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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions
(from beta-state price equation)

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black-Litterman

for given 
prices/returns



FIN501 Asset Pricing
Lecture 06 Mean-Variance & CAPM (3)

Recall State-price Beta model

Recall:

𝐸 𝑅ℎ − 𝑅𝑓 = 𝛽ℎ𝐸 𝑅∗ − 𝑅𝑓

Where 𝛽ℎ ≔
cov 𝑅∗,𝑅ℎ

var 𝑅∗

very general – but what is 𝑅∗ in reality?
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Simple CAPM with Quadratic Expected Utility

1. All agents are identical
• Expected utility 𝑈 𝑥0, 𝑥1 =  𝑠 𝜋𝑠𝑢 𝑥0, 𝑥𝑠 ⇒ 𝑚 =

𝜕1𝑢

𝐸 𝜕0𝑢

• Quadratic 𝑢 𝑥0, 𝑥1 = 𝑣0 𝑥0 − 𝑥1 − 𝛼 2

• ⇒ 𝜕1𝑢 = −2 𝑥1,1 − 𝛼 , … , −2 𝑥𝑆,1 − 𝛼

• Excess return

𝐸 𝑅ℎ − 𝑅𝑓 = −
cov 𝑚, 𝑅ℎ

𝐸 𝑚
= −

𝑅𝑓cov 𝜕1𝑢, 𝑅ℎ

𝐸 𝜕0𝑢

= −
𝑅𝑓cov −2 𝑥1 − 𝛼 , 𝑅ℎ

𝐸 𝜕0𝑢
= 𝑅𝑓

2cov 𝑥1, 𝑅ℎ

𝐸 𝜕0𝑢
• Also holds for market portfolio

𝐸 𝑅ℎ − 𝑅𝑓

𝐸 𝑅𝑚𝑘𝑡 − 𝑅𝑓
=

cov 𝑥1, 𝑅ℎ

cov 𝑥1, 𝑅𝑚𝑘𝑡
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Simple CAPM with Quadratic Expected Utility

𝐸 𝑅ℎ − 𝑅𝑓

𝐸 𝑅𝑚𝑘𝑡 − 𝑅𝑓
=

cov 𝑥1, 𝑅ℎ

cov 𝑥1, 𝑅𝑚𝑘𝑡

2. Homogenous agents + Exchange economy
⇒ 𝑥1 = aggr. endowment and is perfectly correlated with 𝑅𝑚

𝐸 𝑅ℎ − 𝑅𝑓

𝐸 𝑅𝑚𝑘𝑡 − 𝑅𝑓
=

cov 𝑅𝑚𝑘𝑡, 𝑅ℎ

var 𝑅𝑚𝑘𝑡

Since 𝛽ℎ =
cov 𝑅ℎ,𝑅𝑚𝑘𝑡

var 𝑅𝑚𝑘𝑡

Market Security Line
𝐸 𝑅ℎ = 𝑅𝑓 + 𝛽ℎ 𝐸 𝑅𝑚𝑘𝑡 − 𝑅𝑓

NB: 𝑅∗ = 𝑅𝑓 𝑎+𝑏1𝑅𝑚𝑘𝑡

𝑎+𝑏1𝑅𝑓 in this case 𝑏1 < 0 !
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black-Litterman

for given 
prices/returns
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Definition: Mean-Variance Dominance
& Efficient Frontier

• Asset (portfolio) A mean-variance dominates
asset (portfolio) B if 𝜇𝐴 ≥ 𝜇𝐵 and 𝜎𝐴 < 𝜎𝐵 or 
if 𝜇𝐴 > 𝜇𝐵 while 𝜎𝐴 ≤ 𝜎𝐵.

• Efficient frontier: loci of all non-dominated 
portfolios in the mean-standard deviation 
space. 
By definition, no (“rational”) mean-variance 
investor would choose to hold a portfolio not 
located on the efficient frontier.
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Expected Portfolio Returns & Variance

• Expected returns (linear)

– 𝜇ℎ ≔ 𝐸 𝑟ℎ = 𝒘ℎ′𝝁, where each 𝑤𝑗 =
ℎ𝑗

 𝑗 ℎ𝑗

• Variance

– 𝜎ℎ
2 ≔ var 𝑟ℎ = 𝒘′𝑉𝒘

= 𝑤1 𝑤2
𝜎1

2 𝜎12

𝜎21 𝜎2
2

𝑤1

𝑤2

= 𝑤1
2𝜎1

2 + 𝑤2
2𝜎2

2 + 2𝑤1𝑤2𝜎12 ≥ 0

Everything is in returns
(like all prices =1)
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Illustration of 2 Asset Case

• For certain weights: 𝑤1 and 1 − 𝑤1

𝜇ℎ = 𝑤1𝜇1 + 1 − 𝑤1 𝜇2

𝜎ℎ
2 = 𝑤1

2𝜎1
2 + 1 − 𝑤1

2𝜎2
2 + 2𝑤1 1 − 𝑤1 𝜌12𝜎1𝜎2

(Specify 𝜎ℎ
2 and one gets weights and 𝜇ℎ’s)

• Special cases [𝑤1 to obtain certain 𝜎ℎ]

– 𝜌12 = 1 ⇒ 𝑤1 =
±𝜎ℎ−𝜎2

𝜎1−𝜎2

– 𝜌12 = −1 ⇒ 𝑤1 =
±𝜎ℎ+𝜎2

𝜎1+𝜎2
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For 𝜌12 = 1 ⇒ 𝑤1 =
±𝜎ℎ−𝜎2

𝜎1−𝜎2

𝜎ℎ = 𝑤1𝜎1 + 1 − 𝑤1 𝜎2

𝜇ℎ = 𝑤1𝜇1 + 1 − 𝑤1 𝜇2 = 𝜇1 +
𝜇2 − 𝜇1

𝜎2 − 𝜎1
±𝜎ℎ − 𝜎1

Lower part is irrelevant

𝜇ℎ = 𝜇1 +
𝜇2 − 𝜇1

𝜎2 − 𝜎1
−𝜎ℎ − 𝜎1

The Efficient Frontier: Two Perfectly Correlated Risky Assets

𝜇2

𝜇1

𝜇ℎ

𝜎1 𝜎2𝜎ℎ
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For 𝜌12 = −1 ⇒ 𝑤1 =
±𝜎𝑝+−𝜎2

𝜎1+𝜎2

𝜎ℎ = 𝑤1𝜎1 − 1 − 𝑤1 𝜎2

𝜇ℎ = 𝑤1𝜇1 + 1 − 𝑤1 𝜇2 =
𝜎2

𝜎1 + 𝜎2
𝜇1 +

𝜎1

𝜎1 + 𝜎2
𝜇2 ±

𝜇2 − 𝜇1

𝜎1 + 𝜎2
𝜎𝑝

The Efficient Frontier: Two Perfectly  Negative Correlated Risky Assets

𝜇1

slope: 
𝜇2−𝜇1

𝜎1+𝜎2

slope: −
𝜇2−𝜇1

𝜎1+𝜎2

intercept: 𝜎2
𝜎1+𝜎2

𝜇1+
𝜎1

𝜎1+𝜎2
𝜇2

𝜇2

𝜎1 𝜎2
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s1 s2

E[r2]

E[r1]

For 𝜌12 ∈ −1,1

The Efficient Frontier: Two Imperfectly Correlated Risky Assets
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For 𝜎1 = 0

The Efficient Frontier: One Risky and One Risk-Free Asset

𝜇2

𝜇1

𝜇ℎ

𝜎1 𝜎2𝜎ℎ
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Efficient frontier with n risky assets

• A frontier portfolio is one which displays minimum variance 
among all feasible portfolios with the same expected 
portfolio return.

• min
𝒘

1

2
𝒘′𝑉𝒘

– 𝜆: 𝒘′𝝁 = 𝜇ℎ,  𝑗 𝑤𝑗 𝔼  𝑟𝑖 = 𝜇ℎ

– 𝛾: 𝒘′𝟏 = 1,  𝑗 𝑤𝑗 = 1

• Result: Portfolio weights are linear in expected portfolio return 
𝑤ℎ = 𝓰 + 𝓱𝜇ℎ

– If 𝜇ℎ = 0, 𝑤ℎ = 𝓰

– If 𝜇ℎ = 1, 𝑤ℎ = 𝓰 + 𝓱
• Hence, 𝓰 and 𝓰 + 𝓱 are portfolios on the frontier

s

𝔼[𝑟]
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𝜕ℒ

𝜕𝑤
= 𝑉𝒘 − 𝜆𝝁 − 𝛾𝟏 = 0

𝜕ℒ

𝜕𝜆
= 𝜇ℎ − 𝒘′𝝁 = 0

𝜕ℒ

𝜕𝛾
= 1 − 𝒘′𝟏 = 0

The first FOC can be written as:
𝑉𝒘 = 𝜆𝝁 + 𝛾𝟏
𝒘 = 𝜆𝑉−1𝝁 + 𝛾𝑉−1𝟏
𝝁′𝒘 = 𝜆 𝝁′𝑉−1𝝁 + 𝛾 𝝁′𝑉−1𝟏 skip
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• Noting that 𝝁′𝒘ℎ = 𝑤ℎ
′ , combining 1st and 2nd FOC

𝜇ℎ = 𝝁′𝒘ℎ = 𝜆 𝝁′𝑉−1𝝁
𝐵

+ 𝛾 𝝁′𝑉−1𝟏
𝐴

• Pre-multiplying the 1st FOC by 1 yields
𝟏′𝒘ℎ = 𝒘ℎ

′ 𝟏 = 𝜆(𝟏′𝑉−1𝝁 + 𝛾 𝟏′𝑉−1𝟏 = 1
1 = 𝜆(𝟏′𝑉−1𝝁)

𝐴

+ 𝛾 𝟏′𝑉−1𝟏
𝐶

• Solving for 𝜆, 𝛾

𝜆 =
𝐶𝜇ℎ − 𝐴

𝐷
, 𝛾 =

𝐵 − 𝐴𝜇ℎ

𝐷
𝐷 = 𝐵𝐶 − 𝐴2

skip
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• Hence, 𝒘ℎ = 𝜆𝑉−1𝝁 + 𝛾𝑉−1𝟏 becomes

𝒘ℎ =
𝐶𝜇ℎ − 𝐴

𝐷
𝑉−1𝝁 +

𝐵 − 𝐴𝜇ℎ

𝐷
𝑉−1𝟏

=
1

𝐷
𝐵 𝑉−1𝟏 − 𝐴 𝑉−1𝝁

𝓰

+
1

𝐷
𝐶 𝑉−1𝝁 − 𝐴 𝑉−1𝟏

𝓱

𝜇ℎ

• Result: Portfolio weights are linear in expected portfolio 
return 𝒘ℎ = 𝓰 + 𝓱𝜇ℎ

– If 𝜇ℎ = 0, 𝒘ℎ = 𝓰
– If 𝜇ℎ= 1, 𝒘ℎ = 𝓰 + 𝓱

• Hence, 𝓰 and 𝓰 + 𝓱 are portfolios on the frontier

skip
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Characterization of Frontier Portfolios 

• Proposition: The entire set of frontier portfolios can
be generated by ("are convex combinations" 𝓰 of)
and 𝓰 + 𝓱.

• Proposition: The portfolio frontier can be described
as convex combinations of any two frontier
portfolios, not just the frontier portfolios 𝓰 and 𝓰 +
𝓱.

• Proposition: Any convex combination of frontier
portfolios is also a frontier portfolio.

skip
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…Characterization of Frontier Portfolios… 

• For any portfolio on the frontier,

𝜎2 𝜇ℎ = 𝓰 + 𝓱𝜇ℎ ′𝑉 𝓰 + 𝓱𝜇ℎ

with 𝓰 and 𝓱 as defined earlier.

Multiplying all this out and some algebra yields:

𝜎2 𝜇ℎ =
𝐶

𝐷
𝜇ℎ −

𝐴

𝐶

2

+
1

𝐶

skip
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…Characterization of Frontier Portfolios… 

i. the expected return of the minimum variance portfolio is
𝐴

𝐶
;

ii. the variance of the minimum variance portfolio is given by
1

𝐶
;

iii. Equation 𝜎2 𝜇ℎ =
𝐶

𝐷
𝜇ℎ −

𝐴

𝐶

2
+

1

𝐶
is a

– parabola with vertex
1

𝐶
,
𝐴

𝐶
in the expected return/variance space

– hyperbola in the expected return/standard deviation space.

skip
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Figure 6-3    The Set of Frontier Portfolios: Mean/Variance Space

𝐸  𝑟ℎ =
𝐴

𝐶
±

𝐷

𝐶
𝜎2 −

1

𝐶
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Figure 6-4    The Set of Frontier Portfolios: Mean/SD Space
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Figure 6-5    The Set of Frontier Portfolios: Short Selling Allowed
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Efficient Frontier with risk-free asset

The Efficient Frontier: One Risk Free and n Risky Assets
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Efficient Frontier with risk-free asset

• min
𝒘

1

2
𝒘′𝑉𝒘

– s.t. 𝒘′𝝁 + 1 − 𝑤𝑇𝟏 𝑟𝑓 = 𝜇ℎ

– FOC

• 𝒘ℎ = 𝜆𝑉−1 𝝁 − 𝑟𝑓𝟏

• Multiplying by 𝝁 − 𝑟𝑓𝟏
𝑇

yields 𝜆 =
𝜇ℎ−𝑟𝑓

𝝁−𝑟𝑓𝟏
′
𝑉−1 𝝁−𝑟𝑓𝟏

– Solution

• 𝒘ℎ =
𝑉−1 𝝁−𝑟𝑓𝟏 𝜇ℎ−𝑟𝑓

𝐻2 , where 𝐻 = 𝐵 − 2𝐴𝑟𝑓 + 𝐶(𝑟𝑓)2
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Efficient frontier with risk-free asset

• Result 1: Excess return in frontier excess return

cov 𝑟ℎ, 𝑟𝑝 = 𝒘ℎ
′ 𝑉𝒘𝑝 = 𝒘ℎ

′ 𝝁 − 𝑟𝑓𝟏
𝐸 𝑟𝑝 − 𝑟𝑓

𝐻2

=
𝐸 𝑟ℎ − 𝑟𝑓 𝐸 𝑟𝑝 − 𝑟𝑓

𝐻2

var 𝑟𝑝 =
𝐸 𝑟𝑝 − 𝑟𝑓 2

𝐻2

𝐸 𝑟ℎ − 𝑟𝑓 =
cov 𝑟ℎ, 𝑟𝑝

var 𝑟𝑝
𝛽ℎ,𝑝

𝐸 𝑟𝑝 − 𝑟𝑓

(Holds for any frontier portfolio 𝑝, in particular the market portfolio)
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Efficient Frontier with risk-free asset

• Result 2: Frontier is linear in 𝐸 𝑟 , 𝜎 -space

var 𝑟ℎ =
𝐸 𝑟ℎ − 𝑟𝑓

2

𝐻2

𝐸 𝑟ℎ = 𝑟𝑓 + 𝐻𝜎ℎ

where 𝐻 is the Sharpe ratio

𝐻 =
𝐸 𝑟ℎ − 𝑟𝑓

𝜎ℎ
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory 
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black-Litterman

for given 
prices/returns
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Aggregation: Two Fund Separation

• Doing it in two steps:

– First solve frontier for n risky asset

– Then solve tangency point

• Advantage:

– Same portfolio of n risky asset for different agents 
with different risk aversion

– Useful for applying equilibrium argument (later)

Recall HARA class of preferences
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Optimal Portfolios of Two Investors with Different Risk Aversion

Two Fund Separation

Price of Risk =
= highest 

Sharpe ratio
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Mean-Variance Preferences

• 𝑈 𝜇ℎ, 𝜎ℎ with 
𝜕𝑈

𝜕𝜇ℎ
> 0,

𝜕𝑈

𝜕𝜎ℎ
2 < 0

– Example: 𝐸 𝑊 −
𝜌

2
var 𝑊

• Also in expected utility framework
– Example 1: Quadratic utility function (with portfolio return 𝑅)

• 𝑈 𝑅 = 𝑎 + 𝑏𝑅 + 𝑐𝑅2

• vNM: 𝐸 𝑈 𝑅 = 𝑎 + 𝑏𝐸 𝑅 + 𝑐𝐸 𝑅2 = 𝑎 + 𝑏𝜇ℎ + 𝑐𝜇ℎ
2 + 𝑐𝜎ℎ

2 =
𝑔 𝜇ℎ, 𝜎ℎ

– Example 2: CARA Gaussian
• asset returns jointly normal ⇒  𝑖 𝑤𝑖𝑟𝑖 normal

• If 𝑈 is CARA ⇒ certainty equivalent is 𝜇ℎ −
𝜌

2
𝜎ℎ

2
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory 
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black-Litterman

for given 
prices/returns
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Equilibrium leads to CAPM

• Portfolio theory: only analysis of demand
– price/returns are taken as given

– composition of risky portfolio is same for all investors

• Equilibrium Demand = Supply (market portfolio)

• CAPM allows to derive
– equilibrium prices/ returns.

– risk-premium
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The CAPM with a risk-free bond

• The market portfolio is efficient since it is on the 
efficient frontier.

• All individual optimal portfolios are located on the 
half-line originating at point (0, 𝑟𝑓).

• The slope of Capital Market Line (CML):
𝐸 𝑅𝑚𝑘𝑡 −𝑅𝑓

𝜎𝑚𝑘𝑡

𝐸 𝑅ℎ = 𝑅𝑓 +
𝐸 𝑅𝑚𝑘𝑡 − 𝑅𝑓

𝜎𝑚𝑘𝑡
𝜎ℎ
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s
p

j

M
rM

sM

rf

CML

The Capital Market Line
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The Security Market Line

bb
i

b
M

= 1

r
f

E(r
M

)

E(r
i
)

E(r)

slope SML = (E(r
i
)-r

f
) /b

i

SML
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory 

– Aggregation: Fund Separation Theorem

– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections

– Pricing Kernel and Expectation Kernel

4. Practical Issues

for given 
prices/returns
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Projections

• States 𝑠 = 1, … , 𝑆 with 𝜋𝑠 > 0

• Probability inner product

𝑥, 𝑦 𝜋 =  

𝑠

𝜋𝑠𝑥𝑠𝑦𝑠 =  

𝑠

𝜋𝑠𝑥𝑠 𝜋𝑠𝑦𝑠

• 𝜋-norm 𝑥 = 𝑥, 𝑥 𝜋 (measure of length)

i. 𝑥 > 0 ∀𝑥 ≠ 0 and 𝑥 = 0 if 𝑥 = 0

ii. 𝜆𝑥 = 𝜆 𝑥

iii. 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 ∀𝑥; 𝑦 ∈ ℝ𝑆
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)
shrink
axes

x x

y y

x and y are 𝜋-orthogonal iff 𝑥, 𝑦 𝜋 = 0, i.e. 𝐸 𝑥𝑦 = 0
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…Projections…

• 𝒵 space of all linear combinations of vectors 𝑧1, … , 𝑧𝑛

• Given a vector 𝑦 ∈ ℝ𝑆 solve

min
𝛼∈ℝ𝑛

𝐸 𝑦 −  

𝑗

𝛼𝑗𝑧𝑗

2

• FOC:  𝑠 𝜋𝑠 𝑦𝑠 −  𝑗 𝛼𝑗𝑧𝑠
𝑗

𝑧𝑗 = 0

– Solution  𝛼 ⇒ 𝑦𝒵 =  𝑗  𝛼𝑗𝑧𝑗 , 𝜖 ≔ 𝑦 − 𝑦𝒵

• [smallest distance between vector y and Z space]
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y

yZ

e

𝐸 𝜀𝑧𝑗 = 0 for each 𝑗 = 1, … , 𝑛 (FOC)

𝜀 ⊥ 𝑧
𝑦𝑧 is the (orthogonal) projection on 𝒵

𝑦 = 𝑦𝒵 + 𝜀′, 𝑦𝒵 ∈ 𝒵, 𝜀 ⊥ 𝑧

…Projections
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Expected Value and Co-Variance…
squeeze axis by 𝜋𝑠

x

(1,1)

𝑥, 𝑦 = 𝐸 𝑥𝑦 = cov 𝑥, 𝑦 + 𝐸 𝑥 𝐸 𝑦
𝑥, 𝑥 = 𝐸 𝑥2 = var 𝑥 + 𝐸 𝑥 2

𝑥 = 𝐸 𝑥2

𝑥 =  𝑥 +  𝑥

 𝑥

 𝑥
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…Expected Value and Co-Variance 

• 𝑥 =  𝑥 +  𝑥 where 
–  𝑥 is a projection of 𝑥 onto 1

–  𝑥 is a projection of 𝑥 onto 1 ⊥

• 𝐸 𝑥 = 𝑥, 1 𝜋 =  𝑥, 1 𝜋 =  𝑥 1,1 𝜋 =  𝑥

• var 𝑥 =  𝑥,  𝑥 𝜋 = var[  𝑥]

– 𝜎𝑥 =  𝑥 𝜋

• cov 𝑥, 𝑦 = cov  𝑥,  𝑦 =  𝑥,  𝑦 𝜋

• Proof: 𝑥, 𝑦 𝜋 =  𝑥,  𝑦 𝜋 +  𝑥,  𝑦 𝜋

–  𝑦,  𝑥 𝜋 =  𝑦,  𝑥 𝜋 = 0, 𝑥, 𝑦 𝜋 = 𝐸  𝑦 𝐸  𝑥 + cov[  𝑥,  𝑦]

scalar 
slight abuse of notation
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory 
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black-Litterman

for given 
prices/returns
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Pricing Kernel  𝑚∗…

• 𝑋 space of feasible payoffs.

• If no arbitrage and 𝜋 ≫ 0 there exists 

SDF 𝑚 ∈ ℝ𝑆, 𝑚 ≫ 0, such that 𝑞 𝑧 = 𝐸 𝑚𝑧 .

• 𝑚 ∈ ℝ𝑆– SDF need not be in asset span. 

• A pricing kernel is a 𝑚∗ ∈ 𝑋 such that for 

each 𝑧 ∈ 𝑋 , 𝑞 𝑧 = 𝐸 𝑚∗𝑧
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…Pricing Kernel - Examples…

• Example 1:

– 𝑆 = 3, 𝜋𝑠 =
1

3

– 𝑥1 = 1,0,0 , 𝑥2 = 0,1,1 and 𝑝 =
1

3
,
2

3

– Then 𝑚∗ = 1,1,1 is the unique pricing kernel. 

• Example 2:

– 𝑥1 = 1,0,0 , 𝑥2 = 0,1,0 , 𝑝 =
1

3
,
2

3

– Then 𝑚∗ = 1,2,0 is the unique pricing kernel. 
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…Pricing Kernel – Uniqueness

• If a state price density exists, there exists a 
unique pricing kernel.

– If dim 𝑋 = 𝑆 (markets are complete), 
there are exactly 𝑚 equations and 𝑚 unknowns

– If dim 𝑋 < 𝑆, (markets may be incomplete) 

For any state price density (=SDF) 𝑚 and any 𝑧 ∈ 𝑋

𝐸 𝑚 − 𝑚∗ 𝑧 = 0

𝑚 = 𝑚 − 𝑚∗ + 𝑚∗ ⇒ 𝑚∗is the “projection” of 𝑚

on 𝑋
• Complete markets ⇒ 𝑚∗ = 𝑚 (SDF=state price density)
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Expectations Kernel  𝑘∗

• An expectations kernel is a vector 𝑘∗ ∈ 𝑋

– Such that 𝐸 𝑧 = 𝐸 𝑘∗𝑧 for each 𝑧 ∈ 𝑋

• Example

– 𝑆 = 3, 𝜋𝑠 =
1

3
, 𝑥1 = 1,0,0 , 𝑥2 = 0,1,0

– Then the unique 𝑘∗ = 1,1,0

• If 𝜋 ≫ 0, there exists a unique expectations kernel.

• Let 𝐼 = 1, … , 1 then for any 𝑧 ∈ 𝑋
𝐸 𝐼 − 𝑘∗ 𝑧 = 0

– 𝑘∗is the “projection” of 𝐼 on 𝑋
– 𝑘∗ = 𝐼 if bond can be replicated (e.g. if markets are complete)
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Mean Variance Frontier

• Definition 1: 𝑧 ∈ 𝑋 is in the  mean variance frontier if 
there exists no 𝑧′ ∈ 𝑋 such that 𝐸 𝑧′ = 𝐸 𝑧 , 𝑞 𝑧′ =
𝑞 𝑧 and var 𝑧′ < var 𝑧

• Definition 2: Let ℰ be the space generated by 𝑚∗and 𝑘∗

– Decompose 𝑧 = 𝑧𝜀 + 𝜀 with 𝑧ℰ ∈ ℰ and 𝜀 ⊥ ℰ

– Hence, 𝐸 𝜀 = 𝐸 𝜀𝑘∗ = 0, 𝑞 𝜀 = 𝐸 𝜀𝑚∗ = 0

cov 𝜀, 𝑧𝜀 = 𝐸 𝜀𝑧𝜀 = 0, since 𝜀 ⊥ ℰ
– var 𝑧 = var 𝑧𝜀 + var 𝜀 (price of 𝜀 is zero, but positive variance)

• 𝑧 is in mean variance frontier ) z 2 E.
– Every 𝑧 ∈ ℰ is in mean variance frontier.
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Frontier Returns…

• Frontier returns are the returns of frontier payoffs with non-zero 
prices.

[Note: R indicates Gross return]

𝑅𝑘∗ =
𝑘∗

𝑞 𝑘∗
=

𝑘∗

𝐸 𝑚∗

𝑅𝑚∗ =
𝑚∗

𝑞 𝑚∗
=

𝑚∗

𝐸 𝑚∗𝑚∗

• If 𝑧 = 𝛼𝑚∗ + 𝛽𝑘∗ then

𝑅𝑧 =
𝛼𝑞 𝑚∗

𝛼𝑞 𝑚∗ + 𝛽𝑞 𝑘∗

𝜆

𝑅𝑚∗ +
𝛽𝑞 𝑘∗

𝛼𝑞 𝑚∗ + 𝛽𝑞 𝑘∗

1−𝜆

𝑅𝑘∗

• graphically: payoffs with price of p=1.
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𝑚∗

Mean-Variance Return Frontier
p=1-line = return-line (orthogonal to 𝑚∗)

𝑋 = RS = R3

Mean-Variance Payoff Frontier

e
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0
𝑚∗

(1,1,1)

expected return

standard deviation

Mean-Variance (Payoff) Frontier

NB: graphical illustrated of expected returns and standard deviation 
changes if bond is not in payoff span.
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0
𝑚∗

(1,1,1)

inefficient (return) frontier

efficient (return) frontier

expected return

standard deviation

Mean-Variance (Payoff) Frontier
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…Frontier Returns

• If 𝑘∗ = 𝛼𝑚∗, frontier returns ≡ 𝑅𝑘∗

• If𝑘∗ ≠ 𝛼𝑚∗, frontier returns can be written as:
𝑅𝜆 = 𝑅𝑘∗ + 𝜆 𝑅𝑚∗ − 𝑅𝑘∗

• Expectations and variance are
𝐸 𝑅𝜆 = 𝐸 𝑅𝑘∗ + 𝜆 𝐸 𝑅𝑚∗ − 𝐸 𝑅𝑘∗

var 𝑅𝜆 =
= var 𝑅𝑘∗ + 2𝜆cov 𝑅𝑘∗ , 𝑅𝑚∗ − 𝑅𝑘∗ + 𝜆2var 𝑅𝑚∗ − 𝑅𝑘∗

• If risk-free asset exists, these simplify to:

𝐸 𝑅𝜆 = 𝑅𝑓 + 𝜆 𝐸 𝑅𝑚∗ − 𝑅𝑓 = 𝑅𝑓 ± 𝜎 𝑅𝜆

𝐸 𝑅𝑚∗ − 𝑅𝑓

𝜎 𝑅𝑚∗

var 𝑅𝜆 = 𝜆2var[𝑅𝑚∗] , 𝜎 𝑅𝜆 = 𝜆 𝜎 𝑅𝑚∗

(if agent is risk-neutral)
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Minimum Variance Portfolio

• Take FOC w.r.t. 𝜆 of
var 𝑅𝜆

= var 𝑅𝑘∗ + 2𝜆cov 𝑅𝑘∗ , 𝑅𝑚∗ − 𝑅𝑘∗

+ 𝜆2var 𝑅𝑚∗ − 𝑅𝑘∗

• Hence, MVP has return of
𝑅𝑘∗ + 𝜆0 𝑅𝑚∗ − 𝑅𝑘∗

𝜆0 = −
cov 𝑅𝑘∗ , 𝑅𝑚∗ − 𝑅𝑘∗

var 𝑅𝑚∗ − 𝑅𝑘∗
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(1,1,1)

Illustration of MVP

Minimum standard 
deviation

Expected return 
of MVP

𝑋 = ℝ2 and 𝑆 = 3
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Mean-Variance Efficient Returns

• Definition: A return is mean-variance efficient if 
there is no other return with same variance but 
greater expectation.

• Mean variance efficient returns are frontier returns 

with 𝐸 𝑅𝜆 ≥ 𝐸 𝑅𝜆0

• If risk-free asset can be replicated
– Mean variance efficient returns correspond to 𝜆0.

– Pricing kernel (portfolio) is not mean-variance efficient, 
since 𝐸 𝑅𝑚∗ =

𝐸 𝑚∗

𝐸 𝑚∗ 2 <
1

𝐸 𝑚∗ = 𝑅𝑓
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Zero-Covariance Frontier Returns

• Take two frontier portfolios with returns
𝑅𝜆 = 𝑅𝑘∗ + 𝜆 𝑅𝑚∗ − 𝑅𝑘∗ and 𝑅𝜇 = 𝑅𝑘∗ + 𝜇 𝑅𝑚∗ − 𝑅𝑘∗

• cov 𝑅𝜇 , 𝑅𝜆 = var 𝑅𝑘∗ + 𝜆 + 𝜇 cov 𝑅𝑘∗ , 𝑅𝑚∗ − 𝑅𝑘∗ +
𝜆𝜇var 𝑅𝑚∗ − 𝑅𝑘∗

• The portfolios have zero co-variance if

𝜇 = −
var 𝑅𝑘∗ + 𝜆cov 𝑅𝑘∗ , 𝑅𝑚∗ − 𝑅𝑘∗

cov 𝑅𝑘∗ , 𝑅𝑚∗ − 𝑅𝑘∗ + 𝜆var 𝑅𝑚∗ − 𝑅𝑘∗

• For all 𝜆 ≠ 𝜆0, 𝜇 exists
– 𝜇 = 0 if risk-free bond can be replicated
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(1,1,1)

Illustration of ZC Portfolio…

arbitrary portfolio p

Recall:

cov 𝑥, 𝑦 =  𝑥,  𝑦 𝜋

𝑋 = ℝ2 and 𝑆 = 3
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(1,1,1)

…Illustration of ZC Portfolio

arbitrary portfolio p

ZC of p

Green lines do not 
necessarily cross.
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Beta Pricing…

• Frontier Returns (are on linear subspace). Hence

𝑅𝛽 = 𝑅𝜇 + 𝛽 𝑅𝜆 − 𝑅𝜇

• Consider any asset with payoff 𝑥𝑗

– It can be decomposed in 𝑥𝑗 = 𝑥𝑗
𝜀 + 𝜀𝑖

– 𝑞 𝑥𝑗 = 𝑞 𝑥𝑗
𝜀 and 𝐸 𝑥𝑗 = 𝐸 𝑥𝑗

𝜀 , since 𝜀 ⊥ ℰ

– Return of 𝑥𝑗 is 𝑅𝑗 = 𝑅𝑗
𝜀 +

𝜀𝑗

𝑞 𝑥𝑗

– Using above and assuming 𝜆 ≠ 𝜆0 and 𝜇 is 
ZC-portfolio of 𝜆,

𝑅𝑗 = 𝑅𝜇 + 𝛽𝑗 𝑅𝜆 − 𝑅𝜇 +
𝜀𝑗

𝑞 𝑥𝑗
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…Beta Pricing

• Taking expectations and deriving covariance

• 𝐸 𝑅𝑗 = 𝐸 𝑅𝜇 + 𝛽𝑗 𝐸 𝑅𝜆 − 𝐸 𝑅𝜇

• cov 𝑅𝜆, 𝑅𝑗 = 𝛽𝑗var 𝑅𝜆 ⇒ 𝛽𝑗 =
cov 𝑅𝜆,𝑅𝑗

var 𝑅𝜆

– Since 𝑅𝜆 ⊥
𝜀𝑗

𝑞 𝑥𝑗

• If risk-free asset can be replicated, beta-pricing 
equation simplifies to

𝐸 𝑅𝑗 = 𝑅𝑓 + 𝛽𝑗 𝐸 𝑅𝜆 − 𝑅𝑓

• Problem: How to identify frontier returns
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Capital Asset Pricing Model…

• CAPM = market return is frontier return
– Derive conditions under which market return is frontier return

– Two periods: 0,1. 

– Endowment: individual 𝑤1
𝑖 at time 1, aggregate  𝑤1 =  𝑤1

𝑋 +

 𝑤1
𝑌 , where  𝑤1

𝑋 ,  𝑤1
𝑌 are orthogonal and  𝑤1

𝑋 is the 

orthogonal projection of  𝑤1 on 𝑋 . 

– The market payoff is  𝑤1
𝑋

– Assume 𝑞  𝑤1
𝑋 ≠ 0, let 𝑅𝑚𝑘𝑡 =

 𝑤1
𝑋

𝑞  𝑤1
𝑋 , and assume that 

𝑅𝑚𝑘𝑡 is not the minimum variance return.
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…Capital Asset Pricing Model

• If 𝑅0 is the frontier return that has zero 
covariance with 𝑅𝑚𝑘𝑡 then, for every security j,

• 𝐸 𝑅𝑗 = 𝐸 𝑅0 + 𝛽𝑗 𝐸 𝑅𝑚𝑘𝑡 − 𝐸 𝑅0 with 

𝛽𝑗 =
cov 𝑅𝑗,𝑅𝑚𝑘𝑡

var 𝑅𝑚𝑘𝑡

• If a risk free asset exists, equation becomes, 
𝐸[𝑅𝑗] = 𝑅𝑓 + 𝛽𝑗 𝐸 𝑅𝑚𝑘𝑡 − 𝑅𝑓

• N.B. first equation always hold if there are only two assets.
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory 
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black-Litterman

for given 
prices/returns
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Practical Issues

• Testing of CAPM

• Jumping weights

– Domestic investments

– International investment

• Black-Litterman solution
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Testing the CAPM

• Take CAPM as given and test empirical implications

• Time series approach
– Regress individual returns on market returns

𝑅𝑖𝑡 − 𝑅𝑓𝑡 =  𝛼𝑖 +  𝛽𝑖𝑚 𝑅𝑚𝑡 − 𝑅𝑓𝑡 + 𝜀𝑖𝑡

– Test whether constant term 𝛼𝑖 = 0

• Cross sectional approach
– Estimate betas from time series regression
– Regress individual returns on betas

𝑅𝑖 = 𝜆  𝛽𝑖𝑚 + 𝛼𝑖

– Test whether regression residuals 𝛼𝑖 = 0



FIN501 Asset Pricing
Lecture 06 Mean-Variance & CAPM (68)

Empirical Evidence

• Excess returns on high-beta stocks are low

• Excess returns are high for small stocks

– Effect has been weak since early 1980s

• Value stocks have high returns despite low 
betas

• Momentum stocks have high returns and low 
betas



FIN501 Asset Pricing
Lecture 06 Mean-Variance & CAPM (69)

Reactions and Critiques

• Roll Critique
– The CAPM is not testable because composition of true 

market portfolio is not observable

• Hansen-Richard Critique
– The CAPM could hold conditionally at each point in 

time, but fail unconditionally

• Anomalies are result of “data mining”

• Anomalies are concentrated in small, illiquid 
stocks

• Markets are inefficient – “joint hypothesis test”
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Practical Issues

• Estimation
– How do we estimate all the parameters we need for 

portfolio optimization?

• What is the market portfolio?
– Restricted short-sales and other restrictions
– International assets & currency risk

• How does the market portfolio change over time?
– Empirical evidence
– More in dynamic models
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Overview

1. Introduction: 
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM
– Demand: Portfolio Theory 
– Aggregation: Fund Separation Theorem
– Equilibrium: CAPM

3. Modern Derivation of CAPM
– Projections
– Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues – Black Litterman

for given 
prices/returns
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MV Portfolio Selection in Real Life

• An investor seeking to use mean-variance 
portfolio construction has to
– Estimate N means,
– N variances,
– N*(N-1)/2 co-variances

• Estimating means
– For any partition of [0,T] with N points (∆t=T/N): 

𝐸 𝑟 =
1

Δ𝑡
⋅

1

𝑁
⋅  𝑖=1

𝑁 𝑟𝑖⋅Δ𝑡 =
𝑝𝑇−𝑝0

𝑇
(in log prices)

– Knowing the first and last price is sufficient
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Estimating Means

• Let 𝑋𝑘 denote the logarithmic return on the market, with 𝑘 =
1, … , 𝑛 over a period of length ℎ
– The dynamics to be estimated are:

𝑋𝑘 = 𝜇 ⋅ Δ + 𝜎 ⋅ Δ ⋅ 𝜖𝑘

where the 𝜖𝑘are i.i.d. standard normal random variables.
– The standard estimator for the expected logarithmic mean rate of 

return is:

 𝜇 =
1

ℎ
⋅  

1

𝑛

𝑋𝑘

– The mean and variance of this estimator

𝐸  𝜇 =
1

ℎ
⋅ 𝐸  

1

𝑛

𝑋𝑘 =
1

ℎ
⋅ 𝑛 ⋅ 𝜇 ⋅ Δ = 𝜇

𝑉𝑎𝑟  𝜇 =
1

ℎ2
⋅ 𝑉𝑎𝑟  

1

𝑛

𝑋𝑘 =
1

ℎ2
⋅ 𝑛 ⋅ 𝜎2 ⋅ Δ =

𝜎2

ℎ
– The accuracy of the estimator depends only upon the total length of the observation period (h), and not upon the number of 

observations (n).

where 
ℎ is length of observation
𝑛 number of observations
Δ = 𝑛/ℎ
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Estimating Variances

• Consider the following estimator:
 𝜎2 =

1

ℎ
⋅  𝑖=1

𝑛 𝑋𝑘
2

• The mean and variance of this estimator:

𝐸  𝜎2 =
1

ℎ
⋅  

𝑖=1

𝑛

𝐸 𝑋𝑘
2 =

1

ℎ
⋅ 𝑛 ⋅ 𝜇2 ⋅ Δ2 + 𝜎2 ⋅ Δ = 𝜎2 + 𝜇2 ⋅

ℎ

𝑛

𝑉𝑎𝑟  𝜎2 =
1

ℎ2
⋅ 𝑉𝑎𝑟  

𝑖=1

𝑛

𝑋𝑘
2 =

1

ℎ2
⋅  

𝑖=1

𝑛

𝑉𝑎𝑟 𝑋𝑘
2 =

𝑛

ℎ2
⋅ 𝐸 𝑋𝑘

4 − 𝐸 𝑋𝑘
2 2

=
2 ⋅ 𝜎4

𝑛
+

4 ⋅ 𝜇2 ⋅ ℎ

𝑛2

– The estimator is biased b/c we did not subtract out the 
expected return from each realization.

– Magnitude of the bias declines as n increases. 
– For a fixed h, the accuracy of the variance estimator can be 

improved by sampling the data more frequently. 



FIN501 Asset Pricing
Lecture 06 Mean-Variance & CAPM (75)

Estimating variances:
Theory vs. Practice

• For any partition of [0, 𝑇] with 𝑁 points (Δ𝑡 = 𝑇/𝑁): 

𝑉𝑎𝑟 𝑟 =
1

𝑁
⋅  

𝑖=1

𝑁

𝑟𝑖⋅Δ𝑡 − 𝐸 𝑟 2 → 𝜎2 𝑎𝑠 𝑁 → ∞

• Theory: Observing the same time series at 
progressively higher frequencies increases the 
precision of the estimate. 

• Practice:
– Over shorter interval increments are non-Gaussian 

– Volatility is time-varying (GARCH, SV-models)

– Market microstructure noise
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Estimating covariances:
Theory vs. Practice

• In theory, the estimation of covariances shares 
the features of variance estimation.

• In practice:
– Difficult to obtain synchronously observed time-series -> may require 

interpolation, which affects the covariance estimates. 

– The number of covariances to be estimated grows very quickly, such 
that the resulting covariance matrices are unstable (check condition 
numbers!).

– Shrinkage estimators (Ledoit and Wolf, 2003, “Honey, I Shrunk the 
Covariance Matrix”)
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Unstable Portfolio Weights

• Are optimal weights statistically different from zero?
– Properly designed regression yields portfolio weights

– Statistical tests for significance of weight

• Example: Britton-Jones (1999) for international portfolio
– Fully hedged USD Returns

• Period: 1977-1966

• 11 countries

– Results
• Weights vary significantly across time and in the cross section

• Standard errors on coefficients tend to be large
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Britton-Jones (1999)
1977-1996 1977-1986 1987-1996

weights t-stats weights t-stats weights t-stats

Australia 12.8 0.54 6.8 0.20 21.6 0.66

Austria 3.0 0.12 -9.7 -0.22 22.5 0.74

Belgium 29.0 0.83 7.1 0.15 66 1.21

Canada -45.2 -1.16 -32.7 -0.64 -68.9 -1.10

Denmark 14.2 0.47 -29.6 -0.65 68.8 1.78

France 1.2 0.04 -0.7 -0.02 -22.8 -0.48

Germany -18.2 -0.51 9.4 0.19 -58.6 -1.13

Italy 5.9 0.29 22.2 0.79 -15.3 -0.52

Japan 5.6 0.24 57.7 1.43 -24.5 -0.87

UK 32.5 1.01 42.5 0.99 3.5 0.07

US 59.3 1.26 27.0 0.41 107.9 1.53
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Black-Litterman Appraoch

• Since portfolio weights are very unstable, we need to discipline our 
estimates somehow
– Our current approach focuses only on historical data

• Priors
– Unusually high (or low) past return may not (on average) earn the same 

high (or low) return going forward
– Highly correlated sectors should have similar expected returns
– A “good deal” in the past (i.e. a good realized return relative to risk) 

should not persist if everyone is applying mean-variance optimization.

• Black Litterman Approach
– Begin with “CAPM prior”
– Add views on assets or portfolios
– Update estimates using Bayes rule
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Black-Litterman Model: Priors

• Suppose the returns of 𝑁 risky assets (in vector/matrix notation) are 
𝑟 ∼ 𝒩(𝜇, Σ)

• CAPM: The equilibrium risk premium on each asset is given by: 
Π = 𝛾 ⋅ Σ ⋅ 𝑤𝑒𝑞

– 𝛾 is the investors coefficient of risk aversion.

– 𝑤𝑒𝑞 are the equilibrium (i.e. market) portfolio weights. 

• The investor is assumed to start with the following Bayesian prior (with 
imprecision):

𝜇 = Π + 𝜖𝑒𝑞 where  𝜖𝑒𝑞 ∼ 𝑁 0, 𝜏 ⋅ Σ
– The precision of the equilibrium return estimates is assumed to be 

proportional to the variance of the returns.
– 𝜏 is a scaling parameter 
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Black-Litterman Model: Views

• Investor views on a single asset affect many weights. 
• “Portfolio views”

– Investor views regarding the performance of K portfolios 
(e.g. each portfolio can contain only a single asset)

– P: K x N matrix with portfolio weights
– Q: K x 1 vector of views regarding the expected returns of 

these portfolios

• Investor views are assumed to be imprecise:
𝑃 ⋅ 𝜇 = 𝑄 + 𝜖𝑣 where 𝜖𝑣 ∼ 𝑁(0, Ω)

– Without loss of generality, Ω is assumed to be a diagonal 
matrix 

– 𝜖𝑒𝑞 and 𝜖𝑣 are assumed to be independent
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Black-Litterman Model: Posterior

• Bayes rule:

𝑓 𝜃 𝑥 =
𝑓(𝜃, 𝑥)

𝑓 𝑥
=

𝑓 𝑥 𝜃 ⋅ 𝑓(𝜃)

𝑓(𝑥)

• Posterior distribution:
– If 𝑋1, 𝑋2 are normally distributed as:

𝑋1

𝑋2
∼ 𝑁

𝜇1

𝜇2
,

Σ11 Σ12

Σ21 Σ22

– Then, the conditional distribution is given by
𝑋1|𝑋2 = 𝑥 ∼ 𝑁 𝜇1 + Σ12Σ22

−1 𝑥 − 𝜇2 , Σ11 − Σ12Σ22
−1Σ21
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Black-Litterman Model: Posterior

• The Black-Litterman formula for the posterior 
distribution of expected returns

𝐸 𝑅 𝑄
= 𝜏 ⋅ Σ −1 + 𝑃′ ⋅ Ω−1 ⋅ 𝑃 −1

⋅ 𝜏 ⋅ Σ −1 ⋅ Π + 𝑃′ ⋅ Ω−1 ⋅ 𝑄

var 𝑅 𝑄 = 𝜏 ⋅ Σ −1 + 𝑃′ ⋅ Ω−1 ⋅ 𝑃 −1
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Black Litterman: 2-asset Example

• Suppose you have a view on the equally 

weighted portfolio 
1

2
𝜇1 +

1

2
𝜇2 = 𝑞 + 𝜀𝑣

• Then

𝐸 𝑅 𝑄 = 𝜏 ⋅ Σ −1 +
1

2Ω

−1

⋅ 𝜏 ⋅ Σ −1 ⋅ Π +
𝑞

2Ω

var 𝑅 𝑄 = 𝜏 ⋅ Σ −1 +
1

2Ω

−1
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Advantages of Black-Litterman

• Returns are adjusted only partially toward the 
investor’s views using Bayesian updating
– Recognizes that views may be due to estimation error
– Only highly precise/confident views are weighted heavily.

• Returns are modified in way that is consistent with 
economic priors
– Highly correlated sectors have returns modified in the 

same direction.

• Returns can be modified to reflect absolute or relative 
views.

• Resulting weight are reasonable and do not load up on 
estimation error.


