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Overview

1. Introduction:
Simple CAPM with quadratic utility functions

(from beta-state price equation)

2. Traditional Derivation of CAPM
— Demand: Portfolio Theory } for given

— Aggregation:  Fund Separation Theorem prices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black-Litterman
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Recall State-price Beta model

Recall:
E[R"] — R/ = B"E[R* — R/]

COV[R*,R"|
vVar|Rr*]

Where " =

very general — but what is R* in reality?
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Simple CAPM with Quadratic Expected Utility

1. All agents are identical

o a
e Expected utility U(xg, %) = X mu(xg, xs) = m = —

E[aou]

e Quadratic u(xg,x;) = vo(xg) — (x; — a)?
e = 0u= [—2(x1,1 — a), ...,—2(x5,1 — a)]

e EXxcess return

cov[m, R" R/ cov[d,u, R"
E[R" |- RS = — | ]:_ 104 ]

_ Rfcov[-2(x; —a),R"] of 2cov]xq, R"]
B E[dou] B Eldou]

e Also holds for market portfolio

E[R" =R/ cov[xy, R"]
E[R™kt] — Rf  cov[x,, R™kt]
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Simple CAPM with Quadratic Expected Utility

E[R" =R/ cov[x;,R"]
E[R™Mkt] — RS cov[xy, R™kt]

2. Homogenous agents + Exchange economy
= x; = aggr. endowment and is perfectly correlated with R™
E[R"] =R/ cov[R™*,R"]
E[R™Mkt] — Rf ~  var[R™Mkt]
: n _ COV[RR RMkL]
Since p" = Var[gme]
Market Security Line
E[R"] = R/ + BM{E[R™kt] — R}
mkt
NB: R* = Rf &1 in this case (b; < 0)!

a+b1Rf
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions
2. Traditional Derivation of CAPM
— Demand: Portfolio Theory }

for given

— Aggregation: Fund Separation Theorem orices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black-Litterman
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Definition: Mean-Variance Dominance
& Efficient Frontier

e Asset (portfolio) A mean-variance dominates
asset (portfolio) Bif uy = ug and o4 < og or
|f‘LlA > Up while Oy < Op.

* Ffficient frontier: loci of all non-dominated
portfolios in the mean-standard deviation
space.

By definition, no (“rational”) mean-variance
investor would choose to hold a portfolio not
located on the efficient frontier.

I”
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Expected Portfolio Returns & Variance

* Expected returns (linear)

. hJ
—ul == E[r"] = w'"'u, where each w’/ = S
J
. Everything is in returns
° Varlance (like all prices =1)

— o = var[r,] = w'Vw

2
01 012\ (W1
=W WZ)( 2>(W)
021 O3 2
wiot + wiof + 2wiwyoq, = 0
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lllustration of 2 Asset Case

* For certain weights: wy and 1 — wy

Hp = wity + (1 —wy)u,
of =wiof + (1 —wy)?05 + 2wy (1 — wy)p12010;

(Specify a,% and one gets weights and p’s)

¢ Special CaSes [w; to obtain certain ay,]

top—0;

— =1=>w, =
P12 1 p——

top+o,

—pr2=—"1>w =

O'1+O'2
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top—0o
For P12 = 1= Wi = —0_1_0_22
op = [wyo1 + (1 —wq)ay|

Uy — Uq

up = wytly + (1 —wpu, = pug + (top —oy)
02 — 01
H2
[0 T A :
H1
. 01 Oh ) Lower part is irrelevant
................ Hz — Hq
.......... Hp = + (—op —0y1)
............. 2 — 01

The Efficient Frontier: Two Perfectly Correlated Risky Assets
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toy,+—0,
Forpi, =—-1=>w; ==—2£
O'1+O'2
op = [wyo1 — (1 —wq)ay
tp =wipg + (1 —wyp S u o1 u 2R,
h — W1iH1 - Wi1J)HM2 — 1 2 -
g1 + 0y g1 + 0y g1 + 0y
K2 =l L M2—lg
e sIope.—(flM2
intercept: —22—p, +—21 '
P a1+02-ul a1+02-uz N Slope:_u
H1 01107
01 02

The Efficient Frontier: Two Perfectly Negative Correlated Risky Assets
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E[r,]

E[r,]

v

The Efficient Frontier: Two Imperfectly Correlated Risky Assets
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Foro;, =0
w, B 0000
Hn [ :
Hy .
a1 Onp o))

The Efficient Frontier: One Risky and One Risk-Free Asset
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Efficient frontier with n risky assets

* A frontier portfolio is one which displays minimum variance

among all feasible portfolios with the same expected
portfolio return. A
E[r]
.1
* min-wVw
w 2

- aw'p=yp"  (T;wE[R] = uh)
—yw'lt=1  (Xw=1)

* Result: Portfolio weights are linear in expected portfolio return
wp = g + Au"
— |f,Llh = O,Wh — g'
— fut=1Lw,=g+A
* Hence, ¢ and g + # are portfolios on the frontier
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0L
—=Vw—-Au—y1=0
ow

c?L_ " = 0
aL—l 1=0

dy W=

The first FOC can be written as:
Vw=Au+y1
w=AV"1u+yV—11

pw =2V i) +y@vr1) o i
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* Noting that u'w;, = wy, combining 1t and 2" FOC

pp =p'wp =AWV +y @V 1)
B A

* Pre-multiplying the 15t FOC by 1 yields
1wy, =wp1=21"Viu+y@'v-11) =1
1=V iIm+y@'v-11)
A C

* Solving for A,y
S Cut—-A B — Au™

skip
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e Hence,w, = AV 1u + yV~11 becomes

cu — A B — Au™
= -1 V-11
=7 [B(V~'1) — AV~ )] + ) [CV~iw) — AV D] "

* Result: Portfolio weights are linear in expected portfolio
return wy, = g + Au"
— |f‘Llh = O,Wh =g
—fut=1,w,=9g+4A

* Hence, ¢ and g + # are portfolios on the frontier

skip
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Characterization of Frontier Portfolios

* Proposition: The entire set of frontier portfolios can
be generated by ("are convex combinations” g of)

and g + M.

* Proposition: The portfolio frontier can be described
as convex combinations of any two frontier
portfolios, not just the frontier portfolios ¢ and g +
n.

* Proposition: Any convex combination of frontier
portfolios is also a frontier portfolio. skip
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...Characterization of Frontier Portfolios...

* For any portfolio on the frontier,

o?(u") = [g + Au"1'Vig + Au"]
with ¢ and # as defined earlier.

Multiplying all this out and some algebra yields:

2

1
2 h_ 0 =
(uh) D[M |

skip
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...Characterization of Frontier Portfolios...
i. the expected return of the minimum variance portfolio is g;

ii. the variance of the minimum variance portfolio is given by o

2
. 2 h C h A 1.
lil. Equation o :—[ ——] +—lIsa
q (") =<t =2 +3
: 1 A). :
— parabola with vertex (E’E) in the expected return/variance space

— hyperbola in the expected return/standard deviation space.

skip



PRINCETON FIN501 Asset Pricing
UNIVERSITY Lecture 06 Mean-Variance & CAPM (21)

E(r)

A/C

/e \ Var(r)

Figure 6-3 The Set of Frontier Portfolios: Mean/Variance Space
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E(r)

Minimum variance portfolio

/
/ w=g+h

ik

A/C

sqr(1/C) SD(r)

Figure 6-4 The Set of Frontier Portfolios: Mean/SD Space
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E(r)

-

Corresponds to short selling
A to buy more of B

Corresponds to short selling
B to buy more of A

—

SD(r)

Figure 6-5 The Set of Frontier Portfolios: Short Selling Allowed
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Efficient Frontier with risk-free asset

Market Portfolio

Expected Return

=~ Portfolio with highest

sharp ratio

R

Risk free rate

0 0.05 0.1 0.15 0.2 0.25

The Efficient Frontier: One Risk Free and n Risky Assets
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Efficient Frontier with risk-free asset

. muiln % w'lVw
—stwu+ @ -wlr/ =yl
— FOC
s wy, = AV Y (u—-1"1)
uh—rf
(n=r1) v-1(u-rr1)

e Multiplying by (u — rfl)T yields A =

— Solution

v (p—rf1)(uh—r7)
H2

,where H = \/B — 2Ar/ + C(r/)2

.Wh:
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Efficient frontier with risk-free asset

e Result 1: Excess return in frontier excess return
E[rp] —rf
H2

cov[rh,rp] =wpVw, =wp(u—1r/1)
(el = )(El )~ )

HZ
_F)?
varfry] = EL 2 T)
£l =/ = 0 (5[ - )

B h,p

(Holds for any frontier portfolio p, in particular the market portfolio)
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Efficient Frontier with risk-free asset

* Result 2: Frontier is linear in (E|r], o)-space

(Elrm] = 77)°
H?2
Elry] =1+ Hoy,

var|r,] =

where H is the Sharpe ratio
Elr,] — e
Oh

H =
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions
2. Traditional Derivation of CAPM
— Demand: Portfolio Theory }

for given

— Aggregation: Fund Separation Theorem orices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black-Litterman
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Aggregation: Two Fund Separation

* Doing it in two steps:
— First solve frontier for n risky asset
— Then solve tangency point

* Advantage:

— Same portfolio of n risky asset for different agents
with different risk aversion

— Useful for applying equilibrium argument (later)

Recall HARA class of preferences
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Expected Return
o
=}

Two Fund Separation

Market Portfolio

Price of Risk =
= highest
Sharpe ratio

¥~ Portfolio with highe st

sharp ratio

R

Risk free rate

0 0.05 0.1 0.15 0.2 0.25

Optimal Portfolios of Two Investors with Different Risk Aversion
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Mean-Variance Preferences

° U(,Llh,O'h) Wlth7> 0, E< 0

— Example: E[W] — gvar[W]

* Also in expected utility framework
— Example 1: Quadratic utility function (with portfolio return R)
 U(R) =a+ bR + cR?
e VNM: E[U(R)] = a + bE[R] + cE[R?] = a + buy, + cui + cof =
g(:uhr O-h)
— Example 2: CARA Gaussian

e asset returns jointly normal = ;; w'r' normal

* If U is CARA = certainty equivalent is u; — g a,f
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions
2. Traditional Derivation of CAPM
— Demand: Portfolio Theory }

for given

— Aggregation: Fund Separation Theorem orices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black-Litterman
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Equilibrium leads to CAPM

e Portfolio theory: only analysis of demand
— price/returns are taken as given
— composition of risky portfolio is same for all investors

e Equilibrium Demand = Supply (market portfolio)

e CAPM allows to derive

— equilibrium prices/ returns.
— risk-premium
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The CAPM with a risk-free bond

 The market portfolio is efficient since it is on the
efficient frontier.

* All individual optimal portfolios are located on the
half-line originating at point (0,7f).

* The slope of Capital Market Line (CML):

E[Rmkt] . Rf
E[Rh] — Rf + Op
Omkt

Omkt
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The Capital Market Line
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The Security Market Line

SML
E(r)

E(r,)

slope SML = (E(r))-r;) /B,

=1 B, p
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions

2. Traditional Derivation of CAPM

— Demand: Portfolio Theory for given
_ Aggregation: Fund Separation Theorem | Prices/retums
— Equilibrium: CAPM
3. Modern Derivation of CAPM
— Projections
— Pricing Kernel and Expectation Kernel

4. Practical Issues
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Projections

 Statess =1, ...,S withm, > 0
* Probability inner product

%, ¥l = Z MgXsYs = z VT XA[TT5 Vs
S

S

e T-norm ||x|| = \/[x, x|, (measure of length)
i. x| >0 Vx=#0and]|lx|]]=0ifx=0

i |[Ax]| = [A[]]x]|

i, [x +yll < llxll + llyll vx;y € R°
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shrink
axes

v

x and y are m-orthogonal iff [x, y],, = 0, i.e. E[xy] = 0

v
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...Projections...

* Z space of all linear combinations of vectors z4, ..., z,
* Given a vector y € R” solve

min E y—Zajzj
aERM
J
FOC: Yo t5(ys — X alz))z/ = 0
F2us s\ Vs ]aZS Z
— Solutiono?iyz =Zjajzj;f ’=y—yZ

2

* [smallest distance between vector y and Z space]
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...Projections

w

E[ezf] = (0 foreachj =1,..,n (FOC)

el z
y?Z is the (orthogonal) projection on Z

y=y%+¢e,y?€Z,elz
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Expected Value and Co-Variance...

squeeze axis by /T
A

lx, y] =
lx, x] =

lIx]l =

(1,1)

E[xy] = covlx,y] + E[x]E[y]
E[x?*] = var[x] + E[x]*
E[x?]
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..Expected Value and Co-Variance

e x =X + X where
— X is a projection of x onto (1)
— X is a projection of x onto (1)+

* Elx] =[x 1], =% 1], = [];Call-a]
. Var[x] — [f, f]n — var[f] slight abuse of notation
— 0y = ||%l
» cov|[x,y] = cov[%,§] = [, V],
* Proof: [x,yl; = |X, 9] + [X,J]
— 9, %], = [, %]z = 0,[x,y]r = E[J]E[X] + cov[%, 7]
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions
2. Traditional Derivation of CAPM
— Demand: Portfolio Theory }

for given

— Aggregation: Fund Separation Theorem orices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black-Litterman
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Pricing Kernel m~™...

* (X) space of feasible payoffs.

* |f no arbitrage and m > 0 there exists
SDF m € R®, m > 0, such that g(z) = E[mz].

» m € R>-SDF need not be in asset span.

* A pricing kernel isam* € (X) such that for
each z € (X),q(z) = E|m™z]
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..Pricing Kernel - Examples...

e Example 1:

~S=3m5=-
3
1 2
—x, = (1,0,0),x, = (0,1,1) and p = (5,)
— Then m* = (1,1,1) is the unique pricing kernel.

* Example 2:

1 2
_xl — (110)0)) xz — (0;1;0);p — (5;5)

— Then m* = (1,2,0) is the unique pricing kernel.
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...Pricing Kernel — Uniqueness

* |f a state price density exists, there exists a
unique pricing kernel.

— If dim(X) = S (markets are complete),
there are exactly m equations and m unknowns

— If dim(X) < S, (markets may be incomplete)
For any state price density (=SDF) m and any z € (X)
El(m—-—m*)z] =0
m=(m—m*) + m* = m’is the “projection” of m
on (X)

* Complete markets = m™ = m (SDF=state price density)
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Expectations Kernel k~

* An expectations kernel is a vector k* e (X)
— Such that E[z] = E[k"z] for each z € (X)

 Example

- §=3,7% =, 2 = (1,00),x; = (0,1,0)

— Then the unique k* = (1,1,0)

If T >> 0, there exists a unique expectations kernel.

e let] = (1,...,1) then forany z € (X)
El(I—-k")z] =0

— k*is the “projection” of I on (X)

— k™ = I if bond can be replicated (e.g. if markets are complete)
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Mean Variance Frontier

* Definition 1: z € (X) is in the mean variance frontier if
there exists no z’' € (X) such that E|z'] = E|z],q(z) =
q(z) and var|z'| < var|Z]

* Definition 2: Let £ be the space generated by m*and k*
— Decompose z = z€ + g withz& € Eande L &

— Hence, Ele] = E[ek*] = 0,q(e) = E[em*] =0
covle, z8] = E[ez%] = 0, sincees L €
— VaF[Z] = Var[zg] + VaF[E] (price of ¢ is zero, but positive variance)

* Zisin mean variance frontier =z € £.
— Every z € £ is in mean variance frontier.
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Frontier Returns...

* Frontier returns are the returns of frontier payoffs with non-zero
prices.

[Note: R indicates Gross return]

“ T qUe) T E[m]
R._. = m ___m
™ q(m*)  E[m*m*]
* Ifz=am"+pk* then ,
aq(m®) Bq (k™)
RZ — * * Rm* + * * Rk*
aq(m*) + Bq(k*) aq(m*) + pq(k*)
A 1-2

* graphically: payoffs with price of p=1.
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(X)=R>=RS3

Mean-Variance Payoff Frontier

Mean-Variance Return Frontier
p=1-line = return-line (orthogonal to m*)
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Mean-Variance (Payoff) Frontier

NB: graphical illustrated of expected returns and standard deviation
changes if bond is not in payoff span.
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Mean-Variance (Payoff) Frontier
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..Frontier Returns

(if agent is risk-neutral)

If k* = am”, frontier returns = R+
Ifk™ #= am”™, frontier returns can be written as:
Ry = R + ARy — Ry»)
Expectations and variance are
E[Ry] = E[Ry+] + A(E[Ry] — E[Ry+])
var|R;] =
= var[Ry+] + 2Acov[Ry*, Rpy» — Rp+] + A?var[R,,» — Ry~
If risk-free asset exists, these simplify to:

ElR | —R
E[R;] = Ry + AME[Rm-] — Rf) = Rr + 0(Ry) [O'(R] 3 f

var[R,] = A?var[R,,;+],0(Ry) = |A|o(Rp*)
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Minimum Variance Portfolio

* Take FOC w.r.t. A of
var|R;]
= var|Ry+] + 2Acov|Ry*, R,;;» — Ry+]
+ A%var[R,,» — Ry~]

e Hence, MVP has return of
Ry + Ao(Rpr — Ry»)
COV[Rk*, Rm* — Rk*]

var[R,,» — Ry+]

0=




™8 PRINCETON FIN501 Asset Pricing
UNIVERSITY Lecture 06 Mean-Variance & CAPM (56)

lllustration of MVP

(X)=R?and S =3

Expected return

of MVP
AN

Minimum standard
deviation
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Mean-Variance Efficient Returns

* Definition: A return is mean-variance efficient if
there is no other return with same variance but
greater expectation.

e Mean variance efficient returns are frontier returns
with E[R;] = E[R;_ |

* If risk-free asset can be replicated
— Mean variance efficient returns correspond to A,.

— Pricing kernel (portfolio) is not mean-variance efficient,

since E[Ry] = =L « _L__p,

~ E[m*?] T E[m’]
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/ero-Covariance Frontier Returns

* Take two frontier portfolios with returns
Rﬂ — Rk* + }{(Rm* — Rk*) and Rﬂ — Rk* + ,Ll(Rm* — Rk*)

* cov[Ry, Ry| = var[Ry:] + (A + ) cov[Ry+, Ry — Ryl +
Auvar|[R,« — Ry

* The portfolios have zero co-variance if
var[Ry+] + Acov|Ry+, R,px — Ry+]

COV[Ry+, Rpp» — Ry+] + Avar [Ry« — Ry+]

H=-

* Forall A # Ay, u exists
— 1 = 0 if risk-free bond can be replicated
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lllustration of ZC Portfolio...

% (X)=R?and S =3

“— arbitrary portfolio p

Recall:

cov|x, Y] = X, y]n
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..|llustration of ZC Portfolio

Green lines do not
/ necessarily cross.

1]

“— arbitrary portfolio p

1ZC (p)|]
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Beta Pricing...

* Frontier Returns (are on linear subspace). Hence
Rg =R, + B(Ry,—R,)
* Consider any asset with payoff x;
— It can be decomposed in x; = xf + ¢;
— q(xj) = q(xfg) and E[xj] = E[xf], sincee 1 &
£j
Cl(xj)

— Using above and assuming A # Ay and u is
ZC-portfolio of 4,

Ri =R, +B;j(R,—R,) +

— Return of xj is R; = RS

q(x])
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...Beta Pricing

e Taking expectations and deriving covariance

*+ E[R;| =E

. COV[R;L, Rj:

— Since R

R,| + Bi(E[R:] — E[R,])
~gpart) = 5, - 2
L CI(;J')

* If risk-free asset can be replicated, beta-pricing
equation simplifies to

E|R;] = Ry + B;(E[R:] — Ry)

* Problem: How to identify frontier returns
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Capital Asset Pricing Model...

e CAPM = market return is frontier return
— Derive conditions under which market return is frontier return
— Two periods: 0,1.

— Endowment: individual Wli at time 1, aggregate w; = vT/1<X> +

vT/1< ! where W( ) 1< ) are orthogonal and w ( is the

orthogonal projection of w; on (X).

— The market payoff is W< )

wY)

— Assume g ( X >) * 0, let Ry = m, and assume that

1
Rkt is not the minimum variance return.
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...Capital Asset Pricing Model

* If Ry is the frontier return that has zero
covariance with R, then, for every security j,

* E[R;| = E[Ro] + B;(E[Rmke] — E[Ro]) with
_ COV[Rj,Rmkt]
Bj = Var[Ry.]

* If arisk free asset exists, equation becomes,
E[Rj] = Ry + Bj(E[Rmkt] — Ry)

* N.B. first equation always hold if there are only two assets.
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions
2. Traditional Derivation of CAPM
— Demand: Portfolio Theory }

for given

— Aggregation: Fund Separation Theorem orices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black-Litterman
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Practical Issues

* Testing of CAPM
* Jumping weights
— Domestic investments
— International investment

e Black-Litterman solution
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Testing the CAPM

 Take CAPM as given and test empirical implications

* Time series approach
— Regress individual returns on market returns
Rit — Rsy = @; + :Bim(Rmt — th) + Eit
— Test whether constant term a; = 0

* Cross sectional approach
— Estimate betas from time series regression
— Regress individual returns on betas
Ri = ABim + ;
— Test whether regression residuals a; = 0
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Empirical Evidence

* Excess returns on high-beta stocks are low

* Excess returns are high for small stocks

— Effect has been weak since early 1980s

* Value stocks have high returns despite low
betas

* Momentum stocks have high returns and low
betas
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Reactions and Critiques

e Roll Critique

— The CAPM is not testable because composition of true
market portfolio is not observable

* Hansen-Richard Critique

— The CAPM could hold conditionally at each point in
time, but fail unconditionally

* Anomalies are result of “data mining”

 Anomalies are concentrated in small, illiquid
stocks

* Markets are inefficient — “joint hypothesis test”
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Practical Issues

e Estimation

— How do we estimate all the parameters we need for
portfolio optimization?

 What is the market portfolio?
— Restricted short-sales and other restrictions
— International assets & currency risk

 How does the market portfolio change over time?
— Empirical evidence
— More in dynamic models
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Overview

1. Introduction:
Simple CAPM with quadratic utility functions
2. Traditional Derivation of CAPM
— Demand: Portfolio Theory }

for given

— Aggregation: Fund Separation Theorem orices/returns

— Equilibrium: CAPM
3. Modern Derivation of CAPM

— Projections
— Pricing Kernel and Expectation Kernel

4. Testing CAPM
5. Practical Issues — Black Litterman
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MYV Portfolio Selection in Real Life

* An investor seeking to use mean-variance
portfolio construction has to

— Estimate N means,

— N variances,
— N*(N-1)/2 co-variances

* Estimating means
— For any partition of [0,T] with N points (At=T/N):

1 (1 ~Do ;. .
Elr] = e (ﬁ' IiV=1ri-At) = pTTpo (in log prices)

— Knowing the first and last price is sufficient
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Estimating Means

* Let X} denote the logarithmic return on the market, with k =
1, ...,n over a period of length h

— The dynamics to be estimated are:
sz,u'A+0-\/Z-ek
where the €, are i.i.d. standard normal random variables.
— The standard estimator for the expected logarithmic mean rate of

return is:
1 n where
=5 le" h is length of observation
: . . n number of observations
— The mean and variance of this estimator B
1 . 1 A=mn/h
E“=—-EZX]=—- A=
[4] h l K| = mo u
0.2
Var[j =3 Varlz Xl = -02-A=7

—  The accuracy of the estimator depends only upon the total length of the observation period (h), and not upon the number of
observations (n).
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Estimating Variances

* Consider the foIIowing estimator'

A

e The mean and variance of this estimator:
h
E[o?] = hEE[X ——-n-(uz-A2+02-A)=02+,u2-£
2-0% 4-u%-h
Var[o?] —Var ZXR - ZVaer h2 (B[] - BET") = ——+—

— The estlmator is blased b/c we did not subtract out the
expected return from each realization.

— Magnitude of the bias declines as n increases.

— For a fixed h, the accuracy of the variance estimator can be
improved by sampling the data more frequently.
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Estimating variances:
Theory vs. Practice

* For any partition of [0, T| with N points (At =T /N):

N

1
Var[r :N z(rlAt—Er])z—)a as N - o
i=1

 Theory: Observing the same time series at

progressively higher frequencies increases the
precision of the estimate.

* Practice:

— Over shorter interval increments are non-Gaussian
— Volatility is time-varying (GARCH, SV-models)
— Market microstructure noise
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Estimating covariances:
Theory vs. Practice

* |n theory, the estimation of covariances shares
the features of variance estimation.

* |n practice:

— Difficult to obtain synchronously observed time-series -> may require
interpolation, which affects the covariance estimates.

— The number of covariances to be estimated grows very quickly, such
that the resulting covariance matrices are unstable (check condition
numbers!).

— Shrinkage estimators (Ledoit and Wolf, 2003, “Honey, | Shrunk the
Covariance Matrix”)
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Unstable Portfolio Weights

* Are optimal weights statistically different from zero?
— Properly designed regression yields portfolio weights
— Statistical tests for significance of weight

 Example: Britton-Jones (1999) for international portfolio

— Fully hedged USD Returns
e Period: 1977-1966
* 11 countries

— Results
* Weights vary significantly across time and in the cross section
» Standard errors on coefficients tend to be large
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Britton-Jones (1999)
1977-1996 1977-1986 1987-1996

weights t-stats weights t-stats weights t-stats
Australia 12.8 0.54 6.8 0.20 21.6 0.66
Austria 3.0 0.12 -9.7 -0.22 22.5 0.74
Belgium 29.0 0.83 7.1 0.15 66 1.21
Canada -45.2 -1.16 -32.7 -0.64 -68.9 -1.10
Denmark 14.2 0.47 -29.6 -0.65 68.8 1.78
France 1.2 0.04 -0.7 -0.02 -22.8 -0.48
Germany -18.2 -0.51 9.4 0.19 -58.6 -1.13
ltaly 5.9 0.29 22.2 0.79 -15.3 -0.52
Japan 5.6 0.24 57.7 1.43 -24.5 -0.87
UK 32.5 1.01 42.5 0.99 3.5 0.07
US 59.3 1.26 27.0 0.41 107.9 1.53
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Black-Litterman Appraoch

e Since portfolio weights are very unstable, we need to discipline our
estimates somehow

— Our current approach focuses only on historical data

* Priors

— Unusually high (or low) past return may not (on average) earn the same
high (or low) return going forward

— Highly correlated sectors should have similar expected returns

— A “good deal” in the past (i.e. a good realized return relative to risk)
should not persist if everyone is applying mean-variance optimization.

e Black Litterman Approach
— Begin with “CAPM prior”
— Add views on assets or portfolios
— Update estimates using Bayes rule
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Black-Litterman Model: Priors

* Suppose the returns of N risky assets (in vector/matrix notation) are
r~N(u2)

* CAPM: The equilibrium risk premium on each asset is given by:
M=y % wg
— vy is the investors coefficient of risk aversion.
— Wgq are the equilibrium (i.e. market) portfolio weights.

 The investor is assumed to start with the following Bayesian prior (with
imprecision):
u=1I+ € where €9 ~ N(0,7-X)

— The precision of the equilibrium return estimates is assumed to be
proportional to the variance of the returns.

— T is a scaling parameter
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Black-Litterman Model: Views

* |nvestor views on a single asset affect many weights.

e “Portfolio views”

— Investor views regarding the performance of K portfolios
(e.g. each portfolio can contain only a single asset)

— P: K x N matrix with portfolio weights

— Q: K x 1 vector of views regarding the expected returns of
these portfolios

* |nvestor views are assumed to be imprecise:
P-u=Q+¢€” wheree” ~ N(0,Q)

— Without loss of generality, () is assumed to be a diagonal
matrix

— €% and €V are assumed to be independent
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Black-Litterman Model: Posterior

e Bayes rule:

foly - [O0 _ fx10)- 1)

f)  f)

* Posterior distribution:
— If X4, X, are normally distributed as:

X1) 251 (211 212)

(Xz N ((“2) "\221 222

— Then, the conditional distribution is given by

X11X, =2 ~ NQug + 212255 (x — p42), 211 — 212255 251)
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Black-Litterman Model: Posterior

* The Black-Litterman formula for the posterior
distribution of expected returns

E[R|Q]
=[(z-2)1+pP - -Q1t.-p]?
G-t -0+P -Q1.0]

var[R|Q] = [(z- )"t +P'-Q71 - P]7!
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Black Litterman: 2-asset Example

e Suppose you have a view on the equally
weighted portfolio %,ul + %,uz =q+ &’

e Then

q

E[R|Q] = [(r 2)1+1 [(r 7T+ oo
~1

var[R|Q] = [(T )1 +2Q
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Advantages of Black-Litterman

* Returns are adjusted only partially toward the
investor’s views using Bayesian updating

— Recognizes that views may be due to estimation error

— Only highly precise/confident views are weighted heavily.
e Returns are modified in way that is consistent with

economic priors

— Highly correlated sectors have returns modified in the
same direction.

e Returns can be modified to reflect absolute or relative
Views.

* Resulting weight are reasonable and do not load up on
estimation error.



