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I. Introduction

How do financial frictions affect the op-
timal inflation rate? Can financial frictions
alone annul the long-run super-neutrality of
money? Should the inflation rate be higher
in emerging market economies with less de-
veloped financial markets than in advanced
economies, as is currently observed?1

To answer these questions we set up an
incomplete markets model in which house-
holds choose portfolios consisting of risky
(physical) capital and money. Physical cap-
ital holdings are encumbered with idiosyn-
cratic risk. Financial frictions prevent the
diversification of the idiosyncratic risk. Our
analysis in this paper can be seen as a
simplified discrete-time version of the “I
Theory of Money” (Brunnermeier and San-
nikov, 2015) – but without the “I”, the in-
termediaries and inside money, and with an
exclusive focus on the long-run steady state.

Like in Samuelson’s (1958) OLG and
in Bewley’s (1980) uninsurable endowment
risk model, money serves as store of value
and can have positive value despite the
fact that it never pays any dividends. Di-
amond (1965) introduces physical capital
in Samuelson’s OLG model and Aiyagari
(1994) in Bewley’s incomplete markets set-
ting (but capital drives out money). In our
setting, money and physical capital coexist
and agents choose portfolios. Like in Dia-
mond and Aiyagari, the market outcome is
dynamically inefficient. In contrast, how-
ever, to Diamond and Aiyagari, in which
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in Table 1 in Fraga, Goldfajn and Minella (2004) and

Table 4.1 of International Monetary Fund (2005).

the interest rate is too low and savings and
physical capital investment are excessive, in
our setting the real risk-free interest rate is
too high and the investment rate is ineffi-
ciently low.

The market outcome is constrained
Pareto inefficient due to pecuniary exter-
nalities. Each individual agent takes the
real interest rate as given, while in the ag-
gregate it is driven by the economic growth
rate, which in turn depends on individual
portfolio decisions. Higher inflation due to
higher money growth lowers the real inter-
est rate (on money) and tilts the portfolio
choice towards physical capital investment.
This boosts the overall physical investment
and endogenous growth rate.

We are able to solve the model and con-
duct the welfare analysis in closed form. We
show that there is an optimal level of long-
run inflation in a setting in which seignior-
age is handed out in a wealth-distribution-
neutral way. A government that faces the
same constraints as markets can orchestrate
a Pareto welfare improvement simply by
printing the right amount of money. Sec-
ond, we show that in countries with higher
idiosyncratic risk, e.g. because the domes-
tic financial sector is less developed, the op-
timal inflation rate is higher.

Most existing literature explores various
rationales other than financial frictions to
determine the optimal inflation and money
growth rate.2 The Friedman Rule advo-
cates a policy that minimizes the cost of
holding currency. Hence, currency should
appreciate at the real risk-free rate of re-
turn, which implies deflation (unless cur-
rency, like short-term government debt,
earns interest). Most New Keynesian mod-
els with price stickiness à la Calvo (1983)
recommend a zero inflation rate in steady
state. Zero inflation minimizes the price

2See e.g. Schmitt-Grohé and Uribe (2010) and

Woodford (1990).
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dispersion between firms that accidentally
had a chance to readjust their prices and
those who did not have this opportunity.
A higher inflation target can be justified
if nominal interest rates are subject to the
zero lower bound (ZLB). Hitting the ZLB
may lead to an excessively high real inter-
est rate causing output losses. In our set-
ting the real interest rate is also too high,
even without the ZLB, and capital invest-
ment is depressed. Tobin (1972) argues in
favor of a positive inflation rate in order to
overcome frictions resulting from downward
wage rigidities. Phelps (1973) criticizes the
Friedman rule and conjectures that the in-
flation tax should be part of an overall op-
timal tax scheme. Yet, the Friedman rule
has turned out to be remarkably robust. A
higher inflation tax may be optimal, only
if it counteracts some monopolistic distor-
tions or extends to an otherwise untaxable
large shadow economy. In our setting infla-
tion acts as a Pigouvian tax on money hold-
ing to overcome pecuniary externalities.

II. The Economy

A. Model Setup

Our economy is populated by a contin-
uum of households with identical prefer-
ences, but potentially different levels of
wealth. Every household manages a pri-
vate firm which operates a linear produc-
tion technology with capital as the single
input. Firms are subject to idiosyncratic,
(real) cash-flow shocks of size proportional
to the level of capital they manage. In addi-
tion, households can hold money, a bubble
asset, which does not pay any dividends nor
provides any other intrinsic service.

Time is divided into discrete intervals
of length ∆t, indexed by j.3 The timing
within each period is as follows: House-
holds enter period j with physical capital
holdings kj and nominal money holdings
mj. First, the physical capital produces

3As is common in discrete time models, we sum flows

and ignore compounding effects within a ∆t-period,
while across periods we take compounding into account.

For ∆t = 1 our model resembles a standard discrete

time model.

output Akj∆t, cash-flow shocks are realized
and the household receives transfers from
the government’s seigniorage income. Sec-
ond, households choose the investment rate
ιj. That is, they decide how many output
units ιjkj∆t they use to produce new phys-
ical capital. Consequently, physical capital
grows to kj+1 = (1+(Φ(ιj)−δ)∆t)kj, where
δ is the depreciation rate, and the concave
function Φ(ι) reflects investment adjust-
ment costs. Specifically, we assume the fol-
lowing functional form Φ(ι) = 1

κ
log (1 + κι)

with adjustment cost parameter κ. At the
end of a period, households make their port-
folio and consumption choices. That is,
they trade physical capital, money and out-
put goods to obtain the new capital holding
kj+1 and nominal money holding mj+1 and
consume the rest.

The consumption good serves as our nu-
meraire. We restrict attention to equilibria
with constant real price of physical capi-
tal q. The real value of aggregate physical
capital, Kj, is qKj. The real value of to-
tal money supply is pKj. In other words,
p ≥ 0 is the real value of money normalized
by the size of the economy, measured by
the aggregate capital stock, Kj. The total
wealth in the economy is (p+ q)Kj. Given
the quantity of money of Mj, the price level

in the economy is Pj := Mj

pKj
. The govern-

ment chooses the money growth rate µ, i.e.
Mj+1 = (1 + µ∆t)Mj, which impacts the
real return on money Rm

j . The seigniorage
revenues are redistributed in proportion to
each household’s wealth, wj.

4

We assume that all household maximize
expected log utility with a time preference
rate of ρ∆t. Given initial capital and nom-
inal money holdings k0 and m0, any house-
hold in the economy solves the problem

4In a world in which interest is paid on outside
money (reserves) µ refers to the money growth beyond

the interest payment while overall inflation is growing

with the total money growth rate.
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maxE

[
∞∑
j=0

(
1

1 + ρ∆t

)j
log cj ·∆t

]
s.t. (cj + ιjkj)∆t+ qkj+1 +

mj+1

Pj
=

Akj∆t+ zj + q (1 + (Φ(ιj)− δ)∆t) kj
+Rm

j

mj

Pj−1

+ τjwj

wj = qkj +
mj

Pj−1

,

where zj are real cash flow shocks and τjwj
are transfers from the government.5 House-
holds face idiosyncratic cash-flow shocks zj
which are proportional to the size of their
business measured in the units of capital
employed in production:

zj = σεj
√

∆tkj
where εj is an iid shock, both over time
and across households, with zero mean and
unit variance,6 σ > 0 is a parameter. The
shock is scaled by

√
∆t instead of ∆t to

ensure that its impact does not become
smaller with decreasing period length ∆t.
In sum, all flow variables contain a ∆t-term,
all shocks a

√
∆t-term, while stocks do not

depend on the length of the time period.

B. Optimality Conditions

LEMMA 1: The optimal internal invest-
ment rate ι∗ is an intra-period problem,
solves

(1) q =
1

Φ′(ι∗)
= 1 + κι∗

and is identical across all households and
constant over time.

Note that if all households choose the
same investment rate ι∗, the law of motion
of the aggregate capital stock is

Kj+1 = (1 + (Φ(ι∗)− δ)︸ ︷︷ ︸
g:=

∆t)Kj.

The (gross) returns on physical capital and
on money are then given by

5Money holdings mj in the beginning of period j are
divided by Pj−1, not Pj , because Rm

j is already the real
rate of return.

6Note that the distribution needs to have bounded
support to avoid the possibility of wealth becoming
negative. Unbounded normally distributed shocks only

work in the continuous-time limit.

Rk
j = 1 +

(
A− ι∗

q
+ g

)
∆t+

σ

q
εj
√

∆t,

Rm
j =

1 + g∆t

1 + µ∆t
.

Let the“portfolio return” if the household
holds a fraction xk in physical capital and
fraction (1− xk) in money be

Rp
j (x

k
j ) := xkjR

k
j + (1− xkj )Rm

j + τj
We include seigniorage transfers τj as they
are also proportional to household wealth.

Denote by w′j = qkjR
k
j + mj

Pj−1
Rm
j + τjwj

household wealth immediately before con-
sumption (sometimes referred to as “cash
at hand”), i.e. for period j, w′j − cj∆t =
wj+1. Given the optimal investment rate
ι∗ one can then rewrite the household’s
problem as a Bellman equation in terms
of the single state variable w′. Conjectur-
ing value function of the form V (w′) =
α0 + α1 logw′, where α0, α1 are undeter-
mined coefficients, conveniently separates
the optimization problem in the Bellman
equation into the sum of two: (i) the opti-
mal intertemporal consumption-savings de-
cision and (ii) the static optimal portfolio
choice between money and capital.7

LEMMA 2: The optimal consumption
level is c∗ = ρ

1+ρ∆t
w′.

Up to a positive scaling factor, the port-
folio allocation problem is given by

max
xk

E[logRp(xk)].

We solve for an approximate solution
which is exact in the continuous-time
limit. This solution is obtained by evalu-
ating E[logRp(xk)] using Taylor expansion
around Rp(xk) = 1 up to a term of o(∆t).

Since Rp(xk) = 1 + O(
√

∆t), we need to
include only terms up to degree 2. Notice
also that (Rp(xk)−1)2 = xk σ

2

q2
ε2∆t+o(∆t).

Hence E[logRp(xk)] can be written as

E[
(
Rp(xk)− 1

)
−

1

2
(Rp(xk)− 1)2] + o(∆t)

≈
(
g − τ + xk(

A− ι∗

q
+ µ)−

1

2
(xk)2

σ2

q2

)
∆t

where in the last equation we use the
fact that ε has zero mean and unit vari-
ance. This approximated portfolio problem

7We refer to the working paper version of this article

(Brunnermeier and Sannikov, 2016) for further details.



4 PAPERS AND PROCEEDINGS MAY 2016

is now quadratic in xk and straightforward
to solve.

LEMMA 3: The optimal portfolio share of

capital is xk∗ = E[Rk−Rm]

V ar[Rk−Rm]
= q(A−ι∗)

σ2 + q2µ
σ2 .

C. Market Clearing Conditions

The goods market clears if total output
equals the sum of investment and consump-
tion. Since individual cash-flow shocks can-
cel out in the aggregate and every house-
holds chooses the same ι∗,8

AK∆t = ι∗K∆t+ C∆t.

By Lemma 2 individual consumption is a
constant fraction of end of period wealth
before consumption w′, which easily aggre-
gates to C = ρ

1+ρ∆t
W ′. To obtain a closed

form solution we approximate the market
clearing condition by its continuous time
limit in which W ′ = W and hence C = ρW .
Noting that W = (p+ q)K and dividing by
K,

(2) A = ι∗ + ρ(p+ q).

The capital market clears if aggre-
gate capital demand equals capital supply,
xk∗W
q

= K. UsingW = (p+q)K and the op-

timal portfolio share from Lemma 3 yields

(3)
1

p+ q
=
A− ι∗

σ2
+
qµ

σ2
.

The money market clears by Walras law.

D. Equilibrium

The optimal investment decision (1) and
the market clearing equations (2) and (3)
fully describe the (approximated) equilib-
rium in our model economy.

While these three equations can be solved
in closed form, the solution is significantly
simplified if it is expressed in terms of
“transformed money growth” µ̂ := xk∗µ in-
stead of µ itself.9

8Capital letters are the aggregate counterparts of the

lower-case letters in the individual decision problem.
9We show in Proposition 1 that µ̂ is strictly increas-

ing in µ. Any qualitative statement in terms of µ̂ holds
thus also in terms of µ.

PROPOSITION 1: In the equilibrium
with money and capital10

p =
σ(1 + κρ)√

ρ+ µ̂
− (1 + κA),(4)

q = 1 + κA− κρσ√
ρ+ µ̂

,(5)

ι∗ = A− ρ σ√
ρ+ µ̂

,(6)

where the transformed money growth rate
µ̂ = xkµ is strictly increasing in µ, and this
equilibrium exists if

σ/[(1 + κA)
√
ρ+ µ̂] ∈

(
1
κρ
, 1

1+κρ

)
.

There always exists a moneyless equilibrium
with p = 0, q = 1+κA

1+κρ
, ι∗ = A−ρ

1+κρ
.

Proposition 1 reveals that in economies
with high idiosyncratic risk, e.g. with
poorly developed (internal) financial mar-
kets, money is more valuable. Indeed, for
money to have positive value some mini-
mum amount of idiosyncratic risk is nec-
essary. Note that capital investment yield
positive output Akj, while money does not.
For sufficiently low σ or sufficiently high A
capital investment is too attractive and we
are in a moneyless economy, i.e. p = 0. An-
other interesting fact is that the capital de-
preciation rate δ does not affect prices nor
the investment rate. However, it does af-
fect the evolutions of individual and aggre-
gate capital and through it also households’
overall utility level.

Note that in the moneyless equilibrium
xk∗ = 1 and hence equilibrium is deter-
mined by (1) and (2) with p = 0.

III. Welfare

In this section we derive households’ over-
all expected utility as a function of exoge-
nous parameters and transformed money
growth rate µ̂. The tractability of our
framework allows us to characterize welfare
as a function of portfolio return and asset
prices in closed form without approxima-
tion. Going beyond that and in order to
characterize welfare as a function of exoge-
nous parameters and the government policy

10These equations also hold for the special case of no

capital adjustment costs, κ = 0. In this case our model
is a version of Angeletos (2007) but with money.
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variable, the (transformed) money growth
µ̂, we use our approximated equilibrium
prices and returns. As our equilibrium re-
sults are exact in the continuous time limit,
so are our welfare results.

An individual household’s expected util-
ity can be calculated by solving for the un-
determined coefficients α0, α1 in the house-
hold’s value function V (w′) and writing the
remaining expressions in terms of model pa-
rameters and transformed money growth.

PROPOSITION 2: The expected utility of
a household with initial capital stock k0 = 1
multiplied by ρ2 is given by a constant plus
1

κ
log

(
1 + κA−

κρσ
√
ρ+ µ̂

)
− δ −

µ̂

2
+ ρ log

(
σ

√
ρ+ µ̂

)
.

If we assume that all households are
equally wealthy in the beginning we can
simply integrate over all individual house-
holds’ utility levels. That is, we can simply
take an individual household’s utility level
as our economy wide welfare measure. In
this case any welfare improvement is also a
Pareto improvement.

IV. Optimal Money Growth and
Inflation Rate

Increasing the money growth rate in-
creases inflation and lowers the real return
on money. This encourages households to
tilt their portfolio towards real assets at
the expense of money holdings. The higher
investment rate increases the real growth
rate in the economy – a point originally
made by Tobin (1965). Sidrauski (1967)
showed that this is not welfare improving
within a representative agent model, i.e.
absent financial frictions. Our analysis re-
vives Tobin’s intuition by showing that the
welfare-maximizing money growth rate is
not zero in a setting with incomplete mar-
kets. In particular, if the (uninsurable) id-
iosyncratic risk is sufficiently large, the op-
timal money growth rate is positive.

PROPOSITION 3 (Optimal money growth):
There always exists a unique optimal
growth rate of money µ∗, which is positive
(negative), if

σ > (<)
2
√
ρ(Aκ+ 1)

1 + 2κρ
.

The competitive equilibrium outcome with
µ = 0 is constrained Pareto inefficient ex-
cept for the knife-edge case in which this
condition holds with equality.11

The steady state (long-run) money
growth rate affects equilibrium allocation
and economic growth. In short, money is
not superneutral, despite the absence of any
nominal rigidities and of the transaction
role of money.

COROLLARY 1 (No Superneutrality):
Money is not superneutral in our flexible
price (steady state) economy since a steady
state increase in money supply growth
affects the steady state economic growth
rate Φ(ι∗)− δ.

As one increases money growth, output
also increases. However, output maximiz-
ing money growth is excessive since it ig-
nores the utility costs from bearing idiosyn-
cratic risk. Indeed, it would make money
so unattractive that it losses its value al-
together, leading to a suboptimal welfare
outcome.

Zero money growth is also constrained
Pareto inefficient, despite perfect compe-
tition and flexible prices. A government
that faces the same constraints as markets
can orchestrate a Pareto welfare improve-
ment simply by printing the right amount
of money. Competitive equilibrium prices
are distorted due to pecuniary externali-
ties. Each individual household does not
internalize that, by tilting its portfolio to-
wards real assets, it boosts real growth in
the economy and with it also the real in-
terest rate on money holdings. The so-
cial planner internalizes this pecuniary ex-
ternality and an inflation tax works like a
Pigouvian tax in this environment.

Finally, the optimal money growth rate
is higher for economies with higher idiosyn-
cratic risks.

11The optimal transformed money growth rate µ̂∗ is
characterized by

(1 + κA)
√
ρ+ µ̂∗(2 +

µ̂∗

ρ
) = σ(1 + κ(2ρ+ µ̂∗)).
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PROPOSITION 4 (Comparative Statics):
The optimal money growth rate µ∗ is
strictly increasing in idiosyncratic risk σ.12

Proposition 4 provides an explanation
for why emerging market economies have
higher inflation targets than advanced
economies in which financial markets enable
better risk sharing. Inflation

π = µ− (Φ(ι∗(µ))− δ)
increases in µ, but less than one-to-one
since a higher µ also boosts the growth rate
of the economy through a higher investment
rate ι∗(µ). Note that δ affects the optimal
inflation target but not the optimal money
growth rate.
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