Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Optimal Expectations

Markus K. Brunnermeier and Jonathan Parker

Princeton University

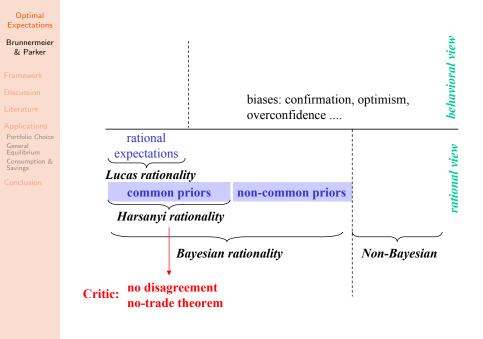
October 25, 2006

イロト (目) (ヨ) (ヨ) (ヨ) (の)

	,		
	Bayesian rationality	Non-Bayesian	2
			rational view
General Equilibrium Consumption & Savings			view
Applications Portfolio Choice	!	1	
ramework Discussion			
Brunnermeier & Parker			
Optimal Expectations			

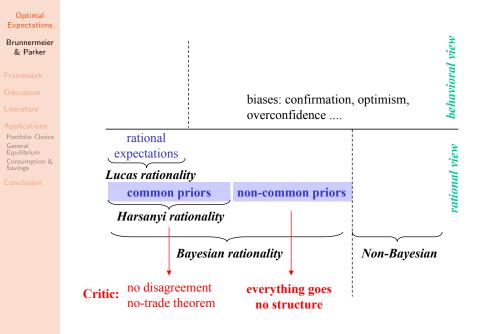
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

	Bayesian rationality	Non-Bayesian	
			rati
Savings Conclusion	Lucas rationality		rational view
General Equilibrium Consumption &	expectations		view
Applications Portfolio Choice	rational		
Literature			
Framework			
Brunnermeier & Parker			
Optimal Expectations			


▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

Expectations Brunnermeier & Parker Framework			ral view
	biases: confirmation overconfidence	, optimism,	behavioral
Portfolio Choice General Equilibrium Consumption & Savings Conclusion	rational expectations Lucas rationality		rational view
	Bayesian rationality	Non-Bayesian	

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ▲⊙


	Bayesian rationality	Non-Bayesian	
	Harsanyi rationality		
	common priors non-common priors		atio
Portfolio Choice General Equilibrium Consumption & Savings	rational expectations Lucas rationality		ational view
& Parker Framework Discussion Literature Applications	biases: confirmation, overconfidence	optimism,	behavioral view
Optimal Expectations Brunnermeier			*

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへの

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト …

3

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへ⊙

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Overview: Three Main Elements

1 Felicity at *t*: $\hat{E}_t [U(c_1, ..., c_T)]$

- Agents care about utility flow today and
- expected utility flows in the future
- $\Rightarrow\,$ happier if more optimistic

No split personality

- Distorted beliefs distort actions
- \Rightarrow better outcomes if more rational

Optimal beliefs balance these forces

• Beliefs maximize well-being $\frac{1}{T}E\left[\sum_{t=1}^{T}\hat{E}_{t}\left[U\left(c_{1},...,c_{T}\right)\right]\right]$

イロト 不得 トイヨト イヨト ヨー ろくで

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Overview: Three Main Elements

1 Felicity at *t*: $\hat{E}_t [U(c_1, ..., c_T)]$

- Agents care about utility flow today and
- expected utility flows in the future
- \Rightarrow happier if more optimistic

e No split personality

- Distorted beliefs distort actions
- \Rightarrow better outcomes if more rational

Optimal beliefs balance these forces

• Beliefs maximize well-being $\frac{1}{T}E\left[\sum_{t=1}^{T}\hat{E}_{t}\left[U\left(c_{1},...,c_{T}\right)\right]\right]$

イロト 不得 トイヨト イヨト ヨー ろくで

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Overview: Three Main Elements

1 Felicity at *t*: $\hat{E}_t [U(c_1, ..., c_T)]$

- Agents care about utility flow today and
- expected utility flows in the future
- \Rightarrow happier if more optimistic

e No split personality

- Distorted beliefs distort actions
- \Rightarrow better outcomes if more rational

3 Optimal beliefs balance these forces

• Beliefs maximize well-being $\frac{1}{T}E\left[\sum_{t=1}^{T}\hat{E}_{t}\left[U\left(c_{1},...,c_{T}\right)\right]\right]$

イロト 不得 トイヨト イヨト ヨー ろくで

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

1 Optimal Expectations Framework

2 Discussion

3 Related Literature

Applications Portfolio Choice

General Equilibrium Consumption & Savings

5 Conclusion

Outline

イロト イポト イヨト イヨト ヨー のくや

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

4

Conclusion

The General Framework

Actions: <u>At each t</u> agent chooses c_t to maximize felicity_t given subjective beliefs $\hat{\pi}(s_t|s_{t-1})$, and resource constraints.

Felicity <u>at</u> t: $\hat{E}_t[U(c_1,...,c_T)]$

with time-separable exponential discounting equals

$$\underbrace{\sum_{\tau=1}^{t-1} \beta^{\tau} u(c_{\tau})}_{\text{memory' utility}} + \beta^{t} u(c_{t}) + \underbrace{\hat{E}_{t} \left[\sum_{\tau=t+1}^{T} \beta^{\tau} u(c_{\tau}) \right]}_{\text{'expected' utility}}$$

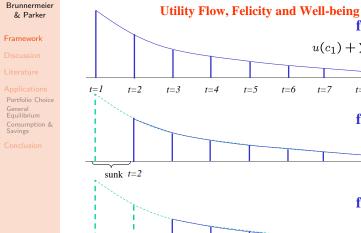
Note: β s for past consumption could be replaced with δ .

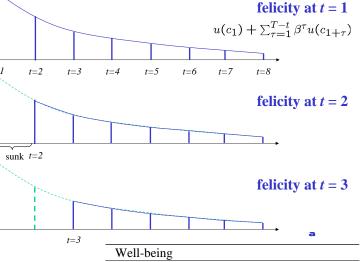
(日)、(型)、(E)、(E)、(E)、(O)()

Framework

Discussion

Literature

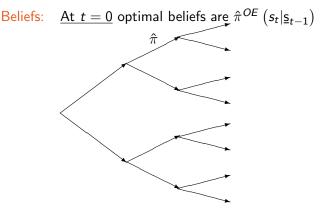

Applications


Portfolio Choice General Equilibrium Consumption & Savings

Utility Flow, Felicity and Well-being felicity at t = 1 $u(c_1) + \sum_{\tau=1}^{T-t} \beta^{\tau} u(c_{1+\tau})$ t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Optimal



▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Optimal

Brunnermeier & Parker

Framework

that maximize

Well-being: $W = \frac{1}{T} E \left[\sum_{t=1}^{T} \hat{E}_t \left[U(\cdot) \right] \right]$

subject to:

- agent behavior given these beliefs
- $\hat{\pi}^{OE}(s_t|\underline{s}_{t-1})$ are probabilities $\hat{\pi}^{OE}(s_t|\underline{s}_{t-1}) = 0$ if $\pi(s_t|\underline{s}_{t-1}) = 0$.

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Two-period **Example** with Consumption at t = 2

	t = 1	t = 2
felicity in period 1		$\beta \hat{E}[u(c_2)]$
felicity in period 2		$\beta u(c_2)$

Actions maximize felicity: $\beta \hat{E}[u(c_2)]$

Beliefs maximize well-being: $\mathcal{W} = \frac{1}{2}\beta \hat{E}[u(c_2)] + \frac{1}{2}\beta E[u(c_2)]$

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Two-period **Example** with Consumption at t = 2

	t = 1	<i>t</i> = 2
felicity in period 1		$\beta \hat{E}[u(c_2)]$
felicity in period 2		$\beta u(c_2)$

Actions maximize felicity: $\beta \hat{E}[u(c_2)]$

Beliefs maximize well-being: $W = \frac{1}{2}\beta \hat{E}[u(c_2)] + \frac{1}{2}\beta E[u(c_2)]$

(日)、(型)、(E)、(E)、(E)、(O)()

& Parker

Optimal

Brunnermeier

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

1 Subjective probabilities are chosen once and forever

- Bayes' Rule (LIE) holds,
- Can be interpreted as choice of priors
- If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain
- 3 Rational expectations are optimal only if
 - anticipatory utility does enter felicities or
 - $\bullet\,$ anticipatory utility does not enter well-being ${\cal W}.$

④ Different memory discounting in felicity

- Paper's results hold qualitatively for any memory discounting
- But can introduce additional incentives to bias beliefs

イロト 不得 トイヨト イヨト ヨー ろくで

Optimal Expectations

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

• Subjective probabilities are chosen once and forever

- Bayes' Rule (LIE) holds,
- Can be interpreted as choice of priors
- 2 If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain

Rational expectations are optimal only if

- anticipatory utility does enter felicities or
- $\bullet\,$ anticipatory utility does not enter well-being $\mathcal{W}.$

④ Different memory discounting in felicity

- Paper's results hold qualitatively for any memory discounting
- But can introduce additional incentives to bias beliefs

イロト 不得 トイヨト イヨト ヨー ろくで

Optimal Expectations

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

• Subjective probabilities are chosen once and forever

- Bayes' Rule (LIE) holds,
- Can be interpreted as choice of priors
- 2 If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain
- 8 Rational expectations are optimal only if
 - anticipatory utility does enter felicities or
 - anticipatory utility does not enter well-being $\ensuremath{\mathcal{W}}.$

④ Different memory discounting in felicity

- Paper's results hold qualitatively for any memory discounting
- But can introduce additional incentives to bias beliefs

Optimal Expectations

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

- 1 Subjective probabilities are chosen once and forever
 - Bayes' Rule (LIE) holds,
 - Can be interpreted as choice of priors
- 2 If beliefs are objective, wellbeing = felicity
 - Only incentive to distort beliefs is anticipatory utility gain
- 8 Rational expectations are optimal only if
 - · anticipatory utility does enter felicities or
 - anticipatory utility does not enter well-being $\ensuremath{\mathcal{W}}.$
- ④ Different memory discounting in felicity
 - Paper's results hold qualitatively for any memory discounting
 - But can introduce additional incentives to bias beliefs

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

... Discussion

Frictionless Extreme

Why optimal expectations?

- It is optimal: "as if" interpretation
- Parents/Upbringing affects (prior) beliefs
- Neuroscientific "story":

prefrontal cortex exerts effort to reduce overoptimism

(subconscious process)

- Bayoff: biases are endogenous
 - biases are small when distort behavior a lot
 - large when provide the most expected future utility

... Discussion

Frictionless Extreme

Ø Why optimal expectations?

- It is optimal: "as if" interpretation
- Parents/Upbringing affects (prior) beliefs
- Neuroscientific "story":

prefrontal cortex exerts effort to reduce overoptimism

(subconscious process)

8 Payoff: biases are endogenous

- biases are small when distort behavior a lot
- large when provide the most expected future utility

(日)、(型)、(E)、(E)、(E)、(O)()

Application

Optimal

Brunnermeier & Parker

Portfolio Choice General Equilibrium Consumption & Savings

... Discussion

Frictionless Extreme

Ø Why optimal expectations?

- It is optimal: "as if" interpretation
- Parents/Upbringing affects (prior) beliefs
- Neuroscientific "story":

prefrontal cortex exerts effort to reduce overoptimism

(subconscious process)

- 8 Payoff: biases are endogenous
 - biases are small when distort behavior a lot
 - large when provide the most expected future utility

& Parker

Optimal

Brunnermeier

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Related Literature

1 Adam Smith (1776)

"That the <u>chance</u> of gain is naturally overvalued, ..." "That the <u>chance</u> of loss is frequently undervalued, ..."

Anticipatory utility ('Pleasure of Expectation')

- Bentham, Hume, Böhm-Barwerk, Marshall, Loewenstein,
- Geanakopolis-Pearce-Stacchetti, Caplin-Leahy
- **3** Models of belief distortions:
 - cognitive dissonance (Akerlof-Dickens),
 - agents choose beliefs (Yariv and Landier),
 - intrapersonal (confidence) games (Bénabou-Tirole)
 - cognitive dissonance and overconfidence (Gervais-O'Dean),

- procrastination (O'Donoghue-Rabin),...
- follow up: link to prospect theory (Gollier), (Glaeser)

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Related Literature

1 Adam Smith (1776)

"That the <u>chance</u> of gain is naturally overvalued, ..." "That the <u>chance</u> of loss is frequently undervalued, ..."

Anticipatory utility ('Pleasure of Expectation'):

- Bentham, Hume, Böhm-Barwerk, Marshall, Loewenstein,
- Geanakopolis-Pearce-Stacchetti, Caplin-Leahy

3 Models of belief distortions:

- cognitive dissonance (Akerlof-Dickens),
- agents choose beliefs (Yariv and Landier)
- intrapersonal (confidence) games (Bénabou-Tirole)
- cognitive dissonance and overconfidence (Gervais-O'Dean),
- procrastination (O'Donoghue-Rabin),...
- follow up: link to prospect theory (Gollier), (Glaeser)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

Related Literature

1 Adam Smith (1776)

"That the <u>chance</u> of gain is naturally overvalued, ..." "That the <u>chance</u> of loss is frequently undervalued, ..."

Anticipatory utility ('Pleasure of Expectation'):

- Bentham, Hume, Böhm-Barwerk, Marshall, Loewenstein,
- Geanakopolis-Pearce-Stacchetti, Caplin-Leahy
- 8 Models of belief distortions:
 - cognitive dissonance (Akerlof-Dickens),
 - agents choose beliefs (Yariv and Landier),
 - intrapersonal (confidence) games (Bénabou-Tirole),
 - cognitive dissonance and overconfidence (Gervais-O'Dean),

- procrastination (O'Donoghue-Rabin),...
- follow up: link to prospect theory (Gollier), (Glaeser)

Portfolio choice

⇒ preference for skewed returns

- General equilibrium
 - ⇒ endogenous heterogenous prior beliefs
 - ⇒ equity premium puzzle versus long shot phenomena
- Consumption-savings problem with stochastic income
 - ⇒ optimism and overconfidence in future income
 - ⇒ consumption profiles concave due to "news"
 - ⇒ choose incomplete consumption insurance
- Optimal timing of a single task
 - ⇒ procrastination, planning fallacy, context effect

Savings

Conclusion

Applications

Optimal

Brunnermeier & Parker

- Portfolio choice
 - ⇒ preference for skewed returns
- General equilibrium
 - ⇒ endogenous heterogenous prior beliefs
 - ⇒ equity premium puzzle versus long shot phenomena
- Consumption-savings problem with stochastic income
 - \Rightarrow optimism and overconfidence in future income
 - ⇒ consumption profiles concave due to "news"
 - ⇒ choose incomplete consumption insurance
- Optimal timing of a single task
 - ⇒ procrastination, planning fallacy, context effect

Applications

Optimal

Brunnermeier & Parker

Portfolio Choice General Equilibrium Consumption & Savings

- Portfolio choice
 - ⇒ preference for skewed returns
- General equilibrium
 - ⇒ endogenous heterogenous prior beliefs
 - ⇒ equity premium puzzle versus long shot phenomena
- Consumption-savings problem with stochastic income
 - \Rightarrow optimism and overconfidence in future income
 - ⇒ consumption profiles concave due to "news"
 - ⇒ choose incomplete consumption insurance
- Optimal timing of a single task
 - ⇒ procrastination, planning fallacy, context effect

Applicatio

Portfolio Choice General Equilibrium Consumption & Savings

Optimal

Brunnermeier & Parker

- Portfolio choice
 - ⇒ preference for skewed returns
- General equilibrium
 - ⇒ endogenous heterogenous prior beliefs
 - ⇒ equity premium puzzle versus long shot phenomena
- Consumption-savings problem with stochastic income
 - \Rightarrow optimism and overconfidence in future income
 - ⇒ consumption profiles concave due to "news"
 - ⇒ choose incomplete consumption insurance
- Optimal timing of a single task
 - ⇒ procrastination, planning fallacy, context effect

Optimal Expectations

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Brunnermeier & Parker

Portfolio Choice

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Setup

Two period problem: invest in period 1, consume in period 2

2 Two assets:

a risk-free asset, return R; a risky asset, return R + Z

Oncertainty:

S>2 states, $\pi_s>0$ for s=1 to S_s

 $Z_s < Z_{s+1}, Z_1 < 0 < Z_S$

Brunnermeier & Parker

Portfolio Choice

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Setup

- 1 Two period problem:
 - invest in period 1, consume in period 2
- Ø Two assets:

a risk-free asset, return R; a risky asset, return R + Z

Our Contract of Contract of

S>2 states, $\pi_s>0$ for s=1 to S,

 $Z_s < Z_{s+1}, \ Z_1 < 0 < Z_S$

Brunnermeier & Parker

Portfolio Choice

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Setup

- Two period problem: invest in period 1, consume in period 2
- Ø Two assets:

a risk-free asset, return R; a risky asset, return R + Z

6 Uncertainty:

S > 2 states, $\pi_s > 0$ for s = 1 to S,

 $Z_s < Z_{s+1}, \ Z_1 < 0 < Z_S$

Brunnermeier & Parker

Portfolio Choice

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Setup

- Two period problem: invest in period 1, consume in period 2
- Ø Two assets:

a risk-free asset, return R; a risky asset, return R + Z

6 Uncertainty:

S>2 states, $\pi_s>0$ for s=1 to S,

 $Z_s < Z_{s+1}, \ Z_1 < 0 < Z_S$

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Portfolio ChoiceStage 2: Agent $\max_{\alpha} \beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + \alpha Z_{s} \right)$

FOC:
$$0 = \sum_{s=1}^{S} \hat{\pi}_{s} u' (R + \alpha Z_{s}) Z_{s} \qquad \Rightarrow \alpha^{*}(\hat{\pi})$$

age 1: Choose $\hat{\pi}_s$ to maximize well-being

$$\frac{1}{2} \underbrace{\beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + \alpha^{*} Z_{s}\right)}_{\text{felicity at } t = 1} + \frac{1}{2} \beta \underbrace{\sum_{s=1}^{S} \pi_{s} u \left(R + \alpha^{*} Z_{s}\right)}_{\text{'average' utility at } t = 2}$$

$$\frac{\beta}{2}\left(u_{S}-u_{s'}\right)$$

benefits of anticipation

$$= \frac{\beta}{2} \sum_{s=1}^{S} \pi_s u' \left(R + \alpha^* Z_s \right) Z_s \frac{d\alpha^*}{d\hat{\pi}_{s'}}$$

costs of changed behavior

イロト イポト イヨト イヨト ヨー のくや

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Portfolio ChoiceStage 2: Agent $\max_{\alpha} \beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + \alpha Z_{s} \right)$

FOC:
$$0 = \sum_{s=1}^{S} \hat{\pi}_{s} u' (R + \alpha Z_{s}) Z_{s} \qquad \Rightarrow \alpha^{*}(\hat{\pi})$$

Stage 1: Choose $\hat{\pi}_s$ to maximize well-being

$$\frac{1}{2} \underbrace{\beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + \alpha^{*} Z_{s}\right)}_{\text{felicity at } t = 1} + \frac{1}{2} \beta \underbrace{\sum_{s=1}^{S} \pi_{s} u \left(R + \alpha^{*} Z_{s}\right)}_{\text{'average' utility at } t = 2}$$

$$OC: \underbrace{\frac{\beta}{2} \left(u_{S} - u_{s'}\right)}_{\text{benefits of anticipation}} = \underbrace{\frac{\beta}{2} \sum_{s=1}^{S} \pi_{s} u' \left(R + \alpha^{*} Z_{s}\right) Z_{s} \frac{d\alpha}{d\alpha}}_{\text{costs of changed behavior}}$$

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

F

Portfolio ChoiceStage 2: Agent $\max_{\alpha} \beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + \alpha Z_{s} \right)$

FOC:
$$0 = \sum_{s=1}^{S} \hat{\pi}_{s} u' (R + \alpha Z_{s}) Z_{s} \implies \alpha^{*}(\hat{\pi})$$

Stage 1: Choose $\hat{\pi}_s$ to maximize well-being

$$\frac{1}{2} \underbrace{\beta \sum_{s=1}^{S} \hat{\pi}_{s} u \left(R + \alpha^{*} Z_{s}\right)}_{\text{felicity at } t = 1} + \frac{1}{2} \beta \underbrace{\sum_{s=1}^{S} \pi_{s} u \left(R + \alpha^{*} Z_{s}\right)}_{\text{'average' utility at } t = 2}$$

$$\text{FOC:} \qquad \underbrace{\frac{\beta}{2} \left(u_{S} - u_{s'}\right)}_{\text{benefits of anticipation}} = \underbrace{\frac{\beta}{2} \sum_{s=1}^{S} \pi_{s} u' \left(R + \alpha^{*} Z_{s}\right) Z_{s} \frac{d\alpha^{*}}{d\hat{\pi}_{s'}}}_{\text{costs of changed behavior}}$$

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

Consumption & Savings

Conclusion

Proposition Excess risk taking due to optimism

(i) Agents are optimistic about states with high portfolio payou if $\alpha^* > 0$, $\sum_{s=1}^{S} (\hat{\pi}_s - \pi_s) u' (R + \alpha^* Z_s) Z_s > 0$; if $\alpha^* < 0$, $\sum_{s=1}^{S} (\hat{\pi}_s - \pi_s) u' (R + \alpha^* Z_s) Z_s < 0$.

(ii) Agents go even more long (short) than agent with RE or in the opposite direction
if E[Z] > 0, then α* > α^{RE} > 0 or α* < 0;
if E[Z] < 0, then α* < α^{RE} < 0 or α* > 0;

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Preference for Skewed Returns

- Empirical Phenomena:
 - Horse race long shots: Golec and Tamarkin (1998)
 - Lottery demand: Garrett and Sobel (1999)
 - Security design? Swedish lottery bonds, PS-Lotteriesparen
- Setup

 π_1

- 2 states with payoffs: $Z_1 < 0 < Z_2$,
- hold variance and mean fixed and E[Z] < 0

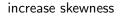
Brunnermeier & Parker

Framework

Discussion

Literature

Applications


Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Preference for Skewed Returns

- Empirical Phenomena:
 - Horse race long shots: Golec and Tamarkin (1998)
 - Lottery demand: Garrett and Sobel (1999)
 - Security design? Swedish lottery bonds, PS-Lotteriesparen
- Setup
 - 2 states with payoffs: $Z_1 < 0 < Z_2$,
 - hold variance and mean fixed and E[Z] < 0

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium Consumption & Savings

Conclusion

Proposition Skewness

An agent with an unbounded utility function holds some of the asset even though its mean payoff is negative if the payoff is sufficiently skewed.

- Remark:
 - Agent goes long for large π_1 even though E[Z] < 0, since
 - there is not much room to short and distort beliefs

shorting becomes very risky

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium

Consumption & Savings

Conclusion

General Equilibrium

- Empirical Phenomena:
 - betting & gambling
 - high trading volume (stock and FX market)
 - home bias
 - endogenous heterogenous prior beliefs?
 - negatively skewed: equity premium puzzle
 - positively skewed: IPO underperformance, long-shots

• Setup:

The portfolio choice problem with

- A continuum of agents with identical endowments
- A fixed supply of 'bonds' with normalization R = 1
- The risky asset in zero net supply: $1 + Z_s = \frac{1 + \varepsilon_s}{P_s}$

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium

Consumption & Savings

Conclusion

General Equilibrium

- Empirical Phenomena:
 - betting & gambling
 - high trading volume (stock and FX market)
 - home bias
 - endogenous heterogenous prior beliefs?
 - negatively skewed: equity premium puzzle
 - positively skewed: IPO underperformance, long-shots

• Setup:

The portfolio choice problem with

- A continuum of agents with identical endowments
- A fixed supply of 'bonds' with normalization R = 1
- The risky asset in zero net supply: $1 + Z_s = \frac{1 + \varepsilon_s}{P_s}$

Optimal

Brunnermeier & Parker

General Equilibrium

Proposition Hetereogeneous Priors

For S > 2 agents split into two groups with different beliefs Optimists with $\hat{E}^{i} [Z^{OE}] > 0$ and $\alpha^{OE,i} > 0 = \alpha^{RE}$ Pessimists with $\hat{E}^{j} [Z^{OE}] < 0$ and $\alpha^{OE,j} < 0$

groups trade against each other and $\{\hat{\pi}^i\} \neq \{\pi\} \neq \{\hat{\pi}^j\}$. both

(i)

(ii)

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption &

Conclusion

Proposition Hetereogeneous Priors

For S > 2 agents split into two groups with different beliefs (i) Optimists with $\hat{E}^{i} [Z^{OE}] > 0$ and $\alpha^{OE,i} > 0 = \alpha^{RE}$ (ii) Pessimists with $\hat{E}^{j} [Z^{OE}] < 0$ and $\alpha^{OE,j} < 0$

both groups trade against each other and $\{\hat{\pi}^i\} \neq \{\pi\} \neq \{\hat{\pi}^j\}$.

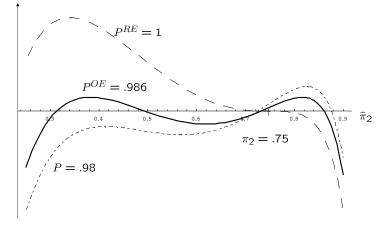
- Example
 - $u(c) = \frac{1}{1-\gamma}c^{1-\gamma}$ with $\gamma = 3$,
 - $\pi_1 = 0.25, \ \pi_2 = 0.75,$
 - $\varepsilon_1 = -0.6$, $\varepsilon_2 = 0.2$ so $P^{RE} = 1$.

Brunnermeier & Parker

Framework

Discussion

Literature


Applications

Portfolio Choice

General Equilibrium

Consumption & Savings

Conclusion

Figure: Wellbeing as a function of subjective beliefs, $\hat{\pi}_2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice

General Equilibrium

Consumption & Savings

Conclusion

In this example, as we vary the economic environment, beliefs change . . .

 $P^{O\overline{E}} > P^{RE} = 1$ if payoff is positively skewed (long-shots, IPO) $P^{OE} < P^{RE} = 1$ if payoff is negatively skewed (stock market).

Conjecture

For multi-asset case with positive net supply:

- Heterogeneity in beliefs is less pronounced.
- Agents invest in different skewed assets (forgo diversification benefits to hold skewed assets.)

Complicates Aggregation:

Representative agent has different preference structure from individual (possibly identical) investors.

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General

Equilibrium Consumption &

Conclusion

In this example, as we vary the economic environment, beliefs change . . .

 $P^{O\overline{E}} > P^{RE} = 1$ if payoff is positively skewed (long-shots, IPO) $P^{OE} < P^{RE} = 1$ if payoff is negatively skewed (stock market).

Conjecture

For multi-asset case with positive net supply:

- ♦ Heterogeneity in beliefs is less pronounced.
- Agents invest in different skewed assets (forgo diversification benefits to hold skewed assets.)

Complicates Aggregation:

Representative agent has different preference structure from individual (possibly identical) investors.

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Fouilibrium

Consumption & Savings

Conclusion

Consumption & Savings

- Empirical Phenomena:
 - households expect upward sloping consumption profile (Barsky et al. (1997))
 - **actual** average consumption growth is non-positive and profiles are concave (Gourinchas & Parker (2002))
- Setup:
 - Finite-lived agent, quadratic utility $u(c_t) = ac_t \frac{1}{2}bc_t^2$,
 - one risk-free asset, $R\beta = 1$,
 - i.i.d. income:

イロト 不得 トイヨト イヨト ヨー ろくで

Brunnermeier & Parker

Optimal Consumption

Framework

Discussion

Literature

Applications

Portfolio Choic General Equilibrium

Consumption & Savings

Conclusion

Euler equation:

$$c_{t}\left(A_{t},\underline{\mathsf{y}}_{t}\right)=\hat{E}\left[c_{t+1}\left(A_{t+1},\underline{\mathsf{y}}_{t+1}\right)|\underline{\mathsf{y}}_{t}\right]$$

Consumption rule:

$$c_t^*\left(\underline{\mathbf{y}}_t\right) = \frac{1 - R^{-1}}{1 - R^{-(T-t)}} \left(A_t + y_t + \sum_{\tau=1}^{T-t} R^{-\tau} \hat{E}\left[y_{t+\tau}|\underline{\mathbf{y}}_t\right] \right)$$

Note: c_t^* depends only on $\hat{E}\left[y_{t+\tau}|\underline{y}_t\right]$ (not higher moments)

Brunnermeier & Parker

Optimal Consumption

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくべ

Framework

Discussion

Literature

Applications

Portfolio Choic General Equilibrium

Consumption & Savings

Conclusion

Euler equation:

$$c_{t}\left(A_{t},\underline{\mathbf{y}}_{t}\right)=\hat{E}\left[c_{t+1}\left(A_{t+1},\underline{\mathbf{y}}_{t+1}\right)|\underline{\mathbf{y}}_{t}\right]$$

Consumption rule:

$$c_t^*\left(\underline{y}_t\right) = \frac{1 - R^{-1}}{1 - R^{-(T-t)}} \left(A_t + y_t + \sum_{\tau=1}^{T-t} R^{-\tau} \hat{E}\left[y_{t+\tau}|\underline{y}_t\right] \right)$$

Note: c_t^* depends only on $\hat{E}\left[y_{t+\tau}|\underline{y}_t\right]$ (not higher moments)

Optimal Beliefs

Framework

Optimal

Brunnermeier & Parker

Discussion

Literature

Applications Portfolio Choic General

Consumption & Savings

Conclusion

So \Rightarrow Variance only lowers anticipatory utility, but does not affect c

 $\Rightarrow~$ OE exhibit no uncertainty for quadratic utility. fore

$$\hat{E}\left[u\left(c_{t+\tau}^{*}\right)|\underline{\mathbf{y}}_{t}\right] = u\left(\hat{E}\left[c_{t+\tau}^{*}|\underline{\mathbf{y}}_{t}\right]\right)$$

Note: agents who expect risk have the same behavior and lower felicity

Optimal Beliefs

Framework

Optimal

Brunnermeier & Parker

Discussion

Literature

Applications Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

So \Rightarrow Variance only lowers anticipatory utility, but does not affect c

 $\Rightarrow~$ OE exhibit no uncertainty for quadratic utility. Therefore

$$\hat{E}\left[u\left(c_{t+\tau}^{*}\right)|\underline{\mathbf{y}}_{t}\right] = u\left(\hat{E}\left[c_{t+\tau}^{*}|\underline{\mathbf{y}}_{t}\right]\right)$$

Note: agents who expect risk have the same behavior and lower felicity

Brunnermeier & Parker

Framework

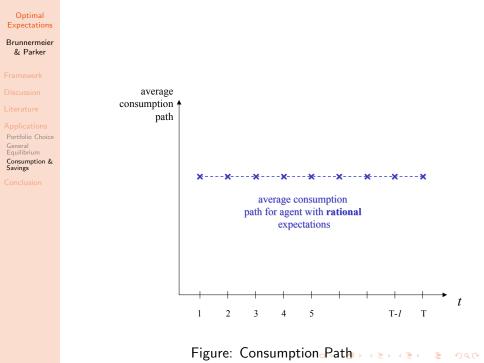
Discussion

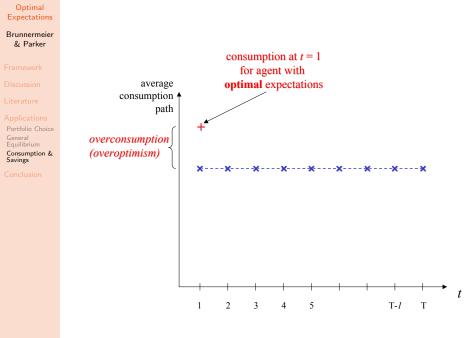
Literature

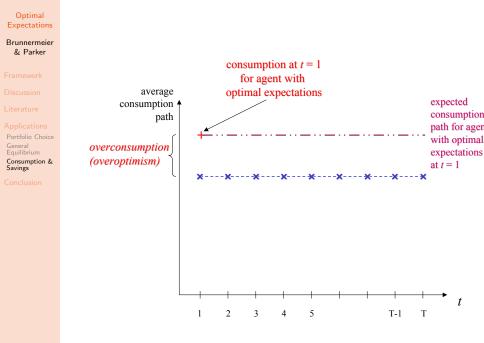
Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion


 ${\sf Certainty} + {\sf Euler \ equation} \Rightarrow {\sf wellbeing \ simplifies \ to}$


$$\frac{1}{T}\sum_{t=1}^{T}\psi_{t}E\left[u\left(c_{t}^{*}\left(\underline{\mathbf{y}}_{t}\right)\right)\right]$$


and FOC implies an actual consumption path of

$$\begin{split} c_t^* \left(\underline{\mathbf{y}}_t \right) &= \frac{\mathbf{a}}{b} - \frac{\psi_{t+\tau}}{\psi_t} R^\tau \left(\frac{\mathbf{a}}{b} - E\left[c_{t+\tau}^* \left(\underline{\mathbf{y}}_{t+\tau} \right) | \underline{\mathbf{y}}_t \right] \right) \\ \text{where } \psi_t &= \beta^{t-1} \left(1 + \sum_{\tau=1}^{T-t} \left(\beta^\tau + \left(\beta \delta \right)^\tau \right) \right) \end{split}$$

イロト (目) (ヨ) (ヨ) (ヨ) (の)

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

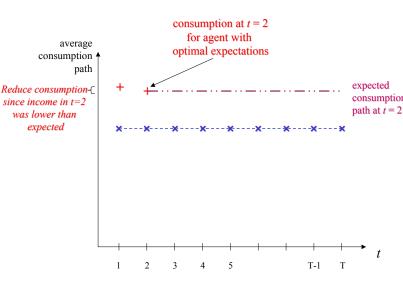


Figure: Consumption Path + (= + (= +) = -) (

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium

Consumption & Savings

Conclusion

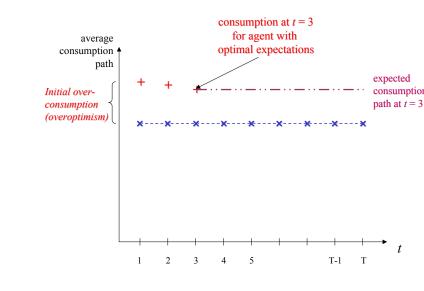


Figure: Consumption Bath

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium

Consumption & Savings

Conclusion

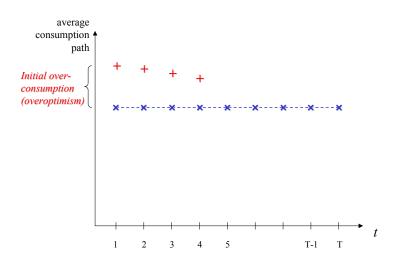
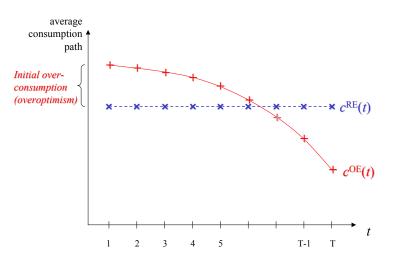


Figure: Consumption Path + (= + (= +) = -) (

Brunnermeier & Parker

Framework

Discussion


Literature

Applications

Portfolio Choice General Equilibrium

Consumption & Savings

Conclusion

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choic General Equilibrium

Consumption & Savings

Conclusion

Proposition Undersaving

For all t < T(i) $\hat{E}\left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} | \underline{y}_t\right] > E\left[\hat{E}\left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} | \underline{y}_t\right]$ (ii) $c_t^*\left(\underline{y}_t\right) > E\left[c_{t+1}^*\left(\underline{y}_{t+1}\right) | \underline{y}_t\right]$ (iii) $\hat{E}\left[c_{t+1}^*\left(\underline{y}_{t+1}\right) | \underline{y}_t\right] > E\left[c_{t+1}^*\left(\underline{y}_{t+1}\right) | \underline{y}_t\right]$ (iv) as $T \to \infty$, $c_t^*\left(\underline{y}_t\right) \to c_t^{RE}\left(\underline{y}_t\right)$

- Model predictions
 - optimism and overconfidence
 - consumption profile hump-shaped
 - agent surprised by declining consumption on average
 - "overconsumption" declines with costs (length of life)

イロト 不得 トイヨト イヨト

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choic General Equilibrium

Consumption & Savings

Conclusion

Proposition Undersaving

For all t < T(i) $\hat{E}\left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} | \underline{y}_t\right] > E\left[\hat{E}\left[\sum_{\tau=0}^{T-t-1} R^{-\tau} y_{t+1+\tau} | \underline{y}_t\right]$ (ii) $c_t^*\left(\underline{y}_t\right) > E\left[c_{t+1}^*\left(\underline{y}_{t+1}\right) | \underline{y}_t\right]$ (iii) $\hat{E}\left[c_{t+1}^*\left(\underline{y}_{t+1}\right) | \underline{y}_t\right] > E\left[c_{t+1}^*\left(\underline{y}_{t+1}\right) | \underline{y}_t\right]$ (iv) as $T \to \infty$, $c_t^*\left(\underline{y}_t\right) \to c_t^{RE}\left(\underline{y}_t\right)$

- Model predictions
 - optimism and overconfidence
 - consumption profile hump-shaped
 - agent surprised by declining consumption on average
 - "overconsumption" declines with costs (length of life)

イロト 不得 トイヨト イヨト ヨー ろくで

Conclusion

Optimal Expectations

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

- Rational expectations are sub-optimal:
 - Agents with rational beliefs makes the ex post best decisions
 - but agents that care about the future can be happier with some optimism
 - Utility gain determines biases
- Optimal expectations is a structural model of non-rational beliefs
 - beliefs are most distorted when decision errors are small
 - beliefs are most distorted when "dream" benefits are largest
 - excess risk taking due to optimism, preference for skewness
 - endogenous heterogenous beliefs; agreeing to disagree
 - overconfidence, optimism, and lack of consumption insurance
 - subjective procrastination, planning fallacy, context effect

Conclusion

Optimal Expectations

Brunnermeier & Parker

Framework

Discussion

Literature

Applications

Portfolio Choice General Equilibrium Consumption & Savings

Conclusion

- Rational expectations are sub-optimal:
 - Agents with rational beliefs makes the ex post best decisions
 - but agents that care about the future can be happier with some optimism
 - Utility gain determines biases
- Optimal expectations is a structural model of non-rational beliefs
 - beliefs are most distorted when decision errors are small
 - beliefs are most distorted when "dream" benefits are largest
 - excess risk taking due to optimism, preference for skewness
 - endogenous heterogenous beliefs; agreeing to disagree
 - overconfidence, optimism, and lack of consumption insurance
 - subjective procrastination, planning fallacy, context effect