On the Optimal Inflation Rate

Markus K. Brunnermeier & Yuliy Sannikov

Princeton University

Motivation

What should the (long-run) optimal inflation rate be?

What role do financial frictions play?

Can financial frictions destroy the superneutrality of money?

Should emerging markets, with less developed financial markets, have a higher inflation rate/target?

Inflation Target

Table 4.1. Inflation Targeters

	Inflation Targeting Adoption Date ¹	Unique Numeric Target = Inflation	Current Inflation Target (percent)	Forecast Process	Publish Forecast
Emerging market countries					
Israel	1997:Q2	Υ	1–3	Υ	Υ
Czech Republic	1998:Q1	Υ	3 (+/-1)	Υ	Υ
Korea .	1998:Q2	Υ	2.5–3.5	Υ	Υ
Poland	1999:Q1	Υ	2.5 (+/-1)	Υ	Υ
Brazil	1999:Q2	Υ	4.5 (+/-2.5)	Υ	Υ
Chile	1999:Q3	Υ	2–4	Υ	Υ
Colombia	1999:Q3	Υ	5 (+/-0.5)	Υ	Υ
South Africa	2000:Q1	Υ	`3–6	Υ	Υ
Thailand	2000:Q2	Υ	0-3.5	Υ	Υ
Mexico	2001:Q1	Υ	3 (+/-1)	Υ	N
Hungary	2001:Q3	Υ	3.5(+/-1)	Υ	Υ
Peru	2002:Q1	Υ	2.5 (+/-1)	Υ	Υ
Philippines	2002:Q1	Υ	5–6	Υ	Υ
Industrial countries					
New Zealand	1990:Q1	Υ	1–3	Υ	Υ
Canada	1991:Q1	Υ	1–3	Υ	Υ
United Kingdom	1992:Q4	Υ	2	Υ	Υ
Australia	1993:Q1	Υ	2–3	Υ	Υ
Sweden	1993:Q1	Υ	2 (+/-1)	Υ	Υ
Switzerland	2000:Q1	Υ	`<2	Υ	Υ
Iceland	2001:Q1	Υ	2.5	Υ	Υ
Norway	2001:Q1	Υ	2.5	Υ	Υ

Source: IMF, WEO, Sept. 2005

Literature

Money as store of value = bubble

\Friction	OLG	Incomplete Markets + idiosyncratic risk	
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
With capital	Diamond	Aiyagari	Angeletos
		Risk tied up with individual	capital

Literature

Money as store of value = bubble

\Friction	OLG	Incomplete Markets + idiosyncratic risk		
Risk	deterministic	endowment risk borrowing constraint	investment risk	
Only money	Samuelson	Bewley		
With capital	Diamond	Aiyagari	Angeletos $q = 1$	
	$f'(k^*) = r^*$, Dynamic inefficiency $r < r^*$, $K > K^*$	Inefficiency $r < r^*$, $K > K^*$	capital shock	
			depends on	
			price of capital q	

Literature

Money as store of value = bubble

\Friction	OLG	Incomplete Markets +	idiosyncratic risk
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
			- Basic "I Theory"
With capital	Diamond	Aiyagari	cash flow shock
	$f'(k^*) = r^*$, Dynamic inefficiency $r < r^*$, $K > K^*$	Inefficiency $r < r^*$, $K > K^*$	Pecuniary externality Inefficiency $r > r^*$, $K < K^*$
			$r^m = g$

Main results

- HH portfolio choice
 - Physical capital: w/ idiosyncratic risk + dividend
 - Money: w/o idiosyncratic risk + no dividend (bubble)
 - Tilted inefficiently towards money
- Money growth ⇒ inflation ⇒ "tax on money"
- ⇒ lowers real interest rate ⇒ tilts portfolio choice
- ⇒ boosts physical investment ⇒ higher economic growth
- ⇒ raises real interest rate (partially undoes inflation tax)
- Pecuniary externality:
 - individual households do not take this GE effect into account.
 - Planner who can print money and distribute seignorage can improve growth + Pareto welfare.
- Derive optimal money growth rate/inflation rate

Model setup

- In each period *j*
 - ullet HH enters with physical capital k_t & nominal money m_t
 - Produce output

 $Ak_t\Delta t$

Real cash flow shock

$$z_j = \sigma \varepsilon_j k_j \sqrt{\Delta t}$$

• Transfer from government

TW (proportional to wealth)

Decide

Brunnermeier & Sannikov: Optimal Inflation Rate

- Investment rate ι
- Adjustment cost function

$${k'}_{j+1} = [(1+\Phi(\iota)-\delta)\Delta t]k_j$$

$$\Phi(\iota) = \frac{1}{\kappa} \log(1 + \kappa \iota)$$

- Portfolio & consumption choice
 - Purchase/sell physical capital

Consume

$$x_j^k$$
 = portfolio share

 c_j

$$\max_{\{c_j, k_{j+1}, m_{j+1}, \iota_j\}_{j=0}^{\infty}} E\left[\sum_{j=0}^{\infty} \left(\frac{1}{1+\rho\Delta t}\right)^j \log c_j \cdot \Delta t\right]$$

Brunnermeier & Sannikov: Optimal Inflation Rate

Model setup

- Consumption good is numeraire
- q price of physical capital real value of all physical capital qK_i
- p real value of all nominal wealth pK_j
- $\blacksquare M_j$ aggregate nominal money supply
 - ullet grows at a rate μ
 - Seignorage income is $\frac{\mu \Delta t}{1 + \mu \Delta t} p K_j$
- $\wp_j \coloneqq \frac{M_j}{pK_j}$ is the price level

Brunnermeier & Sannikov: Optimal Inflation Rate

Model setup

- Consumption good is numeraire
- q price of physical capital real value of all physical capital qK_i
- p real value of all nominal wealth pK_j

- $\blacksquare M_j$ aggregate nominal money supply
 - ullet grows at a rate μ policy variable of government
 - Seignorage income is $\frac{\mu \Delta t}{1 + \mu \Delta t} p K_j$
- $\wp_j := \frac{M_j}{pK_j}$ is the price level

Model setup

HH's budget constraint

$$(c_{j} + \iota_{j}k_{j})\Delta t + qk_{j+1} + \frac{m_{j+1}}{\mathcal{P}_{j}} =$$

$$Ak_{j}\Delta t + z_{j} + q(1 + (\Phi(\iota_{j}) - \delta)\Delta t)k_{j} + R_{j-1}^{m} \frac{m_{j}}{\mathcal{P}_{j-1}} + \tau w_{j}$$

- Government's budget constraint
 - Seignorage income

$$S_j := \frac{M_j - M_{j-1}}{M_j} pK_j = \left(1 - \frac{1}{1 + \mu \Delta t}\right) pK_j = \frac{\mu \Delta t}{1 + \mu \Delta t} pK_j.$$

• Distribution through transfers au

$$\frac{w_j}{(p+q)K_j}S_j = \underbrace{\frac{p}{p+q}\frac{\mu\Delta t}{1+\mu\Delta t}}_{=:\tau}w_j$$

Optimality conditions

■ Optimal investment rate ι^*

•
$$q = \frac{1}{\Phi'(\iota^*)} = 1 + \kappa \iota^*$$

Tobin's q

Optimal consumption

•
$$c^* = \frac{\rho}{1 + \rho \Delta t} w'$$

due to log utility

• Where $w' = R^k q k + R^m \frac{m}{\wp} + \tau w$ wealth just prior to consumption

$$R^k = 1 + \left(\frac{A - \iota^*}{q} + \underbrace{\Phi(\iota^*) - \delta}_{q}\right) \Delta t + \frac{\sigma}{q} \varepsilon \sqrt{\Delta t}$$
 "capital return"

$$R^m = \frac{1 + g\Delta t}{1 + \mu \Delta t} = 1 + \frac{g - \mu}{1 + \mu \Delta t} \Delta t$$
 "money return"

•
$$R^p(x^k) := x^k R^k + (1 - x^k) R^m + \tau$$
 "portfolio return"

Optimal Portfolio

$$\max_{\chi k} \frac{1}{1 + \rho \Delta t} \alpha_1 E[\log R^p(\chi^k)]$$

$$E[\log R^p(\chi^k)] = E[\left(R^p(\chi^k) - 1\right) - \frac{1}{2}(R^p(\chi^k) - 1)^2] + o(\Delta t) =$$

$$\approx \left(\Phi(\iota^*) - \delta - \frac{q}{p+q}\mu + \chi^k(\frac{A - \iota^*}{q} + \mu) - \frac{1}{2}(\chi^k)^2 \frac{\sigma^2}{q^2}\right) \Delta t$$
• $\chi^{k*} = \frac{q(A - \iota^*)}{\sigma^2} + \frac{q^2 \mu}{\sigma^2}$

Market clearing conditions

- Goods market
 - $AK_j \Delta t = \iota^* K_j \Delta t + \frac{\rho}{1 + \rho \Delta t} W_j' \Delta t$
 - $(A \iota^*)\Delta t = \rho[\Delta t + (\Phi(\iota^*) \delta)(\Delta t)^2](p + q)$
 - $A \iota^* = \rho(p + q)$ for $\Delta t \to 0$
- Capital market

•
$$\frac{x^k W_j}{q} = K_j \Rightarrow q \frac{K_j}{W_j} = x^k = \frac{q(A - \iota^*)}{\sigma^2} + \frac{q^2 \mu}{\sigma^2}$$

$$\bullet \ \frac{1}{p+q} = \frac{A-\iota^*}{\sigma^2} + \frac{q\mu}{\sigma^2}$$

- Money market
 - clears by Walras law

Equilibrium

Collecting the three equations:

$$q = 1 + \kappa \iota^*$$

$$\rho(p+q) = A - \iota^*$$

$$\frac{\sigma^2}{q+p} = A - \iota^* + q\mu$$

lacksquare Equilibrium solved in terms of $\widehat{\mu} \coloneqq x^k \mu$ (monotone transformation)

$$p = \frac{\sigma(1 + \kappa \rho)}{\sqrt{\rho + \hat{\mu}}} - (1 + \kappa A)$$

$$q = 1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}}$$

$$\iota^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}}$$

Welfare

- Plug in FOC in value function
- Plug in equilibrium
- All households start symmetrically

Expected Utility of an individual household

$$V = V_0 + \frac{\frac{1}{\kappa} \log \left(1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}} \right) - \delta + \rho - \frac{1}{2} (\rho + \hat{\mu})}{\rho^2} + \frac{\log \left(\frac{\sigma}{\sqrt{\rho + \hat{\mu}}} \right)}{\rho}.$$

closed form!

Optimal inflation rate

lacktriangle Money growth μ affects (steady state) inflation in two ways

$$\pi = \mu - \underbrace{(\Phi(\iota^*(\mu)) - \delta)}_{g}$$

- Proposition:
 - If $\frac{\sigma}{\sqrt{\rho}} > \frac{2(A\kappa+1)}{1+2\kappa\rho}$, welfare maximizing money growth rate $\mu^* > 0$.
 - Market outcome is not even constrained Pareto efficient
 - Economic growth rate, $g > r^m$, is also higher
 - Growth maximizing $\mu^{g*} \ge \mu^*$, s.t. $p^{g*} = 0$, Tobin (1965)

$$\iota^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}}$$
 increasing in $\hat{\mu}$

- Corollary: No super-neutrality of money
 - Nominal money growth rate affects real economy
 - No price/wage rigidity, no monopolistic competition

Optimal Inflation rate: Emerging markets

- Proposition: (comparative static)
 - μ^* does not depend on depreciation rate δ , but inflation does
 - μ^* is strictly increasing in idiosyncratic risk σ "Emerging markets should have higher inflation target"

Conclusion: our 3 initial questions

- What should the (long-run) optimal inflation rate be?
 - Competitive market outcome is constrained Pareto inefficient.
 - Inflation is Pigouvian & internalizes pecuniary externality!
 - HH take real interest rate as given, but
 - Portfolio choice affects economic growth and real interest rate
- What role do financial frictions play?
 - incomplete markets ⇒ no superneutrality of money
 - No price/wage rigidity needed
- Emerging markets, with less developed financial markets, should have higher inflation rate/target
 - Higher idiosyncratic risk ⇒ higher pecuniary externality