Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficien

Noisy REE

Information Acquisition

Asset Pricing under Asymmetric Information Rational Expectations Equilibrium

Markus K. Brunnermeier

Princeton University

November 8, 2015

Rational Expectation Equilibria

Classification of Models

CARA-Gaussia

Asset Demand

Symmetric

Into Efficie

Noisy REE

Information Acquisition

A Classification of Market Microstructure Models

- Simultaneous submission of demand schedules
 - Competitive rational expectation models
 - Strategic share auctions
- Sequential move models
 - Screening models: uninformed market maker submits a supply schedule first
 - Static
 - uniform price setting
 - ♦ limit order book analysis
 - Dynamic sequential trade models with multiple trading rounds
 - Signalling models: informed traders move first, market maker second

Classification of Models

Gaussian

Asset Demand

Symmetric

Info Efficier

Noisy REI

Information Acquisition

Overview

- Competitive REE (Examples)
 - Preliminaries
 - LRT (HARA) utility functions in general
 - CARA Gaussian Setup
 - ♦ Certainty equivalence
 - ♦ Recall Projection Theorem/Updating
 - REE (Grossman 1976)
 - Noisy REE (Hellwig 1980)
- Allocative versus Informational Efficiency
- Endogenous Information Acquisition

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric

Info Efficier

Noisy REE

Information Acquisition

Utility functions and Risk aversion

- Utility functions: U(W)
- Risk tolerance, $1/\rho=$ reciprocal of the Arrow-Pratt measure of absolute risk aversion

$$\rho(W) := -\frac{\partial^2 U/\partial W^2}{\partial U/\partial W}$$

Risk tolerance is linear in W if

$$\frac{1}{\rho} = \alpha + \beta W$$

 Also called hyperbolic absolute risk aversion (HARA) utility functions

Rational Expectation Equilibria

CARA-Gaussian

Asset Demand

Noisy REE

Acquisition

LRT(HARA)-Utility Functions

Class	Parameters	U(W) =
expo/CARA	$\beta = 0, \alpha = 1/\rho$	$-\exp\{-\rho W\}$
gen. power	eta eq 1	$\frac{1}{\beta-1}(\alpha+\beta W)^{(\beta-1)/\beta}$
a) quadratic	$\beta = -1, \alpha > W$	$-(\alpha - W)^2$
b) log	$\beta = +1$	$ln(\alpha + W)$
c) power/CRRA	$\alpha = 0, \beta \neq 1, -1$	$\frac{1}{\beta-1}(\beta W)^{(\beta-1)/\beta}$

Rational Expectation Equilibria

CARA-Gaussian

Asset Demand

Noisy REE

Certainty Equivalent in CARA-Gaussian Setup

$$U(W) = -\exp(-\rho W)$$
, hence $\rho = -\frac{\partial^2 U(W)/\partial (W)^2}{\partial U(W)/\partial W}$

$$E[U(W) \mid \cdot] = \int_{-\infty}^{+\infty} -\exp(-\rho W) f(W \mid \cdot) dW$$

where:
$$f(W|\cdot) = \frac{1}{\sqrt{2\pi\sigma_W^2}} \exp\left[-\frac{(W-\mu_W)^2}{2\sigma_W^2}\right]$$

Substituting it in:

$$\begin{split} E[U(W)\mid\cdot] &= \frac{1}{\sqrt{2\pi\sigma_W^2}} \int_{-\infty}^{+\infty} -\exp\left(-\frac{\rho z}{2\sigma_W^2}\right) \mathrm{d}W \\ \text{where } z &= (W-\mu_W)^2 + 2\rho\sigma_W^2 W \end{split}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

, tober beinan

Inc. Ecc.

IIIIO LIIICIEII

Noisy REE

Information

Certainty Equivalent in CARA-Gaussian Setup

Completing square:

$$z = (W - \mu_W + \rho \sigma_W^2)^2 + 2\rho \left(\mu_W - \frac{1}{2}\rho \sigma_W^2\right)\sigma_W^2$$

Hence, $E[U(W) \mid \cdot] = -\exp[-\rho(\mu_W - \frac{1}{2}\rho\sigma_W^2)] \times$

$$\times \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma_W^2}} \exp\left(-\frac{(W - \mu_W + \rho\sigma_W^2)^2}{2\sigma_W^2}\right) dW}_{=1}$$

Trade-off is represented by:

$$V(\mu_W, \sigma_W^2) = \mu - \frac{1}{2}\rho\sigma_W^2$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric

Noisy REE

INDISY INLE

Information Acquisition

Certainty Equivalent in CARA-Gaussian Setup

More generally, multinomial random variables $\mathbf{w} \sim \mathcal{N}(0, \mathbf{\Sigma})$ with a positive definite (co)variance matrix $\mathbf{\Sigma}$. More specifically:

$$\begin{split} & E[\exp(\mathbf{w}^{\mathsf{T}}\mathbf{A}\mathbf{w} + \mathbf{b}^{\mathsf{T}}\mathbf{w} + d)] = \\ & = |\mathbf{I} - 2\mathbf{\Sigma}\mathbf{A}|^{-1/2}\exp\left[\frac{1}{2}\mathbf{b}^{\mathsf{T}}(\mathbf{I} - 2\mathbf{\Sigma}\mathbf{A})^{-1}\mathbf{\Sigma}\mathbf{b} + d\right], \end{split}$$

where:

A is a symmetric $m \times m$ matrix, **b** is an m-vector, and d is a scalar.

Note that the left-hand side is only well-defined if $(I - 2\Sigma A)$ is positive definite.

Rational Expectation Equilibria

Asset Demand

Noisy REE

Demand for a Risky Asset

asset	payoff	endowment
bond (numeraire)	R	e_0^i
stock	$v \sim \mathcal{N}(E[v \cdot], Var[v \cdot])$	z^{i}

- Two assets
- $Px^{i} + b^{i} = Pz^{i} + e_{0}^{i}$
- Final wealth:

$$W^{i} = b^{i}R + x^{i}v = (e_{0}^{i} + P(z^{i} - x^{i}))R + x^{i}v$$

- Mean: $(e_0^i + P(z^i x^i))R + xE[v]$
- Variance: $(x^i)^2 Var[v|\cdot]$

Rational Expectation Equilibria

Asset Pricing under Asym.

Information

Demand for a Risky Asset

Asset Demand

Noisy REE

$$V(\mu_W, \sigma_W^2) = \mu_W - \frac{1}{2} \rho^i \sigma_W^2$$

= $(e_0^i + Pz^i)R + x^i (E[v|\cdot] - PR) - \frac{1}{2} \rho^i Var[v|\cdot](x^i)^2$

First order condition: $E[v|\cdot] - PR - \rho^i Var[v|\cdot]x^i = 0$

$$x^{i}(P) = \frac{E[v|\cdot] - PR}{\rho^{i} Var[v|\cdot]}$$

Remarks:

- independent of initial endowment (CARA)
- linearly increasing in investor's expected excess return
- decreasing in investors' variance of the payoff $Var[v|\cdot]$
- decreasing in investors' risk aversion ρ^i
- for $\rho^i \to 0$ investors are risk-neutral, and $x^i \to +\infty$ or $-\infty$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Noisy REE

Information Acquisition

Symmetric Info – Benchmark

Model setup:

- $i \in \{1, ..., I\}$ (types of) traders
- CARA utility function with risk aversion coefficient ρ^i (Let $\eta^i = \frac{1}{\rho^i}$ be trader i's risk tolerance)
- all traders have the same information $v \sim \mathcal{N}(\mu, \sigma_v^2)$
- aggregate demand: $\sum_{i}^{I} \frac{E[v] PR}{\rho^{i} Var[v]} = \sum_{i}^{I} \eta^{i} \tau_{v} \{ E[v] PR \}$ Let $\eta := \frac{1}{I} \sum_{i}^{I} \eta^{i} = \frac{1}{I} \sum_{i}^{I} \frac{1}{\rho^{i}}$ (harmonic mean)
- market clearing: $\eta I \tau_v \{ E[v] PR \} = X^{\text{supply}}$

$$P = \frac{1}{R} \left\{ E[v] - \frac{X^{\mathsf{sup}}}{I \eta \tau_v} \right\}$$

• Expected excess payoff:

$$Q := E[v] - PR = \frac{1}{\eta \tau_v} \frac{X^{\sup}}{I}$$

Asset Demand

Symmetric Information

Noisy REE

Symmetric Info – Benchmark

Trader i's equilibrium demand is:

$$x^i(P) = \frac{\eta^i}{\eta} \frac{X^{\sup}}{I}$$

- Remarks
 - $\frac{\partial P}{\partial E[v]} = \frac{1}{R} > 0$
 - $\frac{\eta'}{n}$ risk sharing of aggregate endowment:

$$\frac{x^{i*}}{x^{i'*}} = \frac{\eta^i}{\eta^{i'}}$$

no endowment effects

Rational Expectation Equilibria

Classification of Models

CARA-Gaussia

Asset Demand

, tooct Demain

Information

Info Efficiency

Noisy REE

TTOIDY TIEL

Information Acquisition

REE - Grossman (1976)

Model setup:

- $i \in \{1, ..., I\}$ traders
- CARA utility function with risk aversion coefficient $\rho = \rho^i$ (Let $\eta^i = \frac{1}{\rho^i}$ be trader i's risk tolerance)
- information is dispersed among traders: trader i's signal is $S^i = v + \epsilon^i_S$, where $\epsilon^i_S \sim^{i.i.d.} \mathcal{N}(0, \sigma^2_\epsilon)$

under Asym. Information Rational Expectation Equilibria

Asset Pricing

Classification

CARA-

Asset Demand

Symmetric

Info Efficiency

Noisy REE

Acquisition

REE - Grossman (1976)

Step 1: Conjecture price function

$$P = \alpha_0 + \alpha_S \bar{S}$$
, where $\bar{S} = \frac{1}{I} \sum_{i=1}^{I} S^i$ (sufficient statistics)

Step 2: Derive posterior distribution

$$E[v|S^{i}, P] = E[v|\overline{S}] = \lambda E[v] + (1 - \lambda)\overline{S}$$
$$= \lambda E[v] + (1 - \lambda)\frac{P - \alpha_{0}}{\alpha S}$$

$$Var[v|S^i, P] = Var[v|\overline{S}] = \lambda Var[v],$$

where $\lambda := \frac{Var[\epsilon]}{IVar[v] + Var[\epsilon]}$

Step 3: Derive individual demand

$$x^{i*}(P) = \frac{E[v|S^{i}, P] - P(1+r)}{\rho^{i} Var[v|S^{i}, P]}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Information

Info Efficiency

Noisy REE

Information Acquisition

REE - Grossman (1976)

Step 4: Impose market clearing

$$\sum_{i}^{I} x^{i*}(P) = X^{\text{supply}}$$

$$P = \underbrace{\frac{\lambda}{1+r} \left(E[v] - \rho^{i} Var[v] \frac{1}{I} X^{\text{supply}} \right)}_{=\alpha_{0}} + \underbrace{\frac{1-\lambda}{1+r}}_{=\alpha_{S}} \bar{S},$$

$$\text{where } \bar{S} = \frac{P-\alpha_{0}}{\alpha_{S}}$$

Step 5: Impose rationality

(determine undetermined coefficients α_0 , α_5)

N.B.: Price fully reveals sufficient statistic!

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

C.....

Info Efficiency

Noisy REE

....,

Information Acquisition

Informational (Market) Efficiency

Empirical Literature:	
Form	Price reflects
strong	all private and public information
semi strong	all public information
weak	only (past) price information
Theoretical Literature:	
Form	Price aggregates/reveals
fully revealing	all private signals
informational efficient	sufficient statistic of signals
partially revealing	a noisy signal of pooled private info
privately revealing	with one signal reveals suff. stat.

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussia

Asset Demand

Symmetric

Info Efficiency

Noisy REE

Informatio

Information Acquisition

Informational (Market) Efficiency

- $\overline{\mathbf{S}}$ sufficient statistic for all individual info sets $\{\mathcal{S}^1,...,\mathcal{S}^I\}$
- Illustration: if one can view price function as

$$P(\cdot): \{\mathcal{S}^1, ..., \mathcal{S}^I\} \stackrel{g(\cdot)}{\to} \overline{\mathbf{S}} \stackrel{f(\cdot)}{\to} P$$

- if $f(\overline{S})$ is invertible, then price is informationally efficient
- if $f(\cdot)$ and $g(\cdot)$ are invertible, then price is fully revealing

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Info Efficiency

Noisy REE

....,

Information Acquisition

Remarks & Paradox

- Grossman (1976) solved it via "full communication equilibria" (Radner 1979's terminology)
- 'unique' info efficient equilibrium (DeMarzo & Skiadas 1998)
- As $I \to \infty$ (risk-bearing capacity), $P \to \frac{1}{R} E[v]$
- Grossman Paradox:
 Individual demand does not depend on individual signal Sⁱs.
 How can all information be reflected in the price?
- Grossman-Stiglitz Paradox: Nobody has an incentive to collect information?
- individual demand is independent of wealth (CARA)
- in equilibrium individual demand is independent of price
- equilibrium is not implementable

CARA-Gaussia

Asset Demand

IIIIOIIIIatioii

IIIIO LIIICI

Noisy REE

Information Acquisition

Noisy REE - Hellwig 1980

Model setup:

- $i \in \{1, ..., I\}$ traders
- CARA utility function with risk aversion coefficient $\rho=\rho^i$ (Let $\eta^i=\frac{1}{\rho^i}$ be trader i's risk tolerance)
- Information is dispersed among traders: trader i's signal is $S^i = v + \epsilon^i_S$, where $\epsilon^i_S \sim^{ind} \mathcal{N}(0, (\sigma^i_\epsilon)^2)$
- noisy asset supply $X^{\text{Supply}} = u$
- Let $\Delta S^i = S^i E[S^i]$, $\Delta u = u E[u]$ etc.

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Info Efficienc

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980)

Step 1: Conjecture price function

$$P = \alpha_0 + \sum_{i}^{I} \alpha_S^i \Delta S^i + \alpha_u \Delta u$$

Step 2: Derive posterior distribution (let's do it only half way through)

$$\begin{split} E[v|S^i,P] &= E[v] + \beta_S^i(\alpha) \Delta S^i + \beta_P(\alpha) \Delta P \\ Var[v|S^i,P] &= \frac{1}{\tau^i_{[v|S^i,P]}} \text{ (independent of signal realization)} \end{split}$$

Step 3: Derive individual demand

$$x^{i*}(P) = \eta^{i} \tau^{i}_{[v|S^{i},P]} \{ E[v|S^{i},P] - P(1+r) \}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980)

Step 4: Impose market clearing

Total demand = total supply (let r = 0)

$$\sum_{i}^{I} \eta^{i} \tau_{[v|S^{i},P]}^{i}(\alpha) \{ E[v] + \beta_{S}^{i}(\alpha) \Delta S^{i} - \alpha_{0} \beta_{P}^{i}(\alpha) + [\beta_{P}^{i}(\alpha) - 1]P \} = u$$

..

$$P(S^1, ..., S^I, u) =$$

$$\frac{\sum_{i} \left(\eta^{i} \tau_{[v|S^{i},P]}^{i} \left(\alpha \right) \right) \left[E\left[v \right] - \alpha_{0} \beta_{P}^{i} \left(\alpha \right) + \beta_{S}^{i} \left(\alpha \right) \Delta S^{i} \right] - E\left[u \right] - \Delta u}{\sum_{i} \left(1 - \beta_{P}^{i} \left(\alpha \right) \right) \eta^{i} \tau_{[v|S^{i},P]}^{i} \left(\alpha \right)}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficier

Noisy REE

Acquisition

Noisy REE - Hellwig (1980)

Step 5: Impose rationality

$$\alpha_{0} = \frac{\sum_{i} \left(\eta^{i} \tau_{[v|S^{i},P]}^{i}(\alpha) \right) \left[E\left[v\right] - \alpha_{0} \beta_{P}^{i}\left(\alpha\right) \right] - E\left[u\right]}{\sum_{i} \left(1 - \beta_{P}^{i}\left(\alpha\right) \right) \eta^{i} \tau_{[v|S^{i},P]}^{i}(\alpha)}$$

$$\alpha_{S}^{i} = \frac{\eta^{i} \tau_{[v|S^{i},P]}^{i}(\alpha)}{\sum_{i} \left(1 - \beta_{P}^{i}\left(\alpha\right) \right) \eta^{i} \tau_{[v|S^{i},P]}^{i}(\alpha)} \beta_{S}^{i}(\alpha)$$

$$\alpha_{u}^{i} = \frac{-1}{\sum_{i} \left(1 - \beta_{P}^{i}\left(\alpha\right) \right) \eta^{i} \tau_{[v|S^{i},P]}^{i}(\alpha)}$$

Solve for root α^* of the problem $\alpha = G(\alpha)$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficien

Noisy REE

Information Acquisition

Noisy REE - Hellwig 1980

Simplify model setup:

- ullet All traders have identical risk aversion coefficient $ho=1/\eta$
- Error of all traders' signals ϵ_S^i are i.i.d.

Step 1: Conjecture price function simplifies to:

$$\Delta P = \alpha_S \sum_{i}^{I} \frac{1}{I} \Delta S^i + \alpha_u \Delta u$$

Step 2: Derive posterior distribution:

$$\begin{split} E[v|S^i,P] &= E[v] + \beta_S(\alpha) \Delta S^i + \beta_P(\alpha) \Delta P \\ Var[v|S^i,P] &= \frac{1}{\tau} \ \ \text{(independent of signal realization)} \end{split}$$

where β 's are projection coefficients.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Information

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980)

Previous fixed point system simplifies to:

$$\alpha_{S} = \frac{1}{\sum_{i} (1 - \beta_{P}(\alpha))} \beta_{S}(\alpha)$$

$$\alpha_{u} = \frac{-1}{\eta \tau(\alpha) \sum_{i} (1 - \beta_{P}(\alpha))}$$

To determine β_S and β_P , invert Co-variance matrix

$$\Sigma\left(S^{i},P\right) = \begin{pmatrix} \sigma_{v}^{2} + \sigma_{\varepsilon}^{2} & \alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) \\ \alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) & \alpha_{S}^{2}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) + \alpha_{u}^{2}\sigma_{u}^{2} \end{pmatrix}$$

$$\Sigma^{-1}\left(S^{i},P\right) = \frac{1}{D} \left(\begin{array}{cc} \alpha_{S}^{2} \left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) + \alpha_{u}^{2}\sigma_{u}^{2} & -\alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) \\ -\alpha_{S}\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right) & \sigma_{v}^{2} + \sigma_{\varepsilon}^{2} \end{array} \right)$$

$$D = \alpha_{\rm S}^2 \frac{I-1}{I} \left(\sigma_{\rm v}^2 + \frac{1}{I} \sigma_{\varepsilon}^2 \right) \sigma_{\varepsilon}^2 + \alpha_{\rm u}^2 \sigma_{\rm u}^2 \left(\sigma_{\rm v}^2 + \sigma_{\varepsilon}^2 \right)$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric

Info Efficience

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980)

Since $Cov[v, P] = \alpha_S \sigma_v^2$ and $Cov[v, S^i] = \sigma_v^2$ leads us to:

$$\begin{split} \beta_P &= \frac{1}{D} \alpha_S \frac{I-1}{I} \sigma_v^2 \sigma_\epsilon^2 \\ \beta_S &= \frac{1}{D} \alpha_u^2 \sigma_u^2 \sigma_v^2 \end{split}$$

For conditional variance (precision) from projection theorem:

$$Var\left[v|S^{i},P\right] = \frac{1}{D}\left[D\sigma_{v}^{2} - \left(\alpha_{u}^{2}\sigma_{u}^{2} + \alpha_{S}^{2}\frac{I-1}{I}\sigma_{\varepsilon}^{2}\right)\sigma_{v}^{4}\right]$$
$$= \frac{1}{D}\left[\alpha_{S}^{2}\frac{I-1}{I^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\left(\sigma_{\varepsilon}^{2}\right)\sigma_{v}^{2}$$

Hence:

Rational Expectation Equilibria

Classification of Models

CARA-Gaussiai

Asset Demand

Info Efficienc

Noisy REE

Information Acquisition

Noisy REE - Hellwig (1980)

$$\alpha_{S} = \frac{\alpha_{u}^{2} \sigma_{v}^{2} \sigma_{u}^{2}}{(D - \alpha_{s} \frac{l-1}{l} \sigma_{\varepsilon}^{2} \sigma_{v}^{2})I}$$

$$\alpha_{u} = -\rho \frac{(\alpha_{u}^{2} \sigma_{u}^{2} + \alpha_{s}^{2} \frac{l-1}{l^{2}} \sigma_{\varepsilon}^{2}) \sigma_{\varepsilon}^{2} \sigma_{v}^{2}}{(D - \alpha_{s} \frac{l-1}{l} \sigma_{\varepsilon}^{2} \sigma_{v}^{2})I}$$

Trick: solve for $h = -\frac{\alpha_u}{\alpha_S}$ (Recall price signal can be re-written as $\frac{P-\alpha_0}{\alpha_S} = \sum_i^I \frac{1}{I} S^i + \frac{\alpha_u}{\alpha_S} u$) [noise signal ratio]

$$h = \frac{\rho \left(h^2 \sigma_u^2 + \frac{I - 1}{I^2} \sigma_{\varepsilon}^2\right) \sigma_{\varepsilon}^2 \sigma_v^2}{h^2 \sigma_v^2 \sigma_u^2}$$

$$\underbrace{h}_{\text{increasing in } h} = \underbrace{\rho \sigma_{\varepsilon}^{2} + \frac{\rho}{h^{2}} \underbrace{\frac{(I-1)\sigma_{\varepsilon}^{4}}{I^{2}\sigma_{u}^{2}}}_{\text{decreasing in } h}} \quad \Rightarrow \text{ unique } h > \rho \sigma_{\varepsilon}^{2}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiency

Noisy REE

Acquisition

Noisy REE - Hellwig (1980)

Remember that h is increasing in ρ . Back to α_S :

$$\alpha_S = \frac{\alpha_u^2 \sigma_v^2 \sigma_u^2}{\left(D - \alpha_s \frac{I - 1}{I} \sigma_\varepsilon^2 \sigma_v^2\right) I} \quad \text{multiply by denominator:}$$

$$\alpha_S DI = \alpha_u^2 \sigma_v^2 \sigma_u^2 + (I - 1) \alpha_S^2 \frac{I - 1}{I} \sigma_\varepsilon^2 \sigma_v^2$$

$$\Leftrightarrow \alpha_S = \frac{1}{D} \left[\frac{1}{I} \alpha_u^2 \sigma_v^2 \sigma_u^2 + \alpha_S^2 \frac{I - 1}{I} \sigma_\varepsilon^2 \sigma_v^2 \right]$$

Sub in $D = \dots$

$$\alpha_{\mathcal{S}} = \frac{\frac{\alpha_{u}^{2}}{\alpha_{s}^{2}}\sigma_{v}^{2}\sigma_{u}^{2} + (I-1)\sigma_{\varepsilon}^{2}\sigma_{v}^{2}}{\left(I-1\right)\left(\sigma_{v}^{2} + \frac{1}{I}\sigma_{\varepsilon}^{2}\right)\sigma_{\varepsilon}^{2} + I\frac{\alpha_{\varepsilon}^{2}}{\alpha_{\varepsilon}^{2}}\sigma_{u}^{2}\left(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2}\right)} \Rightarrow \text{ unique } \alpha_{\mathcal{S}}$$

This proves existence and uniqueness of the NREE!

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Information

inio Ellicien

Noisy REE

Acquisition

Characterization of NREE

Recall that:

$$Var\left[v|S^{i},P\right] = \frac{1}{D}\left[\alpha_{S}^{2}\frac{I-1}{I^{2}}\sigma_{\varepsilon}^{2} + \alpha_{u}^{2}\sigma_{u}^{2}\right]\sigma_{\varepsilon}^{2}\sigma_{v}^{2}, \text{ and}$$

$$\alpha_{S} = \frac{1}{D}\left[\frac{1}{I}\alpha_{u}^{2}\sigma_{v}^{2}\sigma_{u}^{2} + \alpha_{S}^{2}\frac{I-1}{I}\sigma_{\varepsilon}^{2}\sigma_{v}^{2}\right]$$

Hence,

$$\alpha_{S} = Var \left[v | S^{i}, P \right] \frac{\left[\frac{1}{I} \alpha_{u}^{2} \sigma_{u}^{2} + \alpha_{s}^{2} \frac{I-1}{I} \sigma_{\varepsilon}^{2} \right]}{\left[\alpha_{S}^{2} \frac{I-1}{I^{2}} \sigma_{\varepsilon}^{2} + \alpha_{u}^{2} \sigma_{u}^{2} \right] \sigma_{\varepsilon}^{2}} \text{ (notice } I^{2} \text{ square)}$$

$$\alpha_{S} = Var \left[v | \cdot \right] \frac{1}{\sigma_{\varepsilon}^{2}} \frac{\left[\frac{I}{I-1} h^{2} \sigma_{u}^{2} + I \sigma_{\varepsilon}^{2} \right]}{\left[\sigma_{\varepsilon}^{2} + \frac{I^{2}}{I-1} h^{2} \sigma_{u}^{2} \right]}$$

$$= Var \left[v | \cdot \right] \frac{1}{\sigma_{\varepsilon}^{2}} \frac{\left[\frac{I}{I-1} h^{2} \sigma_{u}^{2} + \frac{1}{I} \sigma_{\varepsilon}^{2} + \left(I - \frac{1}{I} \right) \sigma_{\varepsilon}^{2} \right]}{\left[\sigma_{\varepsilon}^{2} + \frac{I^{2}}{I-1} h^{2} \sigma_{u}^{2} \right]}$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric

Information

mio Eme

Noisy REE

Information Acquisition

Characterization of NREE

$$\begin{split} \alpha_S &= \textit{Var}\left[v|S^i, P\right] \frac{1}{\sigma_{\varepsilon}^2} \left[\frac{1}{I} + \frac{\left(I - \frac{1}{I}\right)\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \frac{I^2}{I - 1}h^2\sigma_{u}^2}\right] \\ &= \textit{Var}\left[v|S^i, P\right] \frac{\tau_{\varepsilon}}{I} \left[1 + \left(I + 1\right)\underbrace{\left(\left(I - 1\right)\frac{\tau_{u}}{\tau_{u} + \frac{I^2}{I - 1}h^2\tau_{\varepsilon}}\right)}_{:=\theta}\right] \\ &= \textit{Var}\left[v|S^i, P\right] \frac{\tau_{\varepsilon}}{I} \left[1 + \left(I + 1\right)\theta\right], \end{split}$$
 where θ is decreasing in ρ (h is increasing)

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficiend

Noisy REE

Information Acquisition

Characterization of NREE

$$\begin{split} \mathit{Var}\left[v|S^i,P\right] &= \frac{1}{D} \left[\alpha_S^2 \frac{I-1}{I^2} \sigma_\varepsilon^2 + \alpha_u^2 \sigma_u^2\right] \sigma_\varepsilon^2 \sigma_v^2 \\ &= \frac{\left[\alpha_S^2 \frac{I-1}{I^2} \sigma_\varepsilon^2 + \alpha_u^2 \sigma_u^2\right] \sigma_\varepsilon^2 \sigma_v^2}{\alpha_S^2 \frac{I-1}{I} \left(\sigma_v^2 + \frac{1}{I} \sigma_\varepsilon^2\right) \sigma_\varepsilon^2 + \alpha_u^2 \sigma_u^2 \left(\sigma_v^2 + \sigma_\varepsilon^2\right)} \\ &= \frac{\left[\frac{I-1}{I^2} \sigma_\varepsilon^2 + h^2 \sigma_u^2\right] \sigma_\varepsilon^2 \sigma_v^2}{\frac{I-1}{I} \left(\sigma_v^2 + \frac{1}{I} \sigma_\varepsilon^2\right) \sigma_\varepsilon^2 + h^2 \sigma_u^2 \left(\sigma_v^2 + \sigma_\varepsilon^2\right)} = \dots \\ \frac{1}{\mathit{Var}\left[v|S^i,P\right]} &= \tau_v + \tau_\varepsilon + \theta \tau_\varepsilon \end{split}$$

Interpretation

$$\theta = (I-1) \tau_u / (\tau_u + \frac{I^2}{I-1} h^2 \tau_{\varepsilon})$$
 measure of info efficiency $\sigma_u^2 \to \infty \ (\tau_u \to 0)$: $\theta \to 0$ price is uninformative (Walras. equ.) $\sigma_u^2 \to 0 \ (\tau_u \to \infty)$: $\theta \to 1$ price is informationally efficient

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Information

Info Efficier

Noisy REE

Information Acquisition

Remarks to Hellwig (1980)

- Since $\alpha_u^2 \neq 0$, $\beta_S \neq 0$, i.e. agents condition on their signal
- \bullet As risk aversion of trader increases the informativeness of price θ declines
- Price informativeness increases in precision of signal τ_{ε} and declines in the amount of noise trading σ_u^2
- Negative supply shock leads to a larger price increase compared to a Walrasian equilibrium, since traders wrongly partially attribute it to a good realization of v
- Diamond and Verrecchia (1981) is similar except that endowment shocks of traders serve as asymmetric information

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Information

Noisy REE

Information Acquisition

Endogenous Info Acquisition Grossman-Stiglitz (1980)

Model setup:

- $i \in \{1, ..., I\}$ traders
- CARA utility function with risk aversion coefficient ρ (Let $\eta = \frac{1}{\rho}$ be traders' risk tolerance)
- no information aggregation two groups of traders
 - Informed traders who have the same signal S: $S = v + \epsilon_S$ with $\epsilon_S \sim \mathcal{N}(0, \sigma_\epsilon^2)$
 - Uninformed traders have no signal
- FOCUS on information acquisition

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficien

Noisy REE

Information Acquisition

Noisy REE - Grossman-Stiglitz

Step 1: Conjecture price function

$$P = \alpha_0 + \alpha_S \Delta S + \alpha_u \Delta u$$

Step 2: Derive posterior distribution

• for informed traders:

$$E[v|S, P] = E[v|S] = E[v] + \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}} \Delta S$$
$$\tau_{[v|S]} = \tau_{v} + \tau_{\varepsilon}$$

for uninformed traders:

$$E[v|P] = E[v] + \frac{\alpha_{S}\sigma_{v}^{2}}{\alpha_{S}^{2}(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2}) + \alpha_{u}^{2}\sigma_{u}^{2}} \Delta P$$

$$Var[v|P] = \sigma_{v}^{2} \left(1 - \frac{\alpha_{S}^{2}\sigma_{v}^{2}}{\alpha_{S}^{2}(\sigma_{v}^{2} + \sigma_{\varepsilon}^{2}) + \alpha_{u}^{2}\sigma_{u}^{2}}\right)$$
or: $\tau_{[v|P]} = \tau_{v} + \underbrace{\frac{\tau_{u}}{\tau_{u} + h^{2}\tau_{\varepsilon}}}_{:=\phi \in [0,1]} \tau_{\varepsilon}$, where $h = -\frac{\alpha_{u}}{\alpha_{S}}$

Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Efficien

Noisy REE

Information Acquisition

Noisy REE - Grossman-Stiglitz

After some algebra we get:

$$E[v|P] = E[v] + \frac{1}{\alpha_S} \frac{\phi \tau_{\varepsilon}}{\tau_V + \phi \tau_{\varepsilon}} \Delta P$$

Step 3: Derive individual demand

$$x'(P,S) = \eta' \left[\tau_{v} + \tau_{\varepsilon}\right] \left[E\left[v\right] + \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}} \Delta S - P\right]$$
$$x''(P) = \eta'' \left[\tau_{v} + \phi \tau_{\varepsilon}\right] \left[E\left[v\right] + \frac{1}{\alpha_{S}} \frac{\phi \tau_{\varepsilon}}{\tau_{v} + \phi \tau_{\varepsilon}} \Delta P - P\right]$$

Step 4: Impose market clearing

$$\underbrace{\lambda^{I} \eta^{I} \left[\tau_{v} + \tau_{\varepsilon} \right]}_{:=\nu^{I}} \left[E \left[v \right] + \frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}} \Delta S - P \right] + \underbrace{\left(1 - \lambda^{I} \right) \eta^{U} \left[\tau_{v} + \phi \tau_{\varepsilon} \right]}_{:=\nu^{U}} \left[E \left[v \right] + \frac{1}{\alpha_{S}} \frac{\phi \tau_{\varepsilon}}{\tau_{v} + \phi \tau_{\varepsilon}} \Delta P - P \right] = u$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric

Info Efficier

Noisy REE

Information Acquisition

Noisy REE – Grossman-Stiglitz

$$\begin{split} P\left(S,u\right) &= \\ &\frac{\left(\nu^{I} + \nu^{U}\right)E\left[v\right] + \nu^{I}\frac{\tau_{\varepsilon}}{\tau_{v} + \tau_{\varepsilon}}\Delta S - \frac{1}{\alpha_{S}}\frac{\Phi\tau_{\varepsilon}}{\tau_{v} + \phi\tau_{\varepsilon}}\alpha_{0}\nu^{U} - E\left[u\right] - \Delta u}{\nu^{U}\left(1 - \frac{1}{\alpha_{S}}\frac{\Phi\tau_{\varepsilon}}{\tau_{v} + \phi\tau_{\varepsilon}}\right) + \nu^{I}} \end{split}$$

Hence,

$$h = -\frac{\alpha_u}{\alpha_S} = \left[\nu' \frac{\tau_{\varepsilon}}{\tau_{\nu} + \tau_{\varepsilon}}\right]^{-1} = \frac{1}{\lambda' \eta' \tau_{\varepsilon}}$$
$$\phi = \frac{\tau_u \tau_{\varepsilon}}{\tau_u \tau_{\varepsilon} + \frac{1}{\left(\lambda' \eta'\right)^2}}$$

Remarks:

- As $Var[u] \setminus 0$, $\phi \nearrow 1$
- If signal is more precise (τ_{ε} is increasing) then ϕ increases (since informed traders are more aggressive)
- Increases in λ^I and η^I also increase ϕ

Rational Expectation Equilibria

Classification of Models

CARA-Gaussia

Asset Demand

Symmetric

Info Effici

Noisy REE

Information Acquisition

Noisy REE – Grossman-Stiglitz

Step 5: Impose rationality

Solve for coefficients:

$$\alpha_{0} = E[\nu] - \frac{1}{\nu^{I} + \nu^{U}} E[u]$$

$$\alpha_{S} = \frac{1}{\nu^{U} \left(1 - \frac{1}{\alpha_{S}} \frac{\Phi \tau_{\varepsilon}}{\tau_{\nu} + \Phi \tau_{\varepsilon}}\right) + \nu^{I}} \frac{\tau_{\varepsilon}}{\tau_{\nu} + \tau_{\varepsilon}} \nu^{I} = \frac{\lambda^{I} \eta^{I} + \lambda^{U} \eta^{U} \Phi}{\nu^{I} + \nu^{U}} \tau_{\varepsilon}$$

$$\alpha_{u} = -\frac{1}{\nu^{I} + \nu^{U}} \left(1 + \frac{\lambda^{U} \eta^{U}}{\lambda^{I} \eta^{I}} \Phi\right)$$

Finally let's calculate:

$$\frac{\tau_{\left[v|S\right]}}{\tau_{\left[v|P\right]}} = \frac{\tau_v + \tau_\varepsilon}{\tau_v + \phi \tau_\varepsilon} = 1 + \frac{\left(1 - \phi\right)\tau_\varepsilon}{\tau_v + \phi \tau_\varepsilon}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

N . DEE

Noisy REE

Information Acquisition

Information Acquisition Stage – Grossman-Stiglitz (1980)

- Aim: endogenize λ^I
- Recall:

$$\mathbf{x}^i = \eta^i \tau_{[Q|S]} E[Q|S]$$
, where $Q = \mathbf{v} - RP$ is excess payoff

• Final wealth:

$$W^{i} = \eta^{i} Q \tau_{[Q|S]} E[Q|S] + (Pu^{i} + e_{0}^{i}) R$$

(CARA \Rightarrow we can ignore second term) Note W^i is product of two normally distributed variables. Use formula of Slide 7 **or** follow following steps:

• Conditional on *S*, wealth is normally distributed:

$$E[W|S] = \eta \tau_{[Q|S]} E[Q|S]^{2}$$
$$Var[W|S] = \eta^{2} \tau_{[Q|S]} E[Q|S]^{2}$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Info Effici

Noisy REE

Information Acquisition

Information Acquisition Stage – Grossman-Stiglitz (1980)

Expected utility conditional on S:

$$E[U(W)|S] = -\exp\left\{-\frac{1}{\eta}[\eta \tau_{[Q|S]} E[Q|S]^2 - \frac{1}{2}\eta \tau_{[Q|S]} E[Q|S]^2]\right\}$$
$$= -\exp\left\{-\frac{1}{2}\tau_{[Q|S]} E[Q|S]^2\right\}$$

Integrate over possible S to get the ex-ante utility: w.l.o.g. we can assume that $S=Q+\epsilon$ Normal density $f(S)=\sqrt{\frac{\tau_S}{2\pi}}\exp\{-\frac{1}{2}\tau_S[\Delta S]^2\}$

$$E[U(W)] = -\int_{S} \sqrt{\frac{\tau_{S}}{2\pi}} \exp\left\{-\frac{1}{2} \left[\tau_{[Q|s]} E[Q|S]^{2} + \tau_{S} (\Delta S)^{2}\right]\right\} dS$$

Rational Expectation Equilibria

Classificatio of Models

CARA-Gaussian

Asset Demand

Symmetric Information

Into Effici

Noisy REE

Information Acquisition

Information Acquisition Stage – Grossman-Stiglitz (1980)

Term in square bracket is:

$$\left[\left(\tau_{Q}+\tau_{\varepsilon}\right)\left(E\left[Q\right]+\frac{\tau_{\varepsilon}}{\tau_{Q}+\tau_{\varepsilon}}\Delta S\right)^{2}+\frac{\tau_{Q}\tau_{\varepsilon}}{\tau_{Q}+\tau_{\varepsilon}}\left(\Delta S\right)^{2}\right]$$

which simplifies to:

$$\tau_{Q}E\left[Q\right]^{2}+ au_{arepsilon}\left(\Delta S+E\left[Q
ight]
ight)^{2}$$

Hence:

$$E[U(W)] = -\exp\left\{-\frac{\tau_{Q}E[Q]^{2}}{2}\right\} \int_{S} \sqrt{\frac{\tau_{S}}{2\pi}} e^{-\frac{1}{2}\left[\tau_{\varepsilon}(\Delta S + E[Q])^{2}\right]} dS$$

Define:

$$y := \sqrt{\tau_{\varepsilon}} \left(\Delta S + E\left[Q\right] \right)$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussia

Asset Demand

Symmetric Information

Into Efficie

Noisy REE

Information Acquisition

Information Acquisition Stage – Grossman-Stiglitz (1980)

$$E\left[U\left(W\right)\right] = -\exp\left\{-\frac{\tau_{Q}E\left[Q\right]^{2}}{2}\right\}\sqrt{\frac{\tau_{S}}{\tau_{\varepsilon}}}\underbrace{\int_{S}-\sqrt{\frac{\tau_{\epsilon}}{2\pi}}\exp\left\{-\frac{1}{2}y^{2}\right\}\mathrm{d}S}_{=1}$$

Let:
$$k = -\exp\left\{-\frac{\tau_Q E\left[Q\right]^2}{2}\right\} \sqrt{\tau_Q}$$

Note: $\tau_S = \frac{\tau_Q \tau_{\varepsilon}}{\tau_Q + \tau_{\varepsilon}}$

Hence:

$$E[U(W)] = \frac{k}{\sqrt{\tau_{[Q|S]}}} = \frac{k}{\sqrt{\tau_Q + \tau_{\varepsilon}}}$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Info Efficien

Noisy REE

Information Acquisition

Willingness to Pay for Signal General Problem (**No** Price Signal)

• Without price signal p and signal S, expected utility:

$$E\left[U\left(W\right)\right] = \frac{k}{\sqrt{\tau_Q}}$$

 If the agent buys a signal at a price of m_S his expected utility is:

$$E[U(W - m_S)] = E[-\exp(-\rho(W - m_S))]$$

$$= E[-\exp(-\rho(W))\exp(\rho m_S)]$$

$$= \frac{k}{\sqrt{T_{[Q|S]}}}\exp(\rho m_S)$$

Agent is indifferent when:

$$\frac{k}{\sqrt{\tau_Q}} = \frac{k}{\sqrt{\tau_{[Q|S]}}} \exp\left(\rho m_S\right)$$

Rational Expectation Equilibria

Classification of Models

CARA-Gaussia

Asset Demand

Symmetric

Info Efficie

Noisy REE

Information Acquisition

Willingness to Pay for Signal General Problem (**No** Price Signal)

Hence willingness to pay is:

$$m_{\mathcal{S}} = \eta \ln \left(\sqrt{\frac{\tau_{[Q|S]}}{\tau_Q}} \right)$$

Willingness to pay depends on the improvement in precision

Asset Pricing under Asym. Information Rational Expectation

EquilibriaClassification

CARA-

Asset Demand

Information

Info Efficien

Noisy REE

Information Acquisition

Information Acquisition Stage – Grossman-Stiglitz (1980)

 Every agent has to be indifferent between being informed or not. The cost of the signal is:

$$c = \eta \ln \left(\sqrt{\frac{\tau_{[\nu|S]}}{\tau_{[\nu|P]}}} \right) = \eta \ln \left(\sqrt{\frac{\tau_{\nu} + \tau_{\varepsilon}}{\tau_{\nu} + \phi \tau_{\varepsilon}}} \right)$$

(previous slide)

• This determines ϕ :

$$\phi = \frac{\tau_u \tau_\varepsilon}{\tau_u \tau_\varepsilon + \left(\frac{1}{\lambda^l \eta^l}\right)^2}, \text{ which pins down} \lambda^l$$

- Comparative Statics (using IFT):
 - $c \nearrow \Rightarrow \phi \searrow$
 - $\eta \nearrow \Rightarrow \phi \nearrow$ (extreme case: risk-neutrality)
 - $\tau_{\varepsilon} \nearrow \Rightarrow \phi \nearrow$
 - $\sigma_u^2 \nearrow \Rightarrow \phi \rightarrow \text{(number of informed traders }\nearrow\text{)}$
 - $\sigma_u^2 \setminus 0 \Rightarrow$ no investor purchases a signal

Asset Pricing under Asym.

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Information

Info Efficien

Noisy REE

Information Acquisition

Information Acquisition Stage

- Further extensions:
 - Purchase signals with different precisions (Verrecchia 1982)
 - Optimal sale of information
 - Photocopied (newsletter) or individualistic signal (Admati & Pfleiderer)
 - Indirect versus direct (Admati & Pfleiderer)

Rational Expectation Equilibria

Classification of Models

CARA-Gaussian

Asset Demand

Lucy Eccusion

Info Efficien

Noisy REE

Information Acquisition

Endogenizing Noise Trader Demand

- Endowment shocks or outside opportunity shocks that are correlated with asset
- Welfare analysis
 - ullet more private information o adverse selection
 - ullet more public information ullet Hirshleifer effect (e.g. genetic testing)
- See papers by Spiegel, Bhattacharya & Rohit, and Vives (2006)

Rational Expectation Equilibria

Asset Demand

Noisy REE

Information Acquisition

Tips & Tricks

risk-neutral competitive fringe observing limit order book L

$$p = E[v|L(\cdot)]$$

• separates risk-sharing from informational aspects