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Chapter 1

Introduction

Asset pricing is the study of the value of claims to uncertain future payments. Two components are

key to value an asset: the timing and the risk of its payments. While time effects are relatively

easy to explain, corrections for risk are much more important determinants of many assets’ values.

For example, over the last 50 years U.S. stocks have given a real return of about 9% on average.

Only about 1% of this can be attributed to interest rates; the remaining 8% is a premium earned

for holding risk.

This raises the question: what determines the price of financial claims? That is, why do prices move

over time, and why do different asset have different prices?1 There are several approaches that have

been used to answer these questions:

� Statistical approaches look at statistical relationships between asset prices

� “Weak” economic approaches look at some basic relations that must hold between asset prices,

such as the absence of risk-free profitable strategies2

� Economic models derive prices from the fundamental characteristics of an economy3

Financial claims are promises of payments at various points in the future: for example, a stock is

a claim on future dividends; a bond is a claim over coupons and principal; an option is a claim

over the future value of another asset. More formally, suppose that we are at date t, then we can

we define payments xt+τ for τ ≥ 1 and expect the price of these payments to be something like

pt ≈ Et
∑
τ≥1

[xt+τ ], with some adjustment for time and risk. Another way to think about financial

claims is in terms of returns, defined as how much money we make if we hold an asset for a given

amount of time: Rt+1 = pt+1+xt+1

pt+1
− 1. We call excess return the difference between the returns of

two assets i and j: Ret+1 = Ri,t+1 −Rj,t+1. We can interpret these three representations as follows:

1We will see that these questions refer to “time-series” and “cross-sectional” problems, respectively.
2This concept is referred to as “no arbitrage”.
3Such as preferences, technology, etc.

8
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we can invest pt today and get {xt+τ} in the future, or invest 1 unit today and get Rt+1 in the

future, or yet invest 0 units today and get Ret+1 in the future. What are the properties of returns?

Can we predict when assets will have high or low returns? Can we predict which assets have higher

or lower returns? Historically, there have been two schools of thought on this subject:

� The old view (1970s): Expected returns do not move much over time: stocks returns are

unpredictable because prices move with news about future cash-flows. The “classic” model for

asset pricing, called CAPM, works pretty well: returns with high covariance with the market

return have are higher on average as predicted by the mdoel. The beta parameter in the

CAPM model derives from the covariance between asset cash-flows and market cash-flows.

� The modern view: Expected returns move a lot over time: stock returns are predictable.

Prices move with news about changes in the discount rate used by people to discount assets.

We can understand the cross-sectional relation between asset prices with multi-factor models:

characteristics other than the beta are associated with returns, and non-market betas matter

a lot. Finally, betas derive from the covariance between discount rates and market discount

rates.

Asset pricing theory can be used to describe both the way the world works and the way the world

should work. Once we observe the prices, we can use asset pricing theory to understand why prices

are what they are, and modify our theory if the predictions are not consistent with the observations;

or we can decide that the observed prices are wrong, or mispriced, and take advantage of the trade

opportunity. Much of asset pricing theory stems from one simple concept:

Price equals expected discounted payoff

The rest is elaboration, special cases and a few tricks. There are two approaches to this elaboration,

called absolute asset pricing and relative asset pricing . In absolute asset pricing we price

each asset by reference to its exposure to fundamental macroeconomic risk.4 This approach is

most popular in many academic settings in which we use asset pricing to give an explanation for

why prices are what they are in order to predict how prices might change if policy or economic

structure changed. In relative pricing we infer an asset’s value given the prices of some other asset.

Black-Scholes option pricing is the classic example of this approach.

The central and unfinished task of asset pricing theory is to understand and measure the sources of

aggregate risk that drive asset prices. Of course, this is also the central question of macroeconomics,

and in fact a lot of empirical work has documented stylized facts and links between macroeconomics

and finance. For example, expected returns vary across time and across assets in ways that are linked

to macroeconomic variables: we have learned that the risk premium on stocks5 is much larger than

4The classic examples of this approach are the Walrasian general equilibrium model discussed in Léon Walras’
“Elements Of Pure Economics” (1877), and Gerard Debreu’s “Theory of Value” (1959).

5The difference between the stock return and the risk-free interest rate.
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the interest rate, and varies a lot more than interest rates. This means that attempts to line up

investments with interest rates are vain, as much of the variation in cost of capital comes from

the varying risk premium. Similarly, we have learned that some measure of risk aversion must

be quite high, or people would all borrow like crazy to buy stocks. Moreover, while standard

macroeconomics theory predicts that agents do not care about business cycles,6 asset prices reveal

that they do: agents forgo substantial return premia to avoid assets whose value falls in recessions.

And yet theory still lags behind: we do not yet have a well-described model that fully explains these

correlations.

The rest of these notes is organized as follows. We start with frictionless markets and minimal

assumptions, adding more structure as the course progresses to obtain more and deeper implications.

In the second part of the course we will extend the discussion to multi-period settings, and finally

conclude by studying financial markets with frictions.

1.1 Market Efficiency

When is an asset fairly valued? We cannot answer this question without referring to a specific

model or assumption about the asset. Consider for instance the following assumption:

Prices incorporate and reflect all publicly available information

A direct consequence of this hypothesis is that stock returns should be unpredictable: for example,

when new information is released, stock prices should jump to the new fair level and then keep

trading around it. Are these features observed in reality? We will address this question with the

next subsections.

A related famous assumption is the Random Walk hypothesis, which states that stock market prices

evolve according to a random walk, and therefore cannot be predicted. This is compatible with the

Efficient Markets hypothesis outlined before, and it implies that stock price movements can only be

attributed to 1) news on future corporate cash flows, 2) changes in “risk premia” - the amount of

extra return that investors demand to hold risk (we will come back to this in the next lectures) or

3) shifts in behavioral bias.

Testing these hypotheses can be done in one of two main ways. One approach is to look at cross-

sectional data, that is, data collected at the same point in time, or regardless of differences in time.

Studies that use this approach look at whether some factors can explain the stock price changes,

potentially in contradiction to the efficient markets or random walk hypothesis. Another approach is

to look at time-series data, that is, data collected as a sequence of data points. Time-series studies

look into the existence of trends, seasonalities, or event-specific behaviors that would invalidate the

efficient markets or random walk hypothesis.

6Lucas (1987).
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1.1.1 Dividend/Price Ratio and Stock Prices

A consequence of the efficient markets hypothesis is that the Dividend/Price (D/P) ratio should

be a good indicator of future dividend movements, because when the dividend is expected to go up

the price also goes up (since it gives right to more cash flows), thus decreasing the D/P ratio until

the moment when the dividend is declared. After that moment, the ratio goes back to its previous

level.7 However, it turns out that the D/P ratio is much better at predicting future stock price

movements than dividend movements: a simple regression of the S&P 500 index price growth on

the D/P ratio shows that the latter is a good predictor of future price growth.

1.1.2 Size and Book to Market as drivers of Stock Returns

Average monthly stock returns appear to be higher the smaller the company size as measured by

its assets, and the higher its Book-to-Market, that is, the more a company is perceived as a “value”

company by the market (as opposed to “growth” stocks).

7Because the dividend will either be increased, as the market predicts, thus increasing the D/P ratio; or it will not
be increased, and consequently the stock price will decrease to the level it was at before the expectation was formed
and thus increasing the D/P ratio.
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1.1.3 Winners and Losers

The average market-adjusted return for the strategy “buy and hold the n-th decile performing

stocks” shows a remarkable pattern: stocks that perform well over some time tend to underperform

in the following period (and vice versa), and this effect is stronger the better the past performance

(and vice versa). Over the medium-long term, mean-reversion appears to be a common feature in

stocks.8

8On the contrary, for shorter time-periods, momentum seems to drive prices more than mean-reversion.
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1.1.4 Event Studies

What is the impact on daily stock returns of a company-specific event such as a merger, bankruptcy

or special dividend announcement? To find out, suppose we define as date t = 0 the date of the

anouncement of the financial event and calculate for each firm i the return Ri,t for t = −30, ..., 30.

Then we do the same for the market- or sector-reference group return, Rm,t to be used as comparison

and define abnormal returns as ARi,t = Ri,t − Rm,t. Finally, we consider the firms’ cumulative

average returns CAART =
T∑

t=−30
AARt, where AARt = 1

N

N∑
i=1
ARi,t: with no news at all, we expect

AARt to be close to zero. Below is a plot of the stylized possible reactions: an efficient reaction

is one in which the stock price maintains its new level after the event, an under-reaction is one in

which the stock price drifts up after the announcement, whereas in an over-reaction the stock price

drifts lower after the initial spike.
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For instance, let us look at earning announcements. Ball and Brown (1968) show that there is not

only a pre-announcement drift, arguably due to insider information, but also a post-announcement

drift possibly due to the under- or over-reaction of the market to the earnings news released. This

constitutes a rejection of the Efficient Market Hypothesis even in its semi-strong form, which states

that stock prices reflect all publicly available information.

In a related paper, MacKinlay (1997) considers separately firms whose reported earnings were better,

equal or worse than expected earnings (as measured by the consensus estimate). Below is a plot of

their cumulative average abnormal returns: on average, over- and under-reactions are quite limited.

In a stock split, for each share held shareholders receive two shares. This usually signals that the

price has gone up far too much for small investors to be able to invest in the company, so firms
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often decide to split the shares to make the investment more accessible to small investors. Normally

a stock split results in a price increase because many small investors can now buy the stock thus

driving the price up. Below is a plot of the cumulative average abnormal returns for the event of

the stock split: there are two possible explanations for this pattern. One is that inside information

is leaked prior to the announcement of the split. Another possibility however is that there is a

selection bias: only companies that perform well announce stock splits (those whose price increases

to a level unaccessible to small investors) and hence the pattern is due to selection bias.

Finally, below is a plot of cumulative average abnormal returns in the event of a take-over announce-

ment. Clearly, towards the announcement date there are signs of some leaked inside information,

and yet this is not completely factored in by the market since the price jumps on the announcement

date.
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1.1.5 Government Bonds

The Expectation Hypothesis holds that that the long-term yield is determined by the market’s

expectation for the future short-term yield. According to EH, the term structure of interest rates

is fully determined by expectations about future short-term interest rates (and possibly maturity-

dependent risk premia). It can be stated in the following way:

Single-period holding returns on bonds of all maturities are equal in expectation

For example, holding a 5-year zero-coupon bond and selling it after 1 year gives you the same return

as holding a 1-year zero-coupon bond for 1 year. The one-year continuously compounded return on

a 1-year bond is:

r1,1 = Et
[
ln

1

Z(t, t+ 1)

]
= ln

1

e−y(t,t+1)·1 = y(t, t+ 1)

While the one-year continuously compounded return on a m-year bond is:

r1,m = Et
[
ln
Z(t+ 1, t+m)

Z(t, t+m)

]
= Et

[
ln
e−y(t+1,t+m)·(m−1)

e−y(t,t+m)·m

]
= m·y(t, t+m)−(m−1)·Et [y(t+ 1, t+m)]
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Where Z(s, t) is the price of a zero-coupon bond bought at time s and maturing at time t. So

setting r1,1 = r1,m and rearranging we get

y(t, t+m)− y(t, t+ 1) = (m− 1) · Et [y(t+ 1, t+m)− y(t, t+m)]

Plus a constant, if we allow for time-dependent risk premia. This implies that according to EH the

yield spread y(t, t+m)− y(t, t+ 1) forecasts short-term changes in the yield on the long-term bond:

a high yield spread predicts a rise in the yield of the long bond, just enough to generate a capital

loss to offset that bond’s higher yield. This is an empirically testable fact: we can regress the yield

spread on the short-run changes in long yields and verify whether the beta coefficient is (m− 1).

The coefficient is statistically significant and negative: clearly, the Expectation Hypothesis fails

to capture some empirical feature. It neglects the risks inherent in investing in bonds, namely 1)

interest rate risk, or the risk to re-sell the bond at a lower price when interest rates rise, and 2)

reinvestment risk, or the risk that the proceeds from the bond are reinvested at a lower rate.

1.1.6 Corporate Bonds

The Merton Model postulates that the assets of a firm follow a geometric brownian motion process

dAt
At

= µ · dt+ σ · dWP
t

Assuming the firm has debt outstanding with face value D, if at time T the firm is insolvent

(AT < D) the debtholders take possession of the firm. The payoff to a debtholder is min (AT , D) =

D−max (AT −D, 0) = D−(AT −D)+, and therefore the value of the corporate bond can be priced

using the Black-Scholes formula as

Vt(At, D, T − t) = At − CBSt (At, D, T − t) = D · e−r(T−t) − PBSt (At, D, T − t)

By put-call parity. However, this model implies a credit spread to Treasuries that is consistently

lower than the observed credit spreads:
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There are several assumptions that do not hold in reality, ranging from log-normally distributed

firm assets to the non-standard features of corporate bonds (they may have covenants, variable

coupons, etc.)

1.1.7 Derivatives Pricing

In this course we will encounter the Black-Scholes model for options pricing, according to which a

European call option on a stock worth S with strike K and maturity T today is worth (assuming

zero interest rates)

S0N

(
ln S0

K + σ2

2 T

σ
√
T

)
−Ke−rTN

(
ln S0

K −
σ2

2 T

σ
√
T

)

Where σ is the annualized standard deviation, or volatility, of stock returns. Assuming that this

model is correct, then for a given set of strikes {Ki}ni=1 and corresponding option prices we can

back out the implied volatility σIV using (for instance) the bisection method. If the Black-Scholes

model was correct, we would see a flat line: by construction, σIV = σ. However, using option prices

as observed in the market gives a different result: strike levels far from S have a higher implied

volatility than implied by Black-Scholes.
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Interestingly, this phenomenon became more evident after the 1987 Black Monday Crash. It has

been explained by the fact that rare events (crashes or rallies) occur more frequently in reality

than under the Black-Scholes model, hence the market incorporates that real feature of stocks by

“bidding the tails”.

We conclude this section with two empirical facts about stocks, macroeconomic factors, and how

risk measurements connect the two.

1.2 Stocks and Macroeconomic Factors

Let us begin by comparing the returns of a stock index and that of riskless bonds. The picture below

shows the return from investing $1 on January 1st 1972 in the S&P 500 index (red), a one-year

Treasury Bill (grey) and a 10-year Treasuty Note (brown). The return from the S&P 500 index has

been higher on average than both Treasury returns, yet much more volatile. The 1-year Treasury

Bill return is much lower and less volatile than the 10-year Treasury, a fact that is accounted for

by the relative size of their duration.
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Similarly, looking at the yearly growth of the S&P 500 versus that of nominal GDP (which is mostly

comprised of consumption), we see that stocks are far more volatile than consumption.

1.2.1 Measuring Risk with Covariance

We will see that wisely managing a portfolio allows us to eliminate the stock-specific risk exposure.

What is left is the systemic risk, or market risk, which is captured by the covariance between the

stock and the market, and hence motivates us to use covariance as a risk measure for stocks. Below

is a plot of the covariance between some US large companies and the S&P 500.



CHAPTER 1. INTRODUCTION 21

1.3 The 2013 Nobel Prize in Economics

We conclude this chapter with an excerpt from the scientific background paper for the 2013 No-

bel Prize in Economics written by the Economic Sciences Prize Committee of the Royal Swedish

Academy of Sciences:

“While prices of financial assets often seem to reflect fundamental values, history provides striking

examples to the contrary, in events commonly labeled bubbles and crashes. Mispricing of assets

may contribute to financial crises and, as the recent recession illustrates, such crises can damage

the overall economy. Given the fundamental role of asset prices in many decisions, what can be

said about their determinants?

The 2013 Nobel prize was awarded empirical work aimed at understanding how asset prices are

determined. Eugene Fama, Lars Peter Hansen and Robert Shiller have developed methods toward

this end and used these methods in their applied work. Although we do not yet have complete and

generally accepted explanations for how financial markets function, the research of the Laureates has

greatly improved our understanding of asset prices and revealed a number of important empirical

regularities as well as plausible factors behind these regularities.

The question of whether asset prices are predictable is as central as it is old. If it is possible to

predict with a high degree of certainty that one asset will increase more in value than another

one, there is money to be made. More important, such a situation would reflect a rather basic

malfunctioning of the market mechanism. In practice, however, investments in assets involve risk,

and predictability becomes a statistical concept. A particular asset-trading strategy may give a high

return on average, but is it possible to infer excess returns from a limited set of historical data?
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Furthermore, a high average return might come at the cost of high risk, so predictability need not

be a sign of market malfunction at all, but instead just a fair compensation for risk-taking. Hence,

studies of asset prices necessarily involve studying risk and its determinants.

Predictability can be approached in several ways. It may be investigated over different time hori-

zons; arguably, compensation for risk may play less of a role over a short horizon, and thus looking

at predictions days or weeks ahead simplifies the task. Another way to assess predictability is

to examine whether prices have incorporated all publicly available information. In particular, re-

searchers have studied instances when new information about assets becomes became known in the

marketplace, i.e., so-called event studies. If new information is made public but asset prices react

only slowly and sluggishly to the news, there is clearly predictability: even if the news itself was

impossible to predict, any subsequent movements would be. In a seminal event study from 1969,

and in many other studies, Fama and his colleagues studied short-term predictability from different

angles. They found that the amount of short-run predictability in stock markets is very limited.

This empirical result has had a profound impact on the academic literature as well as on market

practices.

If prices are next to impossible to predict in the short run, would they not be even harder to

predict over longer time horizons? Many believed so, but the empirical research would prove this

conjecture incorrect. Shiller’s 1981 paper on stock-price volatility and his later studies on longer-

term predictability provided the key insights: stock prices are excessively volatile in the short run,

and at a horizon of a few years the overall market is quite predictable. On average, the market

tends to move downward following periods when prices (normalized, say, by firm earnings) are high

and upward when prices are low.

In the longer run, compensation for risk should play a more important role for returns, and pre-

dictability might reflect attitudes toward risk and variation in market risk over time. Consequently,

interpretations of findings of predictability need to be based on theories of the relationship be-

tween risk and asset prices. Here, Hansen made fundamental contributions first by developing an

econometric method – the Generalized Method of Moments (GMM), presented in a paper in 1982

– designed to make it possible to deal with the particular features of asset-price data, and then

by applying it in a sequence of studies. His findings broadly supported Shiller’s preliminary con-

clusions: asset prices fluctuate too much to be reconciled with standard theory, as represented by

the so-called Consumption Capital Asset Pricing Model (CCAPM). This result has generated a

large wave of new theory in asset pricing. One strand extends the CCAPM in richer models that

maintain the rational-investor assumption. Another strand, commonly referred to as behavioral

finance – a new field inspired by Shiller’s early writings – puts behavioral biases, market frictions,

and mispricing at center stage.

A related issue is how to understand differences in returns across assets. Here, the classical Capital

Asset Pricing Model (CAPM) – for which the 1990 prize was given to William Sharpe – for a

long time provided a basic framework. It asserts that assets that correlate more strongly with
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the market as a whole carry more risk and thus require a higher return in compensation. In a

large number of studies, researchers have attempted to test this proposition. Here, Fama provided

seminal methodological insights and carried out a number of tests. It has been found that an

extended model with three factors – adding a stock’s market value and its ratio of book value to

market value – greatly improves the explanatory power relative to the single-factor CAPM model.

Other factors have been found to play a role as well in explaining return differences across assets.

As in the case of studying the market as a whole, the cross-sectional literature has examined both

rational-investor–based theory extensions and behavioral ones to interpret the new findings.”

One last remark: Shiller and Fama’s works ultimately discuss the same findings, but interpreting

them differently. What Shiller calls irrational bubbles and behavioral biases Fama would call efficient

markets and varying risk premia is nothing but the empirical observation that the stochastic discount

factor varies a lot over time. Whether we label this as “irrational behavior” or “time-varying risk

premia” is an hypothesis that is very hard to test empirically.
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One Period Model

We begin our analysis of asset pricing by considering a simple setting in which there are two dates:

today (t = 0) and some future date (t = 1). We know everything about today’s state of the world

s = 0, but we don’t know which one of s = 1, ... , S states will materialize in the future.

Under this setup, we can represent a security j ∈ {1, ... , J} as a vector

xj =


xj1
...

xjS


and define a security structure by a matrix X:

X =



x1
1 x2

1 · · · xJ−1
1 xJ1

x1
2 x2

2 · · · xJ−1
2 xJ2

...
...

. . .
...

...

x1
S−1 x2

S−1 · · · xJ−1
S−1 xJS−1

x1
S x2

S · · · xJ−1
S xJS


=
[
x1 x2 · · · xJ−1 xJ

]

An important example of a security structure is given by securities that are standard basis vectors,

which are called Arrow-Debreu securities. Consider for example S = 2 and e1 = (1, 0)
′
:

24
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Note that if this is the only security available in the market, we can replicate any security in

the horizontal axis (e.g. the orange security above) by buying a quantity α ∈ R of e1, but we

cannot replicate any of the securities outside of the horizontal axis (e.g. the red security). When

the available securities are not enough to replicate all securities in RS we say that markets are

incomplete.

If we introduce another asset e2 = (0, 1)′, all securities in R2 become replicable. In this case, we say

that markets are complete. Note that adding another asset x3 ∈ R2 does not benefit us in any way,

as we were already able to span the whole set R2 with the previous two. The security structure

generated by e1 and e2 is

X =

(
1 0

0 1

)

In general, given S possible states in t = 1 and J = S securities we call Arrow-Debreu security

structure the matrix

XAD =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


Note that 1) all payoffs (securities) are linearly independent vectors in RS 2) markets are complete

by construction (since also J = S).

Consider now a general security structure in R2. Suppose there is only a riskless bond that pays 1

in each state of the world: b = (1, 1).
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Under this security structure, all riskless securities on the 45 degree line are replicable (e.g. orange

security above) but none of the securities outside of it are replicable (e.g. 45 degree line). Adding a

risky security, say c = (2, 1)′, allows us to span the whole R2 set. For instance, suppose we wish to

replicate the security d = (1, 2)′. We can buy 3 securities b (in blue below) and sell short one unit

of security c (in orange), thus obtaining security d (in red):
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Finally, notice that in the market structure considered here

X =
[
b c

]
=

[
1 2

1 1

]

b and c are linearly independent vectors in R2, and therefore the payoffs that can be obtained with

their linear combinations coincide with those that can be obtained with linear combinations of the

Arrow-Debreu securities e1 and e2 considered before: therefore, markets are complete.

Before going further, it is worthwile two three important remarks.

1) The state space itself is an important modeling choice. The relevance of this can hardly be over-

stated, because market completeness depends directly on how we specify the state space. Suppose

for example that the security structure looks like:

X =


1 0 9 4 2

2 1 5 2 2

3 1 8 4 9

4 2 1 2 2

4 2 1 2 2


Clearly markets are incomplete, but if the state s = 5 is a state of the world equivalent to s = 4

in all aspects with the only exception that “at noon my cat is on the third floor”, then state

s = 5 probably isn’t a relevant one and for modeling purposes should be disregarded. And after

eliminating state s = 5 markets are complete (in the relevant states s = 1, 2, 3, 4). Another example

where the state space choice is important is in derivatives pricing, where we assume that the state

space corresponds to the space of possible values of the underlying asset.

2) Although we said we would not deal with frictions until the third part of the course, market

incompleteness is a market friction: an incomplete market is equivalent to a market in which there

are infinite transaction costs to trade assets whose payoffs are inearly independent from the existing

assets, for which instead transaction costs are zero. From this point of view, we are dealing with a

very “black and white” setup: either we have no frictions at all (with market completeness) or an

extreme friction (with market incompleteness). Later in this course we will explore the “grey” area

in between.

Finally, trade limitations are another kind of market friction we will encounter in this part of the

course. Suppose there are only two states of the world and the security structure includes only a

riskless bond, which we can neitherbuy in large amounts nor short-sell (assume there is a law that

prohibits these practices):
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Therefore, we can only achieve payoffs on the 45 degree line between the two yellow segments.

2.1 General Security Structure

We now have all the tools to formalize our analysis. We can define:

� A Portfolio as a vector h ∈ RJ , whose entries represent a quantity for each asset in the

security structure.

� The Portfolio Payoff is given by
J∑
j=1

hjx
j = Xh

� The Asset Span is 〈X〉 =
{
z ∈ RS : ∃h ∈ RJsuch that z = Xh

}
Note that it is always the case that 〈X〉 ⊆ RS , and we have market completeness if and only if

〈X〉 = RS , that is, if and only if rank(X) = S. In other words, market completeness refers to a

market structure in which there are at least S linearly independent assets. We say that security j

is redundant if there exists h ∈ RJ such that xj = Xh and hj = 0: when markets are complete and

J > S there are J − S redundant assets. When rank(X) < S markets are incomplete, and if there

are J < S linearly independent assets then S − J linearly independent assets are needed to achieve

market completeness.
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2.2 Derivatives

While securities represent property rights (hence contracts), derivatives derive their value from an

underlying security. The most popular derivatives are Swaps, Futures and Options. A natural

question to ask is: since a derivative’s value is a function of the underlying security, are derivatives

always redundant assets? We will see that this is not the case in general, and the answer depends

on the fact that functional dependency does not imply linear dependency.

2.2.1 Forward Contracts

Forward contracts are binding agreements to buy or sell a given security at a specified price, quantity,

time and delivery logistics. Futures contracts are the same from a payoff point of view, but differ

from forwards because they are traded on exchanges that require collateral posting and hence are

more liquid.

The strike level is normally set so that the value of the contract at initiation is zero. Compared to

an outright long position in the underlying asset, it requires no cash outlay at initiation and gives

the same synthetic exposure to the underlying (that is, if the underlying ends up higher by 10 at

expiration, the forward will pay 10 as well). Assuming that a bond pays $1 at maturity, the relation

between a unit of the underlying and the corresponding forward contract is given by

Forward Contract V alue = V alue of Underlying − Strike×Bond
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To see this, suppose the forward contract on a stock S is agreed at time 0 to buy an asset at a

future date T at a specified price K, so that the payoff is (ST −K). Now we ask: what is the fair

price of this contract today? If we can replicate this payoff with a combination of stocks and bonds

whose price is known today, we know that the price of the forward is going to be equal to the price

of that combination of stocks and bonds.

Suppose today we buy the stock at price S0, and sell K bonds maturing at T at a price of e−rT each.

What do we get at time T? The stock will be worth ST and each bond will be worth 1, so K bonds

will be worth K - since we sold them, we will have to pay K. In total, we have ST −K. Therefore we

replicated the payoff of the forward contract, and hence the price of the forward contract today will

be equal to the value of the portfolio of long 1 stock and short K bonds today, that is, S0−Ke−rT ,

that is, the value of the underlying asset minus the strike price times the bond price.

The forward contract can settle in one of two ways: 1) in cash, i.e. parties exchange the difference

between the underlying at maturity and the strike price in dollar value, which is less costtly and

more practical than 2) by physical delivery, i.e. parties exchange the underlying at the agreed

price. Credit risk can be an issue for over-the-counter forwards, for which credit checks and bank

letters of credit may be required other than collateral postings, while for exchange-based transaction

counterparty risk is reduced since the clearing house guarantees the transactions.

2.2.2 Options

A call option is a contract that gives the right (not the obligation) to buy an asset at a specified

price on a future date. From the point of view of the buyer, it preserves the upside potential from

owning an asset without the downside risk. The seller has an obligation to sell if the buyer chooses

to buy. The strike price is the price at which the parties agree to exchange the underlying. When

the buyer chooses to buy the asset, we say he exercises the option. The expiration date is the date

by which the buyer has to decide whether to exercise his right. Classified by exercise style, there

are three main classes of options: 1) European options can only be exercised at expiration date 2)

American options can be exercised anytime between inception and expiry and 3) Bermudan options

can be exercised during some specified dates before or on expiration date.

For European options, because the buyer only exercises when the spot price at maturity is higher

than the strike price (otherwise he would rationally buy the security in the market for less). There-

fore the payoff at expiration is given by

max {S −K, 0} ≡ (S −K)+

and the profit is given by the payoff minus the future value of the option price, called option

premium.

Example: suppose you buy a 1-year call option on the S&P 500, currently trading at 1680, with

strike price 1700 and premium 197.34 dollars. Assuming a 5% one-year risk-free rate, if the index
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value in one year is 2000 then the profit is given by 2000 - 1700 - 197.34×(1 + 5%) = 92.79, but if

it turns out to be 1600 then the loss is just 197.34×(1 + 5%) = 207.21.

Similarly, a put option gives the buyer the right but not the obligation to sell an asset at a determined

price on a future date. The seller of a put is obligated to buy if called upon to do so by the buyer.

Similarly to a call option, for a buyer the payoff is max (K − S, 0) ≡ (K − S)+ and the profit is

given by the payoff minus the future value of the option price. It is worthwhile to remark that while

a call option increases in value when the underlying rises in value, the opposite is true for a put

option.

We say that an option is in the money (out of the money) if it would have a positive (negative)

payoff if exercised immediately. If the spot equals the strike we say the option is at the money.

There are two interesting examples of derivatives different from options which turn out to be valued

just like options:

1. Homeowner insurance: because insurance pays only in the case of a damage to the house,

it can be thought of as a put option on the value of the house.

2. Equity-Linked Certificates of Deposit: this contract pays the invested amount plus 70%

of the gain in the S&P 500 index. For instance, suppose we invest $10,000 when the S&P 500

is at 1700, then the payoff would be 10, 000×
(

1 + 0.7 max
{
S&P500Final

1700 − 1, 0
})

.
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Below is a short recap of the profit functions of the derivatives discussed so far:

2.3 Back to Security Structures

We may now address the question: are derivatives useful to make markets complete? To make

things concrete, let us consider a specific example in which the possible stock value at time t = 1

are equal to the index of the state of the world: s = (1, 2 , ... , S). We can introduce S − 1 call

options with payoff (s− k)+ for k = 1, ... , S − 1: we obtain the securities

c1 = (0, 1, 2, ... , S − 2, S − 1)′

c2 = (0, 0, 1, ... , S − 3, S − 2)′

...
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cS−1 = (0, 0, 0, ... , 0, 1)′

Which together with the stock give rise to the security structure

X =


1 0 · · · 0

2 1 · · · 0
...

...
. . .

...

S S − 1 · · · 1


This is an upper triangular S × S matrix whose determinant is one (the product of the terms on

the diagonal). Therefore X is full rank and markets are complete.

2.3.1 Prices

Let p ∈ RJ be the vector of prices for each asset. Then the cost of portfolio h is given by

p · h ≡
J∑
j=1

pjhj

and if pj 6= 0, the (gross) return vector for asset j is given by Rj = xj

pj
.
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Exercises

1) Using the Laplace expansion of the determinant of an S × S matrix, prove that

X =


1 0 · · · 0

2 1 · · · 0
...

...
. . .

...

S S − 1 · · · 1


Has determinant equal to 1.

2) Now repeat exercise 1 by adding to the security structure put options on the stock, following the

same steps as explained in the text (for call options). Are markets complete?

3) Suppose there exist only a risk-free asset x1 = (1, 1, . . . , 1)′ and a risky asset x2 6= x1 and S

states of the world. Let p1 and p2 be the prices of these two assets. A forward contract on the stock

is an agreement to pay an amount F at a future date t = T in exchange for the payment xjs when

the state s ∈ {1, 2, . . . , S} realizes, with no cash flow exchange at time t = 0. Assuming arbitrage

opportunities are ruled out, find the fair value of F .



Chapter 3

Pricing in the One Period Model

Let us begin with some notation: for x, y ∈ Rn we write

� y ≥ x if for each i = 1, ... , n yi ≥ xi

� y > x if y ≥ x and y 6= x

� y � x if for each i = 1, ... , n yi > xi

� y · x for the inner product
n∑
i=1
xiyi

A fundamental concept in Asset Pricing is that of no arbitrage. In our setup it has three forms:

given any two portfolios h, k ∈ RJand a security structure X ∈ RS×J ,

1. Law of One Price: if Xh = Xk then p · h = p · k

2. No Strong Arbitrage: if Xh ≥ 0 then p · h ≥ 0

3. No Arbitrage: if Xh > 0 then p · h > 0

These definitions are related through the following lemmas:

Lemma 1: Law of One Price (LOOP) implies that every portfolio with zero payoff has

zero price.

Proof: grouping terms we can equivalently write X(h − k) = 0 ⇒ p · (h − k) = 0, and

therefore portfolio w ≡ h−k, which has zero payoff by construction, also has zero price.

Lemma 2: No Arbitrage (NA) implies No Strong Arbitrage (NSA).

Proof: trivial.

Lemma 3: NSA implies LOOP.

35
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Proof: we prove the contrapositive “if LOOP does not hold, then NSA does not hold

either”. If the LOOP does not hold, then Xh = Xk and p ·h 6= p ·k. Assume p ·h < p ·k,

then we have X(h− k) = 0 ≥ 0 and p · (h− k) < 0, which is a violation of NSA for the

portfolio w ≡ h− k. Similarly, if p · h > p · k then X(k− h) = 0 ≥ 0 and p · (k− h) < 0,

again a violation of NSA for the portfolio q ≡ k − h.

3.1 Forwards Revisited

Consider the following payment and payoff timing combinations:

1. Outright purchase

2. Fully leveraged purchase: you borrow the money to execute the purchase

3. Prepaid forward: you pay today to receive shares in the future

4. Forward contract: you agree to a price now, which you pay when you receive the shares in

the future

3.1.1 Prepaid Forwards

Suppose we wish to price a prepaid forward for a stock with no dividends. Clearly the timing of

delivery is irrelevant, and the price of the prepaid forward F p0,T for a stock delivered at t = T is just

equal to the current stock price S0 at t = 0. This reasoning is called pricing by analogy.

Another way of getting to the same result is pricing by arbitrage. Suppose that at t = 0 we observe

that F p0,T > S0, then we could buy the stock today at S0, sell the forward at F p0 and pocket the

difference F p0,T −S0 > 0. In t = T our stock is worth ST , and we owe ST from the forward contract

we sold in t = 0: as a result, in t = T we receive 0. This would constitute an arbitrage. A similar

argument can be used for the case when F p0,T < S0. Therefore, absence of arbitrage requires that

F p0,T = S0.

When there are dividends the two pricing arguments do not hold any longer: the holder of the

stock, unlike that of the forward, will not receive dividends in the period [0, T ]. As a consequence,

it must be that F p0,T < S0 since F p0,T = S0 − PV (Dividend Payments in [0, T ]) . In particular:

� With discrete dividends Dti for t1, ... , tn ∈ [0, T ] and assuming reinvestment at the risk-free

rate, we have F p0,T = S0 −
n∑
i=1
PV0(Dti) = S0 −

n∑
i=1
Dtie

−rti

� With continuous dividends with annualized dividend yield δ, we have F p0,T = S0e
−δT

Note that this only applied to deterministic dividends: when dividends are stochastic the securities

structure turns from a matrix into a cube and we can no longer use our one period model.
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3.1.2 Forwards

Obviously the forward price is just the future value of the prepaid forward:

� With no dividends, F0,T = S0e
rT

� With discrete dividends, F0,T = S0e
rT −

n∑
i=1
FVT (Dti) = S0e

rT −
n∑
i=1
Dtie

r(T−ti)

� With continuous dividends, F0,T = S0e
(r−δ)T

Indexes are an example of assets with continuous dividends. We call forward premium the quantity
F0,T

S0
, which can be used to infer the current stock price from the forward price. The annualized

forward premium is π = 1
T ln

F0,T

S0
.

We can also use a no-arbitrage argument to price a forward: assuming continuous dividends with

rate δ, we can buy e−δT units of the stock worth S0 for total price of S0e
−δT by borrowing the full

amount. At t = 0 there is no cash outlay; however, at t = T the portfolio is worth ST − S0e
(r−δ)T .

Since the long forward payoff is ST −F0,T , this implies that to exclude arbitrage it must be the case

that F0,T = S0e
(r−δ)T .

It follows that

Forward = Stock − Zero-Coupon Bond

An interesting application of this fact is the so-called cash and carry arbitrage: a market maker can

make a riskless profit by (for instance) selling short a forward contract and going long a synthetic

forward: the payoff from this strategy is F0,T − S0e
(r−δ)T .

A natural question at this point is: is the forward price a market prediction of the future price?

The answer is no: the formula F0,T = S0e
(r−δ)T shows clearly that the forward price provides no

more information than r, δ and S0.
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3.2 Options Revisited

Consider two European options, one call and one put, with the same strike K and time to expiry

T . The put-call parity relation requires that

C(K,T )− P (K,T ) = PV0 (Forward Price− Strike) = e−rT (F0,T −K)

Note that if F0,T = K the long call short put portfolio above is equivalent to a synthetic forward,

and in fact will have zero price.1 With a dividend stream {Dti}
n
i=1 we can rewrite the above relation

as

C(K,T )− P (K,T ) = S0 − PV0

(
{Dti}

n
i=1

)
− e−rTK

While for an index (with continuous dividends) we have

C(K,T )− P (K,T ) = S0e
−δT − e−rTK

3.2.1 Option Price Boundaries

Because an American option can be exercised at any time, while a European option can only be

exercised at maturity, it must be the case that

CA (K,T ) ≥ CE (K,T )

PA (K,T ) ≥ PE (K,T )

In general, the American call option price cannot exceed the stock price (otherwise you would never

buy the option but just buy the stock). Moreover, the European call option cannot be lower than

1) the price implied by put-call parity by setting to zero the put price, or 2) zero, whichever is

highest. That is,2

S0 > CA (K,T ) ≥ CE (K,T ) > e−rT (F0,T −K)+

Similarly, the American put option price cannot exceed the strike price (otherwise you would never

buy the option but just buy the bond). Moreover, the European put option cannot be lower than 1)

the price implied by put-call parity by setting to zero the call price, or 2) zero, whichever is highest.

That is,

K > PA (K,T ) ≥ PE (K,T ) > e−rT (K − F0,T )+

1An alternative definition of “At The Money” option is to say that an option is at the money when the forward
price equals the strike price. Under this definition, a “long call short put” portfolio replicates a forward when the two
options are at the money.

2Since max
{
e−rT (F0,T − S0) , 0

}
= e−rT (F0,T − S0)+ and CE (K,T ) > 0.
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Rationally, we never exercise an American call option on a stock with no dividends: this is because3

CA (K,T ) ≥ CE (K,T ) = S0 −Ke−rT + PE(K,T ) =

= S0 −K +K(1− e−rT ) + PE(K,T )︸ ︷︷ ︸
>0

> S0 −K

That is, for a holder of an American option it is always best to sell the option rather than exercise

it early. By LOOP, the price of an American call option on a stock with no dividends is the same

as that of an European option. Note that this is not true for a dividend-paying stock, as well as for

an American put on a non-dividend-paying stock.

3.2.2 Time to Expiration

An American option (both put and call) with more time to expiration is at least as valuable as

an American option with less time to expiration. This is because the longer option can easily be

converted into the shorter option by exercising it early. European call options on dividend-paying

stock and European puts may be less valuable than an otherwise identical option with less time to

expiration. A European call option on a non-dividend paying stock will be more valuable than an

otherwise identical option with less time to expiration.

3.2.3 Strike Price

Let K1 < K2, then we know that C(K1) ≥ C(K2) and P (K1) ≤ P (K2) (since their payoff is more

likely to be positive at t = T ). A less obvious fact is that C(K1) − C(K2) ≤ K2 − K1, because

the maximum payoff for a collar (long option with low strike, short option with high strike) with

strikes K1 < K2 is K2 −K1, and the price of the collar cannot exceed its maximum payoff. In the

same way, for put options we have P (K2)− P (K1) ≤ K2 −K1. Finally, the option price is convex

with respect to its strike: for K1 < K2 < K3,

C(K2)− C(K1)

K2 −K1
≤ C(K3)− C(K2)

K3 −K2

Below is a brief recap of the put-call parity relations examined so far:

3Remember that with no dividends F0,T = S0e
rT .
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To conclude, it is worthwile to note that many of these results on option price bounds can be

derived within our (very simple) two period model: they are incredibly robust. Once we adopt a

more specific settings (like the famous Black-Scholes model) we can use more sophisticated tools

such as needs dynamic replication, and the results become deeper but at the same time more hinging

on the specific model used.

3.3 Back to the One Period Model

So far we used prices of existing assets to directly derive the price (or price bounds) on other assets.

Now we will go along an indirect route: first we will derive the price of each individual state - called

state price - and then we will use this theoretical tool to derive the price of other assets.

For a given price vector p ∈ RJ and z ∈ 〈X〉 define the set v as

v(z) ≡ {p · h : z = Xh}

If LOOP holds then v is a linear functional, that is, a function mapping 〈X〉 onto R such that:

1. v is single-valued, because if Xh = z then by LOOP there exist only one p ∈ RJ such that

p · h = v, and therefore v is a singleton. This means that for any h ∈ RJ such that Xh ∈ 〈X〉
we can write we can write v (Xh) = p · h.

2. v is linear on 〈X〉,4 since for any α, β ∈ R, z1 = Xh ∈ 〈X〉 and z2 = Xk ∈ 〈X〉 we have

αz1 + βz2 ∈ 〈X〉 and

αv(z1) + βv(z2) = αv(Xh) + βv(Xk) = αp · h+ βp · k = p · (αh+ βk) =

4That is, for all z1, z2 ∈ 〈X〉 and α, β ∈ R such that αz1 +βz2 ∈ 〈X〉 it holds that v(αz1 +βz2) = αv(z1) +βv(z2).
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= v (X(αh+ βk)) = v (αXh+ βXk) = v (αz1 + βz2)

3. v(0) = 0, since Xh = 0 always has the solution h = 0 and because v is single-valued (by

LOOP) it must be that p · h = p · 0 = 0 is the only price of the payoff z = 0.

The converse is also true: if there exists a linear functional v defined in 〈X〉, then LOOP holds.

3.3.1 State Prices

Definition: a vector of state prices is a vector q ∈ RS such that p = X ′q.5

Definition: a linear functional V : RS → R is a valuation function if

1. V (z) = v(z) for every z ∈ 〈X〉

2. For every z /∈ 〈X〉, V (z) = q · z for q ∈ RS with qs = V (es): V extends v from 〈X〉 to RS .

Recall that es is the standard basis introduced in chapter 2: es ∈ RS is a vector with the sth

entry equal to 1 and all other entries equal to zero. The next proposition addresses the relationship

between v,V and q.

Proposition: if LOOP holds and q is a vector of state prices, then V (z) = q · z for

all z ∈ 〈X〉.

To see this we only need to show that also for z ∈ 〈X〉 we have V (z) = q · z (= v(z)). Suppose that

q is a vector of state prices and LOOP holds, then for z ∈ 〈X〉 we have

v (z) = p · h =

J∑
j=1

pjhj =

J∑
j=1

(
xj · q

)
hj =

J∑
j=1

(
S∑
s=1

xjs · qs

)
hj =

=

S∑
s=1

 J∑
j=1

xjs · hj

 qs =

S∑
s=1

zsqs = q · z

Moreover the converse is also true, and therefore the valuation function V (z) = q · z is a linear

functional for all z ∈ RS if and only if q is a vector of state prices and LOOP holds.

Below is a graphical example of state prices. Given the securities structure (red arrows)

X =

(
1 2

1 1

)
5That is for j = 1, ... J we have pj = xj · q.
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we know that p1 = q1 + q2 and p2 = 2q1 + q2. As a consequence, we can value the security

x3 = (1, 2) = 3x1 − x2 (in yellow) simply as

3p1 − p2 = q1 + 2q2

by LOOP.

3.3.2 The Fundamental Theorem of Finance

� Proposition 1: Security prices exclude arbitrage if and only if there exists a valuation

functional with q � 0.

� Proposition 2: Let X be a SÖJ matrix, and p ∈ RJ . There is no h ∈ RJ satisfying h ·p ≤ 0,

Xh ≥ 0 and at least one strict inequality if and only if there exists a vector q ∈ RS with q � 0

and p = X ′q.

It is hard to overstate the importance of this theorem: the absence of arbitrage is equivalent to the

existence of a vector of positive state prices.
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3.3.3 State Prices and Incomplete Markets

We have established an astonishing equivalence between arbitrage (the absence of arbitrage) and

state prices (the existence of positive state prices). A natural follow-up question is whether there

is a similar equivalence between state prices and market completeness. Suppose for instance that

there are two states of the world and only one bond x1 = (1, 1)′ with price p1. What are the state

prices consistent with this incomplete market structure? We know that any p1 = q1 + q2 would

work, hence the state prices consistent with no arbitrage are all q ∈ R2 such that q1 ∈ (0, p1) and

q2 = p1 − q1.

In the picture above, the red plane is the set of q’s consistent with prices and the security structure

Of all q ∈ R2 consistent with no arbitrage however, there is a very special one that also belongs to

〈X〉: it is the unique projection of any state price vector q on 〈X〉. In our example, this would be

achieved for q1 = p1

2 since then q =
(p1

2 ,
p1

2

)′
= p1

2 × (1, 1)′ ∈ 〈X〉. We call this state price pricing

kernel and denote it as q∗.
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Now we are ready to state the important relation between state prices and market completeness:

� Proposition 3: Markets are complete and there is no arbitrage if and only if there exists a

unique valuation functional.

An intuitive proof of this proposition is the following: if markets are complete, then for a given

Xand p the system X ′q = p has a unique solution q ∈ RS+ (positivity follows from the assumption

of no arbitrage). If markets are not complete, then there exists a vector v ∈ RS such that v 6= 0

and Xv = 0. If there is no arbitrage, then there is a q � 0 and some α ∈ R such that q + αv � 0

and X(q + αv) = 0. Since this is also true for any fraction of α, it follows that there are infinitely

many state price vectors of the type q + αv.

3.4 Asset Pricing Formulas

We now present four asset pricing formulas. They are effectively equivalent, but each one can be

interpreted in a particular way and derived from the one period model.

3.4.1 State Price Model

This is just the pricing formula seen above: pj =
S∑
s=1

qsx
j
s
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3.4.2 Stochastic Discount Factor

Analogously to the state price model, we can write pj =
S∑
s=1

πs
qs
πs
xjs where π is the physical probability

distribution of states. Defining the random variable Stochastic Discount Factor as ms ≡ qs
πs

, we get

pj =
S∑
s=1

πsmsx
j
s = E

[
m · xj

]
.

Note that pj = E
[
m · xj

]
= E

[
xj
]
E [m] + Cov

[
m,xj

]
, and since for a risk-free bond xbs = 1 for

alls, we have pb = E [m] = 1
Rf

where Rf is the gross risk-free return. Therefore, for any asset j,

pj =
E[xj]
Rf

+ Cov
[
m,xj

]
. Typically, Cov

[
m,xj

]
< 0.

Defining Rj ≡ xj

pj
, we get E

[
m ·Rj

]
= 1. Since for a risk-free bond Rf = 1

E[m] , we can write

E
[
m ·

(
Rj −Rf

)]
= 0, or

E
[
m ·

(
Rj −Rf

)]
= E [m]

(
E
[
Rj
]
−Rf

)
+ Cov

(
m,Rj

)
= 0

That is,

E
[
Rj
]
−Rf = −

Cov
(
m,Rj

)
E [m]

Which implies that the excess return for a generic asset j is determined solely by the covariance

with the stochastic discount factor. This also means that an investor is only compensated (with a

higher return) for holding systematic risk, not idiosyncratic risk.

Consider the stochastic discounf factor obtained from the pricing kernel m∗ ≡


q∗1
π
...
q∗S
π

. Note that m∗

is the projection of any stochastic discount factor m on 〈X〉, that is,

m∗ = proj (m| 〈X〉) ∈ 〈X〉

Which means that there exists a vector h∗ ∈ RJ such that m∗ = Xh∗. Therefore for any asset j we

can write

pj = E
[
m∗ · xj

]
So for all assets we have

p = E
[
X ′m∗

]
= E

[
X ′Xh∗

]
= E

[
X ′X

]
h∗

E [X ′X] is a second order moment: assuming it is invertible we can write

h∗ =
(
E
[
X ′X

])−1
p
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And therefore plugging this in m∗ = Xh∗ we obtain

m∗ = X
(
E
[
X ′X

])−1
p

This is similar to the language of linear regressions. When we run a regression of p on

y = Xb+ ε

We find the linear combination of X that is “closest” to y by minimizing the varianc of the residual

ε. We do this by forcing the residual to be “orthogonal” to X, E [Xε] = 0. The projection of y

onto X is defined as the fitted value Xb = X (E [X ′X])−1 E [X ′y]. This idea is often illustrated by a

residual vector ε that is perpendicular to a plane defined by the variable X. Thus, when the inner

product is defined by a second moment, the operation “project y onto X” is a regression.

Finally, note that we can represent our previous discussion for state prices by shrinking the axes by

a factor
√
π:

3.4.3 Equivalent Martingale Measure

Starting again from pj =
S∑
s=1

qsx
j
s, for a riskless bond we have pb =

S∑
s=1

qs = 1
1+rf

, where rf is

the risk-free net return. Thus we can write pj = 1
1+rf

S∑
s=1

qs
S∑
s=1

qs

xjs = 1
1+rf

S∑
s=1

π̂sx
j
s = 1

1+rf
EQ [xj],

where π̂s ≡ qs
S∑
s=1

qs

.6 Compared to the stochastic discount factor approach, we simply used a different

6The Q notation comes from the literature about risk-neutral valuation.
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probability measure to discount future states. We will see that the significance of this probability

measure is market-determined and its importance is paramount in options pricing theory.

3.4.4 State-Price Beta Model

Consider the stochastic discounf factor obtained from the pricing kernel m∗ ≡


q∗1
π
...
q∗S
π

, and define its

return as R∗ = m∗

pm∗
≡ αm∗ for α > 0. Then we can write

E
[
Rj
]
−Rf = −

Cov
(
R∗, Rj

)
E [R∗]

Defining βj ≡
Cov(R∗,Rj)
V ar(R∗) we can write for the asset j:

E
[
Rj
]
−Rf = −βj

V ar (R∗)

E [R∗]

While for security x∗

E [R∗]−Rf = −V ar (R∗)

E [R∗]

Therefore, for security j we have

E
[
Rj
]
−Rf = βj

(
E [R∗]−Rf

)
Which, if we assume a linear model for Rj and R∗ can be specified and tested empirically as

Rjk −R
f = βj

(
R∗k −Rf

)
+ εk

with Cov (R∗, ε) = E [ε] = 0.

In summary, the four equivalent pricing relations are:

1. State Price Model: pj =
S∑
s=1

qsx
j
s

2. Stochastic Discount Factor: pj = E
[
mxj

]
3. Equivalent Martingale Measure: pj = 1

1+rf
EQ [xj]

4. State-Price Beta Model: E
[
Rj
]
−Rf = βj

(
E [R∗]−Rf

)
As a last remark, note that whenever markets are incomplete, the multiplicity of state price vectors q

translates directly into the multiplicity of stochastic discount factors m and of equivalent martingale

measures π̂.
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3.5 Recovering State Prices from Option Prices

Let’s assume for a moment that ST , the value of the asset at expiration, can take on a continuum

of values: at time t = T the stock price can have any value ST ∈ R+. In this section we will use the

law of one price to derive the price of an Arrow-Debreu security for a continuum of states, which is

a function q : R+ → R called state price density. In ths context, a state price density is the price of

an asset that pays one dollar in a particular state x ∈ R+ and zero in all others (here each value of

the price for the underlying asset at time t = T corresponds to a different state). Assuming further

that there exist call options offered in the market that cover a continuum of strike prices (one for

each possible outcome at expiration), the result of section 2.2.3 extends to this case: markets are

complete.

Fix a strike K > 0, and a (small) number ε > 0. Consider the following portfolio:

� Buy x call options with strike K − ε

� Sell 2x call options with strike K

� Buy x call options with K + ε

State Payoff

ST ∈ [0,K − ε) 0

ST ∈ [K − ε,K) x (ST − (K − ε)) = x (ST −K) + xε

ST ∈ [K,K + ε) x (ST − (K − ε))− 2x (ST −K) = −x (ST −K) + xε

ST ∈ [K + ε,+∞) x (ST − (K − ε))− 2x (ST −K) + x (ST − (K + ε)) = 0

The payoff of this portfolio (symmetric butterfly) looks like the following:

This portfolio corresponds the payoff of an Arrow-Debreu security for state ST = K if two conditions

are satisfied:
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1. The area under the payoff diagram (the sum of all possible payoffs) must be equal to one.

2. The option portfolio must yield a payoff of zero for all values of the underlying asset different

from K.

The area under the payoff diagram is equal to (xε)×(2ε)
2 = xε2: to achieve (1), we set x = 1

ε2
; to

achieve (2), we take the limit for ε→ 0. Now that we have replicated the payoff of an Arrow-Debreu

security, we can use the law of one price to determine the state prices: for a fixed ε > 0 the price

of the portfolio is

V (K, ε) =
C (K + ε, T )− 2C (K,T ) + C (K − ε, T )

ε2

and therefore

q (K) = lim
ε→0

V (K, ε) = lim
ε→0

C (K + ε, T )− 2C (K,T ) + C (K − ε, T )

ε2
=
∂2C (K,T )

∂K2

We established an important fact: because q(K) > 0 if and only if ∂
2C(K,T )
∂K2 > 0, by the fundamental

theorem of finance there is no arbitrage if and only if for all K > 0 we have ∂2C(K,T )
∂K2 > 0, that is,

if option prices are convex.

There is another important relationship related to state prices and ∂2C(K,T )
∂K2 . We can write the

option price using the equivalent martingale measure representation as follows:

C (K,T ) = e−rTEQ [(ST −K)+]
Taking the first derivative with respect to K we get

∂C (K,T )

∂K
= −e−rTEQ [I {ST −K ≥ 0}] = −e−rTPQ {ST ≥ K} = −e−rT

(
1− FQ

ST
(K)

)
Where FQ

ST
is the cumulative distribution function for the random variable ST under the equivalent

martingale measure Q.7 Differentiating again with respect to K we get

∂2C (K,T )

∂K2
= e−rT fQST (K)

Together with our previous result,

∂2C (K,T )

∂K2
= q(K) = e−rT fQST (K)

7We define I {ST −K ≥ 0} as a function that is equal to one if ST − K ≥ 0 and zero otherwise. Note that
we can take the partial derivative of C(K,T ) with respect to Ksince EQ [

(ST −K)+] =
´
R f

Q
ST

(x) (x−K)+ dx =´∞
K
fQ
ST

(x) (x−K) dx is smooth in K.
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From the findamental theorem of finance, it follows that there exists a (positive) equivalent mar-

tingale measure density function fQST if and only if no arbitrage holds.

Note that this implies that we can evaluate any future payoff h(ST ) in 3 ways:

p = e−rTEQ [h (ST )] = e−rT
ˆ
R
fQST (x)h (x) dx =

ˆ
R

∂2C (K,T )

∂K2
(x)h (x) dx =

ˆ
R
q(x)h (x) dx

Where the last term is the continuous-states equivalent of the formula p = Xq.

This means the following -apparently unrelated- conditions are equivalent:

� Absence of arbitrage

� Existence of a positive equivalent martingale measure density function

� Convexity of options

Note that in the market we only directly observe the option prices for some discrete and finite set of

strikes: but if all the option prices C(K,T ) for the strikes K ∈ {0,∆, 2∆, . . . , N∆} are observable

(for N large and ∆ > 0 small enough) we can approximate ∂2C(K,T )
∂K2 in the following way

∂2C (K,T )

∂K2
≈ C (K + ∆, T )− 2C (K,T ) + C (K −∆, T )

∆2

and therefore we can also calculate the empirical market-implied probability distribution of ST ,

fQST , and the empirical state price density q.

Going back to our finite-state one-period model, if all the option prices C(s, T ) for the strikes

s ∈ {0, 1, 2, . . . , S} are observable, we have

42C (s, T ) ≡ C (s+ 1, T )− 2C (s, T ) + C (s− 1, T ) = qs =
π̂s

(1 + rf )

Appendix

The following is an alternative derivation from option prices of the state price density function. We

can construct the following portfolio: for some ε > 0 and δ > 0 and a fixed ŜT

� Buy one call with strike ŜT − δ
2 − ε

� Sell one call with ŜT − δ
2

� Sell one call with ŜT + δ
2
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� Buy one call with ŜT + δ
2 + ε

If we buy 1
ε units of this portfolio, when ST ∈

[
ŜT − δ

2 , ŜT + δ
2

]
the total payoff is equal to 1. The

total value of this portfolio is

1

ε

[
C

(
K = ŜT −

δ

2
− ε, T

)
− C

(
ŜT −

δ

2

)
− C

(
ŜT +

δ

2

)
+ C

(
ŜT +

δ

2
+ ε

)]

Letting ε→ 0 this boils down to

−
∂C
(
K = ŜT − δ

2 , T
)

∂K
+
∂C
(
K = ŜT + δ

2 , T
)

∂K

Finally, dividing by δ and letting δ → 0, we obtain the continuum-states version of a vector of state

prices, the state price density function ∂2C(K=ŜT ,T )
∂K2 .

Suppose we want to evaluate a one-year “wedding cake option” of the type

Payoff =

$1, 000, 000 if ST ∈ [1700, 1750]

$0 otherwise

We now have the technology to price this. Its value will be equal to the integral of the state price

density over the interval [1700, 1750], that is, for T = 1,

ˆ 1750

1700

∂2C(K,T )

∂K2
dK =

∂C (K = 1750, 1)

∂K
− ∂C (K = 1700, 1)

∂K
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Finally, note that this is equivalent to a portfolio comprising a long position in a binary 1700 call

and a short position in a 1750 binary call.
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Exercises

1) Determine whether the following statements are true or false. Provide a proof or a counter-

example.

1. Law of one price and complete markets imply no strong arbitrage.

2. Law of one price and complete markets imply no arbitrage.

3. No strong arbitrage and complete markets imply no arbitrage.

2) Suppose there exist 3 states of the world s = 1, 2 and 2 assets x1, x2.

1. Suppose x1 = (2, 1, 0)′ and x2 = (0, 1, 0)′. Describe the asset span. Are markets complete?

2. Suppose p1 = 4 and p2 = 3. What type of no-arbitrage requirements does this market satisfy?

3. What are the restrictions on p1 and p2 such that this market satisfies LOOP, NSA and NA?

(Write each restriction separately)

4. Repeat 1), 2) and 3) for x1 = (1, 1, 0)′ and x2 = (0, 2, 0)′.

5. Repeat 1), 2) and 3) for x1 = (1, 1, 0)′, x2 = (0, 2, 0)′ and x3 = (0, 1, 1)′.

3) Suppose a stock index is currently trading at $300, the dividend yield on the index is 3% per

annum, and the risk-free interest rate is 8% per annum. What is the lower bound for the price of a

6-month European call option on the index when the strike price is $290?

Now assume a stock currently sells for $32. A 6-month call option with a strike of $30 has a

premium of $4.29, and a 6 month put with the same strike has a premium of $2.64. Assume a 4%

continuously compounded risk-free rate. What is the present value of dividends payable over the

next 6 months?

Finally, suppose a stock is priced at $23 per share. The interest rate is 7% per annum and the stock

pays no dividend. A three-month European call option with a strike price of $30 has a price of $0.3

What is the value of a European put with the same underlying asset, same strike price and same

time to expiration?

4) Suppose there are 3 call options traded on a stock with strike prices equal to 40, 50 and 60 and

with prices C(40) = 8, C(50) = 6 C(60) = 2.

1. Show that prices allow for arbitrage and provide an arbitrage portfolio with initial price equal

to zero. What kind of strategy is this?

2. Is it possible to exploit the arbitrage with a symmetric butterfly spread with zero initial price?
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5) Suppose there exist 3 states of the world s = 1, 2, 3 and 2 assets x1 = (2, 1, 0)′ and x2 = (0, 1, 0)′.

1. Suppose p1 = 1 and p2 = 0.3. What state prices are consistent with these prices?

2. Solve for the unique pricing kernel q∗.

3. Use the pricing kernel to value a third asset x3 = (0, 1, 1)′. What other state prices (different

from q∗) are consistent with no arbitrage?

4. Now suppose p3 = 0.6. Solve for the state price vector. Does this market permit arbitrage?

5. Solve for the stochastic discount factor assuming the physical probability is such that π1 =

π2 = π3 = 1
3 .

6. Solve for the distribution under the equivalent martingale measure.

6) Suppose a stock index is currently trading at $25, and there are 5 possible states of the world in

t = T such that ST ∈ {15, 20, 25, 30, 35}.

1. Given a zero risk-free interest rate, describe a valid equivalent martingale measure.

2. Under this measure, price call options at K = 15, 20, 25, 30, 35.

3. Use this information to recover state prices.

7) Suppose there are S possible states of the world in t = T and each has a (physical) probability

of occurrence ηs > 0 with
S∑
s=1

ηs = 1. Consider the vector µ ∈ RS with for s = 1, . . . , S µs = qs
ηs

,

where q is a state-price vector. Write E (y) =
S∑
s=1

ηsys for any y ∈ RS .

1. Consider an asset with payoff x = (x1, . . . , xS). Show that the price of this asset must be

E (z), where zs = µsxs. Interpret this result.

2. Let the rate of return for an asset with price p > 0 in state s be rs = xs
p and let ws = rsµs.

Show that E (w) = 1. Is there some function of the excess return r− rf of the asset such that

E
[
f(r − rf )

]
= 0?

8) Show in detail how to retrieve state prices using put options both in a continuous and discrete

states setup.



Chapter 4

Risk Preferences and Expected Utility

Theory

So far in this course we dealt with relative asset pricing: we derived asset prices through information

available on other, pre-existing assets. In this chapter we will study absolute asset pricing, a task

for which we have to specify the agents’ preferences towards risk. We will see that risk involves

knowledge of the probabilities of uncertain events, and agents’ attitude towards risk determines

how much they would be willing to pay for an asset - that is the core of absolute asset pricing.

A concept related to risk that we will not see in detail is that of uncertainty, which relates to the

agents’ preferences over events whose probability distribution is unknown.

It is important to stress that preferences over risk refer and are defined over “final payoff gambles”,

that is, after combining any random payoffs, such as the payoff of securities, investments, insurance,

and even non-random endowments.

We will start this chapter trying to answer the follwoing question: is there a criterion that allows

us to compare random payoffs?

4.1 State-by-State Dominance

A first attempt to answer this question is given by the principle of state-by-state dominance. Suppose

we have to choose one of the following three investments:

t = 0 t = 1

Initial Cost
Probabilities π1 = π2 = 1

2

s = 1 s = 2

Investment 1 -1000 1050 1200

Investment 2 -1000 500 1600

Investment 3 -1000 1050 1600

55
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It is hard to tell which one is better between investment 1 and 2: the two possible states they have

the same probability and in state 1 investment 1 pays more, while in state 2 investment 2 pays more.

However, investment 3 pays at least as much as investment 1 and 2 in any state of the world! Clearly

from this perspective investment 3 is more desirable, and we say that it state-by-state dominates

investments 1 and 2.

Definition (State-by-State Dominance): given two random variables X and Y

defined over the state space (Ω,F , P ), we say that Y state-by-state dominates X if

∀ω ∈ Ω X (ω) ≤ Y (ω).

We have already developed the notation needed to express state-by-state dominance: recall that for

x, y ∈ Rn we write

1. y ≥ x if for each i = 1, ... , n yi ≥ xi

2. y > x if y ≥ x and y 6= x

3. y � x if for each i = 1, ... , n yi > xi

Assuming that x and y are scaled to have the same price, under any of the three conditions above

we would say that y state-by-state dominates x (you will notice that in the list above we see an

“increasing degree” of dominance).

A problem with state-by-state dominance is that it is an incomplete ranking: in fact, it is as

incomplete as RS . Another popular criterion which has been widely used is the mean-variance

dominance: assume that we like more expected return and less volatility. Consider the following

example:

t = 0 t = 1

Initial Cost
Probabilities π1 = π2 = 1

2

s = 1 s = 2 E [R] σ (R)

Investment 1 -1000 +5% +20% +12.5% 7.5%

Investment 2 -1000 -50% +60% +5% 55%

Investment 3 -1000 +5% +60% 32.5% 27.5%

Investment 1 has a higher expected return and lower volatility than investment 2. However, it is

not the case that investment 1 state-by-state dominates investment 2! Moreover, while investment

3 state-by-state dominates both investment 1 and 2, it only mean-variance dominates investment

2. Evidently, mean-variance dominance and state-by-state dominance are somehow unrelated or-

derings. However, while mean-variance dominance is an incomplete ranking, it does simplify the

problem of ranking investments to two dimensions only (it is as incomplete as R2). It looks like,
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potentially, a way of getting round the incompleteness problem is to find a criterion that amounts

to some number, for instance, in R, an ordered set. For example, suppose we rank investments

according to which Sharpe Ratio is highest:

Sharpe Ratio =
E [R]− rf

σ (R)

In the example above, assuming rf = 3%, we get 1.27, 0.04 and 1.07 for investment 1, 2 and 3

respectively, and therefore we would select investment 1 (which, remember, we would eliminate

based on both state-by-state dominance and mean-variance dominance!)

Before going on, it is worthwile to remark that we can write the “payoff per state” representation

of random payoffs:

State s1 s2 s3 s4 s5

Probability π1 π2 π3 π4 π5

Payoff X 10 10 20 20 20

Payoff Y 10 20 20 20 30

in terms of “probability lotteries”:

Payoff 10 20 30

Probability X p10 = π1 + π2 p20 = π3 + π4 + π5 p30 = 0

Probability Y q10 = π1 p20 = π2 + π3 + π4 p30 = π5

This allows us to define preferences px � py over probability distributions over states (rather than

on payoffs x � y ∈ RS) and will turn out to be useful when thinking of final payoffs. Note that

we can always go from the“payoff per state” to the “probability lotteries” representation, but the

reverse is not true.

4.2 Stochastic Dominance

Another criterion to rank investment is the stochastic dominance. It is related to state-by-state

dominance, and is still an incomplete ordering of investments. Suppose there are two investment

opportunities 1 and 2:

Event e1 e2 e3

Payoff 10 100 2000

Probability 1 40% 60% 0%

Probability 2 40% 40% 20%
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In this case, every investment pays the same amount in each event, but the probabilities of the

events happening vary. To reconcile this with our previous “states of the world” discussion, it is

enough to note that the above example is such that investment 1 pays off 100 in the states s2 and s3

so that e2 = {s2, s3}, while investment 2 pays off 100 in state 2 and 2000 in state 3 (and obviously

e1 = s1).

Definition (First Order Stochastic Dominance): let FA and FB represent, re-

spectively, the cumulative distribution functions of two random variables (investments

payoff) defined in the interval [a, b]. We say that FA first-order stochastically dominates

(FSD) FB if ∀x ∈ [a, b] FA(x) ≤ FB(x).

Visually, FSD occurs whenever FA “stays below” FB for the whole domain. State-by-State Domi-

nance implies First Order Stochastic dominance.

Next, consider the following example:

Payoff 1 4 5 6 8 12

Probability 3 0% 25% 50% 0% 0% 25%

Probability 4 33% 0% 0% 33% 33% 0%

It is easy to verify that FSD does not hold for any investment. However, investment 3 is somewhat

special because its CDF stays below investment 4’s “most of the time”.
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Definition (Second Order Stochastic Dominance): let FA and FB represent, re-

spectively, the cumulative distribution functions of two random variables (investments

payoff) defined in the interval [a, b]. We say that FA second-order stochastically domi-

nates (SSD) FB if ∀x ∈ [a, b]
´ x
a [FB(t)− FA(t)] dt ≥ 0.

First Order Stochastic Dominance implies Second Order Stochastic Dominance. Clearly, in our

example, investment 3 SSD investment 4. Another related concept is that of mean-preserving

spread :

Definition (Mean-Preserving Spread): we say that the random variable xA is a

mean-preserving spread of the random variable xB if xA = xB + ε, where the random

variable ε is independent of xA and xB, and has zero mean and positive variance.

For normally distributed xA, xB and ε the picture looks like:
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The concept of mean preserving spread and that of second-order stochastic dominance are connected

by the following proposition:

Proposition: Let FA and FB be the CDFs of two random variables xA and xB defined

on the same space with identical means. Then FA SSD FB if and only if xA is a mean-

preserving spread of xB.

4.3 Von Neumann Morgenstern Expected Utility Theory

So far we mostly encountered criteria to rank uncertain payoffs which are incomplete, in the sense

that we can encounter two investments that we are unable to compare and decide which one is

better. We saw that this is linked to the fact that the criteria examined require to compare finite-

dimensional vectors (in the case of state-by-state dominance and mean-variance dominance) or

even functions, which can be considered as infinite-dimensional vectors (in the case of first and

second-order stochastic dominance). In this section we will elaborate another method which aims

at simplifying the problem by assigning to each investment a number u ∈ R, so that every two

investments are comparable. To do this by avoiding arbitrary choices of this function that maps

investments onto numbers, we will assume the existence of regular preferences over investments.

Let’s start with an example. Suppose you can enter the following bet: we flip a fair coin once. If

tails comes up, I’ll give you $1. If heads comes up, we’ll flip again, and if tails comes up I’ll pay

you $2, while if heads comes up we’ll flip again. Every time we flip again, the prize for a tails up

doubles. The question is: what is the fair price for this bet?

Since for the n-th flip the probability of a tails is
(

1
2

)n
and the payoff is 2n−1, and the number of
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flips ranges from 1 to infinity, it is straightforward to see that the expected payoff is

Expected Payoff =

∞∑
n=1

(
1

2

)n
× 2n−1 =

∞∑
n=1

1

2
=∞

However this is the correct expected value, it does not make sense to pay all the money in the world

for this coin-flipping game (investment), since it pays you less that $64 in 99% of cases. Clearly this

criterion is inappropriate to value uncertain payoffs. This problem is was named the St. Petersburg

paradox and was first proposed by Daniel Bernoulli, who proposed the following solution: because

when you are rich an additional dollar is less valuable to you than when you are poor, we should

weight less the largest payoffs. He proposed to discount large payoffs using the natural logarithm:

introduce the parameter p for the denominator of the probability, in the previous example equal to

2. Then we can write:

Bernoulli V alue =

∞∑
n=1

(
1

p

)n
× ln

(
2n−1

)
= ln 2

∞∑
n=1

(n− 1)p−n =

1 = − ln 2
∞∑
n=1

(1− n)p−n = − ln 2
∞∑
n=1

d

dp

[
p(1−n)

]
= − ln 2

d

dp

[ ∞∑
n=1

p(1−n)

]
=

= − ln 2
d

dp

[ ∞∑
n=0

1

pn

]
= − ln 2

d

dp

[
1

1− p

]
= ln 2

1

(1− p)2

Which for p = 2 is just ln 2. If the value is ln 2 and the function used to discount large payoffs is

the natural logarithm, we deduce that the price we are willing to pay for the coin-flipping game is

just x such that lnx = ln 2, that is, $2. Let’s dig deeper into this idea of specifying a function that

maps uncertain payoffs (investments) to a single number (utility).

4.4 Representation of Preferences

Suppose all we care about is consumption in each state. Then, the choice set would consist of vectors

in RS+1 where the first element represents consumption at t = 0, and all other elements represent

consumption in the possible S states at t = T . To reconcile this definition with our one-period

model, suppose an investor has an initial wealth W (constant across states and time) and is con-

sidering buying a security j with price pj and payoff xj . The vector
(
W − pj , (W − pj)× I + xj

)
=

(c0, c1, ... cS)T ∈ RS+1 (where I is a S × 1 vector where each element is equal to one) would be the

corresponding consumption profile. Moreover, given two consumption profiles c, c′ ∈ RS+1, if an

investor chose c over c′ we say that that investor prefers c to c′ and write c � c′.

Representation Theorem: Suppose the preference ordering is i) complete ii) tran-

sitive iii) continuous (and satisfies some further regularity conditions that we do not
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discuss here). Then the preference ordering can be represented by a utility function,

that is, c � c′ if and only if there exists a utility function U such that U(c) > U(c′).

A related but different approach was developed by John Von Neumann and Oskar Morgenstern. In

this setup, we define the (finite) set of outcomes X (in the previous setup for instance, this was the

uncertain consumption profile at time t = T ) and we define a lottery as a probability measure over

X, that is a function p : X → [0, 1] such that 1) for x ∈ X p(x) ≥ 0 and 2)
∑
x∈X

p(x) = 1. The set

of all possible lotteries is

P ≡

{
p : X → [0, 1] |∀x ∈ X p(x) ≥ 0,

∑
x∈X

p(x) = 1

}

Assume there exists a preference relation � over P and consider the following three axioms:

Von Neumann - Morgenstern Axioms

1. (Regularity) Agents have complete and transitive preferences over P

2. (Independence) For any three lotteries p, q, r ∈ P and α ∈ (0, 1], p � q ⇔ αp + (1 − α)r �
αq + (1− α)r

3. (Continuity) For any three lotteries p, q, r ∈ P such that p � q � r there exist α, β ∈ (0, 1)

such that αp+ (1− α)r � q � βp+ (1− β)r

Then the following theorem holds:

Theorem (Expected Utility Representation). If a preference relation � over P satisfies

the Regularity, Independence and Continuity axioms, then there exists a function u :

X → R such that

p � q ⇔
∑
x∈X

p(x)u(x) ≥
∑
x∈X

q(x)u(x)

That is, preferences over lotteries correspond to the expected utility of the lotteries. Below is a

graphical representation of an expected utility function over a lottery defined on a two-dimensional

state space:
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The 45° line represents the set of lotteries that pay off the same amount in both states. The

negatively sloped straight line is the set of lotteries in the (x1, x2) plane such that the expectation

of the lottery is equal to a value c > 0, that is, if π is the probability of the state 1 occurring,

c = πx1 + (1− π)x2, or x2 = π
1−πx1 + c

1−π . The convex curve represents the indifference curve for

the agent: to give up a certain consumption amount in state 2, he is willing to take some amount

in state 1 to keep his utility level constant. The curve is the locus of lotteries in the (x1, x2) plane

such that k = πu (x1) + (1− π)u (x2), k ∈ R.

Going back to the axioms, consider the Independence axiom: it basically states that if we “dilute”

p and q with some third lottery r in the same way, but we prefer p to q, then our preference ranking

should not change. It can be visualized using trees:

However, this axiom rarely holds in experiments. For instance, suppose you are given the choice

between lottery p that pays $10 with probability 10% (and zero otherwise) and lottery q that pays
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$15 with probability 9% (and zero otherwise). Because the prize is 50% higher in lottery q than

in lottery p and the probability of winning a positive amount is only 10% lower in lottery q than

lottery p, most people in experiments choose lottery q. However, between a lottery u that pays $10

with 100% probability and a lottery v that pays $15 with 90% probability, most people choose the

sure bet implied by lottery u. However, it turns out that lotteries u and v can be mixed with a third

lottery r that pays zero with probability 100%, using a parameter α = 10%, to obtain lotteries p

and q again(see picture below): the preference relation between p and q is now the opposite of the

initial preference, and therefore this constitutes an empirical violation of the independence axiom.1

4.5 Risk Aversion, Concavity, Certainty Equivalent

Consider a lottery p with possible outcomes x0 < x1. We define the Certainty Equivalent as

the certain payoff which gives the same expected utility as the uncertain lottery p. Clearly, if

E [u(x)] is the expected utility of lottery p, u−1 (E [u(x)]) will be the certainty equivalent of p. Now

suppose that the agent is risk-averse: clearly, for him the certainty equivalent will be lower than

the expected value of the lottery (he will be willing to “give up” some money off the expected value

of the lottery to have a certain payoff). As it turns out, this property is equivalent to the Von

Neumann-Morgenstern function u being concave.

u−1 (E [u(x)]) < E [x]⇔ u(·) is concave

1Top left: lottery p. Top right: lottery q. Bottom left, in black: lottery u. Bottom right, in black: lottery v. In
red: with α = 10% and r = 0 we can transform u and v into p and q.
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And the difference E [x] − u−1 (E [u(x)]) is called Risk Premium. This fact derives directly from

Jensen’s Inequality:

Theorem (Jensen’s Inequality): Let g be concave over [a, b] and let x be a random

variable such that P [x ∈ [a, b]] = 1. If the expectations E [x] and E [g (x)] exist, then

E [g (x)] ≤ g (E [x]). Furthermore, if g(·) is concave then the inequality is strict.

The following theorems establish a relationship between First and Second Order Stochastic Domi-

nance and Expected Utility:

Theorem 1: Let FA and FB be two CDFs for the random payoffs x ∈ [a, b]. Then

FA FSD FB if and only if EA [U (x)] ≥ EB [U (x)] for all nondecreasing utility functions

U(·).

Theorem 2: Let FA and FB be two CDFs for the random payoffs x ∈ [a, b]. Then FA

SSD FB if and only if EA [U (x)] ≥ EB [U (x)] for all nondecreasing and concave utility

functions U(·).
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We conclude this subsetion with a parallel between (non-expected) utility representation and ex-

pected utility representation. In the former case, suppose U(c) = U (c0, c1, ... cS) represents a

complete, transitive and continuous preference ordering between consumption profiles. Then also

V (c) = f(U(c)), for f strictly increasing, represents the same preference ordering. In the latter case,

suppose that E [u(c)] represents a preference ordering satisfying the Von Neumann-Morgenstern ax-

ioms. Then for a, b ∈ R the affine function v(c) = a+ bu(c) represents the same preference ordering.

4.6 Measures of Risk Aversion

We define the following measures of risk aversion defined over the wealth Y of the agent:

1. Absolute Risk Aversion: RA(Y ) = −u′′(Y )
u′(Y )

2. Relative Risk Aversion: RR(Y ) = −Y · u
′′(Y )
u′(Y ) = Y ·RA

3. Risk Tolerance: RT (Y ) = 1
RA(Y )

There is an interesting link between expected utility and these measures of risk aversion: consider

the following lottery, where Y is the initial wealth of the agent:

What is the change in π needed for an agent to be indifferent when h rises? We can Taylor-expand

to the second degree the expected utility in a neighbourhood of Y to obtain:

π(Y, h) =
1

2
+

1

4
hRA(Y ) + higher order terms

Similarly, consider the lottery
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Again, the change in π needed for an agent to be indifferent when h rises is obtained by Taylor-

expanding to the second degree the expected utility in a neighbourhood of Y to obtain:

π(Y, h) =
1

2
+

1

4
θRR(Y ) + higher order terms

Similarly, suppose we add a small risk (lottery) x to the initial lottery w. Since E [u(w + x)] =

u
(
cCE

)
, we can use a second order Taylor expansion to show that

w − cCE ≈ RA(w)
V ar(x)

2

Where w − cCE is the risk premium, and it is approximately linear in the variance of the additive

risk, with slope equal to half the coefficient of absolute risk aversion. Similarly, suppose we have

a multiplicative risk. Suppose that E [u(gw)] = u (kw), where g is a positive random variable with

unit mean and k is is the certainty equivalent growth rate. This time we get

1− k ≈ RR(w)
V ar(g)

2

Therefore the coefficient of absolute risk aversion is relevant for additive risk, while the relative risk

aversion is relevant for multiplicative risk.

We will now introduce two specific functional forms for the Von Neumann-Morgenstern function U :

� Constant Absolute Risk Aversion (CARA) utility function: U(x) = −e−ρY , for some ρ ∈ R+

� Constant Relative Risk Aversion (CRRA) utility function: U(x) =

Y 1−γ

1−γ if γ 6= 1

lnY if γ = 1

For example, consider the CRRA utility and a lottery that adds $50,000 or $100,000 to the initial

wealth Y . The certainty equivalent is defined as the number CE ∈ R such that
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(Y + CE)1−γ

1− γ
=

1

2
× (Y + 50, 000)1−γ

1− γ
+

1

2
× (Y + 100, 000)1−γ

1− γ

For Y = 0 we get

γ = 0 CE = 75, 000 (risk neutrality)

γ = 1 CE = 70, 711

γ = 2 CE = 66, 246

γ = 5 CE = 58, 566

γ = 10 CE = 53, 991

γ = 20 CE = 51, 858

γ = 30 CE = 51, 209

While for Y = 100, 000 and γ = 5 the certainty equivalent is already 66,530 (close to γ = 2 for

Y = 0!)

4.7 Risk Aversion and Portfolio Allocation

Suppose that all assets are consumed in t = T , so that there are no savings in t = T . Moreover,

assume there is a riskless asset with net return rf and a risky asset with a random net return r.

We want to maximize the expected utility by choosing the risky asset allocation parameter a ∈ R:

max
a∈R

E
[
U
(
Y0

(
1 + rf

)
+ a

(
r − rf

))]
For some initial wealth Y0. The problem has first order conditions (FOC)

E
[
U ′
(
Y0

(
1 + rf

)
+ a

(
r − rf

))(
r − rf

)]
= 0

We can characterize the solution to the problem with the following theorem:

Theorem: assume U ′ > 0, U ′′ < 0 and let â denote the solution to the problem above.

Then

â > 0⇔ E [r] > rf

â = 0⇔ E [r] = rf

â < 0⇔ E [r] < rf

Proof : define W (a) ≡ E
[
U
(
Y0

(
1 + rf

)
+ a

(
r − rf

))]
, then the FOC can br written

as W ′(a) = 0. By risk aversion (that is, since U ′ > 0 and U ′′ < 0) we have W ′′(a) =

E
[
U ′′
(
Y0

(
1 + rf

)
+ a

(
r − rf

)) (
r − rf

)2]
< 0, so W ′(a) is everywhere decreasing in a.
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This implies that â > 0 if and only if W ′(0) > 0, and since U ′ > 0 it follows that â > 0

if and only if E [r] > rf . The other assertions follow similarly.

How do measures of risk aversion depend on the initial wealth Y0? This is the subject of Arrow’s

theorem (1971):

Theorem 1: Let â = â (Y0) be the solution to the problem above. Then

∂RA
∂Y0

< 0⇒ ∂â

∂Y0
> 0

∂RA
∂Y0

= 0⇒ ∂â

∂Y0
= 0

∂RA
∂Y0

> 0⇒ ∂â

∂Y0
< 0

Theorem 2: If, for all wealth levels Y :

∂RR
∂Y0

< 0⇒ da/a

dY/Y
> 1

∂RR
∂Y0

= 0⇒ da/a

dY/Y
= 1

∂RR
∂Y0

> 0⇒ da/a

dY/Y
< 1

In the special case U(Y ) = lnY the FOC is

E
[

r − rf

Y0 (1 + rf ) + a (r − rf )

]
= 0

and assuming that r can take on two possible values r1and r2 with r1 < ff < r2, it is possible to

show that
a

Y0
=

(
1 + rf

) (
E [r]− rf

)
(r2 − rf ) (rf − r1)

> 0

That is, a constant fraction of the initial wealth is invested in the risky asset. How does all this

generalize to the J assets case? The answer is provided by the following theorem:

Theorem (Cass and Stiglitz): Let the vector
â1(Y0)

...

âJ(Y0)


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denote the amount optimally invested in the J risky assets if the initial wealth is Y0.

Then 
â1(Y0)

...

âJ(Y0)

 =


â1

...

âJ

 · f(Y0)

if and only if either i) U ′(Y0) = (θY0 + κ)∆ or ii) U ′(Y0) = ξe−vY0 .

In other words, it is sufficient to offer a mutual fund : the optimal proportion to invest in each asset

is given by the vector [â1, . . . , âJ ]T , and agents would then invest an amount depending on their

initial wealth level according to the function f (Y0).

To conclude this subsection, we generalize the class of utility functions by starting from the absolute

risk aversion (and then backing out the resulting utility function).

We call linear risk tolerance (or hyperbolic risk aversion) any utility function such that

RA = −u
′′(c)

u′(c)
=

1

A+B · c

Clearly, for B = 0 and A 6= 0 we have a CARA utility function. If B 6= 0 we obtain a generalized

power function

u(c) =
1

B − 1
(A+B · c)

B−1
B

For which if B → 1 we obtain the log utility u(c) = ln (A+B · c), for B = −1 we obtain

the quadratic utility −1
2 (A− c)2, and for A = 0 we obtain the CRRA utility function u(c) =

1
B−1 (B · c)

B−1
B .

4.8 Alternative Theories

There are a number of theories alternative to Von Neumann-Morgenstern that have been proposed.

Savage’s expected utility theory (1954) combines the idea of utility function with subjective prob-

abilities, showing that under a set of axioms it is possible to derive subjective probabilities that

agents attach to events starting from their preferences over lotteries. This is considered an exten-

sion of the Von Neumann-Morgenstern paradigm, but like in vN-M it still suffers from the fact that

empirically its axioms are violated.

An interesting experiment that opened the door to ambiguity theory is Ellsberg’s paradox. Suppose

there are 10 balls in an urn and you have to make a choice between lottery 1 which pays you $100

if you pick a blue ball, and lottery 2 which pays you $100 if you pick a red ball, without knowing

how many balls are red or blue. Which one would you choose? Unlike preferences over risk, in this

case with uncertainty there are no probability distributions: it turns out that empirically people

are also uncertainty averse.
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Daniel Kahneman used insights from psychology to show that people first decide on a reference

point to compare outcomes with, and then consider lesser outcomes as losses and greater outcomes

as gains. In particular, he showed that empirically they are risk-averse in the gains domain, and

risk-loving in the loss space.

4.9 Savings

Within our one period model, consider an asset stucture composed of one risk-free asset with

constant gross return Rf . The agent has to make a decision on how much to consume in each

period t = 0 and t = T . If Rf increases, we will see two effects: one is the incentive to save more at

time t = 0, since by doing so we can now consume more in t = T -this is called substitution effect-

and the incentive to consume more (save less) at time t = 0, since the agent is effectively richer

when the gross riskless return increases -this is called income effect. In the log utility case, these

two effects cancel each other; in other cases (γ 6= 1) one effect can prevail over the other.

Suppose now there is a risk-free assets but the endowment in the future period is random. How does

the behavior of the agent change when we increase his exposure to risk? An old idea (going back

to J. M. Keynes) is that people save more when they face greater uncertainty. This phoenomenon

is called precautionary savings and it generally arises under two circumstances, one linked to the

shape of the utility function and one to the presence of borrowing constraints.

Let’s jump forward a little and suppose that in a multi-period setting agents maximize the expected

utility

E0

[ ∞∑
t=0

βtu (ct)

]

subject to the intertemporal budget constraint

ct+1 = et+1 + (1 + r) (et − ct)

The standard Euler equation is

u′ (ct) = β (1 + r)Et
[
u′ (ct+1)

]
And if u′′′ > 0, Jensen’s inequality implies

1

β (1 + r)
=

Et [u′ (ct+1)]

u′ (ct)
>
u′ (Et [ct+1])

u′ (ct)

Which shows that the marginal rate of intertemporal substitution is higher in the presence of un-

certainty in ct+1. The difference between the two marginal rates, with and without uncertainty, is

attributed to precautionary savings. to see this, suppose the variance of et+1 increases (in a mean
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preserving fashion). Since numerator Et [u′ (ct+1)] is increasing in the variance of ct+1, in order for

the above equality to hold ct must decrease, that is, savings increase due to precautionary savings.

Suppose now there are no risk-free assets and one risky asset with random gross return R.

Theorem (Rothschild and Stiglitz): Let RA and RB be two return distributions

with identical means such that RB = RA + ε where ε is a white noise, and let sA and

sB be the savings out of Y0 corresponding to the return distributions of RAand RB

respectively. Then

� If RR′ (Y ) ≤ 0 and RR (Y ) > 1, then sA < sB

� If RR′ (Y ) > 0 and RR (Y ) ≤ 1, then sA > sB

Define Absolute Prudence as the quantity

PA(w) = −u
′′′(w)

u′′(w)

and Relative Prudence as

PR(w) = −c · u
′′′(w)

u′′(w)

Note that this depends directly on the curvature of u′ (u′′′ > 0 implies that u′ is convex) and does

not follow directly from risk aversion. It turns out that precautionary savings occur if P (w) > 0.

Moreover, we have the following result:

Theorem: Let RA and RB be two return distributions such that RA SSDRB, and let sA

and sB (respectively) be the savings out Y0. Then

sA ≥ sB ⇔ cP (c) ≤ 2

sA < sB ⇔ cP (c) > 2

Finally, agents might save precautionarily also because they are concerned that they will face

borrowing constraints in some state in the future: Bewley (1977) showed that with idiosyncratic

income shocks (borrowing constraints) negative mean asset holdings across individuals (mean[a]

below) result from simple individual optimization:
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4.10 Mean-Variance Preferences

A different approach is to specify the utility function over the mean-variance space of investment

returns. This is a much simpler approach than the Von Neumann-Morgenstern, so it is natural to

ask under which conditions the two approaches are equivalent. For instance, if all lotteries have

normally distributed prizes (not necessarily independent), because any linear combination of jointly

normal random variables is also jointly normal and therefore described by its first two moments,

expected utility can be expressed as a function of just mean and variance as well.

Another example in which mean variance and vN-M are equivalent is when agents have quadratic

utility:

u(y) = ay − by2

Then the expected utility is

E [u(y)] = aE [y]− bE
[
y2
]

= aE [y]− bE [y]2 − bV ar (y)

Therefore, the expected utility is a function of the mean E [y] and variance V ar (y) only. This is also

true in another case: suppose all lotteries have normally distributed outcomes (thus the state space

now is infinite). Then, because any linear combination of normally distributed random variables

is also normal, the distribution of any lottery (or linear combination thereof) will be completely

described by its first two moments, mean and variance. Therefore also expected utility can be

expressed as a function of these two numbers only.
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Exercises

1) Using the definition in the chapter,

1. Show that state-by-state dominance implies first order stochastic dominance.

2. Provide a simple example of discrete, finite-state space random variables (that is, a table of

payoffs, states and probabilities) that can be ranked by first order stochastic dominance, but

not by state-by-state dominance.

2) Consider the random variables X ∼ N (0, 1) and Y ∼ N (1, 1).

1. Suppose Y = X + 1. What is the state-by-state ordering of X and Y (if any)? What is the

first-order stochastic dominance ordering of X and Y (if any)?

2. Suppose X and Y are independent random variables. What is the state-by-state ordering of

X and Y (if any)? What is the first-order stochastic dominance ordering of X and Y (if any)?

3. What conclusion can we draw about state-by-state and first order stochastic dominance in

relation to the probability distribution of the random variables?

3) Suppose an agent has an income of $10. He has the possibility to buy for $2 a lottery ticket

which pays the winner $19 (and zero otherwise). Suppose the agent has a von-Neumann Morgenstern

utility u (x) = ln (x) and believes that the probability of winning π is 1
3 .

1. Write the agent’s expected utility.

2. Should the agent buy the ticket?

3. Suppose the agent buys the ticket, but before a winner is selected he decides to sell it. What is

the minimum certain amount that the agent would accept in exchange for the lottery ticket?

4) To resolve the St.Petersburg Paradox, Bernoulli proposed to give less weight to large payouts in

the computation of the expected value of the game, to account for the fact that people value money

less and less the richer they become (though this certainly does not apply to MFins). This property

is shared by any increasing and concave function: can you guess why Bernoulli (a pretty smart guy)

proposed exactly u (x) = ln (x)? (Hint: consider the increase in utility u given by a small increase

in the payoff x)

5) Consider a general Von Neumann-Morgenstern utility function u(x) and a lottery which adds

an amount h to your personal wealth c in case of victory (which occurs with probability π) and

subtracts the same amount in case of loss:
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Show that the following relation holds:

π (c, h) =
1

2
+

1

4
hRA (c) + o

(
h2
)

Similarly, consider a lottery which increases your personal wealth c by θ% in case of victory (which

occurs with probability π) and decreases your personal wealth by the same percentage amount in

case of loss:

Show that the following relation holds:

π (c, h) =
1

2
+

1

4
θRR (c) + o

(
θ2
)

6) Consider adding a lottery x to lottery w. We know that teh certainty equivalent consumption is

defined by E [u(w + x)] = u
(
cCE

)
. Show that

w − cCE ≈ RA(w)
V ar(x)

2

Similarly, for a positive random variable g with unit mean we have E [u(gw)] = u (kw), where k is

is the certainty equivalent growth rate. Show that

1− k ≈ RR(w)
V ar(g)

2
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7) Suppose an agent is given the opportunity to enter, for free, a lottery that pays him $50,000

with probability 1
2 and $100,000 with probability 1

2 . Suppose the agent has CRRA utility

u (c) =
c1−γ

1− γ

and γ = 7. Find the certainty equivalent of this lottery for the initial wealth Y equal to $0, $100,000

and $300,000. What happens to the certainty equivalent when the initial wealth increases? Interpret

this result.

8) Show that the solution to the portfolio optimization problem with one risky and one riskless

asset is such that agents invest a constant fraction of their wealth on the risky asset, and that this

results holds for any CRRA utility function and any distribution of the risky asset return r (please

refer to slide 51 in the slides set 4).

9) Show that the Ellsberg Paradox is a violation of the independence axiom (hint: build a compound

lottery).

10) Show that an agent with DARA preferences will choose to save precautionarily (hint: show

that the absolute prudence coefficient is positive).

11) Show that even if X and Y have positive skewness Z = X + Y can have negative skewness.

You can make any additional assumptions to prove your point. What does this fact depend on?

This shows that the negative skewness of the S&P 500 is consistent with single-name stocks having

positive skewness.



Chapter 5

General Equilibrium, Efficiency and

the Equity Premium Puzzle

In section 4.3 we introduced the representation of preferences over a consumption profile c =

(c0, c1, . . . , cS) ∈ RS+1
+ . Suppose that, at birth, agent i is given an endowment e = (e0, e1, . . . , eS) ∈

RS+1
+ and has a utility function U i : RS+1

+ → R. We say that U i is:

� Quasiconcave, if the sets C = {c : U(c) ≥ v} are convex for each v ∈ R

� Concave, if for any c, c′ ∈ RS+1 and α ∈ [0, 1] we have U i (αc+ (1− α)c′) ≥ αU i (c) + (1 −
α)U i (c′)

Moreover, concavity implies quasiconcavity. If U i is also differentiable, a standard requirement is

that ∂U i

∂cs
> 0 for each s = 0, 1, . . . S. We are now ready to formulate the portfolio consumption

problem:

max
c,h

U i (c0, c1, . . . cS)

Subject to the constratints

0 ≤ c0 ≤ e0 − p · h

0 ≤ cs ≤ es +
J∑
j=1

xjshj , s = 1, . . . , S

If we define cT ≡ (c1, . . . , cS) ∈ RS and eT ≡ (e1, . . . , eS) ∈ RS the latter constraint can be rewritten

more compactly as follows:

0 ≤ cT ≤ eT +Xh

The lagrangean for this problem is

L (c;λ, µ) = U i (c0, c1, . . . cS)− λ [c0 − e0 + p · h]− µ [cT − eT −Xh]

77
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Note that X ′h = h′X and λ ∈ R, µ ∈ RS . Suppose c∗ solves the problem above, then there exist

λ ∈ R and µ ∈ RS such that:
∂U i

∂c0
(c∗) = λ (5.1)

∂U i

∂cs
(c∗) = µs (5.2)

λp = µX (5.3)

The third FOC implies that

pj =
S∑
s=1

µs
λ
xjs

Plugging in the first and second FOCs we have

pj =
S∑
s=1

∂U i/∂cs
∂U i/∂c0

xjs

Assume that utility is time separable:

U i (c) = u (c0) + δũ (cT )

And also that the utility over uncertain states ũ is a Von Neumann-Morgenstern utility:

U i (c) = u (c0) + δE [u (cT )]

Then we can rewrite our pricing relation as

pj =
S∑
s=1

πsδ
∂ui/∂cs
∂ui/∂c0

xjs

We can read our findings as follows:

� δ ∂u
i/∂cs

∂ui/∂c0
is the stochastic discount factor ms

� πsδ
∂ui/∂cs
∂ui/∂c0

= πsms is the state price qs

Thus, we are back to our equivalent asset pricing formulas

pj = xj · q = E
[
m · xj

]
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Finally, note that the vector of marginal rates of substitutions ∂U i/∂cs
∂U i/∂c0

is the state price vector (note

that this is positive by our assumption on U i).

5.1 Pareto Efficiency

Consider the set of allocations that yield agent i the same utility, S =
{
c ∈ RS+1 : U i (c) = k

}
for

a given k ∈ R. This corresponds to a curve in the (c0, cs) space whose total differential is

∂U i (c)

∂c0
dc0 +

∂U i (c)

∂cs
dcs = 0

called indifference curve of agent i. Equivalently,

∂U i/∂cs
∂U i/∂c0

= −dc0

dcs
≡MRSis,0

That is, the negative of the inverse of the slope dcs
dc0

of the indifference curve is the marginal rate of

substitution MRSis,0 between consumption in state s = S and consumption in state s = 0 of agent

i. Moreover, we also know from the previous section that the marginal rate of substitution MRSs,0

equals the state price qs. We can represent this with an Edgeworth box : fix the consumption axes(
cA0 , c

A
s

)
for agent A with the origin in the lower left corner of the box, and draw a box that has

width equal to the sum of the endowments eA0 + eB0 in state 0 and height the sum of endowments

eAs + eBs in state s. We fix theconsumption axes
(
cB0 , c

B
s

)
in the upper right corner of the box. The

endowments of the two agents corespond to a point e∗ = eA for the agent A axes, and e∗ = eB for

the agent B axes.
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In the picture above, the indifference curves of agent A are in grey, while those of agent B are in

red. The dashed lines are the indifference curves that pass through the endowment eA (or eB if we

look at the agent B axes). The dash-dotted blue line represents the set of points in the Edgeworth

box for which MRSAs,0 = MRSBs,0, and is called contract curve. Allocations on this line are called

Pareto Optimal, that is, they are allocations with the property that there exists no other allocation

in the box such that at least one agent can be made better off without making someone else worse

off. It is important to remark that allocative efficiency (Pareto Efficiency) is not the same thing as

informational efficiency or fairness. The solid blue straight line has slope 1
qs

and is the only straight

line passing from the endowment point for which MRSAs,0 = MRSBs,0 = qs. The point ce where

the straight blue line intersects the contract curve is called Competitive Equilibrium. The relation

between Pareto Optimality and Competitive Equilibrium is captured by the two Welfare Theorems:

1. First Welfare Theorem: If markets are complete, then the Competitive Equilibrium allo-

cation is Pareto Optimal.

2. Second Welfare Theorem: Any Pareto Efficient allocation can be decentralized as a Com-

petitive Equilibrium.

The First Welfare Theorem also implies that there exists a unique state price vector q and that for

any two agents i 6= j the vectors MRSi and MRSj (whose elements MRSis,0 for s = 1, . . . S) are
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equal and coincide with q. However, in multi-period (or even multi-good) settings and markets are

incomplete, the equilibrium allocation is not Pareto Optimal.

We conclude the chapter with two interesting results about the aggregation of preferences:

Aggregation Theorem 1: Suppose markets are complete. Then asset prices in an

economy with K agents are identical to an economy with a single agent (social planner)

whose utility is

U(c) =

K∑
k=1

αku
k(c)

Where αk is a weight given to agent k, uk is the utility of agent k and the single agent

consumes the aggregate endowment.

Aggregation Theorem 2: Suppose that i) a riskless annuity and the endowments

are tradable, ii) agents have common beliefs, iii) agents have a common rate of time

preference, iv) agents have Linear Risk Tolerance (LRT or Hyperbolic Risk Aversion)

preferences (see section 4.6) with

RkA(c) =
1

Ak +Bc

Then asset prices in an economy with many agents are identical to a single agent economy

with LRT preferences such that

RA(c) =
1

K∑
k=1

Ak +Bc

5.2 The Sharpe Ratio, Bonds and the Equity Premium Puzzle

Consider a security with price pt at time t that pays off an amount xt+1 at time t + 1. Using the

SDF representation of the price we can write

pt = Et [mt+1xt+1] = Et [mt+1]Et [xt+1] + Covt [mt+1, xt+1]

Now, for a given (generic) mt+1 we write Rft = 1
Et[mt+1] . If there exists a risk-free portfolio, Rft will

be unique and independent of the particular choice of mt+1. Therefore we have

pt =
Et [xt+1]

Rft
+ Covt [mt+1, xt+1]

Where the first term is the discounted expected payoff, and the second term is a risk adjustment.

Clearly, positive correlation of the payoff with the discount factor adds to the price (or, for a given
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price, decreases the return on the asset). In returns we have

Et [mt+1Rt+1] = 1

And using Rft = 1
Et[mt+1] we get

Et
[
mt+1

(
Rt+1 −Rft

)]
that is, the m-discounted expected return on any asset is equal to zero. This also implies

Covt

[
mt+1, Rt+1 −Rft

]
= −Et [mt+1]Et

[
Rt+1 −Rft

]
That is

Et
[
Rt+1 −Rft

]
= −Covt [mt+1, Rt+1]

Et [mt+1]

so that we can see that the expected excess return, the risk premium, is determined by its covariance

with the stochastic discount factor. This also holds for a generic portfolio h ∈ RJ :

Et
[(
Rt+1 −Rft

)
h
]

= −Covt [mt+1, Rt+1h]

Et [mt+1]
= −ρt (mt+1, Rt+1h)σt (mt+1)σt (Rt+1h)

Et [mt+1]

Note that all results hold also for the unconditional expectation E [·], so we can drop the expectation

subscript:

E
[(
Rt+1 −Rft

)
h
]

= −Cov [mt+1, Rt+1h]

E [mt+1]
= −ρ (mt+1, Rt+1h)σ (mt+1)σ (Rt+1h)

E [mt+1]

Rearranging in terms of the portfolio Sharpe Ratio,

−σ (mt+1)

E [mt+1]
ρ (mt+1, Rt+1h) =

E
[(
Rt+1 −Rft

)
h
]

σ (Rt+1h)

taking the absolute value of both sides,

σ (mt+1)

E [mt+1]
|ρ (mt+1, Rt+1h)| =

∣∣∣∣∣∣
E
[(
Rt+1 −Rft

)
h
]

σ (Rt+1h)

∣∣∣∣∣∣
but since for any h ∈ RJ ρ (·) ∈ [−1, 1],

σ (mt+1)

E [mt+1]
≥ sup

h∈RJ

∣∣∣∣∣∣
E
[(
Rt+1 −Rft

)
h
]

σ (Rt+1h)

∣∣∣∣∣∣
we just proved the following theorem:
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Theorem (Hansen-Jagannathan Bound): The ratio of the standard deviation

of a stochastic discount factor to its mean exceeds the Sharpe Ratio attained by any

portfolio.

This theorem can be used to easily check the viability of a proposed stochastic discount factor. Or,

for a given stochastic discount factor, it establishes the maximum Sharpe Ratio any portfolio can

attain. Note that the theorem also holds for the expectation conditional at time t.

5.3 Adding Expected Utility

Now assume that agents maximize their expected utility. For c0 ∈ R and c1 ∈ RS ,

U (c0, c1) =
S∑
s=1

πsu (c0, c1,s)

so that

∂0u =

(
∂u (c0, c1,1)

∂c0
, . . . ,

∂u (c0, c1,S)

∂c0

)

∂1u =

(
∂u (c0, c1,1)

∂c1
, . . . ,

∂u (c0, c1,S)

∂cS

)
and the stochastic discount factor can be shown to be m = MRS

π = ∂1u
E[∂0u] ∈ RS . If the utility is also

time-separable, then u (c0, c1,s) = v (c0) + v (c1,s) and

∂0u =
∂v (c0)

∂c0
× (1, . . . , 1) = v′ (c0)× (1, . . . , 1)
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∂1u =

(
∂v (c1,1)

∂c1
, . . . ,

∂v (c1,S)

∂cS

)
=
(
v′ (c1,1) , . . . , v′ (c1,S)

)
and therefore ms = 1

πs
× πsv′(c1,s)

v′(c0) =
v′(c1,s)
v′(c0) . For example, suppose u (c0, c1,s) = ln c0 + ln c1,s. Then

m =

(
c0

c1,1
, . . . ,

c0

c1,S

)′

which shows that states where consumption is low are states in which m is high.

5.4 The Equity Premium Puzzle

Recall that for any asset j

E
[
Rj
]
−Rf = −Rf × Cov

[
m,Rj

]
Using the assumptions from the last section we can write

E
[
Rj
]
−Rf = −Rf ×

Cov
[
∂1u,R

j
]

E [∂0u]

so the Hansen-Jagannathan bound can be rewritten as

σ (m) ≥ 1

Rf

∣∣∣∣∣E
[
Rj −Rf

]
σ (Rj)

∣∣∣∣∣
that is,

σ

(
∂1u

E [∂0u]

)
≥ 1

Rf

∣∣∣∣∣E
[
Rj −Rf

]
σ (Rj)

∣∣∣∣∣
However:

1. The right hand side of this inequality, the Sharpe Ratio of any asset, can be very high for

some portfolios.

2. Consumption volatility is generally low.

Together, to be consistent with the Hansen-Jagannathan bound these two facts imply that the

curvature of the utility function u must be very high. But curvature is synonimous for risk aversion,

and to justify the empirical data we should accept that agents have an unrealistically high level of

risk aversion. This inconsistency between theory and empirical facts is commonly referred to as the

Equity Premium Puzzle.
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Even if we allowed for an unrealistically high level of risk aversion, more problems emerge: due to

the high degree of concavity of u there is also a low elasticity of intertemporal substitution (EIS)

which would drive agents to strongly smooth consumption over time. But in the context of a von-

Neumann Morgenstern utility function smoothing over time is equivalent to smoothing over states,

and in the example of a CRRA utility function, the EIS parameter is just 1
γ . Finally, the puzzle

can be re-cast in terms of the risk-free interest rate, which the model predicts to be much higher

than in reality.

Solutions to the puzzles have been proposed, which essentially depart from the von-Neumann Mor-

genstern expected utility paradigm and allow for a utility representation that separates risk-aversion

from intertemporal elasticity of substitution.

5.5 Empirical Estimation: Generalized Method of Moments

Another great contribution by Lars Hansen (one of the 2013 Nobel Prize in Economics recipi-

ents) was the Generalized Method of Moments and its applications in the context of the canonical

consumption-based asset pricing model. We know that under CRRA utility we have

Et

[
β

(
Ct+1

Ct

)−γ (
Rt+1 −Rft

)]
= 0

That is, the expected discounted excess return should always be zero. How do we take this to data?

How do we find parameters beta and gamma that best fit the data? How do we check this over

many different times and returns, to see if those two parameters can actually explain empirical

facts? What do we do about that conditional expectation Et, conditional on information in people’s

heads? How do we bring in all the variables that seem to forecast returns over time (e.g. by the

dividend-price ratio) and across assets (value, size, etc.)? How do we handle the fact that return

variance changes over time, and consumption growth may be autocorrelated?
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When Hansen wrote his paper, this was a big headache. He suggested to just multiply by any

variable z that we think forecasts returns or consumption, and take the unconditional average of

this conditional average: the model predicts that the unconditional average obeys

E

[
β

(
Ct+1

Ct

)−γ (
Rt+1 −Rft

)
× zt

]
= 0

So we can just take this average in the data, and do this for lots of different assets R and lots of

different instruments z. Finaly, we pick the β and γ that make some of the averages as close to zero

as possible, and then look at the other averages and see how close they are to zero. (Hansen worked

out the statistics of this procedure - how close should the other averages be to zero, and what is a

good measure of the sample uncertainty in β and γ estimates - taking in to account a wide variety

of statistical problems that may arise).

The results were not favorable to the consumption model: a huge γ is needed to fit the difference

between stocks and bonds, questioning the validity of the utility function used, the measurements

of consumption, and even of the whole consumption-based asset pricing framework.



Chapter 6

Mean-Variance Analysis and CAPM

In section 3.4 we discussed the State-Price Beta model, which essentially states that for an asset j

E
[
Rj
]
−Rf = βj

(
E [R∗]−Rf

)

Where βj =
Cov(R∗,Rj)
V ar(R∗) and R∗ is the return of an asset whose payoff is equal to the discount factor

m∗ derived from the pricing kernel q∗ ∈ 〈X〉. This is a very general statement about returns, but

it does not help us identify what assets in reality have a return of R∗.

Suppose all agents have the same quadratic utility u (c0, c1) = v (c0) − (c1 − α)2. Recall that the

expected utility is E [U (c)] =
S∑
s=0

πsu (c0, cs) and therefore m = ∂1u
E[∂0u] : in the quadratic utility case

we have

∂1u =
[
−2 (c1 − α) · · · −2 (cS − α)

]
So the excess return can be written as

E
[
Rj
]
−Rf = −

Cov
(
m,Rj

)
E [m]

= −Rf ×
Cov

(
∂1u,R

j
)

E [∂0u]
= −Rf ×

Cov
(
−2 (c1 − α) , Rj

)
E [∂0u]

=

= Rf ×
2Cov

(
c1, R

j
)

E [∂0u]

This holds for any asset xj ∈ 〈X〉, and can be generalized to any portfolio h:

E
[
Rh
]
−Rf = Rf ×

2Cov
(
c1, R

h
)

E [∂0u]

Now consider the market portfolio defined as xmkt =
∑

j:xj∈〈X〉
wjx

j :1 the above equation must hold

1Where {wj} are weights wj =
hj

J∑
k=1

hk

for each (linearly independent) asset in the asset span.

87
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for it too, and therefore dividing side by side we get

E
[
Rh
]
−Rf

E [Rmkt]−Rf
=

Cov
(
c1, R

h
)

Cov (c1, Rmkt)

Where Rmkt is the return of the market portfolio. If moreover agents are homogeneous and live in

an exchange economy, then we know that c1 corresponds to the aggregate endowment and this is

perfectly correlated with Rmkt:

E
[
Rh
]
−Rf

E [Rmkt]−Rf
=
Cov

(
Rmkt, Rh

)
V ar (Rmkt)

But since βh =
Cov(Rmkt,Rh)
V ar(Rmkt)

we can write

E
[
Rh
]

= Rf + βh

(
E
[
Rmkt

]
−Rf

)
Which we call the Market Security Line (MSL). Note that in order for the above result to hold, R∗

must be a linear function of Rmkt of the type

R∗ =
a+ bRmkt

a+ bRf

With b < 0 since we know that the stochastic discount factor m is high (hence high R∗) in states in

which the economy is doing poorly, so in which the market portfolio xmkt is low (hence low Rmkt).

6.1 The Traditional Derivation of CAPM

We define the mean return of the portfolio h as

µh ≡ E [rh] = E

 J∑
j=1

wjrj

 =
J∑
j=1

wjµj

Where rh = Rh − 1 is the net return2 and hk is the amount of asset k (as usual), so that the price

of Rh is still 1. The variance of the portfolio is given by

σ2
h ≡ V ar (rh) = w′V w

And σh ≡
√
V ar (rh) is the standard deviation of portfolio h, where w ∈ RJ is the vector of weights

introduced above and V is the covariance matrix of the assets in portfolio h.

2Note that we can always write the excess return in gross or net terms: E
[
Rj

]
−Rf = E [rj ]− rf .
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Definition: We say that portfolio A mean-variance dominates portfolio B if µA ≥
µB and σA < σB, or µA > µB and σA ≤ σB.

Note that in the (σh, µh) space, for a given value of µh and σh we can immediately find the subset

of portfolios which are not dominated by the given µh and σh:

Definition: For given µ and σ, the Efficient Frontier is the locus of all non-

dominated payoffs in the (σh, µh) space.

It follows directly from the definition of efficient frontier that no rational investor with mean-variance

preferences would choose to hold a portfolio outside of the efficient frontier.

In the J = 2 case, for portfolio h we have w2 = 1−w1, so the mean return is µh = w1µ1+(1− w2)µ2

and the variance is σ2
h = w2

1σ
2
1 + (1− w1)2 σ2

2 + 2w1 (1− w1)σ1σ2ρ1,2. Note that in general, we can

specify the vector µ of returns and covariance matrix V and back out the weights vector w: in the

2 assets example, for ρ1,2 = 1 we get

w1 =
±σh − σ2

σ1 − σ2

So that plugging back in the expressions for µh we get

µh = µ1 +
µ2 − µ1

σ2 − σ1
(±σh − σ1)

Which looks like:
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For ρ1,2 = −1 we get

w1 =
±σh + σ2

σ1 + σ2

And therefore

µh =
σ2

σ1 + σ2
µ1 +

σ1

σ1 + σ2
µ2 ±

µ2 − µ1

σ1 + σ2
σh

Which looks like:

While for ρ1,2 ∈ (−1, 1) we have
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The same concept generalizes to the J assets case: a frontier portfolio has minimum variance among

all feasible portfolios with the same expected portfolio return, so the problem is

max
w

1

2
w′V w

s. t. w′µ = E, w′I = 1

Where I = (1, . . . , 1) and E ∈ R is a given (fixed) expected return. The idea is that we fix an

expected return E and then look for the minimum variance possible given that expected return:

The FOCs are:
∂L
∂w

= V w − λµ− γI = 0

∂L
∂λ

= E − w′µ = 0

∂L
∂γ

= I − w′I = 0

Where λ and γ are the Lagrange multipliers for the two constraints. Pre-multiplying the first FOC

by µ′V −1 we get

µ′w = λ
(
µ′V −1µ

)
+ γ

(
µ′V −1I

)
≡ λB + γA

And since µ′w = w′µ = E by the third FOC,

E = λB + γA

While pre-multiplying the same FOC by I ′V −1 we get

1 = I ′w = λ
(
I ′V −1µ

)
+ γ

(
I ′V −1I

)
≡ λA+ γC
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Since µ′V −1I = I ′V −1µ. Solving for λ and γ we get

λ =
E × C −A

D

γ =
B − E ×A

D

Where D ≡ B × C − A2. Therefore, pre-multiplying the first FOC by V −1 and plugging in λ and

γ we have

w∗ =
E × C −A

D
V −1µ+

B − E ×A
D

V −1I =
B × V −1I −A× V −1µ

D︸ ︷︷ ︸
≡g

+
C × V −1µ−A× V −1I

D︸ ︷︷ ︸
≡h

×E = g+hE

Suppose now that for some portfolio with return r we set E = E [r]. Similarly to the 2 assets

problem, the solution portfolio weights are linear in the (expected) portfolio returns:

w∗ = g + hE [r]

Note that for E [r] = 0 and E [r] = 1 we get g and g + h respectively, which are therefore frontier

portfolios as well. We established the following facts:

Proposition 1: The entire set of frontier portfolios can be generated by g and g+h:

any portfolio in the frontier is a linear combination of these two portfolios.

Proposition 2: Any linear combination of frontier portfolios is also a frontier port-

folio: the portfolio frontier can be described as linear combinations of any two frontier

portfolios (not just g and g + h).

It is possible to show that

σ2 (r) =
C

D

[
E [r]− A

C

]2

+
1

C

So that we know that 1) the expected return of the minimum variance portfolio is A
C , 2) the variance

of the minimum variance portfolio is 1
C , 3) is the equation of a parabola with vertex at

(
1
C ,

A
C

)
in the

expected return/variance space and of a hyperbola in the expected return/standard deviation space.

That is, in the expected return-variance space (V ar(r),E [r]) space the set of frontier portfolios looks

like:
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Where A, B, C and D are constants. In the expected return-standard deviation space (SD(r),E [r])

space the set of frontier portfolios is:

Given two portfolios A and B in the frontier:
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We can see that points above B and below A correspond to portfolios in which we short-sell assets.

How does all this change if we have a risk-free asset (i..e an asset whose variance is zero)? We can

adapt the problem considered above as follows:

max
w

1

2
w′V w

s. t. w′µ+ (1− w′ · I)rf = E [r]

Where rf is the net risk-free rate.3 Note that in this problem weights automatically sum to one since

w′I + (1− w′I) = 1, so we don’t have the second constraint in the problem without the risk-free

asset. First order conditions yield

w∗ = λV −1 (µ− I · rf )

So premultiplying both sides by (µ− I · rf )′ yields

λ =
E [r]− rf

(µ− I · rf )′ V −1 (µ− I · rf )

Since (µ− I · rf )′w∗ = µ′w∗ − I ′w∗ · rf = µ (w∗)′ − I (w∗)′ · rf = E [r] − rf from the constraint in

the problem above. Plugging this back in w∗ we finally get

w∗ =
V −1 (µ− I · rf )

(µ− I · rf )′ V −1 (µ− I · rf )
× (E [r]− rf )

Where the denominator is the square of the sharpe ratio H. We have two important results at this

3That is, rf = Rf − 1.
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point:

Result 1: For any two frontier portfolios p and q, we have E [rq]− rf = βq,p (E [rp]− rf ).

To see this, note that Cov (rq, rp) = w′qV wp = w′q (µ− I · rf )
E[rp]−rf
H2 =

(E[rq ]−rf)(E[rp]−rf)
H2 and

V ar (rp) =
(E[rp]−rf)

2

H2 , and dividing side by side yields the result. Importantly, this holds for any

two frontier portfolio p, thus in particular it also holds for the market portfolio.

Result 2: The frontier is linear in the (SD(r),E [r]) space.

This follows immediately from V ar (rp) =
(E[rp]−rf)

2

H2 by taking the square root and rearranging: we

get E [rp] = rf + H × SD (rp). Therefore the efficient frontier with a risk-free asset looks like the

following:

6.1.1 Two Fund Separation

What is the result of individual optimization on the aggregate supply and demand of assets? That

is, what can we say about the equilibrium state given what we have seen so far? We approach this

problem in two steps: first we solve for the efficient frontier of the J risky assets, then we solve for

the tangency point with the agents’ indifference curves in the (SD(r),E [r]) space. The advantage of

this approach is that we have the same portfolio of J risky assets for different agents with differing

risk aversion, and this makes it easier to apply equilibrium aguments. Represented in the graph
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below are the optimal portfolios of two investors with different degrees of risk aversion (the black

and red indiffrerence curves).

In this setup, mean-variance preferences represented by a utility function U
(
µ, σ2

)
simply satisfy

∂U
∂µ > 0 and ∂U

∂σ2 < 0: a simple example is U
(
µ, σ2

)
= µ − ρ

2σ
2. As we have already seen, these

preferences are equivalent to those of a Von Neumann-Morgenstern quadratic utility: if u (X) =

a + bX + cX2 then E [u (X)] = a + bµ + cσ2 + cµ2 = U
(
µ, σ2

)
. Again as already seen, if asset

returns are gaussian then also any portfolio is gaussian and therfore preferences can only depend on

the first two moments. Moreover if agents have CARA utility function we know that the certainty

equivalent for a lottery with mean µ and variance σ2 is going to be µ− ρ
2σ

2 where ρ is the absolute

risk aversion of agents.

6.1.2 Equilibrium leads to CAPM

The theory examined so far only tells us about the demand of assets: prices are taken as given, and

the composition of the optimal (risky) portfolio is the same for all investors. Setting the aggregate

demand for assets equal to the supply of assets, that is, the market portfolio. Through CAPM we

can find assets’ equilibrium prices and agents’ risk premium. As we have seen, the market portfolio

is efficient (since it lies on the efficient frontier); moreover, all individual optimal portfolios are

located on the half line originating at the point (0, rf ). This half-line is called capital market line

(CML) and can be written as

E [rh] = rf +
E [rmkt]− rf
σ (rmkt)

σh
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Note that the slope is the
E[rmkt]−rf
σ(rmkt)

sharpe ratio of the market portfolio.

Similarly, since σh
σ(rmkt)

= βh,mkt we can write

E [rh] = rf + βh,mkt (E [rmkt]− rf )

Which defines the security market line (SML)in the (β,E [r]) space:
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6.2 The Modern Approach

Given S states, each with probability πs > 0, we define the probability inner product as

[x, y]π ≡
S∑
s=1

xsysπs =
S∑
s=1

√
πsxs
√
πsys = E [xy]

And the π-norm as

‖x‖ =
√

[x, x]π

Some of its properties are:

1. ‖x‖ > 0 for all x 6= 0 and ‖x‖ = 0 if x = 0.

2. ‖λ · x‖ = |λ| · ‖x‖

3. ∀x, y ∈ RS ‖x+ y‖ ≤ ‖x‖+ ‖y‖

To visualize what the probability inner product does, it is important to note that it is equivalent

to an inner product in a space where the sth axis has been shrinked by a factor of
√
πs:
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So that x and y are π-orthogonal if [x, y]π = 0, that is, if E [xy] = 0.

Let Z be the space of all linear combinations of vectors z1, . . . zn. Given a vector y ∈ RS , the

solution to the minimization problem

min
α∈Rn

E

(y − n∑
i=1

αiz
i

)2


Is given by the FOC
S∑
s=1

πs

(
ys −

n∑
i=1

αiz
i
s

)
· zis

for i = 1, . . . , n. Let the solution be α̂, then we have yZ =
n∑
i=1
α̂iz

i ∈ Z. Define ε ≡ y − yZ , that is,

the smallest distance between the vector y and the Z space. From the FOC we have

S∑
s=1

πs
(
ys − yZs

)
· zis = E

[
ziε
]

= 0

For each i = 1, . . . , n: yZ is the othogonal projection of y on Z. Moreover, y can be decomposed

in two vectors, orthogonal to each other, one belonging to Z and one to the space orthogonal to Z:

y = yZ + ε, yZ ∈ Z and ε ⊥ Z.
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Again, this language should sound familiar to that of linear regression: suppose we have S data

points of the type
{
ys, x

1
s, . . . , x

K
s

}
where

y =


y1

...

yS


Is the dependent variable,

X =


x1

1 · · · xK1
...

. . .
...

x1
S · · · xKS


Is the matrix of explanatory variables and

β =


β1

...

βk


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Is a vector of coefficients. We hypothesize the linear model

y = Xβ + ε

and therefore look for β = β∗ solution to the problem

max
β∈Rk
L (β) =

1

2
(y −Xβ)′ (y −Xβ) =

1

2

S∑
s=1

(
ys −

K∑
k=1

βkx
k
s

)2

It turns out that β∗ = X ([X ′, X]π)−1 [X ′, y]π and therefore proj (y|X) = Xβ∗ = X ([X ′, X]π)−1 [X ′, y]π,

and

[y, y −Xβ∗]π = [y, ε]π = E [E [ε|y]× y] = 0

Note that:

� [x, y]π = E [xy] = Cov [x, y] + E [x]E [y]

� [x, x]π = E
[
x2
]

= V ar [x] + E [x]2

� ‖x‖ =
√
E [x2]

Moreover, we can write x as x = x̂+ x̃, where x̂ is a projection of x onto 〈1〉4 and x̃ is a projection

of x onto 〈1〉⊥, the space orthogonal to 〈1〉.

4The space spanned by the vector I = (1, . . . , 1), so x̂ can be written as x̂ = ξ · I where ξ is a scalar.
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Moreover we have:

� E [x] = [x, I]π = [x̂+ x̃, I]π = [x̂, I]π = [ξ · I, I]π = ξ · [I, I]π︸ ︷︷ ︸
=1

= ξ constant.

� V ar [x] = E
[
(x− E [x] · I)2

]
= E

[
(x̂+ x̃− E [x] · I)2

]
= E

[
(ξ · I + x̃− ξ · I)2

]
= V ar [x̃]

� σx ≡
√
V ar [x] = ‖x̃‖π

� Cov [x, y] = Cov [x̃, ỹ] = [x̃, ỹ]π

To see the last relation, just note that

Cov [x, y] = [x, y]π − E [x]E [y] = [x̂, ŷ]π + [x̃, ỹ]π + [x̂, ỹ]π︸ ︷︷ ︸
=0

+ [x̃, ŷ]π︸ ︷︷ ︸
=0

− E [x̂]E [ŷ]︸ ︷︷ ︸
=[x̂,ŷ]π

= [x̃, ỹ]π

6.2.1 Pricing and Expectation Kernel

Let 〈X〉 be the space of available payoffs. We know that if there is no arbitrage and the physical

probability {πs} is positive, then there exists a stochastic discount factor m ∈ RS such that m > 0

and a valuation functional V such that for z ∈ RS V (z) = E [mz]. Note that the stochastic discount

factor m needs not be in the asset span. We defineed a pricing kernel as the state price vector q∗

in the asset span 〈X〉: from now on we will equivalently refer to the pricing kernel as the stochastic

discount factor m∗obtained from q∗ (that is, m∗s = q∗s
πs

for all s = 1, . . . , S). Clearly, for m∗ we have

V (z) = E [m∗z] for all z ∈ RS , and if a state price vector exists, m∗ is unique. Note that for any

state price density m ∈ RS and z ∈ RS we have

E [(m−m∗) z] = 0

And because m = (m−m∗) + m∗, it follows that m∗ is the projection of m on 〈X〉. Clearly, if

markets are complete m = m∗.

We define the expectations kernel as the vector k∗ ∈ 〈X〉 such that for all z ∈ RS E [z] = E [k∗z]. If

the physical probability {πs} is positive the expectations kernel is unique. For any z ∈ RS we have

E [(I − k∗) z] = 0

So k∗ is the projection of I on 〈X〉. Obviously, if a bond can be replicated then k∗ = I. We are

now ready to define the mean variance frontier in terms of projections.

Definition 1: We call the mean variance frontier the set F ≡ {z ∈ 〈X〉 |@z′ ∈: E [z′] = E [z] , V (z′) = V (z) and V ar [z′] < V ar [z]}
Definition 2: We call ε the space generated by m∗ and k∗.
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We can decompose any vector z ∈ RS as z = zε + ε, where zε ∈ ε and ε⊥ε. Therefore E [ε] =

E [εk∗] = 0, V (ε) = E [εm∗] = 0 and Cov (ε, zε) = E [εzε] = 0 since zε ∈ ε and ε⊥ε. It follows that

V ar [z] = V ar [zε] + V ar [ε].

Claim: ε = F .

We call frontier returns the returns of frontier payoffs with non-zero prices. Let

Rm
∗

=
m∗

V (m∗)
=

m∗

E (m∗ ·m∗)

Rk
∗

=
k∗

V (k∗)
=

k∗

E (k∗)

If z ∈ F then we can write z = αm∗ + βk∗, so we can write frontie rreturns as

Rz =
αV (m∗)

αV (m∗) + βV (k∗)︸ ︷︷ ︸
≡λ

Rm
∗

+
βV (k∗)

αV (m∗) + βV (k∗)︸ ︷︷ ︸
=1−λ

Rk
∗

Graphically, frontier returns are payoffs with price equal to 1. Note that if k∗ = c ·m∗ for some

c ∈ R, we have Rz = Rm
∗

= Rk
∗
. If instead k∗ 6= c ·m∗ we can re-write the expression above as

Rz = Rk
∗

+ λ
(
Rm

∗ −Rk∗
)

For which we have

E [Rz] = E
[
Rk
∗
]

+ λ
(
E
[
Rm

∗
]
− E

[
Rk
∗
])

and

V ar [Rz] = V ar
[
Rk
∗
]

+ 2λCov
[
Rk
∗
, Rm

∗ −Rk∗
]

+ λ2V ar
[
Rm

∗ −Rk∗
]

The FOC with respect to λ of V ar [Rz] yields λmin = −
Cov

[
Rk
∗
,Rm

∗−Rk∗
]

V ar[Rm∗−Rk∗ ]
, so the minimum varianc

portfolio has a return of Rmin = Rk
∗

+ λmin

(
Rm

∗ −Rk∗
)
. Graphically,
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If a risk-free asset exists we have k∗ = I and variance and expectation of Rz simplify to:

V ar [Rz] = λ2V ar
[
Rm

∗
]

E [Rz] = Rf + λ
(
E
[
Rm

∗
]
−Rf

)
= Rf ± σ (Rz)

E
[
Rm

∗]−Rf
σ (Rm∗)

Definition 3: A return is mean-variance efficient if there is no other return with

same variance but greater expectation.

Mean variance efficient returns are frontier returns withE [Rz] ≥ E
[
Rmin

]
. If a risk-free asset can

be replicated, we have:

1. Mean variance efficient returns correspond to returns with λ = λmin = 0

2. The portfolio with return equal to the pricing kernel is not mean variance efficient, since

E
[
Rm

∗]
= E[m∗]

E[(m∗)2]
< 1

E[m∗] = Rf , where the inequality follows from V ar [m∗] = E
[
(m∗)2

]
−

E [m∗]2 > 0.

Now take two frontier portfolios with returns Rλ = Rk
∗

+ λ
(
Rm

∗ −Rk∗
)

and Rµ = Rk
∗

+

µ
(
Rm

∗ −Rk∗
)
: their covariance is given by

Cov
[
Rλ, Rµ

]
= V ar

[
Rk
∗
]

+ (λ+ µ)Cov
[
Rk
∗
, Rm

∗ −Rk∗
]

+ λµV ar
[
Rm

∗ −Rk∗
]
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These two portfolios have zero covariance if

µ = µ0 = −
V ar

[
Rk
∗]

+ λCov
[
Rk
∗
, Rm

∗ −Rk∗
]

Cov [Rk∗ , Rm∗ −Rk∗ ] + λV ar [Rm∗ −Rk∗ ]

For all λ 6= λmin, µ0 exists and clearly µ0 = 0 is a risk-free bond can be replicated.

6.2.2 Beta Pricing

Since Rλ and Rµ are frontier returns, we can write

Rβ = Rµ + β
(
Rλ −Rµ

)
(6.1)

Where Rβ is again a frontier return. Consider any asset with payoff xj : we know it can be decom-

posed in xj =
(
xj
)ε

+ εj with V
(
xj
)

= V
((
xj
)ε)

and E
[
xj
]

= E
[(
xj
)ε]

since εj⊥ε. The return of(
xj
)ε

is

Rj =
(
Rj
)ε

+
εj

V (xj)

Where
(
Rj
)ε

is a frontier return: using relation (1) above for
(
Rj
)ε

we can write

Rj = Rµ + βj

(
Rλ −Rµ

)
+

εj

V (xj)

Taking expectations we obtain the Beta Pricing Equation

E
[
Rj
]

= E [Rµ] + βj

(
E
[
Rλ
]
− E [Rµ]

)
Moreover, assuming µ = µ0,

Cov
[
Rλ, Rj

]
= βjV ar

[
Rλ
]

Since Rλ⊥ εj

V (xj)
, or βj =

Cov[Rλ,Rj]
V ar[Rλ]

.5 If a risk-free asset exists, the beta pricing equation simplifies

to

E
[
Rj
]

= Rf + βj

(
E
[
Rλ
]
−Rf

)
Note the similarity with the CAPM relation: here we have Rλ (a general frontier return) instead

of the market return, which we need to identify to be able to price assets. CAPM is equivalent to

this formulation with Rλ = Rm, that is, the market portfolio is a frontier return. We can derive

the conditions under which the market portfolio is a frontier return: suppose there are two periods

t = 0, 1. Agent i has individual endowmentwi1 at time t = 1, and the aggregate endowment at t = 1

5Because Rλ ∈ F while εj⊥F .
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is w̄ = w̄〈X〉 + w̄⊥ where w̄〈X〉 is the orthogonal projection of w̄ on 〈X〉 and w̄⊥ is orthogonal with

respect to 〈X〉. The market payoff is w̄〈X〉. Assume V (w̄〈X〉) 6= 0, let Rmkt = w̄〈X〉

V (w̄〈X〉)
and assume

Rmkt is not the minimum variance return. If Rmkt
⊥

is the frontier return that has zero covariance

with Rmkt, then going back to the beta pricing equation for every security j we have

E
[
Rj
]

= E
[
Rmkt

⊥
]

+ βj

(
E
[
Rmkt

]
− E

[
Rmkt

⊥
])

With βj =
Cov[Rmkt,Rj]
V ar[Rmkt]

.6 If a risk-free asset exists, the equation above becomes

E
[
Rj
]

= Rf + βj

(
E
[
Rmkt

]
−Rf

)
Which is the CAPM relation.

6.3 Testing CAPM

To test CAPM we simply test empirically its implications. There are two approaches: the time-

series approach involves a regression of individual returns on the market returns, and tests for the

null hypothesis that αi = 0:

Ri,t −Rf,t = αi + βi,m (Rmkt,t −Rf,t) + εi,t

On the other hand, the cross-sectional approach estimates the beta from a time series regression

and then regresses the individual returns on the betas, always testing for αi = 0:

Ri = αi + λβi,mkt + εi

The empirical evidence shows that while excess returns for high-beta stocks are low, they are high

for low-beta stocks (even though this effect has been weak since the early 1980s). Also, value stocks

have high returns despite low betas and “momentum stocks” have high returns and low betas.

There are two main critiques to CAPM:

1. The Roll critique is that the CAPM is not testable because composition of true market port-

folio is not observable in practice (even the S&P 500 is just an approximation).

2. The Hansen-Richard critique is that the CAPM could hold conditionally at each point in

time, but certainly fails unconditionally.

6Note that the equation above always holds with two (linearly independent) assets.
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Important counter-arguments include that the anomalies that make the CAPM fail empirically are

the result of excessive data mining, or that these anomalies are concentrated in small and illiquid

stocks, or yet that arkets are just inefficient and therefore it is impossible to test CAPM because

it already implies market efficiency. Finally, there are several practical issues in estimating the

regressions above: how do we estimate all the parameters we need for portfolio optimization? What

is the market portfolio? Should we impose any trade restrictions? What about international assets

and currency risk? Or even, should we assume a static market portfolio or one that changes over

time?

6.4 Practical Issues

An investor looking to build a mean-variance portfolio has to estimate J means (one for each asset),

J variances and J(J−1)
2 covariances.

6.4.1 Estimating Means

One way of eatimating means is the following: for any partition of [0, T ] with N intervals (so that

∆t = T
N ), E [R] = 1

∆t
1
N

N∑
i=1
Ri∆t = pT−p0

N (in log-prices), so knowing the first and last prices is

sufficient.

A different approach is to take the log-return on the market Xk, with k = 1, . . . , n over a period of

length h (that is, ∆ = n
h ). We want to estimate the dynamics

Xk = µ ·∆ + σ ·
√

∆εk

Where εk
iid∼ N (0, 1). The standard estimator for µ is µ̂ = 1

h

n∑
k=1

Xk, which has mean µ and variance

σ2

h : remarkably, the accuracy of the estimator depends only upon the total length of the observation

period h and not upon the number of observations n.

6.4.2 Estimating Variances

Using an “intuitive” estimator σ̂2 = 1
h

n∑
k=1

X2
k we get

E
[
σ̂2
]

= σ2 + µ2 · h
n

V ar
[
σ̂2
]

=
2σ2

n
+

4 · µ2 · h
n2
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Clearly, this estimator is biased since we did not subtract the expected return for each realization

in the formula for σ̂2. The magnitude of the bias however is decreasing in n, so the accuracy can

be improved my sampling the data more frequently.

Another approach is to do as we did for the means: for any partition of [0, T ] with N intervals (so

that ∆t = T
N ), E [R] = 1

∆t
1
N

N∑
i=1
ri∆t = pT−p0

N . Then we take

V ar [R] =
1

N

N∑
i=1

(Ri∆t − E [R])2 → σ2 as N →∞

In theory, observing the same time series at progressively higher frequencies increases the precision

of the estimate. However in practice we run into a number of issues: for instance, over shorter time

intervals increments are non-Gaussian; volatility is time-varying (so stochastic volatility, GARCH

and other more complicated models are more appropriate) and there is always market microstructure

“noise” that spoils the estimation.

6.4.3 Estimating Covariances

In theory, the estimation of covariances shares the features of variance estimation. In practice

however, it is difficult to obtain synchronously observed time-series: this may require interpolation,

which affects the covariance estimates. Moreover, the number of covariances to be estimated grows

very quickly with the number of assets, sp that the resulting covariance matrices are oftenunstable.

A possible solution is represented by “shrinkage estimators” (see Ledoitand Wolf, 2003, “Honey, I

Shrunk the Covariance Matrix”).

6.5 Unstable Portfolio Weights

A properly designed regression yields (positive) portfolio weights. There is a large literature on

statistical tests for the significance of these weights: for instance, Britton-Jones (1999) test it for

an international portfolio between 1977 and 1996 in 11 countries. The results are striking: weights

vary significantly across time and in the cross section, and standard errors on coefficients tend to

be very large.
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6.6 The Black-Litterman Approach

So far, the approach to estimating portfolio weights focuses only on historical data. Since portfolio

weights are very unstable, we need to somehow “discipline” our estimates. In particular, there are

a few features that we would like to incorporate in our optimal weight estimation:

� Unusually high (or low) past return may not (on average) earn the same high (or low) return

going forward

� Highly correlated sectors should have similar expected returns

� A “good deal” in the past (i.e. a good realized return relative to risk) should not persist if

everyone is applying mean-variance optimization.

The Black-Litterman approach adds Bayesian statistics to the CAPM framework: it starts with

a CAPM prior, dds “views” on the assets or the whole portfolio, and then updates weights using

Bayes’ rule.

6.6.1 The Black-Litterman Model

Priors: Suppose the returns of N risky assets (in matrix notation) are r ∼ N (µ,Σ). We impose

CAPM on the equilibrium risk premium of each asset, which is

Π = γ · Σ · weq
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Where γ is the investors’ corfficient of risk aversion and weq is the vector of equilibrium (market)

portfolio weights. The investor is assumed to start with a Bayesian prior µ = Π + εeq, where

εeq ∼ N (0, τ · Σ): the variance of the equilibrium return estimates is assumed to be proportional

to the variance of the returns (and τ is a scaling parameter).

Views: Investor views on a single asset affect many weights. Investor views regarding the perfor-

mance of K portfolios (e.g. each portfolio can contain only a single asset). Let P be a K × N
matrix of ortfolio weights, and let Q be a K × 1 vector of views regarding the expected returns of

these portfolios. Investor views are assumed to be imprecise:

P · µ = Q+ εv

Where εv ∼ N (0,Ω). Without loss of generality, Ω is assumed to be diagonal; εeq and εv are

assumed to be independent. Recall that if X1 and X2 arenormally distributed as

(
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))

Then the conditional distribution is given by

X1|X2 = x ∼ N
(
µ1 + Σ12Σ−1

22 (x− µ2) ,Σ11 − Σ12Σ−1
22 Σ21

)
Posterior: The Black-Litterman posterior distribution of expected returns R|Q is Gaussian with

E [R|Q] =
[
(τ · Σ)−1 + P ′Ω−1P

]−1 [
(τ · Σ)−1 Π + P ′Ω−1Q

]
V ar [R|Q] =

[
(τ · Σ)−1 + P ′Ω−1P

]−1

For example, consider the 2 assets case. You have a view on the (equally weighted) portfolio
1
2µ1 + 1

2µ2 = q + εv. Then

E [R|Q] =

[
(τ · Σ)−1 +

1

2Ω

]−1 [
(τ · Σ)−1 Π +

q

2Ω

]

V ar [R|Q] =

[
(τ · Σ)−1 +

1

2Ω

]−1

There are several advantages to this approach. First, returns are adjusted only partially toward

the investor’s views using Bayesian updating, thus recognizing that views may be due to estimation

error and only highly precise or confident views are weighted heavily. Second, returns are modified

in a way that is consistent with economic priors: highly correlated sectors have returns modified in

the same direction. Finally, returns can be modified to reflect absolute or relative views, and the
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resulting weight have reasonable values and do not load up on the estimation error.
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Exercises

1) Consider an economy in which there are three risky assets (A, B, and C) and one riskless asset.

Asset A has an expected net return of 15% and the variance of its return is 0.20. Asset B has an

expected net return of 20% and a variance of 0.40. Asset C has an expected net return of 55% and

its variance is 0.60. The covariance between each pair of asset returns is zero. There are 3000 shares

of A available in the economy and the current price of A is 20. There are 1500 shares of B available

and its current price is 40. Finally, there are 10,000 shares of C outstanding and the current price

of C shares is 18. Does there exists a riskless rate of return Rf so that given the current prices of

the risky asset , the Sharpe-Lintner pricing equation E
[
Rj
]

= Rf + βj,m
(
E
[
Rmkt

]
−Rf

)
? If so,

what is that rate? If not, why is it impossible to find such a rate?

2) Show as rigorously as possible that ε = F , that is, the space generated by the expectations and

pricing kernel is the mean-variance frontier. Be careful: you need to show both F ⊆ ε and ε ⊆ F .

3) A manufacturing firm has just been founded and needs to build a factory. It has a choice between

two different types of factory (factory 1 and factory 2) and the cost of building each is K1 = 120

and K2 = 50, respectively. Only one factory can be built at this time. The table below lists the

properties of the payoffs (X1 and X2) from the different projects, the gross market rate of return

(Rmkt) and the gross risk free rate (Rf ). You may assume that all the assumptions of the CAPM

hold and that the management seeks to maximize the market value of the firm at all times. To

simplify calculations, the net risk free rate of return is set to zero. You may also assume that any

investments the firm makes have a negligible effect on the market portfolio.

E [X1] = 300 E [X2] = 150 E
[
Rmkt

]
= 1.1

V ar [X1] = 10, 000 V ar [X2] = 2, 500 V ar
[
Rmkt

]
= 0.01

Corr [X1, X2] = 0.4 Corr
[
X1, R

mkt
]

= 0.8 Corr
[
X2, R

mkt
]

= 0.2

a) In a meeting, an executive argues as follows: Since the expected (net) return on factory 2 is

higher (200% vs. 150%), that one should be built. Another executive disagrees and argues that

naturally one should always build factory 1, since the expected profit is larger than if factory 2 were

built (180 vs. 100). Which (if any) of the two decision procedures suggested will maximize the firm

value? Why?

b) In the end, the executives ask you to decide which factory to build. What is your decision?

Compute the firm’s total value V . If 100 shares are outstanding, what is the stock price P?

(Assume that CAPM holds).

c) Suppose factory 2 has been built (do not assume this was the correct answer to part b)!) and

a year has passed. It is time to expand, and the firm plans to build factory 1. However, it has no

cash to fund the investment and needs to raise K1 = 120 in the capital market. The firm decides

to issue shares for a total value of 120. How many shares should it issue and at what price?
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d) In a shareholder meeting, there is a heated argument about whether or not to go ahead with the

building of the factory and the stock issue. An angry shareholder claims that although expected

returns are impressive, factory 1 is an extremely risky investment, not least because most of its

risk is not diversifiable. She argues that exposing the firm to this risk will reduce the value of her

shares. A concerned executive responds by pointing out that since the values of the two factories

are negatively correlated, the project does not really increase the riskiness of the firm’s portfolio of

assets that much and is therefore a good investment. What, in your opinion, is missing from the

analysis by the shareholder and the executive? Are their arguments valid?

4) Assume that the market return is in the mean variance frontier. Suppose that there are three

equally likely states. One security is risk free and has a gross return Rf = 0.9. A second security

has a gross return vector of (0, 1, 1). The market portfolio has a payoff of (1, 2, 2).

a) Use the CAPM to price a security that pays off (0, 0, 1).

b) Find the expectations kernel and pricing kernel.

c) Calculate the price of the same security (that pays off (0, 0, 1)) using the pricing kernel.

5) Show that E
[
σ̂2
]

= σ2 + µ2 · hn and V ar
[
σ̂2
]

= 2σ2

n + 4·µ2·h
n2 .

6) Derive the expressions for the mean and variance of the Black-Litterman posterior distribution

of expected returns R|Q.



Chapter 7

The Multi-Period Model

How can we deal with a multi-period setup in which several outcomes are possible after each outcome

realizes? One way to tackle this problem is to bring down the problem to a set of many “smaller”

one-period model problems:

114
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With this approach however, we need a more efficient way to define and work with the information

available at each time step. A natural way to approach this is using the concept of algebra:

7.1 Model Setup

We begin by defining an algebra:

Definition 1: Given a state space Ω, an algebra F is a non-empty collection of

subsets of Ω such that 1) Ø ∈ F 2) A ∈ F ⇒ AC ∈ F 3) A,B ∈ F ⇒ A ∪B ∈ F .

Definition 2: A random variable Y is measurable with respect to the algebra F if

{ω ∈ Ω|Y (ω) ≤ y} ∈ F for all y ∈ R.

Definition 3: A stochastic process is a collection of random variables {Yt}Tt=0.

Definition 4: A filtration is a collection of algebras FT = {Fs}Ts=t such that if u ≤ v
then Fu ⊆ Fv.

Definition 5: A stochastic process {Yt}Tt=0 is adapted to the filtration FT = {Fs}Ts=t
if Ys is measurable with respect to Fs for s = t, . . . , T .

Adaptation is the requirement that people cannot see in the future. Moving from a static to a

dynamic setting, we need to adapt our notation:
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� Rather than asset holdings, we will talk about dynamic strategies

� Instead of asset payoff vectors x we will talk about the “next period payoff” xt+1 + pt+1 of a

strategy

� Instead of the asset span, we will talk about the subset of marketed dynamic strategies

� Market completeness can be interpreted in two ways: static completeness (Debreu complete-

ness) and dynamic completeness (Arrow completeness)

� We defined no arbitrage with respect to asset holdings, but now it will be defined on dynamic

strategies

� States s ∈ {s1, s2, . . . sS} generalize to events At,i and final states st,i

� State prices qs become event prices qt,i

� The risk-free rate Rft varies over time

� the discount factor ρt is time-dependent and discounts from t to 0

� The risk-neutral probability is πQ (At,i) =
qt,i
ρt

� The pricing kernel now reads Mtp
j
t = Et

[
Mt+1

(
pjt+1 + xjt+1

)]
, and Mt = Rft+1Et [Mt+1]

We will use trees to illustrate dynamics. In the picture below, the tree has 7 events. Every event has

a positive probability attached to it, and we impose the consistency requirement that the probability

of any event equals the sum of the events that follow from its node: for example, denoting πt,s the

probability of At,s, we have π1,1 = π2,1 + π2,2. Clearly, for each t we have
∑
s
πt,s = 1.
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There are two ways to reduce this seemingly more complicated model to the one-period model.

The first is to boil down every event to a final state, and apply what we know from the one-period

model:

Note that if we simplify the tree in this way it follows that to achieve completeness we will need six

independent assets, one for each final state. The second way is to reduce each branch of the tree to

a one-period model:

In this case, assets can be re-traded conditionally on the the occurrence of event A1,1 or A1,2.

Completion can be achieved with two categories of assets: short-lived assets pay off only in the

period following the one in which they are traded, while long-lived assets pay off over many periods.
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7.2 Dynamic Trading and Market Completeness

Suppose now that asset can be traded in each period. This allows for dynamic completion, as well

as for the existence of bubbles and ponzi schemes in an infinite horizon setting. We will study

completeness with both short- and long-lived assets.

A short-lived asset is an asset that pays out only in the period immediately after the asset is issued.

Without uncertainty and with T one-period assets (that is, T assets that can be bought in period

t − 1 at price pt and pays off in period t for t = 1, . . . , T ), completeness requires that we are able

to transfer wealth between ant two periods. For example, if zero coupon bonds are traded in each

period and T = 2, at time t = 0 we can buy a quantity p2 of bonds that pay off at time t = 1 at a

total cost of p1p2, and then in period t = 1 we can invest the proceeds from the bond we bought to

buy one unit of the bond that pays at time t = 2: in this way we replicated a bond that is bought at

t = 0 and pays $1 at time t = 2, and therefore markets are complete. In general, for T periods the

cost of rolling over this kind of short-lived bond strategy is just pt ·pt+1 · . . . ·pT−1, and completeness

requires that we are able to transfer wealth between any two periods t and t′ (not just consecutive).

With uncertainty the reasoning is very similar. Suppose the event tree is as follows:
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And we want to replicate the payoff of an asset that is bought at t = 0 and pays $1 if event

A2,2 = s2,2 realizes. Let q2,2 denote the state price corresponding to A2,2 traded in t − 1. Then,

working backwards, in event A1,1 we can buy a one-period asset that pays $1 in event A2,2 for a

price q2,2; to be able to dispose of an amount q2,2 if event A1,1 realizes, in event A0 we need to buy a

quantity q2,2 of the asset that pays $1 if event A1,1 realizes, which costs q1,1 per unit. Thus the price

of the payoff of an asset that is bought at t = 0 and pays $1 if event A2,2 realizes is q1,1 ·q2,2, and we
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can repeat the argument for all other events to see that this market achieves dynamic completeness.

With long-lived assets, consider a T -period model without uncertainty. There is a single asset

paying $1 in t = T , which is tradable in each period for a price pt: this means that sequentially,

there are T prices for this asset. The payoff can be transferred from period s to period t > s by

purchasing the asset at time s and selling it in period t. For example, suppose there are two assets

that pay off like in the graph below.

The assets are long-lived, since they can be re-traded at t = 1 for the price pjt,s. Note that we have

two assets, but each assets can be traded in three events; moreover, the price of each asset can be

endogenously determined at time t = 0. Although one may be tempted to think that because we

only have 2 assets markets cannot be complete, in fact dynamic trading provides a way to transfer

wealth in all events:
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Call trading strategy [j, At,i] the cash flow of asset j that is purchased in eventAt,i and sold one period

later. There are six such trading strategies: [1, A0], [1, A1,1], [1, A1,2], [2, A0], [2, A1,1], [2, A1,2]. For

example, trading strategy [1, A1,1] costs p1
1,1 and pays out $1 in the first final state and zero in all

other events; and trading strategy [1, A0] costs p1
0 and pays out p1

1,1 in event 1, p1
1,2 in event 2, and

zero in all the final states.

These six trading strategies give rise to a 6× 6 payoff matrix:

Strategy [1, A0] [2, A0] [1, A1,1] [2, A1,1] [1, A1,2] [2, A1,2]

Event A0 −p1
0 −p2

0 0 0 0 0

Event A1,1 p1
1,1 p2

1,1 −p1
1,1 −p2

1,1 0 0

Event A1,2 p1
1,2 p2

1,2 0 0 −p1
1,2 −p2

1,2

State s2,1 0 0 1 0 0 0

State s2,2 0 0 0 1 0 0

State s2,3 0 0 0 0 1 0

State s2,4 0 0 0 0 0 1

The payoff matrix is regular (and hence markets are complete) if and only if the submatrix

p1
1,1 p2

1,1

p1
1,2 p2

1,2

Is regular (that is, it has rank equal to 2). The components of this submatrix are the prices of the

two assets conditional on period-1 events. There are cases in which these are collinear in equilibrium:
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for instance when the per capita endowment is the same in event A1,1 and A1,2, in state s2,1 and

s2,3, and in state s2,2 and s2,4, and if the probability of reaching state s1,1 after event A1,1 is the

same as the probability of reaching state s2,3 after event A1,2 then the submatrix is singular (but,

one might argue, then events A1,1 and A1,2 are effectively equivalent and could be collapsed into a

single event). Moreover, a random square matrix is regular: this means that generically, the market

is dynamically complete (that is, it is not complete only for information trees and asset structures

which have zero probability of showing up in any application).

We call branching number the maximum number of branches that fan out from any event in the

uncertainty tree: it turns out that this is also the number of assets necessary to achieve dynamic

completeness. This generalizes to the continuum of events and continuous time case, in which a

small number of assets is sufficient to achieve completeness because the need for many assets to

achieve completeness that arises from a large number of possible events is offset by the ability to

trade continuously, thus generating a large number of trading strategies. The classic example is the

Black-Scholes formula: Cox, Ross and Rubinstein showed that is is possible to build a binomial tree

model of Black-Scholes, with constant interest rates and in which the stock can only go up or down,

in which the market is dynamically complete with just two assets: the stock and the risk-free bond.

Thus an option on the stock can be replicated with dynamic delta-hedging.

7.3 The Multi-Period Stochastic Discount Factor

The idea of no arbitrage extends naturally to the multi-period setting: an arbitrage is a strategy

that has either no cost today but some positive payoff along the tree or a negative cost today and

no negative payoff along the tree. Moreover, it is equivalent to having no static arbitrage in each

branch of the tree.

Recall that no arbitrage requires that there esxists a positive stochastic discount factor mt+1 for

each subperiod t such that

pt = Et [mt+1 (pt+1 + xt+1)]

Define the multi-period stochastic discount factor as1

Mt+1 = m1 ·m2 · . . . ·mt+1

Multiplying each side by m1 ·m2 · . . . ·mt (which is measurable until the time t filtration) we get

Mtpt = Et [Mt+1 (pt+1 + xt+1)]

Assuming for this asset there is a stream of cash flows {xt}∞t=1 where each xt is a random payoff,

1We assume m0 = 1 from now on.
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we have for time t = 0

p0 = E0 [M1 (p1 + x1)]

similarly

M1p1 = E1 [M2 (p2 + x2)]

plugging in the equation for p0 we have

p0 = E0 [E1 [M2 (p2 + x2)] +M1x1] = E0 [E1 [M2p2 +M2x2 +M1x1]]

The Law of Iterated Expectations (LIE) states that, because of the property of filtrations that if

u ≤ v then Fu ⊆ Fv, for any random variable X the time-u expectation of the random variable

“time-v expectation of X” is equal to the time-u expectation of X. The intuition is as follows:

consider your current guess of what the weather will be on sunday, and compare it to the guess that

you will have on saturday about the weather on sunday. LIE states that your current guess on your

guess for the sunday weather is the same as your current guess for the sunday weather. Therefore

we get

p0 = E0 [M2p2 +M2x2 +M1x1]

Iterating k steps forward we have

p0 = E0 [Mkpk] +
k∑
t=1

E0 [Mtxt]

Taking the limit for k →∞ (and assuming lim
k→∞

E0 [Mkpk] = 0) we have

p0 =
∞∑
t=1

E0 [Mtxt]

In terms of projections, recall that m∗t+1 = proj (mt+1| 〈Xt+1〉), that is, there exists some h∗t such

that m∗t+1 = Xt+1h
∗
t and

pt = Et
[
X
′
t+1m

∗
t+1

]
= Et

[
X
′
t+1Xt+1

]
h∗t

So that

h∗t =
(
Et
[
X
′
t+1Xt+1

])−1
pt

And therefore

m∗t+1 = Xt+1

(
Et
[
X
′
t+1Xt+1

])−1
pt

Clearly we also have M∗t ≡ m∗1 ·m∗2 · . . . ·m∗t ∈ 〈Xt〉. Further, we can express m∗t+1 in terms of the
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covariance of returns Σt:

m∗t+1 = Et
[
m∗t+1

]
+
[
pt − Et

[
m∗t+1

]
Et [Xt+1]

]′
Σ−1
t [Xt+1 − Et [Xt+1]]

Ans also in terms of covariance of excess returns Ψt ≡ Covt
[
Ret+1

]
:

m∗t+1 =
1

Rft
− 1

Rft
Et
[
Ret+1

]′
Ψ−1
t

[
Ret+1 − Et

[
Ret+1

]]
Compare it to its continuous-time analogous2

dm∗t
mt

= −rfdt−
(
µ+

D

p
− rf

)′
Ψ−1
t dZt

Recall that if the one-period stochastic discount factor mt is not time-varying (that is, the distribu-

tion of mt is i.i.d for each t), then the expectations hypothesis holds and the investment opportunity

set does not vary. The corresponding R∗t of a single-factor state-price beta model is then relatively

easy to estimate, since over time we collect more and more realizations of R∗t . However, if mt (or

the correspondingR∗t ) is time-varying, then we can assume that it depends on some state variable

and need a multi-factor model to account for it. Indeed, suppose that R∗t = R∗ (zt), where zt is

some state variable. For example, suppose that zt can be either 1 or 2 with equal probability. Then

we could take all the periods in which zt = 1 and back out R∗ (1), and find R∗ (2) in a similar way.

Is it possible to do so in reality? The answer is no, because we have hedges across state variables.

7.4 Martingales

Let {Xt} be a stochastic process and {xt} a sequence of its realizations. We say that {Xt} is a

martingale if E [Xt+1|Xt = xt, Xt−1 = xt−1, . . . , X1 = x1] = xt. Paul Samuelson argued in 1965 that

asset prices have to be martingales in equilibrium:

pt =
1

1 + rft
EQ
t [pt+1 + dt+1]

this is trivial assuming assuming no dividends, no discounting and risk-neutral agents. Let’s examine

these cases one by one.

With discounting, in order for the price process to follow a martingale we simply need:

Et [δpt+1] = pt

With dividend payments, things are more complicated because pt depends on the dividend of the

2Where Zt is a Brownian Motion.
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asset in period t+ 1 but pt+1 does not (it is the ex-dividend price). However, for example, the value

of a fund that keeps reinvesting the dividends follows a martingale (LeRoy 1989): suppose the fund

owns nothing but one unit of asset j. Assuming agents are risk-neutral, the value of the fund at

time 0 is

f0 = p0 = E

∑
t≥1

δtxjt

 = δE
[
p1 + xj1

]

After receiving a (state contingent) dividend xj1, the fund buys more of asset j at price p1, thus

owning 1 +
xj1
p1

units of the asset. The expected discounted value of the fund is then

E [f1] = E

[
δp1

(
1 +

xj1
p1

)]
= E

[
δ
(
p1 + xj1

)]
= p0 = f0

So the discounted expected value of the fund is a martingale.

A similar statement is true of the agent is risk-averse. The difference is that we have to discount with

the risk-free interest rate instead of the agent’s discount factor, and use risk-neutral probabilities

(by now you should have an idea about why it is also called “equivalent martingale”) instead of

objective probabilities. Just like in the one-period model, we define the risk-neutral probability of

event A as

πQ (At,s) =
πt,sMt,s

ρt

Where ρt =

(
t∏

s=0
Rfs

)−1

is the risk-free discount factor between 0 and t. The initial value of the

fund is

f0 = p0 = E

∑
t≥1

Mtx
j
t

 = E

M1x
j
1 +

∑
t≥2

Mtx
j
t

 = E

m1

xj1 +
∑
t≥2

t∏
s=2

mtx
j
t

 =

= E
[
m1

(
xj1 + p1

)]
= E

[
M1

(
xj1 + p1

)]
Under the risk-neutral measure, this can be rewritten as

f0 = ρ1EQ
[
xj1 + p1

]
= ρ1EQ [f1]

Therefore, the properly discounted (ρ instead of δ) and properly expected (πQ instead of π) value

of the fund is indeed a martingale.

We can now introduce a fifth asset pricing formula. Let Ps (t, T ) be the time-s price of a (zero-

coupon) bond to be purchased at time t and with maturity T . We know the pricing relation is

Pt (t, T ) = Et [mt+1Pt+1 (t+ 1, T )]
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Dividing side by side the pricing relation for a generic asset j and rearranging we get

pjt
Pt (t, T )

= Et

 Pt+1 (t+ 1, T )mt+1

(
xjt+1 + pjt+1

)
Pt+1 (t+ 1, T )Et [mt+1Pt+1 (t+ 1, T )]

 = EFT
t

[
xjt+1 + pjt+1

Pt+1 (t+ 1, T )

]

Where the expectation is taken with respect to the risk-forward measure FT for which πFTs =

πsPt+1(t+1,T )mt+1

Et[mt+1Pt+1(t+1,T )] (note that πFTs ≥ 0 and
S∑
s=1

πFTs = 1 guarantee that πFT is a probability distribu-

tion). This asset pricing formula was speficically devised to price bond options, and boils down to

the risk-neutral measure if t+ 1 = T like in the one-period model case.

7.5 Ponzi Schemes and Rational Bubbles

Allowing for an infinite horizon allows agents to borrow an arbitrarily large amount and roll over

debt forever, without ever repaying the debt. This is referred to as a Ponzi scheme: it allows

infinite consumption. Consider a model with infinite horizon, no uncertainty and a complete set of

short-lived bonds. Let zt be the amount of bonds in the portfolio maturing in period t, and let pt be

the price of one such bond in period t− 1 (just like before). The consumption path with ct = yt + 1

is feasible: note that the agent consumes more than his endowment in each period, forever! This

can be financed with increasing debt:

zt+1 =
zt − 1

pt+1

For all t ≥ 0 and z0 = 0. However, Ponzi schemes can never be part of an equilibrium because

they remove the existence of a utility maximum, since the choice set of the agent is unbounded.

Therefore we need an additional constraint, called transversality condition:

lim
t→∞

ptzt ≥ 0

Which implies that the value of debt cannot diverge to infinity, or equivalently, that all debt must

eventually be redeemed. There are also additional solutions to this problem that incorporate a

“bubble” component to the asset price: consider again a model with no uncertainty and a consol

delivering $1 in each period, forever. Our formula states that

ptMt = Et [Mt+1 (pt+1 + xt+1)]

In our case xt ≡ 1 and we have no uncertainty, so we can write

Mtpt = Et [Mt+1pt+1] + Et [Mt+1xt+1]

Solving forward we obtain
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p0 =
∞∑
t=1

E0 [Mtxt]︸ ︷︷ ︸
Fundamental V alue

+ lim
k→∞

E0 [Mkpk]︸ ︷︷ ︸
Bubble Component

The fundamental value is the price given by the static-dynamic model, however repeated trading

gives rise to the possibility of a rational bubble. For example, fiat money can be understood as an

asset with no dividends. In the static-dynamic model, such an asset would have no value (because

the present value of zero is zero). But if there is a bubble on the price of fiat money, then it can

have a positive value (see Bewley, 1980). In asset pricing theory, we often rule out bubbles simply

by imposing

lim
k→∞

E0 [Mkpk] = 0
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Exercises

1) Consider the following stochastic processes for a risk free bond

6.60 
1.10 

3.30 
1.10 

5.00 
1.20 

3.50 
1.20 

p1
u 

p1
d 

p0 

1.00 

1.00 

1.00 

Note that no asset pays dividends. The price of the one-period risk-free bond is normalized to 1

in each period. Suppose that the risk-neutral probability of an “up” tick is 1/3 and that of a

“down” is 2/3, for every point in time.

a) Is the market statically complete? Is the market dynamically complete?

b) What is the event price of the event {up, up} and of the event of only one up, ie, {up, up}∪{up,

down}?

Now suppose we change the processes in the following manner:
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6.60 
1.10 

3.30 
1.10 

5.00 
1.00 

3.50 
1.00 

p1
u 

p1
d 

p0 

1.00 

1.00 

1.00 

c) Is the market statically complete? Is the market dynamically complete?

2) Consider a security market model with three dates, t = 0, 1, 2 and five states of the world,

s = 1, ..., 5. Investors have no information at time 0 and full information at time 2. At the

intermediate date, their information partition consists of the two sets A = {1, 2, 3} and B = {4, 5}.
There are two assets with the following price and dividend process:

� p1
0 = 3, p1

1(A) = 3/2, p1
1(B) = 3;

� d1
1(A) = 3/2, d1

1(B) = 2, d1
2(s) = s;

� p2
0 = 9/4, p2

1(A) = 3, p2
1(B) = 6/5;

� d2
1(A) = 1, d2

1(B) = 4/5, d2
2(s) = 6− s.

a) Is this price-dividend system arbitrage-free?

b) Is the contingent claim with the safe payoff stream yt = 1 (t = 1, 2) attainable? If it is, calculate

its arbitrage price and a replicating portfolio strategy.

3) Consider a security market with three dates, t = 0, 1, 2, and five states of the world, s = 1, . . . , 5.

The information structure is described by the following sequence of partitions of the state space:

P0 = {1, . . . , 5}

P1 = {A,B,C}

P2 = {{1}, {2}, {3}, {4}, {5}}
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where A = {1, 2}, B = {3, 4} and C = {5}. There are four securities with terminal payoffs given

by the matrix

D =


2 4 5 1

1 1 2 1

3 2 4 1

4 5 7 1

5 6 10 1


with the j-th column corresponding to the j-th security. The prices of these securities at date

t = 0, 1 are given by 
3.6 4 6.6 1

1.5 2.5 3.5 1

3.25 2.75 4.75 1

5 6 10 1


where the j-th column lists the price of the j-th security at date 0, event A, event B and event C,

respectively. The securities do not pay dividends prior to the terminal date

1. Verify that this securities market permits no arbitrage.

2. Is the market dynamically complete?

3. Compute the initial no-arbitrage price of the following three securities:

(a) A call option on security 1 with an exercise price of 3.5.

(b) A down-and-under call option on security 1 with an exercise price of 3.5. This is a call

option with an extra provision - if the price of security 1 ever drops below the exercise

price, then the option becomes worthless.

(c) A convertible security that in each state pays at the terminal date the largest payout of

the securities 1-4 in that state.



Chapter 8

Multi-Period Model: Options

Consider a European call option with strike K and maturity T . Its payoff is (ST −K)+, with no

cash flows between t = 0 and t = T . Unfortunately we are unable to statically replicate this payoff

using just the stock a risk-free bond: we need to dynamically hedge: that is, we need to engage in

a strategy where the required stock (and bond) position changes for each period, until maturity.

Since the replication strategy depends on specified random process of stock price, we need to impose

a specific model for the evolution of the stock. In a discrete time setting, the canonical model is

the Cox-Ross-Rubinstein binomial model. We assume that:

� The stock pays no dividends.

� The length of a period is h and over each period we assume that the stock can either go up

to St+h = u× St, or down to St+h = d× St, so for each period t the distribution is binomial.

� The gross risk-free rate between periods is Rf = er
f ·h, and by no arbitrage we require d <

Rf < u.

We start with a one-period binomial tree (for h = 1):

131
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Suppose we buy (“go long” in trading jargon) ∆ stocks and B bonds. The payoff from portfolio

C0 = ∆S0 +B is

C1 = ∆S1 +B ·Rf =

∆uS0 +B ·Rf if the stock goes up

∆dS0 +B ·Rf if the stock goes down

Call Cu the option payoff in the “up” state and Cd the option payoff in the “down” state. The

replicating strategy must satisfy

Cu = ∆uS0 +B ·Rf

Cd = ∆dS0 +B ·Rf

Solving for ∆ and B we get

∆ =
Cu − Cd
S0 (u− d)

B =
uCd − dCu
Rf (u− d)

∆ can be interpreted as the sensitivity of call price to a change in the stock price, or equivalently,

how much of the stock we should hold to hedge the option: for instance, to hedge a long call position

we need to sell ∆ units of the stock. Substituting ∆ and B in C0 we get

C0 =
Cu − Cd
S0 (u− d)

S0 +
uCd − dCu
Rf (u− d)

=
1

Rf

[
R− d
u− d

Cu +
u−R
u− d

Cd

]

Define πQ ≡ Rf−d
u−d and note that u−Rf

u−d = 1− πQ:

C0 =
1

Rf

[
πQCu +

(
1− πQ

)
Cd

]
=

1

Rf
EQ [C1]

Therefore the option price is the discounted payoff of the option under the equivalent martingale

(risk-neutral) measure Q. Note that Q is also the probability distribution that would justify the

current stock price in a risk-neutral world:

S0 =
1

Rf

[
πQS0u+

(
1− πQ

)
S0d
]

Note how we never even mentioned the physical probability measure π, since we are working with

relative asset pricing.
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8.1 Two-Period Binomial Tree

A Two-Period Binomial Tree is just a concatenation of single-period binomial trees:

To price the option at time t = 0 we just apply the same procedure backwards, starting from the

two sub-trees in the final period. To summarize,

1. We compute the risk-neutral probability πQ from the stock price

2. We plug these probabilities in the formula for C at the final two nodes, and once we find the

option prices for each of the two possible states in time t = 1 we repeat the procedure for the

initial node

3. We find ∆ and B at each time to find the replicating strategy.
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The general procedure for a two-period tree is illustrated below (from now on, let p = πQ):

Suppose we observe an option price on the market of $36, while the cost of the dynamic replication

strategy is $34.08: then e can take advantage of this arbitrage opportunity by selling the option and

buying the synthetic portfolio. Today we pocket $1.92, and at maturity our cash outflows equal our

inflows.

8.2 The Relation with the Black-Scholes Model

The Black-Scholes option pricing model introduced in chapter 1 can be viewed as the limit of a

binomial tree, in which the mumber of periods n (and therefore of states) goes to infinity. To see

this, take u = e
σ
√
T
n , d = 1

u = e
−σ
√
T
n and Rf = er

f ·T
n where T is the time to expiration and σ

is the annualized standard deviation of the stock log-returns. The general binomial formula for a

European call on non-dividend paying stock n periods from expiration is:

C0 =
1

Rf

 n∑
j=0

n!

j! (n− j)!
pj (1− p)n−j

(
ujdn−jS −K

)+
Plugging in u, d and Rf and taking the limit as n→∞ we get

S0N

 ln S0
K +

(
rf + σ2

2

)
T

σ
√
T

−Ke−rTN
 ln S0

K +
(
rf − σ2

2

)
T

σ
√
T


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Let d1 =
ln
S0
K

+
(
rf+σ2

2

)
T

σ
√
T

and d2 = d1 − σ
2

√
T , we can interpret the trading strategy under the

Black-Scholes formula as ∆ = N (d1) ∈ [0, 1] and B = −Ke−rTN (d2). We can also find the price

of a put option: by put-call parity, we have

P0 = C0 − S0 −Ke−r
fT = Ke−r

fTN (−d2)− S0N (−d1)

Note that the put option has ∆ = −N (−d1) ∈ [−1, 0]

We call intrinsic value of the option the quantity (St −K)+ and time value of the option the

quantity Ct − (St −K)+:

8.3 Delta-Hedging

A stock has a delta equal to one, while a portfolio of J assets - where each asset j has notional

amount Nj - has a delta 4p =
J∑
j=1

∆jNj . We say that the portfolio is delta neutral if ∆p = 0. Delta-

hedging a portfolio is only a “perfect” hedge (yielding the same final payoff as the corresponding

option) with continuous trading: computing the delta is a linear approximation to the option value,

but the option price is convex and therefore the second- ahd higher-order derivatives matter. Delta-

hedging when trading is not continuous is effective only for smal price changes. Delta-Gamma

hedging reduces this convexity risk, and involves trading with other options.
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8.4 The Volatility Smile

The Black-Scholes model assumes that the volatility σ is constant over time and through strikes.

This turns out to be a bad assumption: suppose we take option prices as they are observed in the

market, and then back out the volatility implied by these prices for many values of the time to

maturity T and strike K. It turns out that the volatility implied by options on the market exhibits

a volatility “smile”, while the Black-Scholes model implies a constant parameter σ in the (T,K)

space. Interestingly, this effect was almost absent before the 1987 “Black Monday” stock market

crash, and became very evident afterwards. This means that the Black-Scholes mdoel underprices

out of the money puts (and thus in the money calls) and overprices out of the money calls (and

thus in the money puts).

One way to get around this problem is to use a different model for the volatility of the stock called

“stochastic volatility”. Other issues in the Black-Scholes include stochastic interest rates, bid-ask

spreads, other transaction costs, etc.

8.5 Collateralized Debt Obligations

Collateralized Debt Obligations (CDOs) are derivatives which repackage cash-flows from a set of

assets. Payoffs are divided in tranches: in the event of underperformance of the underlying assets,

the Senior tranche is paid out first, the Mezzanine second, and the Junior tranche last. Option

theory is very useful in pricing CDOs: the tranches can be priced using analogues from option

pricing formulas, and it is possible to estimate the “implied default correlations” between the

underlying assets that correctly price the tranches.
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Exercises

1) Consider the binomial model with u = 1.2, d = 0.9, R = 1.1 and initial asset price S = 100.

1. Calculate the price of a call option with exercise price K = 100 and n = 4 periods left until

expiry.

2. Calculate the prices of the European and American put options with the same exercise price

and time to expiry as in (a).

3. Calculate the price of an option which, at the end of the third period, gives its holder the right

to purchase the underlying asset at the minimum price realized over the life of the option.

2) A stock price is currently $30. During each 2-month period for the next 6 month it will increase

by 8% or reduce by 10%. The annual risk-free interest rate is 5% (continuous compounding).

Use a three-step tree to calculate the value of a derivative (called turbo option) that pays off

ST × (30− ST )+, where ST is the stock price in 6 months.



Chapter 9

Multi-Period Model: Fixed Income

In this chapter we will cover the basic fixed income tools in the multi-period model introduced in

the last chapter. Let us begin with the U.S. Treasuries, these include:

� T-Bills, with maturity less than one year, usually with no coupon payments, and are usually

sold “at discount”, that is, the price is lower than the face value.

� T-Notes (1-10 year maturity) and T-Bonds (10-30 year maturity) pay a semiannual coupon

and sell “at par”, that is, when they are issued the price is the same as the face value.

Let rt (t1, t2) denote the (annualized) interest rate from t1 to t2 prevailing at time t, and let Pt (t1, t2)

be the price of a bond quoted at t to be purchased at time t1 and maturing at t2. We call yield to

maturity the percentage increase in dollars earned from the bond (annualized). It follows that at

time t = 0 the price of a zero-coupon bond (ZCB) purchased at the same time and with maturity t

is

P0 (0, T ) =
1

(1 + r0 (0, t))t

The yield curve is a plot of yields of zero coupon bonds as a function of their maturity. Usually,

long-term bond yields are higher than short-term bond yields – in which case we say that the yield

curve is upward sloping – but sometimes short-term bond yields are higher than long-term bond

yields – which we would call a downward sloping or inverted yield curve. The yield curve sometimes

has humps or other shapes as well. Formally we can represent the yield curve as the annualized

bond yield r0 (0, t) ≡ yt as a function of time. We can determine the forward rate r0 (t1, t2) as

follows: suppose you buy a ZCB with maturity t1, and at maturity you use all the proceeds from

this purchase to buy a bond with maturity t2. By no arbitrage, this strategy must have the same

price as buying a ZCB at time t = 0 with maturity t = t2:

P0 (0, t2) = P0 (0, t1)× P0 (0, t2)

138



CHAPTER 9. MULTI-PERIOD MODEL: FIXED INCOME 139

Which can be rewritten as

(1 + r0 (0, t1))t1 (1 + r0 (t1, t2))t2−t1 = (1 + r0 (0, t2))t2

Solving for the forwatd rate r0 (t1, t2),

r0 (t1, t2) =

[
(1 + r0 (0, t2))t2

(1 + r0 (0, t1))t1

] 1
t2−t1

− 1 =

(
P0 (0, t1)

P0 (0, t2)

) 1
t2−t1

− 1

A coupon bond can be similarly decomposed in the sum of n + 1 ZCBs: suppose the (annualized)

coupon payment is c and the bond pays a coupon on each date {T1, . . . , Tn} (with Ti − Ti−1 = 1
2

since coupon bonds usually pay semi-annually):

Bt (t, Tn) =

n∑
i=1

c

2
× Pt (t, Ti) + Pt (t, Tn)

Note that in order for the bond to sell at par, i.e. Bt (t, Tn) = 1, it must be that c = 2× 1−Pt(t,Tn)
n∑
i=1

Pt(t,Ti)
.

Finally, we can also write

Bt (t, Tn) =
n∑
i=1

c

2
× 1

(1 + rt (t, Ti))
Ti−t

+
1

(1 + rt (t, Tn))Tn−t

We define the yield to maturity of a coupon bond as the y ∈ R+ that solves

Bt (t, Tn) =
n∑
i=1

c

2
× 1

(1 + y)Ti−t
+

1

(1 + y)Tn−t



CHAPTER 9. MULTI-PERIOD MODEL: FIXED INCOME 140

9.1 Duration

Duration is the sensitivity of a bond’s price to changes in interest rates. It is sometimes interpreted

as the “average time” it takes to get the money back (although this is not exactly correct). It is

defined as

D(y) = −dB(y)

dy

Where y is the bond’s yield to maturity. Let Xt be the amount the coupon bond pays at date t,

then we can write

Bt (t, Tn) =
n∑
i=1

XTi

(1 + y)Ti−t

And therefore the duration is equal to

D(y) = − 1

(1 + y)
×

n∑
i=1

(Ti − t)
XTi

(1 + y)Ti−t

An alternative form of the duration is the Macaulay duration, defined as

MD (y) = −dB(y)/B (y)

dy/ (1 + y)
=

(1 + y)

B (y)
D (y)

Which for a coupon bond is equal to

MD (y) =
1

B (y)

n∑
i=1

(Ti − t)
XTi

(1 + y)Ti−t

Duration is useful in the context of portfolio immunization: suppose we own a bond with maturity

t1 and we wish to trade a quantity N of a bond ith maturity t2 so that the total duration of the

portfolio is zero. We set

D1(y1) +N ×D2(y2) = 0

That is,

N = −D1(y1)

D2(y2)
= −B1 (y1)MD1 (y1)

B2 (y2)MD2 (y2)

1 + y2

1 + y1

When interest rates move by a small amount, the total value of the portfolio made by 1 unit of

the t1-maturity bond and N units of the t2-maturity bond will not change. This will not be true

for larger changes in the interest rates however, as we are only using a first order Taylor (linear)

approximation; moreover, while the duration is computed with respect to the yield to maturity

which is constant and moves in parallel shifts, the yield curve changes in a non-parallel way, so the

change in value of the portfolio may not be exactly zero even with a small change in interest rates.
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9.2 The Term Structure of Interest Rates

Bond prices carry all the information on intertemporal rates of substitution, which is primarily

affected by expectations and indirectly by risk considerations. A collection of (real) interest rates

for different times to maturity is a meaningful predictor of the market expectations for future

economic developments: for instance, more optimistic expectations will produce an upward sloping

term structure of interest rates. To see this, consider a risk-free ZCB;

P0 (0, t) = E [Mt] =
1

(1 + yt)
t

Thus the yield is

yt = (P0 (0, t))−
1
t − 1 =

1

δ

(
E [u′ (ct)]

u′ (c0)

)− 1
t

− 1

Define the growth rate gt as the solution to

(1 + gt)
t =

ct
c0

For each t. If the representative agent has CRRA utility with parameter γ, a first order Taylor

approximation yields

yt ≈ γE [gt]− ln [δ]

so the (real) yield curve measures expected growth over different time horizons. Note that a second

order Taylor approximation would include u′′′ terms, so uncertainty on gt would also matter. If the

agent is prudent, then uncertainty about gt lowers the yield. The term structure of (real) interest

rates is upward sloping when the expected growth increases over time, and long-term uncertainty

on the growth rate is generally smaller than the short-term uncertainty (this makes intuitive sense,

for instance, if the growth rate is viewed as mean reverting).

9.3 The Expectations Hypothesis

The expectations hypothesis comprises three equivalent statements about the pattern of riskless

bond yields across maturity:

1. The T period yield is the average of the expected future one-period yields

2. The current forward rate equals the expected future spot rate.

3. The expected holding period returns are equal on bonds of all maturities.
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The term structure of interest rates is derived from the cross-section of bond prices at a particular

point in time; but how does the term structure evolve with time? This question is especially relevant

for an investor who is trying to decide what kind of bonds to invest into, or what kind of loan to

take. The expectations hypothesis is the classic theory for understanding the shape of the yield

curve: it is the traditional benchmark for thinking about the expected value of future yields. We

can state the expectations hypothesis in three mathematically equivalent forms:

1. The T -period yield is the average of expected future one-period yields: r0 (0, T ) = 1
T E0 [r0 (0, 1) + r1 (1, 2) + . . .+ rT−1 (T − 1, T )]

(plus a risk premium)

2. The forward rate equals the expected future spot rate: r0 (T − 1, T ) = E0 [rT−1 (T − 1, T )]

(plus a risk premium)

3. The expected holding period returns are equal on bonds of all maturities: E0

[
Pn(n,T )
P0(0,T )

]
=

E0

[
1+r0(0,T )
1+rn(n,T )

]
= 1 + r0 (0, n) (plus a risk premium)

The first form reflects a choice between two ways of getting money from 0 to T . You can buy a

T period bond, or roll-over T one-period bonds. Risk neutral investors will choose one over the

other strategy until the expected T -period return is the same. The three forms are mathematically

equivalent: if every way of getting money from t to t + 1 gives the same expected return, then so

must every way of getting money from t + 1 to t + 2, and, chaining these together, every way of

getting money from t to t+ 2.

The expectations hypothesis explains the shape of the yield curve: if the yield curve is upward

sloping, according to the expectations hypothesis this is because short term rates are expected to

rise in the future. The expectations hypothesis can be seen as a response to a classic misconception:

if long term yields are 10% but short term yields are 5%, an unsophisticated investor might think

that long-term bonds are a better investment. The expectations hypothesis shows how this may

not be true: according to it, future short rates are expected to rise, and this means that rolling over

the short-term bonds at a really high rate, say 20%, would give the same long-term return. When

the short term interest rates rise in the future, long-term bond prices decline. Thus, the long-term

bonds will only give a 5% rate of return for the first year.

Consider another example. Suppose we want to invest our money for two years, we have three

choices:

1. Buy a 2-year ZCB with gross yield 1 + r0 (0, 2) = 1 + y2

2. Buy a 1-year ZCB and roll it over when it matures. The expected gross yield is (1 + y1)E [(1 + r1(1, 2))]

3. Buy a 3-year ZCB and sell it after 2 years. The expected gross yield is E
[

1+y3

1+r2(2,3)

]
=

(1 + y3)E
[

1
1+r2(2,3)

]
.
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Note that only strategy 1 is fully risk-free. It is possible that the risky strategies have a premium

over the riskless strategy, called term premia (a particular form of risk premium). It is common to

add a constant risk premium and still refer to the resulting model as the expectations hypothesis.

One end of each of the three statements does imply more risk than the other. A forward rate is

known, while the future spot rate is not. Long-term bond returns are more volatile than short term

bond returns. Rolling over short term real bonds is a riskier long-term investment than buying

a long term real bond. These risks will generate expected return premia if they covary with the

discount factor, and our theory should reflect this fact.

The price of a t-period ZCB price is

P0 (0, t) = E [Mt] = E [m1 · . . . ·mt]

So if we buy t one-period ZCBs rolled over t − 1 times we get that the expected price for this

strategy is

P0 (0, 1) · E [P1 (1, 2)] · . . . · E [Pt (t− 1, t)] = E [m1] · E [m2] · . . . · E [mt]

These two strategies yield the same expected return if

E [m1 · . . . ·mt] = E [m1] · E [m2] · . . . · E [mt]

Which holds, for instance, if mt is not serially correlated, or in a world with full certainty or risk-

neutral agents, or yet in an “iid” world: in this case, there are no term premia. However, if the

mt’s are serially correlated (for instance because the growth process is serially correlated) then

the expectation hypothesis fails. Allowing an arbitrary time-varying risk premium, the model is a

tautology, of course. Thus, the entire content of the “expectations hypothesis” augmented with risk

premia is in the restrictions that the risk premium is constant over time. However, the constant

risk premium model does not do well empirically.

9.4 Futures

Recall that futures are exchange-traded forward contracts. Typical features include:

� There are standardized features, including the delivery date, the location and the procedures

� A clearinghouse matches the by or sell orders, keeps track of the customers obligations and

payments and is the effective counterparty of its customers

Unlike forward contracts, they are settled daily through mark-to-market accounting, which lowers

credit risk for the counterparties. Moreover, they are highly liquid, so it is much easier to offset
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an existing position. For instance, futures on the S&P 500 index have a fixed notional value unit

equal to $250 times the value of the index. It is a cash-settled contract for which the open interest

(the total number of buy/sell pairs) is known by the public at any time. The margin and mark-

to-market work as follows: there is an initial margin to be posted when the contract is traded,

plus a maintenance margin that is about 70-80% of the initial margin. As the underlying moves,

counterparties may be subject to requirements to increase the maintenance margin (a practice called

“margin call”) and the value of each contract is marked to the value implied by the market each

day. For short-dated contracts the difference between forwards and futures is rather small, while

it can be large for long-dated contracts or whenever interest rates are highly correlated with the

underlying asset.

The time t price of a future contract is always zero at initiation, so the price of the forward using

the equivalent martingale measure is:

0 = EQ
t [ρT (F0,T − ST )] = EQ

t [ρT ]EQ
t [F0,T − ST ]− CovQt [ρt, ST ]

Assuming a constant continuously compounded interest rate r,

F0,T = EQ
t [ST ]

So the future price of a stock F0,T equals the risk-neutral discounted value of the stocl at time T .

Other than in equities, forwards and futures are also used in currencies and commodities. In

currencies, suppose ry is the interest rate prevailing in Japan and x0 is the current $/¥ exchange rate.

The prepaid forward will be equal to F p0,T = x0e
−ryT (since by deferring delivery of the currency we

lose interest income from bonds denominated in that currency) and therefore the currency forward

is F0,T = x0e
(r−ry)T where r is the US interest rate. Note that F0,T > x0 whenever the domestic

interest rate exceeds the foreign interest rate. Commodity forward prices can be described by the

same formula as that for financial forward prices: F0,T = S0e
(r−δ)T , but for commodities δ is the

commodity lease rate (the return an investor would make by buying and lending the commodity).

The forward curve is the set of prices for different expiration dates for a given commodity. When it

is upward sloping, we say that the market is in contango; when downward sloping, we say the market

is in backwardation (the same market can be partly in contango and partly in backwardstion).

Forward rate agreements (FRAs) are over-the-counter contracts that guarantee a borrowing or

lending interest rate on a given notional amount. They can settle either in arrears, in which case

the amount exchanged is (rquarterly − rFRA)×Notional, or at the time of borrowing, in which case

the amount exchanged is
(rquarterly−rFRA)

1+rquarterly
× Notional. FRAs can be replicated using ZCBs. An

example of standardized FRAs is the Eurodollar futures, where the Eurodollar is the interest rate

prevailing on dollar-denominated accounts abroad (there is one key difference with FRAs however:

the settlement structure of Eurodollar contracts favors borrowers, therefore the rate implicit in
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Eurodollar futures is greater than it would be for an FRA rate). The payoff at expiration is

(Futures Price− (100− rLIBOR)) × $2500. Recently, Eurodollar futures took over T-bill futures

as the preferred contract to manage interest rate risk: this is partly because LIBOR tracks the

corporate borrowing rates better than the T-bill rate.

A similar type of contract is a repurchase agreement, or repo. This entails selling a security with

an agreement to buy it back at a fixed price: the underlying security is held as collateral by the

counterparty. A repo is therefore a form of collateralized borrowing often used by securities dealers

to finance inventory. Normally a “haircut” is charged by the counterparty to account for credit risk.

9.5 Swaps

A swap is a contract in which two parties agree to exchange a floating against a fixed stream of cash

flows, commonly used by companies to hedge a stream of risky payments. A single-payment swap

is equivalent to a forward contract: the price today is zero and the amount exchanged at expiration

is Notional × (rfloating − rfixed). Swaps can settle either in cash (financial settlement), with no

exchange of notional amount, or in phisical settlement with exchange of notional (or delivery of the

asset). The market value of a swap is zero at interception; once the swap is struck, its market value

will generally no longer be zero because forward prices for oil and interest rates will change over

time, and even if prices did not change, the market value of swaps will change over time due to

the changes in the implicit borrowing and lending rates. It is possible to exit the swap contract by

entering into an offsetting swap transaction (with or without the same counterparty). The market

value of the swap is the difference in the present value of payments between the original and new

swap rates. The notional of the swap is the amount on which the interest payments are based, while

the life of the swap is called “swap term” or “swap tenor”. The market-maker is a counterparty to

the swap wishing earns fees for offering this service, not to take on interest rate risk. Therefore, the

market-maker will hedge the floating rate payments by using, for example, forward rate agreements.

Finally, we call swap rate payer the counterpart which is receiving the floating rate (and paying the

fixed rate), and swap rate receiver the opposite counterparty.

Suppose there are n swap settlement dates occurring on dates {ti}ni=1. As before, the (implied)

forward rate between ti and ti−1 is r0 (ti−1, ti) and the price of a ZCB with maturity ti is P0 (0, ti).

Call the fixed swap rate R, then we can write

0 =
n∑
i=1

P0 (0, ti) [R− r0 (ti−1, ti)]
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Which can be solved for R to yield:

R =

n∑
i=1
P0 (0, ti) r0 (ti−1, ti)

n∑
i=1
P0 (0, ti)

=

n∑
i=1

r0 (ti−1, ti)

 P0 (0, ti)
n∑
i=1
P0 (0, ti)


Thus, the fixed swap rate is as a weighted average of the implied forward rates, where zero-coupon

bond prices are used to determine the weights. Using the fact that r0 (ti−1, ti) = P0(0,ti−1)
P0(0,ti)

− 1 we

can also write:

R =

n∑
i=1
P0 (0, ti) r0 (ti−1, ti)

n∑
i=1
P0 (0, ti)

=

n∑
i=1

[P0 (0, ti−1)− P0 (0, ti)]

n∑
i=1
P0 (0, ti)

=
P0 (0, t0)− P0 (0, tn)

n∑
i=1
P0 (0, ti)

=
1− P0 (0, tn)
n∑
i=1
P0 (0, ti)

Which is equivalent to the formula for the coupon of bond trading at par: the swap rate is the

coupon rate on a par coupon bond (and a firm that swaps floating for fixed rates ends up with the

economic equivalent of a fixed- rate bond).

The set of swap rates at different maturities is called swap curve. The swap curve should be

consistent with the interest rate curve implied by the Eurodollar futures contract, which is used to

hedge swaps: recall that the Eurodollar futures contract provides a set of 3-month forward LIBOR

rates. In turn, zero-coupon bond prices can be constructed from implied forward rates. Therefore,

we can use this information to compute swap rates. The swap spread is the difference between swap

rates and Treasury-bond yields for comparable maturities.

A deferred swap is a swap that begins at some date in the future, but its swap rate is agreed upon

today. The fixed rate on a deferred swap beginning in k periods is computed as

R =

n∑
i=k

P0 (0, ti) r0 (ti−1, ti)

n∑
i=k

P0 (0, ti)

Note that for k = 1 we are back to our previous case. An amortizing swap is a swap whose notional

value is declining over time (e.g. a floating rate mortgage); an accreting swap is a swap where the

notional value grows over time. In both cases, the fixed swap rate is still a weighted average of

implied forward rates, but now the weights also involves the changing notional Qt:

R =

n∑
i=1
QtiP0 (0, ti) r0 (ti−1, ti)

n∑
i=1
QtiP0 (0, ti)
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The advantage of swaps is that they allow firms to separate credit and interest rate risk: by swapping

its interest rate exposure, a firm can pay the short-term interest rate it desires, while the long-term

bondholders will continue to bear the credit risk.
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Exercises

1) Suppose that the return of a zero coupon bond of maturity i satisfies:

ri = γif + εi

where Cov(εi, εj) = 0 whenever i 6= j, and Cov(εi, f) = 0.

Currently the yield of all zero coupon bonds is 5% annually compounded, that is the price of a bond

that matures in i years equals (1 + .05)−i. You are holding a coupon bond that pays a coupon of 6

in one, two and three years and pays 106 in 4 years.

a) What is the price of this coupon bond if there is no arbitrage?

b) Calculate the sensitivity of this coupon bond with respect to f, as a function of the γi’s.

c) Suppose now that γi = i, and that σ2(εi) = σ2 for each i = 1, 2, 3, 4. You want to hedge the

factor sensitivity of the coupon bond. You are told that you can short a single bond among the

zero-coupons with maturities 1,2,3 years. Explain how you would choose the “best” maturity

and how much would you short of the zero-coupon bond to hedge the common factor exposure.

Give some intuition for your result.



Chapter 10

The Multi-Period Equilibrium Model

Going back to the CAPM model discussed in chapter 6, recall that if the one-period stochastic

discount factor mt is not time-varying (that is, the distribution of mt is i.i.d for each t), then the

expectations hypothesis holds and the investment opportunity set does not vary. The corresponding

R∗t of a single-factor state-price beta model is then relatively easy to estimate, since over time we

collect more and more realizations of R∗t . However, if mt (or the correspondingR∗t ) is time-varying,

then we can assume that it depends on some state variable and need a multi-factor model to account

for it. Indeed, suppose that R∗t = R∗ (zt), where zt is some state variable. For example, suppose

that zt can be either 1 or 2 with equal probability. Then we could take all the periods in which

zt = 1 and back out R∗ (1), and find R∗ (2) in a similar way. Is it possible to do so in reality? The

answer is no, because we have hedges across state variables.

10.1 Dynamic Hedging Demand INCOMPLETE

Trade-off: Low return realization in next period. Good since opportunity going forward is high,

so you invest more, but bad since marginal utility is high, so you consume and invest less. High

return realization in next period. In terms of CRRA utility: if γ is higher (lower) than 1, then first

(second) effect dominates. If γ = 1 (log-utility), then the two effects perfectly offset each other.

Illustration with noise trader risk: suppose the fundamental value v is constant but the price is noisy

(due to noise traders). If the asset is underpriced, say p = 0.9, it might be even more underpriced

in the next period. Myopic risk-averse investor: buy some of the asset and push price towards 1,

but not fully. Forward-looking risk-averse investor: there can be intermediate losses if the price

declines in next period, but then the investment opportunity set improves even more i.e. if returns

are bad, then there are greater opportunities (dynamic hedge).

149
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10.2 Intertemporal CAPM

The static problem is equivalent to the dynamic problem in a few special cases:

� In a general ICAPM setting, if agents have CRRA utility with γ 6= 1 and changing investment

opportunity sets.

� In a CRRA utility setting, i.i.d returns and constant risk-free rate. In particular, short- and

long-run investors have the same portfolio weights and the fraction of wealth invested in each

asset is time-invariant (Merton 1971).

� Agents have log utility with non-i.i.d. returns.

If the βs of each subperiod CAPM are time-independent, then conditional and unconditional CAPM

are equivalent. If βs are time-varying they may co-vary with Rm and hence CAPM equation does

not hold for unconditional expectations: an additional co-variance terms has to be considered, and

we move from a single- to multi-factor setting.

The following model is due to Merton (1973). The Bellman equation is given by

V (Wt, zt) = max
{ct}
{u (ct) + δEt [V (Wt+1, zt+1)]}

Where Wt+1 = RWt+1 (Wt − ct) and RWt+1 is the optimal portfolio. The FOC yields:1

0 = u′ (ct)− δEt
[
VW (Wt+1, zt+1)RWt+1

]
Since VW (Wt+1, zt+1) = δEt

[
VW (Wt+1, zt+1)RWt+1

]
by the envelope theorem, we get that for all t

u′ (ct) = VW (Wt, zt)

So the one-period pricing eqaution reads

E
[
Rjt+1

]
−Rft+1 = −Covt

[
u′ (ct+1)

E [u′ (ct+1)]
, Rjt+1

]
=

= −Covt
[

VW (Wt+1, zt+1)

E [VW (Wt+1, zt+1)]
, Rjt+1

]
Taylor expanding VW around (Wt, zt) we get

VW (Wt+1, zt+1) ≈ VW (Wt, zt) + VWW (Wt, zt) ∆Wt+1 + VWz (Wt, zt) ∆zt+1

1Here VW denotes the derivative of V with respect to its first argument.
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Plugging this in the expression above we obtain

Et
[
Rjt+1

]
−Rft+1 = −Covt

[
VW (Wt, zt) + VWW (Wt, zt) ∆Wt+1 + VWz (Wt, zt) ∆zt+1

E [VW (Wt+1, zt+1)]
, Rjt+1

]
=

= − VWW (Wt, zt)

Et [VW (Wt+1, zt+1)]︸ ︷︷ ︸
RR Coefficient

Covt

[
∆Wt+1, R

j
t+1

]
− VWz (Wt, zt)

Et [VW (Wt+1, zt+1)]︸ ︷︷ ︸
Additional ”Risk Factor”

Covt

[
∆zt+1, R

j
t+1

]

Now assume the representative agent has CRRA utilityfunction, then

1 = Et

[
δ

(
Ct+1

Ct

)−γ
Rjt+1

]

With a second-order Taylor approximation we get

0 = ln δ − γEt [4ct+1] + Et
[
rjt+1

]
+

1

2

[
γ2V arcc + V arjj − 2γCovcj

]
Where ct ≡ lnCt, r

j
t ≡ lnRjt , V arcc ≡ V art [∆ct+1], V arjj ≡ V art

[
∆rjt+1

]
and Covcj ≡ Covt

[
∆ct+1,∆r

j
t+1

]
.

For the market portfolio j = m, this can be rewritten as

Et [4ct+1] = µm +
1

γ
Et
[
rmt+1

]
Where

µm =
1

γ
ln δ +

1

2

[
γV arcc +

V armm
γ

− 2Covcm

]
The budget constraint is

Wt+1 = Rmt+1 (Wt − Ct)

Or equivalently
Wt+1

Wt
= Rmt+1

(
1− Ct

Wt

)
Or, in logs,

wt+1 = rmt+1 + ln
(
1− ect−wt

)
Taylor expanding ln (1− ect−wt) around (c̄, w̄) we get

ln
(
1− ect−wt

)
≈ ln

(
1− ec̄−w̄

)
− ec̄−w̄

1− ec̄−w̄
(ct − wt − (c̄− w̄))
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Letting ρ = (1− ec̄−w̄) we can write

wt+1 = rmt+1 + k +

(
1− 1

ρ

)
(ct − wt)

Where k = ln (1− ec̄−w̄) + ec̄−w̄

1−ec̄−w̄ (c̄− w̄) is a constant. Using the identity ∆wt+1 = ∆ct+1 +

(ct − wt)− (ct+1 − wt+1) we have

ct − wt =

∞∑
k=1

ρk
(
rmt+1 −∆ct+k

)
+

ρk

1− ρ

Taking expectations,

ct − wt =

∞∑
k=1

ρkEt
[
rmt+k −∆ct+k

]
+

ρk

1− ρ

Combining this with the log-linearized budget constraint we get

ct+1 − Etct+1 =
∞∑
k=0

ρk
(
rmt+k+1 − Et

[
rmt+k+1

])
−
∞∑
k=0

ρk (∆ct+k+1 − Et [∆ct+k+1])

Combining this with Et [4ct+1] = µm + 1
γEt

[
rmt+1

]
we get

ct+1 − Etct+1 = rmt+1 − Etrmt+1 +

(
1− 1

γ

) ∞∑
k=0

ρk
(
rmt+k+1 − Et

[
rmt+k+1

])
Finally, this implies that

V arjc = V arjm +

(
1− 1

γ

)
V arjh

Where V arjh = Covt

[
rjt+1,

∞∑
k=0

ρk
(
rmt+k+1 − Et

[
rmt+k+1

])]
, which is the covariance of asset j with a

hedge portfolio h. For a risk-free asset the log-Euler equation simplifies to

0 = ln δ − γEt [∆ct+1] + rft+1 +
1

2
γ2V arcc

Then we can write the Consumption CAPM as

Et
[
rjt+1

]
− rft+1 = −V arjj

2
+ γV arjc

And finally, the Intertemporal CAPM as

Et
[
rjt+1

]
− rft+1 = −V arjj

2
+ γV arjm + (γ − 1)V arjh
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Appendix: The Bellman Equation

Under certain conditions, we can show that a Bellman equation will have a well- behaved solution.

There are a handful of ways to solve such an equation. Here, we will consider two in the context of

a simple problem where u (c) = log (c) and g (w, c) = w − c.

1) Iteration: in this method, we begin with some guess for V0 (w) (for example, V0 (w) = 0) and

solve the first order condition to find V1 (w) = max
c
{u (c) + βV0 (g (w, c))}. We iterate again to

obtain V2, V3, etc. and the true value function is given by the limit lim
k→∞

Vk.

1. Solve the first order condition to obtain c0 = h0 (w).

2. Plug h0 (w) into V1 (w) = u (h0 (w)) + βV0 (g (w, h0 (w))).

3. Repeat to obtain V2 (w), V3 (w), and so on. Can you guess what is Vk (w)?

4. Take the limit lim
k→∞

Vk (for the specific example u (c) = log (c) and g (w, c) = w − c, use your

knowledge of geometric series).

2) Guess and Verify: in this case, we guess a form of the value function V (w) = A + B log (w)

and solve for the corresponding coefficients A and B that make this guess correct. In particular,

we leave the coefficients A and B as variables in the problem, plug in the consumption c implied

by the FOC and then solve for A and B that make the Bellman Equation consistent.

1. Begin with V (w) = A + B log (w) and plug into the Bellman equation to obtain V (w) =

max
c
{log (c) + β log (w − c)}.

2. Take the FOC with respect to c and plug the solution back into the equation above to solve

for the right-hand side.

3. Note that the left-hand side of the Bellman Equation must also be equal to V (w) = A +

B log (w). Thus, the coefficient on the right-hand side on log (w) must be equal to B. Also,

the constant on the right-hand side must be equal to A. Compute A and B and verify that

this result yields the same V obtained with the iteration method.
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Extension on Chapter 7: Multi-Period Utility

Ponzi Schemes and Rational Bubbles Allowing for an infinite horizon allows agents to borrow

an arbitrarily large amount and roll over debt forever, without ever repaying the debt. This is

referred to as a Ponzi scheme: it allows infinite consumption. Consider a model with infinite

horizon, no uncertainty and a complete set of short-lived bonds. Let zt be the amount of bonds in

the portfolio maturing in period t, and let pt be the price of one such bond in period t− 1 (just like

before). The problem the agent solves is

max
{ct}

∞∑
t=0

δtu (ct)

s.t. c0 − w0 ≤ −p1z1, ct − wt ≤ zt − pt+1zt+1

For all t > 0. The consumption path {ct} such that ct = wt + 1 is feasible: note that the agent

consumes more than his endowment in each period, forever! This can be financed with increasing

debt:

zt+1 =
zt − 1

pt+1

For all t ≥ 0 and z0 = 0. However, Ponzi schemes can never be part of an equilibrium because

they remove the existence of a utility maximum, since the choice set of the agent is unbounded.

Therefore we need an additional constraint, called transversality condition:

lim
t→∞

ptzt ≥ 0

Which implies that the value of debt cannot diverge to infinity, or equivalently, that all debt must

eventually be redeemed. There are also additional solutions to this problem that incorporate a

“bubble” component to the asset price: consider again a model with no uncertainty and a consol

delivering $1 in each period, forever. Our formula states that

ptMt = Et [Mt+1 (pt+1 + xt+1)]

In our case xt ≡ 1 and we have no uncertainty, so we can write

Mtpt = Mt+1pt+1 +Mt+1

Solving forward we obtain
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p0 =
∞∑
t=1

Mt︸ ︷︷ ︸
Fundamental V alue

+ lim
T→∞

MT pT︸ ︷︷ ︸
Bubble Component

Recall that according to our “static” dynamic model we should have p0 =
∞∑
t=1
Mt, with Mt =

m1 ×m2 × . . .×mt. Recall that Mt = δt u
′(ct)
u′(c0) , so

p0 =

∞∑
t=1

δt
u′ (ct)

u′ (c0)

At time t this becomes

pt =

∞∑
s=t+1

δs−t
u′ (cs)

u′ (ct)

So at t+ 1 we have (since mt = δ u′(ct)
u′(ct−1))

pt+1 =

∞∑
s=t+2

δs−t−1 u′ (cs)

u′ (ct+1)
=

1

δ

u′ (ct)

u′ (ct+1)

∞∑
s=t+2

δs−t
u′ (cs)

u′ (ct)
=

1

δ

u′ (ct)

u′ (ct+1)

( ∞∑
s=t+1

δs−t
u′ (cs)

u′ (ct)
− δu

′ (ct+1)

u′ (ct)

)
=

=
1

δ

u′ (ct)

u′ (ct+1)

(
pt − δ

u′ (ct+1)

u′ (ct)

)
=

1

mt+1
(pt −mt+1)

Which can be rewritten as

pt = pt+1mt+1 +mt+1

Solving this forward we get again

p0 = m1 +m1m2 + . . . =

∞∑
t=1

Mt + lim
T→∞

MT pT

The fundamental value is the price given by the static-dynamic model, however repeated trading

gives rise to the possibility of a rational bubble. For example, fiat money can be understood as an

asset with no dividends. In the static-dynamic model, such an asset would have no value (because

the present value of zero is zero). But if there is a bubble on the price of fiat money, then it can

have a positive value (see Bewley, 1980). In asset pricing theory, we often rule out bubbles simply

by imposing

lim
T→∞

MT pT = 0
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Time Preferences We will assume a Von Neumann-Morgenstern time-separable utility function

u (c0) +
∑
t>0

δ(t)E [u (ct)]

Where δ (t) ∈ (0, 1] is the discount factor and δ (t) > δ (t+ 1). δ(t) also represents the intertemporal

rate of substitution. The agent solves for the whole comsumption plan (c0, c1, . . .) (for each event

on the tree) at t = 0. The two main functional forms are (1) exponential discounting: δ (t) = δt

and

E

∑
t≥0

δtu (ct)


In this functional form the agent prefers early resolution of uncrtainty if this affects his actions,

and is indifferent otherwise. The other main functional form for δ (t) is the hyperbolic discounting

formulation:2

E

[
u (c0) + β

∑
t>0

δtu (ct)

]

Which can be expressed in recursive form and is connected to the preference for the timing of

uncertainty resolution.

We can extend our consumption-savings problem encountered in chapter 4 to a multi-period setting:

the problem becomes

max
{st,at}T−1

t=1

E

[
T∑
t=0

δtU (ct)

]
s.t. cT = sT−1 (1 + rf ) + aT−1 (rT − rf )

ct + st ≤ st−1 (1 + rf ) + at−1 (rT − rf )

c0 + s0 ≤ Y0

A result similar to that found in chapter 4 holds as well:

Theorem (Merton, 1971): For CRRA utility, constant rf and i.i.d. {rt}Tt=1 the ratio
at
st

is time-invariant

A “Static” Dynamic model The Debreu completeness refers to a setting in which information

is gradually revealed over many periods, but all decisions on asset trading are made at time t = 0:

decision making is static, even if the model is dynamic.

2More precisely, this is a special case of hyperbolic discounting.
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If Arrow-Debreu securities conditional on each event A are tradable, the representative agent solves

max
{ct}∈B(y)

∑
t≥0

δtE [u (ct)]

Where B(y) is the intertemporal budget constraint (as a function of the income stream {yA}):

qA (yA − cA) ≤ wA

Where qA is the state price of the event A. The FOC with respect to ct(A0) = c0 yields

u′ (c0) = λ

Since π0 = 1, t (A0) = 0 and qA0 = 1. Assuming the constraint is binding, for a generic event A

instead we get

δt(A)πAu
′ (cA) = λqA

Therefore we obtain the equilibrium stochastic discount factor:

qA
πA

= δt(A)u
′ (cA)

u′ (c0)
≡Mt(A) (A)

We call the vector Mt the multi-period stochastic discount factor. Note that this can be written as

Mt(A) (A) = δt(A)u
′ (cA)

u′ (c0)
=

(
δ
u′
(
cψ1(A)

)
u′ (c0)

)
︸ ︷︷ ︸

mψ1(A)

·

(
δ
u′
(
cψ2(A)

)
u′
(
cψ1(A)

))︸ ︷︷ ︸
mψ2(A)

· · ·

δ u′
(
cψt(A)(A)

)
u′
(
cψt(A)−1(A)

)


︸ ︷︷ ︸
mψt(A)(A)

=

t(A)∏
t=1

mψt(A)
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Where mψt(A) is the usual “one-period ahead” stochastic discount factor. The fundamental pricing

formula for an asset x paying a cash flow stream
{
xjt

}∞
t=1

is just

pj =
∞∑
t=1

E
[
Mtx

j
t

]

If the representative agent is risk-neutral, Mt = δt and

pj =
∞∑
t=1

δtE
[
xjt

]
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