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Overview

1. Bond Basics

2. Term Structure 

o Expectations Hypothesis

o Canonical Term Structure Models

3. Duration

4. Repos
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U.S. Treasury

Source: Global Financial Data

– Bills (< 1 year), no coupons, sell at discount

– Notes (1-10 years), Bonds (10-30 years), coupons, sell at par (10 year)
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Bond Basics

• Notation:
o 𝑟𝑡(𝑡1, 𝑡2) :  Interest rate from time 𝑡1 to 𝑡2 prevailing at time 𝑡.

• Spot (short) rate: 𝑡1 = 𝑡 and 𝑡2 = 𝑡 + 1

• Forward rate

o 𝐵𝑡(𝑡1, 𝑡2, 𝑐𝜏) : Bond price quoted at 𝑡 to be purchased at
𝑡1 maturing at 𝑡2 with coupon payments 𝑐_𝜏 at various 𝜏

o 𝑍𝑡(𝑡1, 𝑡2) : Price of a zero coupon bond, only pays at time 𝑡2

o 𝑦𝑡
(𝑁)

: Yield at time 𝑡 for a bond maturing in 𝑡2 = 𝑡 + 𝑁
• Just a different way to quote bond price

• Yield to maturity: Constant discount rate at which the sum of the 
discounted future cash flows (coupons and principal) is equal to the 
price of the bond
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Deterministic vs. Stochastic Rate
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Bond Basics under Certainty

• Price of a Zero-coupon bond that pays Xt: 𝑍0(0, 𝑡) =
𝑋𝑡

1+𝑦0
(𝑡) 𝑡

• Yield curve: annualized bond yields 𝑟0(0, 𝑡) = 𝑦0
(𝑡)

• Implied forward rates

• 1 + 𝑟0(𝑡1, 𝑡2)
𝑡2−𝑡1 =

1+𝑟0(0,𝑡2)
𝑡2

1+𝑟0(0,𝑡1)
𝑡1
=
𝑍0(0,𝑡1)

𝑍0(0,𝑡2)

Note: in general 
we assume 𝑋𝑡 = 1
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Bond Basics (cont.)

• Zero-coupon bonds make a single payment at maturity

o One year zero-coupon bond: 𝑍0(0,1) = 0.943396
• Pay $0.943396 today to receive $1 at t=1

• Yield to maturity 𝑌𝑇𝑀 =
1

0.943396
− 1 = 0.06 = 6% = 𝑟0(0,1)

o Two year zero-coupon bond: 𝑍0(0,2) = 0.881659

• 𝑌𝑇𝑀 =
1

0.881659
− 1 = 0.134225 = 1 + 𝑟0(0,2)

2 ⇒ 𝑟0(0,2) = 0.065 = 6.5%
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Yield Curve and Forward Curve

• Connection between 
o yield and forward curve
o Forward rates and forward contracts discussed earlier
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Deterministic vs. Stochastic Rate
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Deterministic vs. Stochastic Rate
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Log Interest Rate

• Define 𝑅𝑡 =: 𝑒
𝑟𝑡

o Compounding:  𝑡
𝑇𝑅𝜏 =  𝑡

𝑇 𝑒𝑟𝜏 = 𝑒 𝑡
𝑇 𝑟𝜏

o Discounting:  𝑡
𝑇 1

𝑅𝜏
=  𝑡
𝑇 𝑒−𝑟𝜏 = 𝑒− 𝑡

𝑇 𝑟𝜏

• In continuous time: lim
𝑛→∞
1 +
𝑟

𝑛

𝑛
= 𝑒𝑟

• Approximate

o 𝑒𝑟𝑡 ≈ 𝑒0 + 𝑒0𝑟𝑡 + 𝐻𝑂𝑇 = 1 + 𝑟𝑡 + 𝐻𝑂𝑇

• With uncertainty

o 𝐸 𝑅𝑡 = 𝐸 𝑒
𝑟𝑡 ≠ 𝑒𝐸 𝑟𝑡 , 𝐸[  1 𝑅𝑡] ≠  

1
𝐸[𝑅𝑡]

o With 𝑅𝑡~𝒩, 𝑟𝑡 log-normal 𝐸 𝑒𝑟𝑡 = 𝑒𝐸 𝑟𝑡 +
1

2
𝑉𝑎𝑟[𝑟𝑡]

• Bond yield: 𝑒−𝑦𝑡
(𝑁)
𝑁 = 𝑍𝑡(𝑡, 𝑡 + 𝑁) ⇔ 𝑦𝑡

(𝑁)
= −

1

𝑁
log 𝑍𝑡(𝑡, 𝑡 + 𝑁)

Note: here 𝑟𝑡 𝑡, 𝑡 + 1 = 𝑟𝑡
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Coupon Bonds

• Price at time of issue of t of a bond maturing at time 𝑇 that 
pays T fixed coupons of size c and maturity payment of $1:

𝐵𝑡(𝑡, 𝑇) = 

𝜏=1

𝑇

𝑐𝑍𝑡(𝑡, 𝜏) + 𝑍𝑡(𝑡, 𝑇)

• to sell at par, i.e. 𝐵𝑡(𝑡, 𝑇) = 1 (face value)
the coupon size must be:

𝑐 =
1 − 𝑍𝑡(𝑡, 𝑇)

 𝜏=1
𝑇 𝑍𝑡(𝑡, 𝜏)
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Overview

1. Bond Basics

2. Duration

3. Term Structure, 

o Expectations Hypothesis

o Canonical Term Structure Models

4. Repos
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Duration

1. sensitivity of a bond’s price to changes in interest rates
2. Average time it takes to get money back (roughly)

• Duration Measures:
o Duration: $ change in price for a unit change in yield

−
Δ𝐵(𝑦)

Δ𝑦
=
1

1 + 𝑦
 

𝜏=1

𝑇

𝜏
𝑋𝜏
1 + 𝑦 𝜏

divide by 100 (10,000) for change in price given a 1% (1 basis point) change in yield

o Macaulay Duration: (% change in price for % change in YTM, elasticity)

−
Δ𝐵(𝑦) /𝐵(𝑦)

Δ𝑦/(1 + 𝑦)
=
1

𝐵(𝑦)
 

𝜏=1

𝑇

𝜏
𝑋𝜏
1 + 𝑦 𝜏

o y: yield per period; to annualize divide by the number of payments per year
o 𝐵 𝑦 : bond price as a function of yield 𝑦
o 𝑋𝜏 payoff at time 𝜏 (coupon or principal)
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Duration

• Example
o 3-year zero-coupon bond with maturity value of $100 

• Bond price at YTM of 7.00%:  $100/(1.07003)=$81.62979

• Bond price at YTM of 7.01%:  $100/(1.07013)=$81.60691

• Duration: −
1

1.07
× 3 ×

$100

1.073
= −$228.87

• For a basis point (0.01%) change: -$228.87/10,000=-$0.02289

• Macaulay duration: − −$228.87 ×
1.07

$81.62979
= 3.000

• Example
o 3-year annual coupon (6.95485%) par bond 

• Macaulay Duration:

1 ×
0.0695485

1.0695485
+ 2 ×

0.0695485

1.06954852
+ 3 ×

1.0695485

1.06954853
= 2.80915

D=-$0.02288
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Duration Matching

• Match 1 bond with time to maturity t1, price B1, and Macaulay duration D1 with
• N of different bond with time to maturity t2, price B2, Macaulay duration D2

• Such that value of the resulting portfolio with duration zero is 𝐵1 + 𝑁𝐵2

−

Δ𝐵1 𝑦1
𝐵1 𝑦1
Δ𝑦1
1 + 𝑦1

𝐵1 𝑦1 /(1 + 𝑦1) = −𝑁

Δ𝐵2 𝑦2
𝐵2 𝑦2
Δ𝑦2
1 + 𝑦2

𝐵2 𝑦2 /(1 + 𝑦2)

𝑁 = −
𝐷1𝐵1 𝑦1
𝐷2𝐵2 𝑦2

1 + 𝑦2
1 + 𝑦1

• Caveats:
o Duration is only a first order (linear) Taylor approximation
o Duration matching only works for parallel shifts of the yield curve
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Overview

1. Bond Basics

2. Duration

3. Term Structure 

o Expectations Hypothesis

o Canonical Term Structure Models

4. Repos
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Cross-Section vs. Time-series View

• cross section of prices: 
The term structure are bond prices at a particular 
point in time. This is a cross section of prices.

• time series properties: 
how do interest rates evolve as time goes by?

• Time series view is the relevant view for an investor 
how tries to decide what kind of bonds to invest into, 
or what kind of loan to take.
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Term Structure of Interest
𝑦0
(1)
, 𝑦0
(2)
, 𝑦0
(3)
, …
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Term Structure of Interest Rates

• Nominal versus real yield curve

• Three principal components (Litterman-Scheinkman 1991)

o Level

o Slope “term spread”

o Curvature

• Long-end and slope of yield curve
o Expectations about future short rate 

• Real: Expectations about future economic growth

• Nominal: Expectations about future inflation

o Risk premium
• Real: Rollover risk

• Nominal: Inflation risk
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Real Term Structure & Economic Growth

• Risk-free zero coupon bond 

𝑍0(0, 𝑡) = 𝐸 𝑀𝑡 =
1

1 + 𝑦0
(𝑡) 𝑡

• The corresponding (gross) yield is 

1 + 𝑦0
(𝑡)
= 𝑍0(0, 𝑡)

−
1

𝑡 = 𝛿−1
𝐸 𝑢′ 𝑐𝑡

𝑢′ 𝑐0

−
1

𝑡

Since 𝑚𝑡+1 = 𝛿
𝑢′ 𝑐𝑡+1

𝑢′ 𝑐𝑡
, assuming representative agent with utility 𝐸[ 𝑡 𝛿

𝑡 𝑢 𝑐𝑡 ]



FIN501 Asset Pricing
Lecture 09 Bonds (22)

Real Term Structure & Economic Growth

1 + 𝑦0
(𝑡)
= 𝛿−1

𝐸 𝑢′ 𝑐𝑡
𝑢′ 𝑐0

−
1
𝑡

• Let 𝑔𝑡 (state dependent) growth rate per period, so 

1 + 𝑔𝑡
𝑡 =
𝑐𝑡

𝑐0
.

• If representative agent with CRRA utility 𝛾 = 𝑅𝑅𝐴
first-order Taylor approximations yields

𝑦0
(𝑡)
≈ 𝛾𝐸 𝑔𝑡 − log 𝛿

• (real) yield curve measures 
expected growth rates over different horizons.

Homework!
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Real Term Structure & Economic Growth

𝑦0
(𝑡)
≈ 𝛾𝐸 𝑔𝑡 − log 𝛿

• Second order Taylor approximation would include 𝑢′′′-terms
o Now, uncertainty about 𝑔𝑡 also matters

o If representative agent is prudent then uncertainty about 𝑔𝑡 lowers 
yield. 

• When is real term structure upward sloping?
o Expected growth rate increases over time

o long horizon uncertainty about the per capita growth rate is smaller 
than about short horizons 
(for instance if growth rates are mean reverting)
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Term Structure & Risk Premium

• Need to invest for 2 periods
• Three possible options

1. Buy 2-period ZC bond, yielding a (per period) return rate of 𝑦0
(2)

.

2. Buy 1-period ZC bond and roll over when it matures. 
Expected yield: 1 + 𝑦0

(1)
𝐸0[1 + 𝑟1(1,2)]

• Risky since period 1 spot rate is not known at 𝑡 = 0. (Rollover Risk)

3. Buy 3-period ZC bond and sell after 2 periods.
• Risky since price of 3-period ZC bond at 𝑡 = 2 is not known at 𝑡 = 0.

• Additional risk
o Investor might know his investment horizon at 𝑡 = 0.

• Since he faces random liquidity needs/endowment shocks.

o Might want to hold liquid/safe asset.
o Liquidity problem, (might mean revert with time horizon)
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Expectations Hypothesis

• Pure expectations hypothesis

o Term structure is purely determined by 
expectations about future short-term interest rate

o No risk premia

• Expectations hypothesis (more generally)

o Risk premia that are maturity dependent, but 
constant through time
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Expectations Hypothesis (3 ways)

• Forward-rate view
o Forward rate at 𝑡 from 𝑡 + 𝑁 → 𝑡 + 𝑁 + 1 equal the expected future spot 

rate

o 𝑟𝑡(𝑡 + 𝑁, 𝑡 + 𝑁 + 1) = 𝐸𝑡[𝑦𝑡+𝑁
(1)
] (+ risk premium(𝑁))

• Short-term view
o Single-period holding returns on all maturity bonds are equal in expectations

o 𝐸𝑡 𝑙𝑛
𝑍𝑡+1
(𝑁)

𝑍𝑡
(𝑁) = 𝐸𝑡 𝑙𝑛

𝑒−𝑦𝑡+1
𝑁
(𝑁−1)

𝑒−𝑦𝑡
(𝑁)
𝑁
= 𝑁𝑦𝑡

(𝑁)
− 𝑁 − 1 𝐸𝑡[𝑦𝑡+1

(𝑁−1)
] = 𝑦𝑡

1

• Long-term view
o Multi-period holding returns on bonds of all maturities are the same in 

expectation

o 𝑦𝑡
(𝑁)
=
1

𝑁
𝐸𝑡[𝑦𝑡

1
+ 𝑦𝑡+1
1
+⋯+ 𝑦𝑡+𝑁−1

(1)
] (+ risk premium(𝑁))

Note: here 𝑍𝑡
(𝑁)
= 𝑍𝑡(𝑡, 𝑡 + 𝑁)
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• 𝑦𝑡
(𝑁)
− 𝑦𝑡
1
=
1

𝑁
𝐸𝑡[ 𝑗=0

𝑁−1(𝑦𝑡+𝑗
(1)
− 𝑦𝑡
(1)
)]

• Yield spread forecasts long-term changes in yields 
on short-term bonds

Empirical Evidence on EH: Long-term View
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Empirical Evidence on EH: Short-term view

• 𝑦𝑡
(𝑁)
− 𝑦𝑡
1
= 𝑁 − 1 𝐸𝑡[𝑦𝑡+1

𝑁−1
− 𝑦𝑡
(𝑁)
]

• Yield spread forecasts short-term changes in 
yields on long-term bond.
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Empirical Evidence on EH

• When the yield spread is unusually high
o Long-term view

short-term interest rates do tend to rise, 
but not as much as predicted by EH.

o Short-term view
yield on the long-term bonds tends to fall, 
not rise as predicted by EH. 

• Term structure models with time-varying risk 
premia needed.
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Violation of EH due to 𝐸 𝑒𝑟 ≠ 𝑒𝐸[𝑟]

• Strictly speaking, the PEH in log-rates does not 
hold precisely even when agents are risk neutral

o 𝑍𝑡 𝑡, 𝑡 + 𝑁 = 𝑒
−𝑦𝑡
(𝑁)
𝑁 = 𝐸𝑡[𝑒

− 0
𝑁 𝑟𝑡(𝑡,𝑡+𝜏)]

o when 𝑟𝑡 stochastic

𝑦𝑡
(𝑁)
𝑁 ≠ 𝐸𝑡[ 

0

𝑁

𝑟𝑡(𝑡, 𝑡 + 𝜏)]

• since 𝐸 𝑒𝑟 ≠ 𝑒𝐸[𝑟]

• E.g. if 𝑟 is normal, then 𝐸 𝑒𝑟 = 𝑒𝐸 𝑟 +
1

2
𝑉𝑎𝑟[𝑟]

• Discount factor EH doesn’t suffer from this.
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Pure Expectations Hypothesis in 
Discount Factor

• Consider a t-period zero coupon bond. The price is
𝑍0(0, 𝑡) = 𝐸 𝑀𝑡 = 𝐸 𝑚1⋯𝑚𝑡

o Invest 𝑍0(0, 𝑡)in 𝑡 = 0, receive one consumption unit in period t.

• Alternatively, buy 1-period discount bonds and roll them 
over t-times. The investment that is necessary today to get 
one consumption unit (in expectation) in period 𝑡

𝐸 𝑚1 ⋯𝐸 𝑚𝑡
(to see this for 𝑡 = 2:  buying at 𝑡 = 0 𝐸[𝑍1(1,2)] bonds with maturity 𝑡 = 1 costs 

𝑍0(0,1)𝐸[𝑍1(1,2)] and pays 𝐸[𝑍1(1,2)]at 𝑡 = 1, which allows –in expectation- to pay for 
a bond with maturity 𝑡 = 2 which finally pays $1 at 𝑡 = 2)



FIN501 Asset Pricing
Lecture 09 Bonds (32)

Pure Expectations Hypothesis
in terms of Discount Factor

• Two strategies yield same expected return rate if and only if
𝐸 𝑚1⋯𝑚𝑡 = 𝐸 𝑚1 ⋯𝐸 𝑚𝑡

which holds if 𝑚𝑡 is serially uncorrelated.

o Special examples:
• World of certainty

• Risk-neutral world

• i.i.d world

o In that case, no term premia
assumption known as the expectations hypothesis.

o Whenever 𝑚𝑡 is serially correlated (for instance because the growth 
process is serially correlated), then expectations hypothesis may fail.
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Expectations Hypothesis

• Homework:

1. Show the equivalence of the three ways to 
present the expectations hypothesis. 

2. Show whether under the pure expectations 
hypothesis in terms of discount factor the risk-
neutral measure coincides with the risk forward 
measure.
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Term Structure Models
Beyond Expectations Hypothesis

• Specify process for

o SDM 𝑀𝑡
∗ for

• Time-varying risk premium

• for short-rate 
in 𝑃-measure

• Canonical models

o Vasicek

o CIR

o Affine

• Specify process for

o for short-rate 
in 𝑄-measure
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Canonical Term Structure Models

Term Structure Model (under 𝑄) Features

Vasicek: 
𝑟𝑡+1 = 𝑟𝑡 + 𝑘 𝜃 − 𝑟𝑡 + 𝜎𝜀𝑡+1

Very easy to use (AR model), 
rates can be negative, 
constant volatility

Cox-Ingersoll-Ross: 
𝑟𝑡+1 = 𝑟𝑡 + 𝑘 𝜃 − 𝑟𝑡 + 𝜎 𝑟𝑡𝜀𝑡+1

Rates cannot be negative, 
volatility is high when rates 
are high (empirical fact)

Affine Term Structure (example):

𝜃𝑡+1 = 𝜃𝑡 + 𝑣  𝜃 − 𝜃𝑡 + 𝛾 𝜃𝑡𝜀𝑡+1
2

𝑢𝑡+1 = 𝑢𝑡 + 𝜇  𝑢 − 𝑢𝑡 + 𝛿 𝑢𝑡𝜀𝑡+1
3

Multi-factor model: better 
calibration than the others, 
harder to handle. Give rise to 
ZCB price of the type

𝑍𝑡 𝑡, 𝑇 = 𝑒
𝑎 𝑇−𝑡 + 𝑖 𝑏𝑖 𝑇−𝑡 𝑟𝑡

Param. values ensure existence

Note: here 𝑟𝑡 𝑡, 𝑡 + 1 = 𝑟𝑡
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Interest Rates, Stocks and State Space
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• If we consider at the same time a 
stock and interest rates, we have 
multiple sources of uncertainty, 
perhaps correlated. To account for 
this we need to expand the state 
space to include all possible 
combination of stock-interest rates 
pairs.

• If we are only interested in interest 
rates we can just collapse the tree 
to the sub-tree in the red box, and 
the new state space will capture all 
the information we need.
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Overview

1. Bond Basics

2. Duration

3. Term Structure 

o Expectations Hypothesis

o Canonical Term Structure Models

4. Repos
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Repurchase Agreements

• A repurchase agreement or a repo entails selling 
a security with an agreement to buy it back at a 
fixed price
o Sale + forward to repurchase

• The underlying security is held as collateral by the 
counterparty 
⇒ A repo is collateralized borrowing

• Used by securities dealers to finance inventory

• A “haircut” is charged by the counterparty to 
account for credit risk 
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Overview

1. Bond Basics

2. Duration

3. Term Structure 

o Expectations Hypothesis

o Canonical Term Structure Models

4. Repos
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