

FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (1)

Markus K. Brunnermeier

LECTURE 2: ONE PERIOD MODEL STRUCTURE

Overview

1. Securities Structure

- Arrow-Debreu securities structure
- Redundant securities
- Market completeness
- Completing markets with options

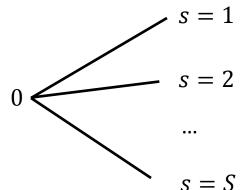
The Economy

- State space (Evolution of states)
 - Two dates: t = 0,1
 - -S states of the world at time t = 1
- Preferences

$$- U(c_0, c_1, ..., c_S)$$

- $MRS^A_{s,0} = -\frac{\partial U^A / \partial c^A_S}{\partial U^A / \partial c^A_0}$ (slope of indifference curve)

- Security structure
 - Arrow-Debreu economy
 - General security structure



FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (4)

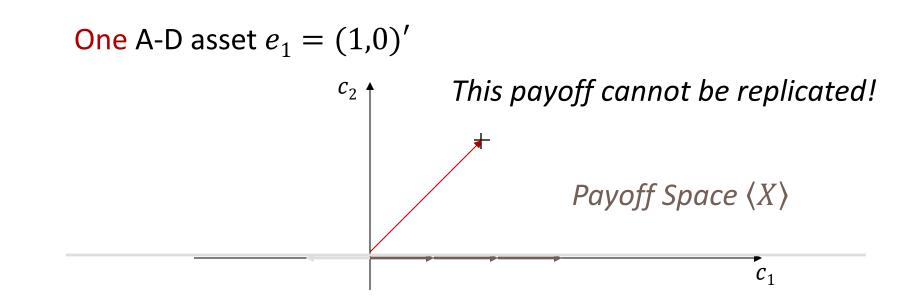
Security Structure

- Security *j* is represented by a payoff vector $(x_1^j, x_2^j, ..., x_S^j)'$
- Security structure is represented by payoff matrix

$$X = \begin{pmatrix} x_1^1 & x_1^2 & \cdots & x_1^{J-1} & x_1^J \\ x_2^1 & & & & x_2^J \\ \vdots & \ddots & & \vdots \\ x_{S-1}^1 & & & & x_{S-1}^J \\ x_S^1 & x_S^2 & \cdots & x_S^{J-1} \cdots & x_S^J \end{pmatrix}$$

FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (5)

Arrow-Debreu Security Structure in \mathbb{R}^2

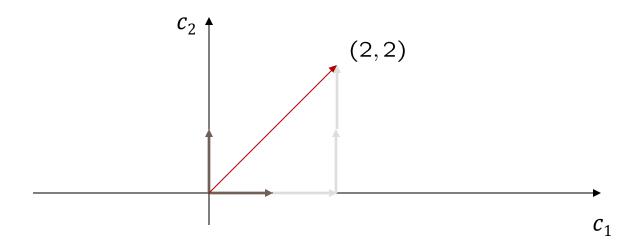


Markets are incomplete

FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (6)

Arrow-Debreu Security Structure in \mathbb{R}^2

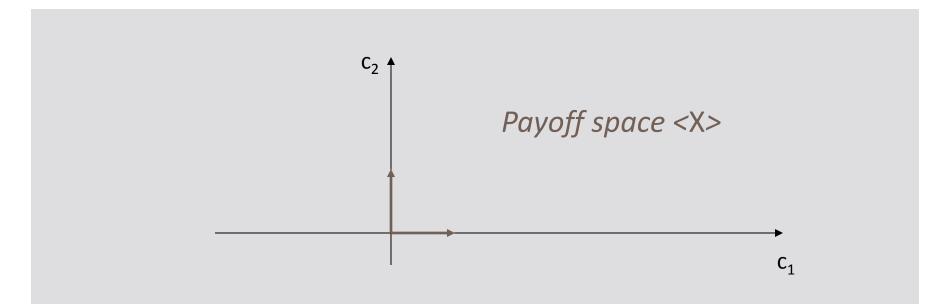
Add second A-D asset $e_2 = (0,1)'$ to $e_1 = (1,0)'$



FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (7)

Arrow-Debreu Security Structure in \mathbb{R}^2

Add second A-D asset $e_2 = (0,1)'$ to $e_1 = (1,0)'$

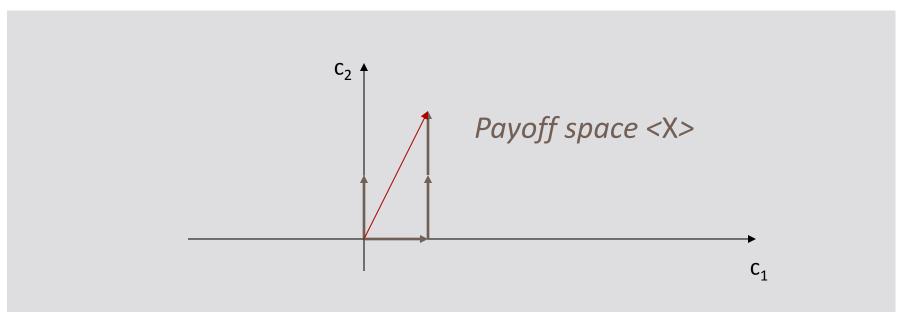


Any payoff can be replicated with two A-D securities

FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (8)

Arrow-Debreu Security Structure in \mathbb{R}^2

Add second asset (1,2)' to $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$



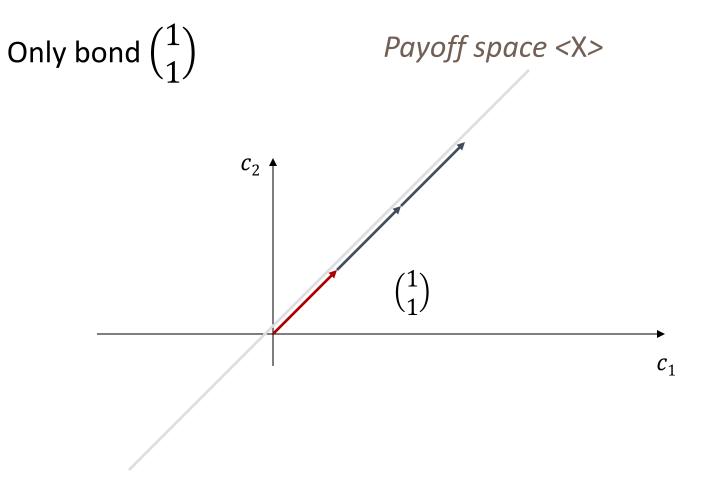
New asset is **redundant** – *it does not enlarge the payoff space*

Arrow-Debreu Security Structure

$$X = \begin{pmatrix} 1 & 0 & \ddots \\ 0 & \ddots & 0 \\ \ddots & 0 & 1 \end{pmatrix}$$

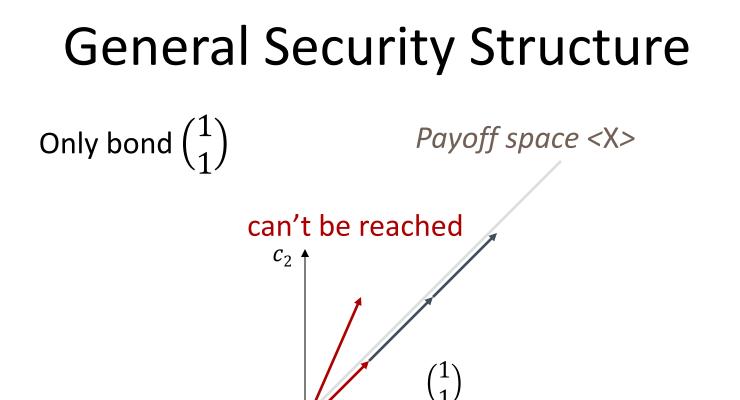
- *S* Arrow-Debreu securities
- each state *s* can be insured individually
- All payoffs are linearly independent
- Rank of X = S
- Markets are complete

FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (10)



FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (11)

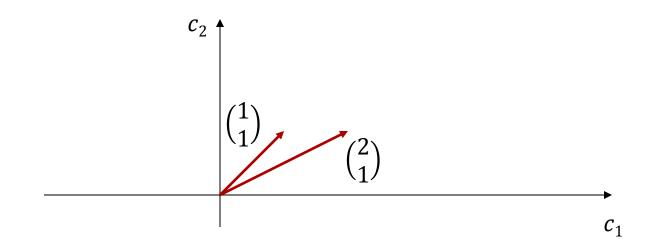
 C_1

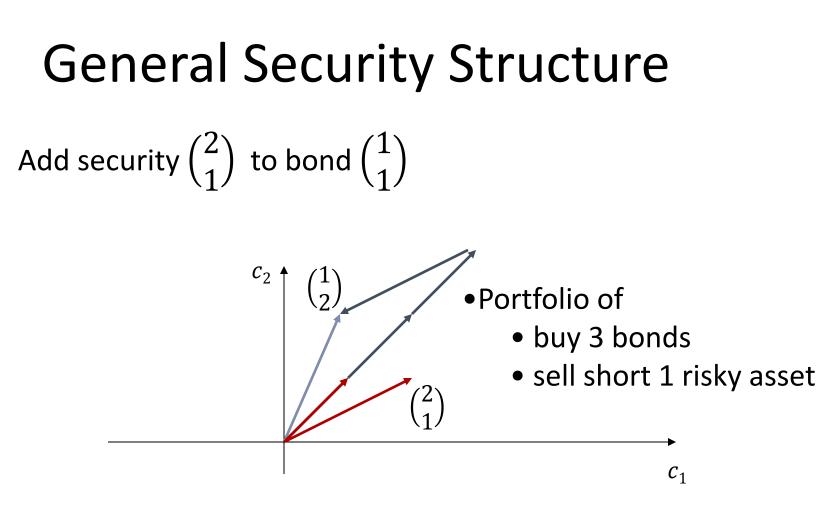


FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (12)

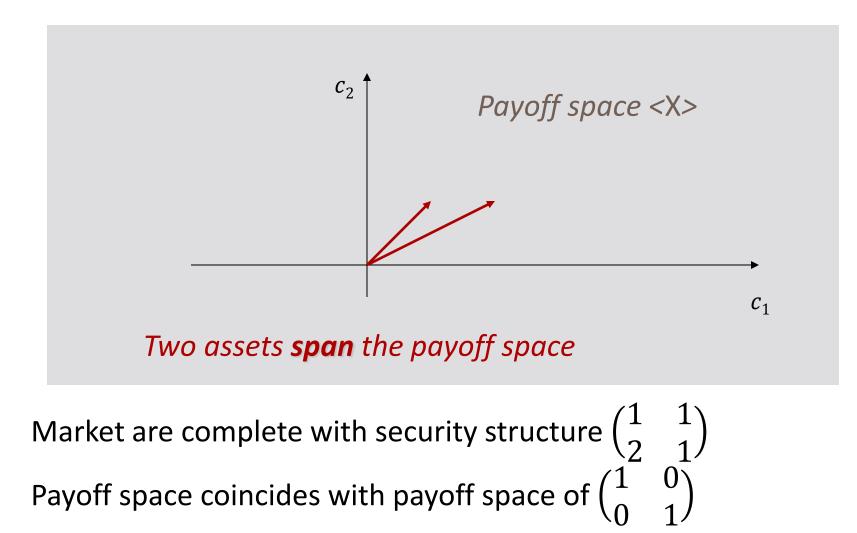
General Security Structure

Add security $\binom{2}{1}$ to bond $\binom{1}{1}$





General Security Structure



General Security Structure

- Portfolio: vector $h \in \mathbb{R}^J$ (quantity for each asset)
- Payoff of Portfolio h is $\sum_j h^j x^j = Xh$
- Asset span

$$\langle X \rangle = \{ z \in \mathbb{R}^S : z = Xh \text{ for some } h \in \mathbb{R}^J \}$$

–
$$\langle X \rangle$$
 is a linear subspace of \mathbb{R}^S

- Complete markets $\langle X \rangle = \mathbb{R}^S$
- Complete markets if and only if rank(X) = S
- Incomplete markets if rank(X) < S
- Security j is redundant if $x^j = Xh$ with $h^j = 0$

Introducing derivatives

- Securities: property rights/contracts
- Payoffs of derivatives *derive* from payoff of underlying securities
- Examples: forwards, futures, call/put options

• Question:

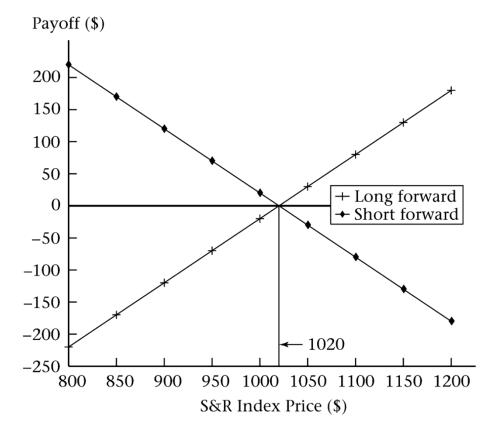
Are derivatives necessarily redundant assets?

Forward contracts

- Definition: A binding agreement (obligation) to buy/sell an underlying asset in the future, at a price set today
- Futures contracts are same as forwards in principle except for some institutional and pricing differences
- A forward contract specifies:
 - The features and quantity of the asset to be delivered
 - The delivery logistics, such as time, date, and place
 - The price the buyer will pay at the time of delivery

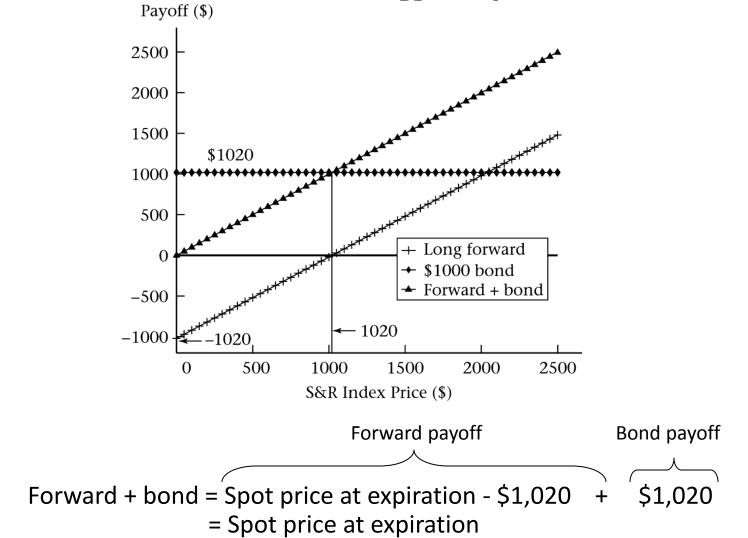
Payoff diagram for forwards

• Long and short forward positions on the S&R 500 index:



FIN501 Asset Pricing **Lecture 02** One Period Model: Structure (20)

Forward vs. outright purchase



Additional considerations (ignored)

- Type of settlement
 - Cash settlement: less costly and more practical
 - Physical delivery: often avoided due to significant costs
- Credit risk of the counter party
 - Major issue for over-the-counter contracts
 - Credit check, collateral, bank letter of credit
 - Less severe for exchange-traded contracts
 - Exchange guarantees transactions, requires collateral

Call options

- A non-binding agreement (right but not an obligation) to buy an asset in the future, at a price set today
- Preserves the upside potential (U), while at the same time eliminating the unpleasant (X) downside (for the buyer)
- The seller of a call option is obligated to deliver if asked

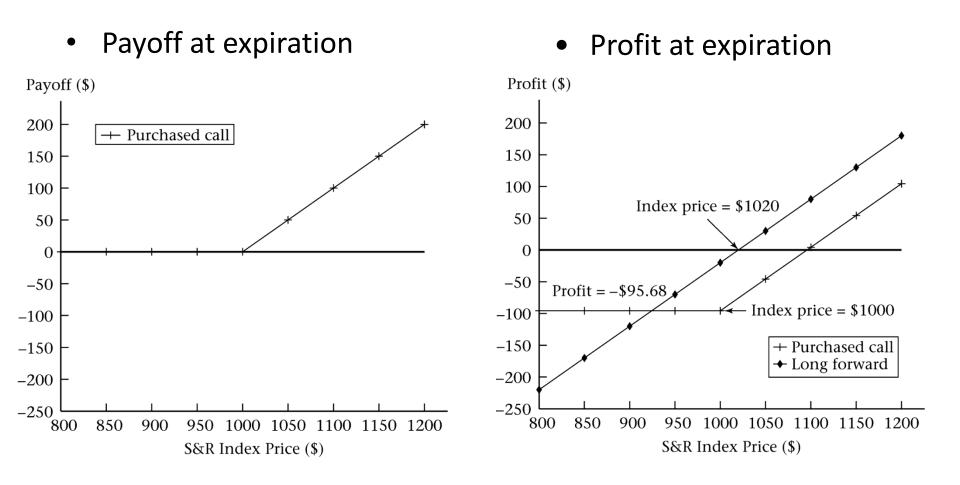
Definition and Terminology

- A call option gives the owner the right but not the obligation to buy the underlying asset at a predetermined price during a predetermined time period
- Strike (or exercise) price: The amount paid by the option buyer for the asset if he/she decides to exercise
- Exercise: The act of paying the strike price to buy the asset
- Expiration: The date by which the option must be exercised or become worthless
- Exercise style: Specifies when the option can be exercised
 European-style: can be exercised only at expiration date
 American-style: can be exercised at any time before expiration
 Bermudan-style: can be exercised during specified periods

Payoff/profit of a purchased call

- Payoff = *max* [0, spot price at expiration strike price]
- Profit = Payoff future value of option premium
- Examples 2.5 & 2.6:
 - S&R Index 6-month Call Option
 - Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%
 - If index value in six months = \$1100
 - Payoff = *max* [0, \$1,100 \$1,000] = \$100
 - Profit = \$100 (\$93.81 x 1.02) = \$4.32
 - If index value in six months = \$900
 - Payoff = *max* [0, \$900 \$1,000] = \$0
 - Profit = $\$0 (\$93.81 \times 1.02) = -\$95.68$

Diagrams for purchased call



Put options

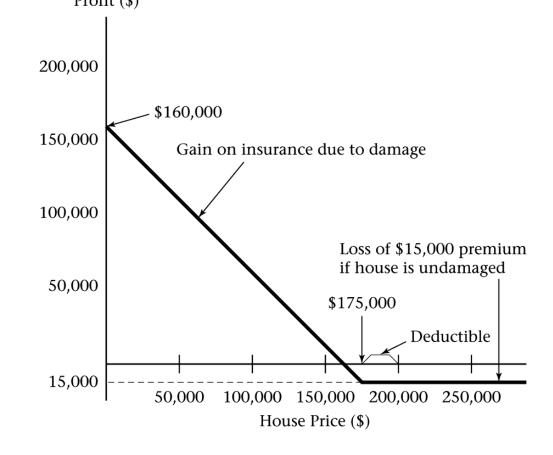
- A put option gives the owner the right but not the obligation to sell the underlying asset at a predetermined price during a predetermined time period
- The seller of a put option is obligated to buy if asked
- Payoff/profit of a purchased (i.e., long) put:
 - Payoff = max [0, strike price spot price at expiration]
 - Profit = Payoff future value of option premium
- Payoff/profit of a written (i.e., short) put:
 - Payoff = max [0, strike price spot price at expiration]
 - Profit = Payoff + future value of option premium

A few items to note

- A call option becomes more profitable when the underlying asset appreciates in value
- A put option becomes more profitable when the underlying asset depreciates in value
- Moneyness:
 - In-the-money option: positive payoff if exercised immediately
 - At-the-money option: zero payoff if exercised immediately
 - Out-of-the money option: negative payoff if exercised immediately

Options and insurance

• Homeowner's insurance as a put option:



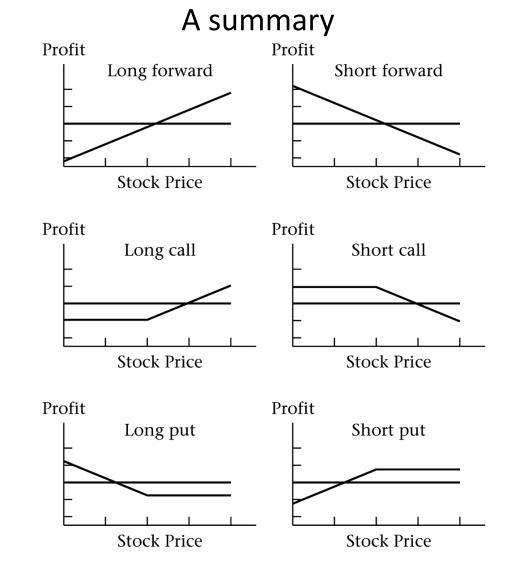
Equity linked CDs

• The 5.5-year CD promises to repay initial invested amount and 70% of the gain in S&P 500 index:

Assume \$10,000 invested + Payoff of CD 13 when S&P 500 = 1300 Final payoff = 12 $10000 \times \left(1 + 0.7 \times \max\left\{0, \frac{S_{final}}{1300} - 1\right\}\right)$ Fig. 2.14 11 10 - where S_{final} = value of the \$1300 9 S&P 500 after 5.5 years 8 800 1000 1200 14001600 1800 2000 600 S&P 500 at Expiration

Payoff (thousands of \$)

Option and forward positions



Options to Complete the Market

- Stock's payoff: $x^j = (1, 2, ..., S)'$ (= state space)
- Introduce call options with final payoff at T: $C_T = \max\{S_T - K, 0\} = [S_T - K]^+$
- Thus

$$C_{K=1} = (0,1,2,...,S-2,S-1)'$$

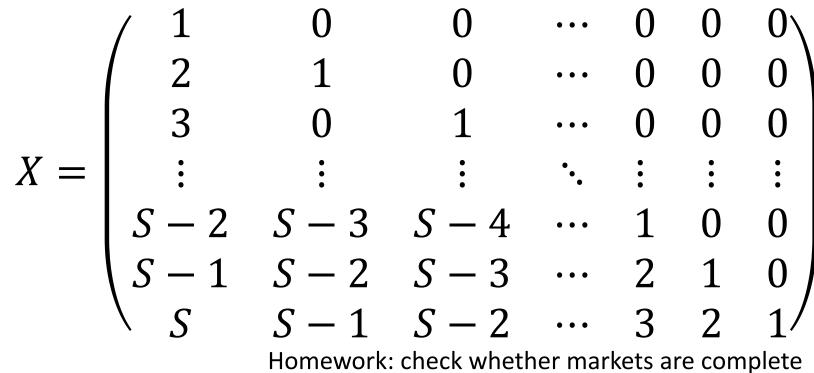
$$C_{K=2} = (0,0,1,...,S-3,S-2)'$$

$$\vdots$$

$$C_{K=S-1} = (0,0,0,...,0,1)'$$

Options to Complete the Market

• Together with the primitive asset:



General Security Structure

- Price vector $p \in \mathbb{R}^J$ of asset prices
- Cost of portfolio *h*,

$$p \cdot h \coloneqq \sum_{j} p^{j} h^{j}$$

If p^j ≠ 0 the (gross) return vector of asset j is the vector

$$R^j = \frac{x^j}{p^j}$$