Modeling Info & Equilibria

Modeling Information Partitions Distribution

Solution Concepts

Classification of Models

Asset Pricing under Asymmetric Information Modeling Information & Solution Concepts

Markus K. Brunnermeier

Princeton University

November 8, 2015

Solution Concepts

Classification of Models

References

Books:

Brunnermeier (2001), "Asset Pricing under Asymmetric Info." Vives (2006), "Information and Learning in Markets" Veldkamp (2011), "Information Choice in Macro and Finance" Foucault, Pagano, Roell (2015), "Market Liquidity: Theory, Evidence, and Policy"

O'Hara (1995), "Market Microstructure Theory"

Articles:

Biais et al. (JFM 2005), "Market Microstructure: A Survey" many others - see syllabus

Two Interpretations of Asymmetric Information

- different information
- different interpretation of the same information (different background information)

Modeling Information

Partitions Distribution

Solution

Concepts

Classification of Models

Modeling information I

- State space Ω
 - state $\omega \in \Omega = \text{full description of reality}$
 - fundamentals
 - signals
 - state space is common knowledge and fully agreed among agents

Classification of Models

Modeling information II

- Partition
 - $(\omega_1, \omega_2, \omega_3), (\omega_4, \omega_5), (\omega_6, \omega_7, \omega_8)$
 - $\mathcal{P}_1^i, \mathcal{P}_2^i, \mathcal{P}_3^i$ (partition cells)
 - later more about 'knowledge operators' etc.
- Field (Sigma-Algebra) \mathcal{F}^i
- Probability measure/distribution P

Modeling information III

- Prior distribution
 - Common prior assumption (CPA) (Harsanyi doctrine)
 - any difference in beliefs is due to differences in info
 - has strong implications
 - Rational Expectations
 - prior $i = \text{objective distribution } \forall i$
 - implies CPA
 - Non-common priors
 - Problem: almost everything goes
 - Way out: Optimal Expectations (structure model of endogenous priors)
- Updating/Signal Extraction

Modeling information III

- Updating (general)
 - Bayes' Rule

$$P^{i}\left(E_{n}|D\right) = \frac{P^{i}\left(D|E_{n}\right)P^{i}\left(E_{n}\right)}{P^{i}\left(D\right)},$$

• if events $E_1, E_2, ..., E_N$ are a partition

$$P^{i}(E_{n}|D) = \frac{P^{i}(D|E_{n})P^{i}(E_{n})}{\sum_{n=1}^{N}P^{i}(D|E_{n})P^{i}(E_{n})},$$

Updating - Signal Extraction - general case

- Updating Signal Extraction
 - $\omega = \{v, S\}$
 - desired property: signal realization S^H is always more favorable than S^L
 - formally: $G(v|S^H)$ FOSD $G(v|S^L)$
 - Milgrom (1981) shows that this is equivalent to $f_S(S|v)$ satisfies monotone likelihood ratio property (MLRP)
 - $f_S(S|v)/f_S(S|ar{v})$ is increasing (decreasing) in S if $v>(<)ar{v}$

$$\frac{f_S\left(S|v\right)}{f_S\left(S|v'\right)} > \frac{f_S\left(S'|v\right)}{f_S\left(S'|v'\right)} \forall v' > v \text{ and } S' > S.$$

• another property: hazard rate $\frac{f_S(S|v)}{1-F(S|v)}$ is declining in v

Updating - Signal Extraction - Normal distributions

ullet updating normal variable X after receiving signal S=s

$$E[X|S = s] = E[X] + \frac{Cov[X,S]}{Var[S]} (s - E[S])$$

$$Var[X|S = s] = Var[X] - \frac{Cov[X,S]^2}{Var[S]}$$

• n multidimensional random variable $\left(ec{X}, ec{S}
ight) \sim \mathcal{N} \left(\mu, \Sigma
ight)$

$$\mu = \begin{bmatrix} \mu_X \\ \mu_S \end{bmatrix}_{n \times 1}; \ \Sigma = \begin{bmatrix} \Sigma_{X,X} & \Sigma_{X,S} \\ \Sigma_{S,X} & \Sigma_{S,S} \end{bmatrix}_{n \times n}.$$

• Projection Theorem (X|S=s)

$$\sim \mathcal{N}\left(\mu_{\mathcal{X}} + \Sigma_{\mathcal{X},\mathcal{S}}\Sigma_{\mathcal{S},\mathcal{S}}^{-1}\left(s - \mu_{\mathcal{S}}\right), \Sigma_{\mathcal{X},\mathcal{X}} - \Sigma_{\mathcal{X},\mathcal{S}}\Sigma_{\mathcal{S},\mathcal{S}}^{-1}\Sigma_{\mathcal{S},\mathcal{X}}\right)$$

Modeling Info & Equilibria

Modeling Information Partitions Distribution

Solution Concepts

Classification of Models

Special Signal Structures

• \mathcal{N} -Signals of form: $S_n = X + \varepsilon_n$ (Let X be a scalar and $\tau_y = \frac{1}{Var[y]}$),

$$E[X|s_1,...,s_N] = \mu_X + \frac{1}{\tau_X + \sum_{n=1}^N \tau_{\varepsilon_n}} \sum_{n=1}^N \tau_{\varepsilon_n} (s_n - \mu_X)$$

$$Var[X|s_1,...,s_N] = \frac{1}{\tau_X + \sum_{n=1}^N \tau_{\varepsilon_n}} = \frac{1}{\tau_{X|s_1,...,s_N}}$$

• If, in addition, all ε_n i.i.d. then

$$E[X|s_1,...,s_N] = \mu_X + \underbrace{\frac{1}{\tau_X + N\tau_{\varepsilon_n}}}_{Var[X|s_1,...,s_N]} N\tau_{\varepsilon_n} \left(\sum_{n=1}^N \frac{1}{N} s_n - \mu_X\right),$$

where $\bar{s} := \sum_{n=1}^{N} \left(\frac{1}{N}\right) s_n$ is a sufficient statistic

Special Signal Structures

• N-Signals of form: $X = S + \varepsilon$

$$E[X|S=s] = s$$

 $Var[X|S=s] = Var[\varepsilon]$

- Binary Signal: Updating with binary state space/signal
 - $q = \text{precision} = \text{prob}(X = H | S = S^H)$
- "Truncating signals": $v \in [\overline{S}, S]$
 - v is Laplace (double exponentially) distributed or uniform
 - posterior is a truncated exponential or uniform

(see e.g. Abreu & Brunnermeier 2002, 2003)

Solution/Equilibrium Concepts

- Rational Expectations Equilibrium
 - Competitive environment
 - agents take prices as given (price takers)
 - Rational Expectations (RE) ⇒ CPA
 - General Equilibrium Theory
- Bayesian Nash Equilibrium
 - Strategic environment
 - agents take strategies of others as given
 - CPA (RE) is typically assumed
 - Game Theory
 - distinction between normal and extensive form games simultaneous move versus sequential move

Solution Concepts

Classification of Models

The 5 Step Approach

	REE	BNE (sim. moves)
Step 1	Specify joint priors	Specify joint priors
	Conject. price mapping s	Conjecture strategy
	$P: \{\mathcal{S}^1,, \mathcal{S}^I, u\} o \mathbb{R}_+^{\mathbb{J}}$	profile s
Step 2	Derive posteriors	Derive posteriors
Step 3	Derive individual demand	Derive best response
Step 4	Impose market clearing	
Step 5	Impose Rationality	Impose Rationality
	Equate undet. coeff.	No-one deviates

A little more abstract

- REE
 - Fixed Point of Mapping: $\mathcal{M}_P(P(\cdot)) \mapsto P(\cdot)$
- BNE (simultaneous moves)
 Fixed Point of Mapping:
 strategy profiles → strategy profiles
- What's different for sequential move games?
 - late movers react to deviation
 - equilibrium might rely on 'strange' out of equilibrium moves
 - refinement: subgame perfection
- Extensive form move games with asymmetric information
 - Sequential equilibrium (agents act sequentially rational)
 - Perfect BNE (for certain games)
 - nature makes a move in the beginning (chooses type)
 - action of agents are observable

A Classification of Market Microstructure Models

- simultaneous submission of demand schedules
 - competitive rational expectation models
 - strategic share auctions
- sequential move models
 - screening models: (uninformed) market maker submits a supply schedule first
 - static
 - uniform price setting
 - limit order book analysis
 - dynamic sequential trade models with multiple trading rounds
 - signalling models: informed traders move first, market maker second