

Markus K. Brunnermeier

LECTURE 10: MULTI-PERIOD MODEL FUTURES & SWAPS

Overview

1. Futures

- **o** Forwards versus Futures Price
- Interest Rate Forwards and Futures
- Currency Futures
- Commodity Futures
 - Backwardation and Contango
- 2. Swaps

Futures Contracts

- Exchange-traded "forward contracts"
- Typical features of futures contracts
 - Standardized, specified delivery dates, locations, procedures
 - A clearinghouse
 - Matches buy and sell orders
 - Keeps track of members' obligations and payments
 - After matching the trades, becomes counterparty
- Differences from forward contracts
 - Settled daily through mark-to-market process → low credit risk
 - \circ Highly liquid \rightarrow easier to offset an existing position
 - \circ Highly standardized structure \rightarrow harder to customize

Example: S&P 500 Futures (cont.)

- Notional value: \$250 x Index
- Cash-settled contract
- Open interest: total number of buy/sell pairs
- Margin and mark-to-market
 - Initial margin
 - Maintenance margin (70-80% of initial margin)
 - \circ Margin call
 - Daily mark-to-market
- Futures prices vs. forward prices
 - The difference negligible especially for short-lived contracts
 - Can be significant for long-lived contracts and/or when interest rates are correlated with the price of the underlying asset

Futures: Margin Balance

• Mark-to-market proceeds and margin balance for 8 long futures:

TABLE 5.8		Mark-to-market proceeds and margin balance over 10 weeks from long position in 8 S&P 500 futures contracts. The final row represents expiration of the contract.					
			Futures	Price	Margin		
Weel	k Multipl	ier (\$)	Price	Change	Balance(\$)		
0	2000.00		1100.00	_	220,000.00		
1	2000.00		1027.99	-72.01	76,233.99		
2	2000.00		1037.88	9.89	96,102.01		
3	2000.00		1073.23	35.35	166,912.96		
4	2000.00		1048.78	-24.45	118,205.66		
5	2000.00		1090.32	41.54	201,422.13		
6	2000.00		1106.94	16.62	234,894.67		
7	2000.00		1110.98	4.04	243,245.86		
8	2000.00		1024.74	-86.24	71,046.69		
9	2000.00		1007.30	-17.44	36,248.72		
10	2000.00		1011.65	4.35	44,990.57		

Forwards versus Futures Pricing

• Price of Forward using EMM is $0 = E_t^Q \left[\rho_T \left(F_{0,T} - S_T \right) \right]$ $= E_t^Q \left[\rho_T \right] \left(F_{0,T} - E_t^* [S_T] \right) - \operatorname{cov}_t^Q [\rho_T, S_T]$

Special case:

$$F_{0,T} = E_t^Q [S_T]$$

Homework: If I do it with *M*, then I get ...

• Value of Futures contract is always zero. Each period there is "dividend" stream $\phi_t - \phi_{t-1}$ and $\phi_T = S_T$ $0 = E_T^Q [\rho_{t+1}(\phi_{t+1} - \phi_t)]$ for all t since ρ_{t+1} is known at t $\phi_t = E_t^Q [\phi_{t+1}]$ and $\phi_T = S_T$

$$\phi_t = E_t^Q [S_T]$$

General: Futures price process is always a martingale

Delete???

Uses of Index Futures

- Why buy an index futures contract instead of synthesizing it using the stocks in the index? Lower transaction costs
- Asset allocation: switching investments among asset classes
- Example: Invested in the S&P 500 index and temporarily wish to temporarily invest in bonds instead of index. What to do?
 - Alternative #1: Sell all 500 stocks and invest in bonds
 - Alternative #2: Take a short forward position in S&P 500 index

ABLE 5.10	ffect of owning $f_0 = $ \$100 and	g the stock and selling $F_{0,1} = $ \$110.	g forward, assuming th
		Cash Flow	S
Transaction	Today	1 year, $S_1 = $ \$80	1 year, $S_1 = 130
Own Stock @ \$100	-\$100	\$80	\$130
Short Forward @ \$110) 0	\$110 - \$80	\$110 - \$130
Total	-\$100	\$110	\$110

Uses of Index Futures (cont.)

- \$100 million portfolio with β of 1.4 and $r_f = 6\%$
 - 1. Adjust for difference in \$ amount
 - 1 futures contract \$250 x 1100 = \$275,000
 - Number of contracts needed \$100mill/\$0.275mill = 363.636
 - 2. Adjust for difference in β 363.636 x 1.4 = 509.09 contracts

Forward Rate Agreements

- FRAs: over-the-counter contracts that guarantee a borrowing or lending rate on a given notional principal amount
- Settlement:

 $(r_{artlv} - r_{FRA}) \times$ notional principal • In arrears:

• At the time of borrowing: notional principal × $\frac{(r_{qrtly} - r_{FRA})}{r_{rrad}}$

 FRAs can be synthetically replicated with zero-coupon bonds

Eurodollar Futures

Contract specifications

FIGURE 5.7	
Specifications f Eurodollar futu contract.	for the ires
Where traded	Chicaco Mercantile Exchange
Size	3-month Eurodollar time deposit, \$1 million principal
Months	Mar, Jun, Sep, Dec, out 10 years, plus 2 serial months and spot month
Trading ends	5 A.M. (11 A.M. London) on the second Lon- don bank business day immediately preceding the third Wednesday of the contract month.
Delivery	Cash settlement
Settlement	100 – British Banker's Association Futures Interest Settlement Rate for 3-Month Eu- rodollar Interbank Time Deposits. (This is a 3-month rate annualized by multiplying by 360/90.)

Eurodollar Futures

- Very similar in nature to an FRA with subtle differences
 - The settlement structure of Eurodollar contracts favors borrowers
 - Therefore the rate implicit in Eurodollar futures is greater than the FRA rate
 ⇒ Convexity bias
- The payoff at expiration: [Futures price $(100 r_{\text{LIBOR}})$] x 100 x \$25
- Example: Hedging \$100 million borrowing with Eurodollar futures:

BLE 7.4	Results from hedging \$100m in borrowing with 98.23 short Eurodollar futures.				
	Cash Flows				
	June		September		
Borrowing Rate:	1.5%	2%	1.5%	2%	
Borrow \$100m	+100m	+100m	-101.5m	-102.0m	
Gain on 98.23 Short Eurodollar Contracts Gain Plus Interest	-0.294695m	0.196464m	-0.299115m	0.200393m	
Net			-101.799m	-101.799m	

Treasury Bond/Note Futures

• Contract specifications

FIGURE 7.6		
	Where traded	CBOT
Specifications for the	Underlying	6% 10-year Treasury note
Treasury-note futures	Size	\$100,000 Treasury note
contract.	Months	Mar, Jun, Sep, Dec, out 15 months
	Trading ends	Seventh business day preceding last business
	c	day of month. Delivery until last business day
		of month.
	Delivery	Physical T-note with at least 6.5 years to ma-
	-	turity and not more than 10 years to maturity.
		Price paid to the short for notes with other
		than 6% coupon is determined by multiplying
		futures price by a conversion factor. The con-
		version factor is the price of the delivered note
		(\$1 par value) to yield 6%. Settlement until
		last business day of the month.
		•

Treasury Bond/Note Futures (cont.)

- Long T-note futures position is an obligation to buy a 6% bond with maturity between 6.5 and 10 years to maturity
- The short party is able to choose from various maturities and coupons: the "cheapest-to-deliver" bond
- In exchange for the delivery the long pays the short the "invoice price."

	Price of the	e bond if it were to yield	16%	
Invoice price =	(Futures price x conv	ersion factor) +	accrued inte	erest
	TABLE 7.5 Prices, y The futu deliverin deliverin semiann	ields, and the conversion fac ires price is 97.583. The sho ig the 8-year 7% bond, and ig the 7-year 5% bond. Both iual coupon payments.	tor for two bonds. rt would break even lose money bonds make	
		8-Year 7% Coupon,	7-Year 5%,	
	Description	6.4% Yield	6.3% Yield	
	Market Price	103.71	92.73	
	Price at 6% (Conversion Factor)) 106.28	94.35	
	Invoice Price (Futures \times			
	Conversion Factor)	103.71	92.09	
	Invoice – Market	0	-0.66	
				4

Currency Contracts

- Currency prepaid forward
 - Suppose you want to purchase ¥1 one year from today using \$s
 - $\circ F_{0,T}^P = x_0 e^{-r_y T}$ (price of prepaid forward)
 - where x₀ is current (\$/ ¥) exchange rate, and r_y is the yendenominated interest rate
 - Why? By deferring delivery of the currency one loses interest income from bonds denominated in that currency
- Currency forward

$$\circ F_{0,T} = x_0 e^{(r-r_y)T}$$

- *r* is the \$-denominated domestic interest rate
- $F_{0,T} > x_0$ if $r > r_y$ (domestic risk-free rate exceeds foreign risk-free rate)

Currency Contracts: Pricing (cont.)

- Synthetic currency forward: borrowing in one currency and lending in another creates the same cash flow as a forward contract
- Covered interest arbitrage: offset the synthetic forward position with an actual forward contract

ABLE 5.12 Synthetically dollars and le	creating a yen nding in yen. 1 367.	forward cont The payoff at	ract by borrowi time 1 is	ng in
		Cash Flo)WS	
	Year 0		Year 1	
Transaction	\$	¥	\$	¥
Borrow $x_0 e^{-r_y}$ Dollar at 6% (\$)	+0.008822	_	-0.009367	
Convert to Yen @ 0.009 $\%$	-0.008822	+0.9802		
Invest in Yen-Denominated Bill $({\bf Y})$		-0.9802		1
Total	0	0	-0.009367	1

Interest Rate Parity – FX Carry Trade

- Covered Interest Rate Parity
 - Forward/futures hedged with offsetting currency portfolio
- Uncovered Interest Rate Parity
 - Carry trade:
 - buy high interest rate currency and
 - sell short interest rate currency (funding currency)
 - And hope exchange rate does move against you
 - Carry trade with forward/futures (unhedged)

Skewness of FX Carry Trade Returns

- Up the stairs and down the elevator
- Brunnermeier, Pedersen & Nagel (2012)

Commodity Forwards

• Commodity forward prices can be described by the same formula as that for *financial* forward prices: $F_{1} = -\sum_{n} e^{(r-\delta)T}$

$$F_{0,T} = S_0 e^{(r-\sigma)T}$$

- \circ For financial assets: δ is dividend yield
- \circ For commodities: δ is commodity lease rate
 - rate is return an investor makes from buying and lending out the commodity.
 - Can be backed out from forward prices

Commodity Forwards

- Forward curve (or the forward strip): Set of prices for different expiration dates for a given commodity
 - o upward-sloping, then the market is in contango.
 - o downward sloping, the market is in **backwardation**.
 - Note that forward curves can have portions in backwardation and portions in contango.

Overview

1. Futures

- Forwards versus Futures Price
- Interest Rate Forwards and Futures
- Currency Futures
- Commodity Futures
 - Backwardation and Contango
- 2. Swaps
 - Commodity Swaps
 - Interest Rate Swaps

Introduction to Swaps

- Swap: contract calling for an exchange of payments, on one or more dates, determined by the difference in two prices.
- means to hedge a *stream* of risky payments.
- A single-payment swap is the same thing as a cash-settled forward contract.

Example of a Commodity Swap

- An industrial producer, IP Inc., needs to buy 100,000 barrels of oil 1 year from today and 2 years from today.
- The forward prices for deliver in 1 year and 2 years are \$20 and \$21/barrel.
- The 1- and 2-year zero-coupon bond yields are 6% and 6.5%.

Example of Commodity Swap

- IP wants to guarantee the cost of oil for the next 2 years
- Enter long forward contracts for 100,000 barrels in each of the next 2 years.
- The PV of this cost per barrel is

$$\frac{\$20}{1.06} + \frac{\$21}{1.065^2} = \$37.383$$

- Thus, IP could pay an oil supplier \$37.383, and the supplier would commit to delivering one barrel in each of the next two years.
- **notional amount** of the swap, e.g. 100,000 barrels determines the magnitude of the payments when the swap is settled financially
- A **prepaid swap** is a single payment today for multiple deliveries of oil in the future. (multiple prepaid forwards)

Example of Commodity Swap

• With a prepaid swap, the buyer might worry about the resulting credit risk. Therefore, a better solution is to defer payments until the oil is delivered, while still fixing the total price.

$$\frac{x}{1.06} + \frac{x}{1.065} = \$37.383$$

- Any payment stream with a PV of \$37.383 is acceptable. Typically, a swap will call for equal payments in each year.
 - For example, the payment per year per barrel, x, will have to be \$20.483 to satisfy the following equation:
- We then say that the 2-year swap price is \$20.483.

Economics of Swaps

- Swap
 - Multiple forward contracts (futures if exchange traded)
 - Implicit borrowing/lending arrangement

• Example

- Swap price of \$20.483/barrel. Relative to the forward curve price of \$20 in 1 year and \$21 in 2 years, we overpay by \$0.483 in t = 1, and we underpay by \$0.517 in t = 2.
- Lending the counterparty from t = 1 to t = 20 arranged at t = 0. The interest rate on this loan is

0.517 / 0.483 - 1 = 7%.

Has to be consistent with implied forward rate in bond prices:
 1- and 2-year zero-coupon bond yields of 6% and 6.5%

skip

Swap Counterparty

 The situation where the dealer matches the buyer and seller is called a **back-to-back transaction** or "matched book" transaction.

Market Value of a Swap

- The market value of a swap is zero at inception.
- Once the swap is struck, its market value will generally no longer be zero because:
 - o forward prices for oil and interest rates will change over time;
 - even if prices do not change, the market value of swaps will change over time due to the implicit borrowing and lending.
- Exit swap buy entering into an offsetting swap with the original counterparty or not
- The market value of the swap is the difference in the PV of payments between the original and new swap rates.

Interest Rate Swaps

- Two arms: Fixed and floating arm
- Notional principle of the swap is the amount on which the interest payments are based.
- Swap term or swap tenor: life of swap
- Settlement:

 If swap payments are made at the end of the period (when interest is due), the swap is said to be settled in arrears.

An example of an interest rate swap

- XYZ has \$200M of floating-rate debt at LIBOR
- prefers fixed-rate debt with 3 years to maturity.
- XYZ could enter a swap, in which they

 receive a floating rate and

 \circ pay the fixed rate, which is R = 6.9548%.

Swap Payoffs

• Counterparties swap fixed for floating \propto notational N

- Fixed leg = fixed payment + N at maturity, value falls with i
- Floating leg = floating payment + N at maturity, value = N

Example of Interest Rate Swap

On net, XYZ pays 6.9548%:

XYZ net payment = - LIBOR + LIBOR - 6.9548% = -6.9548%

Floating Payment Swap Payment

FIN501 Asset Pricing Lecture 10 Futures & Swaps (37)

Concentrated Holding of Interest Rate Swaps

Bergenau et al. 2013

Swap ate

- Relative asset pricing of swap rate R

 relative to forward rates implied by bond prices
 r₀(t_{i-1}, t_i): implied forward interest rate from date t_{i-1} to date t_i, known at date 0, is.
 - $\circ q(0, t_i)$: Price of zero-coupon bond maturing on t_i $\circ R$ The fixed swap rate is.

 \circ *n* swap settlements, occurring on dates t_i , i = 1, ..., n

Swap Rate

- The requirement that the hedged swap have zero net PV is $\sum_{i=1}^{n} Z(0,t_i)[R-r_0(t_{i-1},t_i)] = 0$
- Hence,

$$R = \frac{\sum_{i=1}^{n} Z(0, t_i) r_0(t_{i-1}, t_i)}{\sum_{i=1}^{n} Z(0, t_i)}$$

- where $\sum_{i=1}^{n} Z(0, t_i) r_0(t_{i-1}, t_i)$ is PV of interest payments implied by the strip of forward rates, and
- $\sum_{i=1}^{n} Z(0, t_i)$ is the PV of a \$1 annuity when interest rates vary over time.

Swap Rate

• Rewrite – to easy interpretation:

$$R = \sum_{i=1}^{n} \left[\frac{Z(0, t_i)}{\sum_{j=1}^{n} Z(0, t_j)} \right] r_0(t_{i-1}, t_i)$$

weighted average of the implied forward

 zero-coupon bond prices determines weights

Swap Rate

• Third way of writing

$$R = \frac{1 - Z(0, t_n)}{\sum_{i=1}^{n} Z(0, t_i)}$$

- using
$$r_0(t_1, t_2) = \frac{Z(0, t_1)}{Z(0, t_2)} - 1$$

This equation is equivalent to the formula for the coupon on a par coupon bond.

Thus, the swap rate is the coupon rate on a par coupon bond.

(firm that swaps floating for fixed ends up with economic equivalent of a fixedrate bond)

Swap Curve

- *swap curve:* Set of swap rates at different maturities
- consistent with the interest rate curve implied by the Eurodollar futures
 - \circ Recall

Eurodollar futures contract provides a set of 3-month forward LIBOR rates. In turn, zero-coupon bond prices can be constructed from implied forward rates. Therefore, we can use this information to compute swap rates.

Swap Curve

TABLE 8.4	3-m price from	3-month LIBOR forward rates implied by Eurodollar futures prices with maturity dates given in the first column. Prices are from June 7, 2000.				
Maturity Date, <i>t</i> i	Eurodollar Futures Price	Implied Quarterly Rate, $r(t_i, t_{i+1})$	Implied June 2000Price of \$1Paid on MaturityDate, t_i , $P(0, t_i)$	Swap Rate		
Jun-00	93.18	0.01724		6.895%		
Sep-00	92.95	0.01782	0.9830	7.011%		
Dec-00	92.77	0.01827	0.9658	7.109%		
Mar-01	92.75	0.01832	0.9485	7.162%		
Jun-01	92.72	0.01840	0.9314	7.201%		
Sep-01	92.70	0.01842	0.9146	7.228%		
Dec-01	92.67	0.01852	0.8980	7.252%		
Mar-02	92.74	0.01835	0.8817	7.263%		

For example, the December swap rate can be computed using equation (8.3): (1 - 0.9485)/(0.9830 + 0.9658 + 0.9485) = 1.778%. Multiplying 1.778% by 4 to annualize the rate gives the December swap rate of 7.109%.

Swap Curve

• Swap spread is the difference between swap rates and Treasury-bond yields for comparable maturities.

Swap's Implicit Loan Balance

 Implicit borrowing and lending in a swap can be illustrated using the following graph, where the 10-year swap rate is 7.4667%:

RINCETON NIVERSITY

Swap's Implicit Loan Balance

- In the above graph,
 - \circ investor who pays fixed and receives floating.
 - in the early years:
 he pays a high rate of the swap, and hence lends money.
 - In the later years: Eurodollar forward rate exceeds the swap rate and the loan balance declines, falling to zero by the end of the swap.
 - Therefore, the credit risk in this swap is borne, at least initially, by the fixed-rate payer, who is lending to the fixed-rate recipient.

Why Swap Interest Rates?

Interest rate swaps permit firms to separate credit risk and interest rate risk.

 By swapping its interest rate exposure, a firm can pay the short-term interest rate it desires, while the long-term bondholders will continue to bear the credit risk.

LIBOR OIS Spread

Deferred Swap

- A **deferred swap** is a swap that begins at some date in the future, but its swap rate is agreed upon today.
- The fixed rate on a deferred swap beginning in k periods is computed as

$$R = \frac{\sum_{i=k}^{T} Z(0, t_i) r_0(t_{i-1}, t_i)}{\sum_{i=k}^{T} Z(0, t_i)}$$

Amortizing and Accreting Swaps

- An **amortizing swap** is a swap where the notional value is *declining* over time (e.g., floating rate mortgage).
- An accreting swap is a swap where the notional value is *growing* over time.
- The fixed swap rate is still a weighted average of implied forward rates, but now the weights also involve changing notional principle, *Q*_t:

$$R = \frac{\sum_{i=1}^{n} Q_{t_i} Z(0, t_i) r(t_{i-1}, t_i)}{\sum_{i=1}^{n} Q_{t_i} Z(0, t_i)}$$

(8.7)

Overview

1. Futures

- Forwards versus Futures Price
- Interest Rate Forwards and Futures
- Currency Futures
- Commodity Futures
 - Backwardation and Contango
- 2. Swaps
 - Commodity Swaps
 - Interest Rate Swaps