International Credit Flows and Pecuniary Externalities

Markus K. Brunnermeier & Yuliy Sannikov
Princeton University

Bank of International Settlement Basel, August 29th, 2014

Motivation

Old "Washington consensus" in decline

Free trade: flow of goods/services intratemporal

Free finance: flow of capital intertemporal

When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?

Motivation

Old "Washington consensus" in decline

Free trade: flow of goods/services intratemporal

Free finance: flow of capital intertemporal

When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?

1. Sudden stop including runs due to liquidity mismatch

Technological illiquidity: irreversibility (adjustment costs)

Market illiquidity: redeployability/specificity – not this paper

Motivation

Old "Washington consensus" in decline

Free trade: flow of goods/services intratemporal

Free finance: flow of capital intertemporal

When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?

1. Sudden stop including runs due to liquidity mismatch

Technological illiquidity: irreversibility (adjustment costs)

Market illiquidity: redeployability/specificity – not this paper

Funding illiquidity: short-term debt, "hot money"

Type of capital flow matters: FDI, portfolio flows (equity), long-term debt

Brunnermeier & Sannikov

Motivation

Old "Washington consensus" in decline

Free trade: flow of goods/services intratemporal

Free finance: flow of capital intertemporal

- When does full capital account liberalization reduce (capital controls/macropru regulation improve) welfare?
- 1. Sudden stop including runs due to liquidity mismatch
 - Technological illiquidity: irreversibility (adjustment costs)
 - Market illiquidity: redeployability/specificity not in this paper
 - Funding illiquidity: short-term debt, "hot money"
 - Type of capital flow matters: FDI, portfolio flows (equity), long-term debt
- 2. "Terms of trade hedge" (Cole-Obstfeld) can be undermined when
 - Industry's output is not easily substitutable.
 Consumers cannot easily find substitutes
 - No strong competitors in other countries
 - Natural resources: oil, copper for Chile,
 - Hard drives in Thailand, Bananas in Ecuador

Model setup - symmetric

Preferences

$$E\left[\int_0^\infty e^{-rt} \frac{c_t^{1-\gamma}}{1-\gamma} dt\right]$$

- Same preference discount rate r "saving out of constraint"
- lacktriangle Two output goods y^a and y^b imperfect substitutes

$$y_t = \left[\frac{1}{2} (y_t^a)^{\frac{s-1}{s}} + \frac{1}{2} (y_t^b)^{\frac{s-1}{s}} \right]^{s/(s-1)}$$

(Comparative) advantages:

	Good $oldsymbol{a}$	Good b		
Country A	$\bar{a}k_t$	$\underline{a}k_t$		
Country B	$\underline{a}k_t$	$\bar{a}k_t$		

Two country/sector model

World capital shares:

$$\psi_t^{Aa} + \psi_t^{Ab} + \psi_t^{Ba} + \psi_t^{Bb} = 1$$

World supply of (output) goods:

$$Y_t^a = (\psi_t^{Aa}\overline{a} + \psi_t^{Ba}\underline{a})K_t \qquad Y_t^b = (\psi_t^{Bb}\overline{a} + \psi_t^{Ab}\underline{a})K_t$$

lacktriangle Price of output goods a and b in terms of price of y

$$P_t^a = \frac{1}{2} \left(\frac{Y_t}{Y_t^a}\right)^{1/s}$$
 and $P_t^b = \frac{1}{2} \left(\frac{Y_t}{Y_t^b}\right)^{1/s}$

• Terms of trade P_t^a/P_t^b

Two country/sector model

- Capital evolution for
 - $dk_t = (\Phi(\iota_t) \delta)k_t dt + \sigma^A k_t dZ_t^A$ in country A
 - $dk_t = (\Phi(\iota_t) \delta)k_t dt + \sigma^B k_t dZ_t^B$ in country B
 - Φ concavity technological illiquidity
 - Single type of capital
 - Investment in composite good
- Shocks are
 - Two dimensional
 - Affect global capital stock $dZ_t^A + dZ_t^B$
 - lacktright Redistributive (initial shock + amplification) ightharpoonup affects ${\sf wealth}$ share, ${\eta}_t$
 - Example: Apple vs. Samsung lawsuit

Market structures

	Trade		Finance	
Markets	Output y^a , y^b	Physical capital <i>K</i>	Debt	Equity
Complete Markets Full integration/First Best	X	X	X	X
Open credit account (equity home bias)	X	X	X	
Closed credit account	X	X		
Add taxes/capital controls	intratemporal		interter	mporal

Returns on physical capital

- $dk_t/k_t = (\Phi(\iota_t) \delta)dt + \sigma^A k_t dZ_t^A$
- Postulate
 - $dq_t/q_t = \mu_t^q dt + \sigma_t^{qA} dZ_t^A + \sigma_t^{qB} dZ_t^B$

Ito product rule: $d(X_tY_t) = dX_tY_t + X_tdY_t + \sigma_X\sigma_Ydt$

Returns from holding physical capital

•
$$dr_t^{Aa} = \left(\frac{\overline{a}P_t^{a} - \iota_t}{q_t} + \mu_t^q + \Phi(\iota_t) - \delta + \sigma^A \sigma_t^{qA}\right) dt +$$

$$+ \left(\sigma^A + \sigma_t^{qA}\right) dZ_t^A + \sigma_t^{qB} dZ_t^B$$

•
$$dr_t^{Ab} = \left(\frac{\underline{a}P_t^b - \iota_t}{q_t} + \mu_t^q + \Phi(\iota_t) - \delta + \sigma^A \sigma_t^{qA}\right) dt +$$

$$+ \left(\sigma^A + \sigma_t^{qA}\right) dZ_t^A + \sigma_t^{qB} dZ_t^B$$

■ The 3 step solution procedure

- 1. Derive equilibrium conditions
 - Optimality and asset pricing conditions (from postulated processes)
 - Consumption with log-utility: $c_t = rN_t$ (no precautionary savings)
 - Asset pricing (from above)
 with log-utility: Sharpe Ratio of asset = volatility of net worth
 - Internal investment rate ι_t : $q\Phi'(\iota_t) 1 = 0$
 - Market clearing conditions
- 2. Derive evolution of state variable $\eta_t = \frac{N_t}{q_t K_t}$
- 3. Express in terms of ODE
 - All $\mu^{postolated}$ and $\sigma^{postulated}$ are expressed in terms of $q'(\eta), q''(\eta), ...$

Market structures

	Trade		Finance	
Markets	Output y^a , y^b	Physical capital <i>K</i>	Debt	Equity
Complete Markets Full integration/First Best	X	X	X	X
Open credit account (equity home bias)	X	X	X	
Closed credit account	X	X		
Add taxes/capital controls	intratemporal		interter	mporal

Market structures

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered short-term debt financing
 - Sudden stops: (varying technological illiquidity)
 - Amplification
 - Runs due to sunspots
- 3. Closed capital account: capital controls (no equity, no debt)
- 4. Welfare analysis

1. Complete markets: First Best Remarks

Perfect capital allocation + perfect risk sharing

- Prices are constant and independent of shocks
- Economy shrinks/expands with (multiplicative) shocks
- Elasticity of substitution, s, has no impact on prices

Market structures

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered (short-term) debt financing
 - Sudden stops: (varying technological illiquidity, irreversibility)
 - Amplification
 - Runs due to sunspots
- 3. Closed capital account: capital controls (no equity, no debt)
- 4. Welfare analysis

■ 2. Equilibrium characterization: state variable

■ Equilibrium is a map Histories of shocks $\{Z_s^A, Z_s^B, s \le t\}$

 $s \leq t$

prices allocation $q_t, \psi_t^{Aa}, \iota_t^A, \iota_t^B, \zeta_t^A, \zeta_t^B$

wealth distribution

$$\eta_t = \frac{N_t}{q_t K_t} \in (0,1)$$
 A's wealth share

- $\Psi_t^{Aa} + \Psi_t^{Ab} + \Psi_t^{Ba} + \Psi_t^{Bb} = 1 \text{ and } C_t^A + C_t^B = Y_t \iota_t K_t$
- Portfolio weights: $\frac{\psi_t^{Aa}}{\eta_t}$, $\frac{\psi_t^{Ab}}{\eta_t}$, $1 \frac{\psi_t^{Aa} + \psi_t^{Ab}}{\eta_t}$
- Consumption rates: $\zeta_t^A = C_t^A/N_t$ $\zeta_t^B = C_t^B/(q_t K_t N_t)$

2. State variable: 3 regions

- Wealth share η
 - Three regions

		Full specialization	
A produces	а	a	a, b
B produces	a, b	b	b
	0	1/2	1

Symmetric

$$\psi_t^{Aa} = \eta_t$$

$$\psi_t^{Bb} = 1 - \eta_t$$

$$\psi_t^{Ba} = \psi_t^{Ab} = 0$$

2. Capital share, terms of trade, price of capital

• Numerical: r=5%, $\overline{a}=14\%$, $\underline{a}=4\%$, $\delta=5\%$, $\kappa=2$, $\sigma^A=\sigma^B=10\%$

■ Three different elasticities of substitution: $s = \{.5,1,\infty\}$

■ TOT: Supply vs. demand shock

Supply versus demand shock

TOT improve for A as η_t declines for $\eta_t \in [\overline{\eta}, .5)$ can be due to

• $dZ^A < 0$: Negative supply shock

World recession

• $dZ^B > 0$: Positive demand shock

World boom

TOT: Output price

lacktriangle ...but fire-sale of (physical) capital stock k_t

2. Stability, Phoenix Miracle for different s

Stationary distribution drift volatility 0.045 2.5 Masspoint Phoenix 0.04 at {0,1} 0.025 miracle 0.035 0.02 0.03 Stationary Distribution 1.5 0.025 돌 0.015 0.02 0.01 0.015 0.01 0.5 0.005 0.005 wealth share 0.2 0.3 0.4 0.3 0.4

• Three different elasticities of substitution: $s = \{.5,1,\infty\}$

Brunne

■ Difference to Cole & Obstfeld 1994: persistence of capital, $\delta < \infty$

Overview

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered short-term debt financing
 - Sudden stops: (varying technological illiquidity)
 - Amplification
 - Runs due to sunspots
- 3. Closed capital account: capital controls (no equity, no debt)
- 4. Welfare analysis

2. Amplification

$$\sigma_t^{\eta A} = \frac{\frac{\psi_t^{Aa}}{\eta_t}(1-\eta_t)}{1-[\psi_t^{Aa}-\eta_t]\frac{q'(\eta_t)}{q(\eta_t)}}\sigma^A$$

2. Amplification

$$\sigma_t^{\eta A} = \frac{\frac{\psi_t^{Aa}}{\eta_t}(1-\eta_t)}{1-[\psi_t^{Aa}-\eta_t]\frac{q\prime(\eta_t)}{q(\eta_t)}}\sigma^A$$

• Leverage effect ψ_t^{Aa}/η_t

2. Amplification

$$\sigma_t^{\eta A} = \frac{\frac{\psi_t^{Aa}}{\eta_t}(1-\eta_t)}{1-[\psi_t^{Aa}-\eta_t]\frac{q'(\eta_t)}{q(\eta_t)}} \sigma_t^A$$
 (price impact)

$$\psi_t^{Aa}/\eta_t$$

Leverage effect
$$\psi_t^{Aa}/\eta_t$$
 Loss spiral $1/\{1-[\psi_t^{Aa}-\eta_t]\frac{q'(\eta_t)}{q(\eta_t)}\}$

(infinite sum)

2. Amplification

$$\sigma_t^{\eta A} = \frac{\frac{\psi_t^{Aa}}{\eta_t}(1-\eta_t)}{1-[\psi_t^{Aa}-\eta_t]\frac{q'(\eta_t)}{q(\eta_t)}} \sigma_t^A \qquad \text{Market illiquidity}$$
 (price impact)

Leverage effect
$$\psi_t^{Aa}/\eta_t$$
 Loss spiral $1/\{1-[\psi_t^{Aa}-\eta_t]\frac{q'(\eta_t)}{q(\eta_t)}\}$

(infinite sum)

- Technological illiquidity $(\kappa, \delta) \Rightarrow$ market illiquidity $q'(\eta)$
 - (dis)investment adjustment cost

1 2. Technological $(\kappa, \delta) \Rightarrow$ market illiquidity $q'(\eta)$

- Quadratic adjustment cost
- Investment rate of $\Phi + \frac{1}{\kappa}\Phi^2$ generates new capital at rate Φ

$$\Phi(\iota) = \frac{1}{\kappa} \left(\sqrt{1 + 2\kappa \iota} - 1 \right)$$

Three cases

•
$$\kappa = 0 \Rightarrow q = 1$$

•
$$\kappa = 2$$

• $\kappa_{i < 0} = 100$ and $\kappa_{i > 0} = 2$

Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage

Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage Slope of tangent vs. secant

Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage

• An unanticipated sunspot triggers a sudden capital price drop from q to \tilde{q} , accompanied by a drop in η to $\tilde{\eta}$.

$$\tilde{q}\tilde{\eta} = \max\{\eta q + \psi^{Aa}(\tilde{q} - q), 0\}$$

Sudden stops: amplification & runs

Sudden stop

• Adverse fundamental triggers %-decline in debt that exceeds %-decline in net worth; $\frac{\partial (\psi^{Aa} - \eta)}{\partial \eta} \frac{\eta}{\psi^{Aa} - \eta} > 1 \Leftrightarrow \frac{\partial \psi^{Aa}}{\partial \eta} > \frac{\psi^{Aa}}{\eta}$ \Leftrightarrow pro-cyclical leverage

• An unanticipated sunspot triggers a sudden capital price drop from q to \tilde{q} , accompanied by a drop in η to $\tilde{\eta}$.

$$\tilde{q} = \frac{\max\{\eta q + \psi^{Aa}(\tilde{q} - q), 0\}}{\tilde{\eta}}$$

hyperbola

Sudden stop due to sunspot

■ Sudden stop due to sunspot: Zoomed in

Overview

- 1. Complete markets ⇒ First best
- 2. Incomplete markets (equity home bias)
 - Levered short-term debt financing
 - Sudden stops: (varying technological illiquidity)
 - Amplification
 - Runs due to sunspots
- 3. Closed capital account: capital controls (no equity, no debt)
- 4. Welfare analysis

Market structures

	Trade		Finance	
Markets	Output y^a , y^b	Physical capital <i>K</i>	Debt	Equity
Complete Markets Full integration/First Best	X	X	X	X
Open credit account (equity home bias)	X	X	X	
Closed credit account	X	X		
Add taxes/capital controls	intratemporal		intertemporal	

3. Credit account: open vs. closed

•
$$r = 5\%$$
, $\overline{a} = 14\%$, $\underline{a} = 4\%$, $\delta = 5\%$, $\kappa = 2$, $\sigma^A = \sigma^B = 10\%$, $s = 1$

3. Credit account: open vs. closed

•
$$r = 5\%$$
, $\overline{a} = 14\%$, $\underline{a} = 4\%$, $\delta = 5\%$, $\kappa = 2$, $\sigma^A = \sigma^B = 10\%$, $s = 1$

Overview

- 1. Complete markets ⇒ First best
- Incomplete markets (equity home bias)
- 3. Closed capital account: capital controls (no equity, no debt)
- 4. Welfare analysis
 - Pecuniary externalities
 - Welfare calculations + Pareto improving redistributions

4. When are credit flows excessive?

- Constrained inefficiency (in incomplete market setting) due to pecuniary externalities
 - Price of capital: fire sale externality if leverage is high
 - Price of output good: "terms of trade hedge" restrained competition
 - Price taking behavior undermined this hedge

4. When are credit flows excessive?

- Constrained inefficiency (in incomplete market setting) due to pecuniary externalities
 - Price of capital: fire sale externality if leverage is high
 - Price of output good: "terms of trade hedge" restrained competition
 - Price taking behavior undermined this hedge

4. Welfare comparison

• r = 5%. $\overline{a} = 14\%$. a = 4%. $\delta = 5\%$. $\kappa = 2$. $\sigma^A = \sigma^B = 10\%$,

4. Welfare comparison

•
$$r = 5\%$$
, $\overline{a} = 14\%$, $a = 4\%$, $\delta = 5\%$, $\kappa = 2$, $\sigma^A = \sigma^B = 10\%$,

4. Welfare comparison

• r = 5%, $\overline{a} = 14\%$, a = 4%, $\delta = 5\%$, $\kappa = 2$, $\sigma^A = \sigma^B = 10\%$,

4. Welfare comparison

• Any monotone transformation of η would be equally

good state variable

• Normalization: take CDF of η

Uniform stationary distribution!

normative

Conclusion

- Sudden stops
 - Amplification of fundamental shock
 - Runs due to sunspots vulnerability region
- Phoenix miracle
- Tradeoff between capital allocation & risk sharing
 - "Terms of trade hedge"
- When are short-term credit flows excessive?
 - When can capital controls (financial liberalization) be welfare enhancing (reducing)?
 - Pecuniary externality
 - Price of physical capital fire-sales externality technological illiquidity
 - Price of output goods: "terms of trade hedge" externality
- Bailout/Restructuring Redistributive policy can be Pareto improving if one country is sufficiently balance sheet impaired
 - Reduces output good price