_t + q_t)K_t} \in (0,1)$$

intermediaries' wealth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology
- All markets clear
 - Consumption, capital, money, outside equity of b

Numerical example: prices

Brunnermeier & Sannikov

Numerical example: prices

\blacksquare Numerical example: dynamics of η

fundamental volatility elasticity leverage amplification

■ Volatility Paradox

Overview

Safe assets

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries' balance sheet
 - Disinflationary spiral liability side
- Monetary policy
- The Curse of Safe Assets
- ESBies: Creating Safety via Securitization

Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price
 - Asset purchase ⇒ asset price
 - ⇒ "stealth recapitalization" redistributive
 - ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated

Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price
 - Asset purchase ⇒ asset price
 - ⇒ "stealth recapitalization" redistributive
 - ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated

Monetary policy and endogenous risk

Intermediaries' risk (borrow to scale up) fundamental risk

$$\sigma_t^{\eta} = \frac{x_t \left(1^b \sigma^b - \sigma_t^K\right)}{1 + \left(\frac{\chi_t \psi_t - \eta}{\eta_t}\right) \frac{\vartheta'(\eta_t)}{\vartheta/\eta_t} - \left(x_t + \vartheta_t \frac{1 - \eta_t}{\eta_t}\right) \frac{b_t}{p_t} \frac{B'(\eta_t)}{B(\eta_t)/\eta_t}}$$
 amplification mitigation

- MoPo works through $\frac{B'(\eta_t)}{B(\eta_t)/\eta_t}$
 - with right monetary policy bond price $B(\eta)$ rises as η drops "stealth recapitalization"
 - Switch off liquidity and disinflationary spiral
- Example: Remove amplification s.t. $\sigma_t^{\eta} = x_t (1^b \sigma^b \sigma_t^K)$

Numerical example with monetary policy

Prices

Overview

Safe assets

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries' balance sheet
 - Disinflationary spiral liability side
- Monetary policy
- The Curse of Safe Assets
- ESBies: Creating Safety via Securitization

■ The "Curse of Safety" with Haddad

Investment equilibrium

Safety equilibrium

- High real investment
- High market liquidity of risky assets
 - Less safe asset holdings necessary

- Low real investment
- Low market liquidity of risky assets
 - High safe asset holdings necessary

Overview

Safe assets

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries' balance sheet
 - Disinflationary spiral liability side
- Monetary policy
- The Curse of Safe Assets
- Asymmetrically supplied safe asset: ESBies solution

The two "safe asset challenges"

Challenge 1:
 Safe asset + sovereign debt restructuring w/o diabolic loop
 French
 IMF/Anglo-American/German

Challenge 2: No asymmetrically supplied safe asset

• German Bund

Cross-border flight to safety

- Today: asymmetric shifts across borders
 - Value of German debt increases
 - German CDS spread rises, but yield on bund drops (flight to quality)
 - Value of Italian/Spanish/Greek... sovereign debt declines

Solution: ESBies

- Today: asymmetric shifts across borders
 - Value of German debt increases
 - German CDS spread rises, but yield on bund drops (flight to quality)
 - Value of Italian/Spanish/Greek... sovereign debt declines
- With ESBies: Negative co-movement across tranches
 - Value of ESBies expands
 - Value of Junior bond shrinks
 - Asset side is more stable

- due to flight to quality
- due to increased risk

Conclusion

- Safe assets
 - "Good friend analogy"
 - Safe asset tautology (multiple equilibria, bubble)
 - Flight to safety
- Safe asset and Money are close cousins
- Amplification & endogenous risk due to "Paradox of Prudence"
 - Liquidity spiral (fire sales etc.)
 - Disinflationay spiral
- Redistributive monetary policy
- Ex-ante insurance -> MH requires MacroPru regulation
- Curse of safe assets
- ESBies symmetrically supplied for Europe

The Euro & The Battle of Ideas

Markus K. Brunnermeier, Harold James & Jean-Pierre Landau

Jean-Pierre Landau

"interests are interpret through the lens of ideas"≈models

