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3.2.2. Sequential Trade Models à la Glosten and Milgrom 87
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6

Herding in Finance, Stock Market Crashes,
Frenzies, and Bank Runs

The last chapter illustrated herding and informational cascades in a gen-
eral context. This chapter shows that herding can also arise in financial
markets and describes how herding behavior can be used to explain
interesting empirical observations in finance. For example, herding can
result in stock market crashes and frenzies in auctions. The stock mar-
ket might still be rising prior to a crash if bad news is hidden and not
reflected in the price. A triggering event can reveal this hidden news
and lead to a stock market crash. Crashes and frenzies in auctions are
described in greater detail in Section 6.1.3.

Another example is the use of investigative herding models to show
that traders have a strong incentive to gather the same short-run infor-
mation. Trading based only on short-run information guarantees that
the information is reflected in the price early enough before traders
unwind their acquired positions. Section 6.2 illustrates the different
reasons why traders might want to unwind their positions early and
highlights the limits of arbitrage. It also throws new light on Keynes’
comparison of the stock market with a beauty contest.

This short-run focus of investors not only affects the stock price but
can also potentially affect corporate decision making. In Section 6.3
we cover two models which show that if investors focus on the short-
run, and if corporate managers care about the stock market value, then
corporate decision making also becomes short-sighted.

Finally, bank run models are closely linked to herding models. Sem-
inal bank run papers are presented in Section 6.4. While the early
papers did not appeal to herding models directly, this connection is
explicitly drawn in the more recent research on bank runs. Insights
from the bank run literature can also help us get a better under-
standing of international financial crises. For example, the financial
crisis in Southeast Asia in the late 1990s is often viewed as a big
bank run.



166 Crashes, Investigative Herding, Bank Runs

6.1. Stock Market Crashes

A stock market crash is a significant drop in asset prices. A crash often
occurs even when there is no major news event. After each stock market
crash, the popular literature has rushed to find a culprit. The introduc-
tion of stop loss orders combined with margin calls and forced sales
caused by the decline in value of assets that served as collateral were
considered to be possible causes for the crash of 1929. Early writings
after the stock market crash of 1987 attributed the crash exclusively to
dynamic portfolio insurance trading. A dynamic portfolio trading strat-
egy, also called program trading, allows investors to replicate the payoff
of derivatives. This strategy was often used to synthesize a call option
payoff structure which provides an insurance against downward move-
ments of the stock price. In order to dynamically replicate a call option
payoff, one has to buy stocks when the price increases and sell shares
when the price declines. Stop loss orders, sales triggered by the fall of
value of collateral, and dynamic trading strategies were obvious candi-
dates to blame for the 1929 and 1987 crashes, respectively, since they
did not obey the law of demand and were thus believed to destabilize
the market. Day traders who trade over the internet are the most likely
candidates to be blamed for the next stock market crash.

Pointing fingers is easy, but more explicit theoretical models are
required to fully understand the mechanism via which a stock market
crash occurs. A good understanding of these mechanisms may provide
some indication of how crashes can be avoided in the future. The chal-
lenge is to explain sharp price drops triggered by relatively unimportant
news events. Theoretical models which explain crashes can be grouped
into four categories:

(1) liquidity shortage models;
(2) multiple equilibria and sunspot models;
(3) bursting bubble models; and
(4) lumpy information aggregation models.

Each of these class of models can explain crashes even when all agents
act rationally. However, they differ in their prediction of the price path
after the stock market crash. Depending on the model, the crash can
be a correction and the stock market can remain low for a substantial
amount of time or it can immediately bounce back.

The first class of models argues that the decline in prices can be due to a
temporary liquidity shortage. The market dries up when nobody is will-
ing to buy stocks at a certain point in time. This can be due to unexpected
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selling pressure by program traders. These sales might be mistakenly
interpreted as sales driven by bad news. This leads to a large price
decline. In this setting, asymmetric information about the trading motive
is crucial for generating a stock market crash. The model by Grossman
(1988) described in the next section illustrates the informational dif-
ference between traded securities and dynamic trading strategies that
replicate the payoff of derivatives. Crashes which are purely driven by
liquidity shortage are of a temporary nature. In other words, if the price
drop was caused by liquidity problems, one would expect a fast recovery
of the stock market.

The second class of models shows that large price drops that cannot be
attributed to significant news events related to the fundamental value of
an asset may be triggered by sunspots. A sunspot is an extrinsic event,
that is, a public announcement which contains no information about
the underlying economy. Nevertheless, sunspots can affect the economic
outcome since agents use them as a coordination device and, thus, they
influence agents’ beliefs. The economy might have multiple equilibria
and the appearance of a sunspot might indicate a shift from the high
asset price equilibrium to an equilibrium with lower prices. This leads
to a large change in the fundamental value of the asset. This area of
research was discussed earlier in Section 2.3 and will only be partly
touched upon in this section. Note that all movement between multiple
equilibria need not be associated with sunspots. Gennotte and Leland
(1990) provide an example of a crash that arises even in the absence
of sunspots. In their model there are multiple equilibria for a range of
parameter values. The price drop in Gennotte and Leland (1990) is not
caused by a sunspot. As the parameter values change slightly, the high-
price equilibrium vanishes and the economy jumps discontinuously to
the low-price equilibrium. This model will be described in detail in the
next section.

The third class of models attributes crashes to bursting bubbles. In
contrast to models with multiple equilibria or sunspot models, a crash
which is caused by a bursting bubble may occur even when the funda-
mental value of the asset does not change. In this setting, there is an
excessive asset price increase prior to the crash. The asset price exceeds
its fundamental value and this is mutually known by all market partici-
pants, yet it is not common knowledge among them. Each trader thinks
that the other traders do not know that the asset is overpriced. Therefore,
each trader believes that he can sell the risky asset at a higher – even more
unrealistic – price to somebody else. At one point the bubble has to burst
and the prices plummet. A crash due to a bursting bubble is a correction
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and one would not expect prices to rebound after the crash. Although
bursting bubbles provide a very plausible explanation for crashes, bub-
bles are hard to explain in theoretical models without introducing
asymmetric information or boundedly rational behavior. The possibility
of bubbles under asymmetric information is the focus of Section 2.3 of
this survey and is therefore not discussed again in this section.

A sharp price drop in theoretical models can also occur even when no
bubble exists. That is, it is not mutual knowledge that the asset price
is too high. Often traders do not know that the asset is overpriced, but
an additional price observation combined with the knowledge of the
past price path makes them suddenly aware of the mispricing. Mod-
els involving this lumpy information aggregation are closely related
to herding models. The economy might be in a partial informational
cascade until the cascade is shattered by a small event. This event
triggers an information revelation combined with a significant price
drop. Section 6.1.2 illustrates the close link between herding models
with exogenous sequencing and sequential trading models. Frenzies in
descending multi-unit Dutch auctions – as covered in Section 6.1.3 – are
closely related to herding outcomes in models with endogenous sequenc-
ing. The difference between these trading models and pure herding
models is that herding is not only due to informational externalities.
In most settings, the predecessor’s action causes both an informa-
tional externality as well as a payoff externality. A stock market crash
caused by lumpy informational aggregation is often preceded by a steady
increase in prices. The crash itself corrects this mispricing and, hence,
one does not expect a fast recovery of the stock market.

The formal analysis of crashes that follows can be conducted using dif-
ferent model setups. We first look at competitive REE models before we
examine sequential trade models. We illustrate how temporary liquidity
shortage, dynamic portfolio insurance, and lumpy information revela-
tion by prices can explain crashes. The discussion of these models sheds
light on the important role of asymmetric information in understanding
stock market crashes.

6.1.1. Crashes in Competitive REE Models

In a competitive REE model, many traders simultaneously submit
orders. They take prices as given and can trade any quantity of shares
in each trading round. In this setting, crashes can occur because of tem-
porary liquidity shortage, multiple equilibria due to portfolio insurance
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trading, and sudden information revelation by prices. We begin by look-
ing at Grossman’s (1988) model where program trading can lead to
temporary liquidity shortage.

Temporary Liquidity Shortage and Portfolio Insurance Trading
Grossman (1988) was written before the stock market crash in
October 1987. In his model poor information about hedging demand
leads to a large price decline. The original focus of the paper was
to highlight the informational difference between traded options and
synthesized options. Its main conclusion is that derivative securities
are not redundant, even when their payoffs can be replicated with
dynamic trading strategies. This is because the price of a traded deriva-
tive reveals information, whereas a synthesized option does not.1 In a
world where investors have asymmetric information about the volatil-
ity of the underlying stock price, the price of a traded option provides
valuable information about the underlying asset’s future volatility. The
equilibrium price path and the volatility of a risky asset are driven by
news announcements about its liquidation value as well as by investors’
risk aversion.

In Grossman (1988) there are three periods, t = 1, 2, 3. There are
public announcements about the value of the stock in period t = 2 and
in t = 3. After the second announcement in t = 3, every investor knows
the final liquidation value of the stock. Each public announcement can
be either good or bad, that is Spublic

t ∈ {g, b}, where t = 1, 2. Conse-
quently, the price in t = 3 can take on one of four values: P3bb, if both
signals are bad; P3bg, if the public announcement in t = 2 is good but
the one in t = 3 is bad, P3gb, or P3gg. The price in t = 2, P2g or P2b,
depends on the investors’ risk aversion. In this model, there is a fraction
f of investors whose risk aversion increases significantly as their wealth
declines. These investors are only willing to hold a risky asset as long
as their wealth does not fall below a certain threshold. As the price of
the stock declines due to a bad news announcement in t = 2, and with
it the value of their portfolio, investors become much more risk averse
and less willing to hold risky stocks. They would only be willing to hold
the stock in their portfolio if the expected rate of return, (P3 − P2)/P2,
is much higher. This can only be achieved if the price in t = 2 drops
drastically. Given their risk aversion, these traders want to insure them-
selves against this price decline in advance. Thus, they would like to

1 Section 2.2.2 discusses the informational difference between traded securities and
trading strategies at a more abstract level.
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hold a position which exhibits a call option feature. To achieve this they
can either buy additional put options in t = 1 or alternatively they can
employ a dynamic hedging strategy which replicates the call option pay-
off structure. This dynamic trading strategy requires the investor to sell
stocks when the price is falling in t = 2 and buy stocks when it is rising.
These sales lead to an even larger price decline. The larger the fraction
f of investors with decreasing risk aversion, the larger the number of
traders who either follow this dynamic trading strategy or buy a put
option. Thus, the volatility of the stock price in t = 2 increases as f
increases.

To counteract this large price decline, there are also less risk averse
market timers who are willing to bear part of this risk and provide
liquidity at a much lower expected rate of return. These market timers
can only provide liquidity to the extent that they have not committed
their funds in other investment projects in t = 1. Market timers have to
decide in t = 1 how much capital M to set aside to profitably smooth
out temporary price movements. The amount of capital M that market
timers put aside in t = 1 depends on their expectations about market
volatility, that is, on the expected fraction f of risk averse investors who
might insure themselves with dynamic hedging strategies or by buying
put options.

Grossman (1988) compares three scenarios:
1. If the extent of adoption of dynamic hedging strategies f is known

to everybody in t = 1, then market timers reserve funds in t = 1 for
market interventions in t = 2. They will do so as long as this interven-
tion is more profitable than using these funds for other purposes. Their
activity stabilizes the market and reduces the price volatility in t = 2.

2. If the extent of dynamic hedging strategies f is not known in t = 1,
but put options are traded in t = 1, the price of the put option reveals
the expected volatility in t = 2. The price of the put option in t = 1
might even fully reveal f . It provides the market timers with valuable
information about how much money M to put aside. Market timers
stabilize the market as in the case where f is directly observable. Note
that it is only required that a liquid option market exists which reveals
information about the volatility of the underlying stock. Intermediaries
who write put options can hedge their position with dynamic trading
strategies.

3. If the extent of hedging strategies f in the market is not known
and not revealed by an option price, the market timers face uncertainty
about the profitability of their price smoothing activity in t = 2. If
they underestimate the degree of dynamic hedging activity, they do not
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have enough funds in t = 2 to exploit the high price volatility. This
makes the prices much more volatile and might explain stock market
crashes. After a slightly negative news announcement in t = 2, the price
drops dramatically since all dynamic hedgers become much more risk
averse and sell their stocks. Market timers also do not have enough
funds in reserve to exploit this cheap buying opportunity. The market
only bounces back later when the market timers can free up money from
other investment projects and provide liquidity. In Grossman (1988) the
market price bounces back in t = 3 as all uncertainty is resolved in that
period.

Note that as long as the put option price reveals f , the put option
payoff can be replicated with dynamic trading strategies. However, if all
traders switch to dynamic hedging strategies, the option market breaks
down and thus f is not revealed to the traders. In this case the volatility
of the underlying stock is not known. This makes an exact replication
of the option payoff impossible.

Large price movements in Grossman (1988) are due to a lack of liq-
uidity provision by market timers, who underestimate the extent of
sales due to portfolio insurance trading. In this model, traders do not
try to infer any information about the value of the underlying stock
from its price. It is arguable whether dynamic hedging demand alone
can trigger a price drop of over 20 percent as experienced in Octo-
ber 1987. Portfolio insurance trading covered only $60–90 million in
assets, which represents only 2–3 percent of the outstanding equity mar-
ket in the US. Although sales by portfolio insurers were considerable,
they did not exceed more than 15 percent of total trading volume.
Contrary to the experience of recent shocks, Grossman’s model also
predicts that the price would rebound immediately after the temporary
liquidity shortage is overcome. Therefore, this model might better cap-
ture the “almost crash” caused by the Long Term Capital Management
(LTCM) crisis during the fall of 1998 than the more long-lived crash
of 1987.

Multiple Equilibria in a Static REE
While the stock market crashes in Grossman (1988) because market
timers who have not put enough money aside cannot submit orders
after a price drop due to sales by program trades, in Gennotte and
Leland (1990) the market crashes because some other market partic-
ipants incorrectly interpret this price drop as a bad signal about the
fundamental value of the stock. In the latter model, traders hold asym-
metric information about the value of the stock and, thus, the price of
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the underlying stock is also a signal about its fundamental liquidation
value. Consequently, even these other market participants start selling
their shares. Combining asymmetric information about the fundamental
value of the stock with uncertainty about the extent of dynamic hedging
strategies can lead to a larger decline in price in t = 2. The reason is
that the traders wrongly attribute the price drop to a low fundamen-
tal value rather than to liquidity shortage. They might think that many
other traders are selling because they received bad information about
the fundamental value of the stock, while actually many sell orders are
triggered by portfolio insurance trading.

Gennotte and Leland (1990) employ a static model even though stock
market crashes or price changes occur over time. As the parameters
change over time, the price equilibrium changes. The repetition of a
static model can often be considered as a sufficient representation of a
dynamic setting. Thus, comparative static results with respect to some
parameters in a static model can be viewed as dynamic changes over
time. A stock market crash – defined as a large price movement trig-
gered by a small news announcement – occurs if a small change in the
underlying information parameter causes a discontinuous drop in the
equilibrium price.

The authors model this discontinuity in a static REE limit order model
à la Hellwig (1980) with two different kinds of informed traders:2

(1) (value-)informed traders, who each receives an idiosyncratic indi-
vidual signal Si = v+ εi about the liquidation value v ∼ N (µv, σ 2

v );
(2) (supply-)informed traders, who know better whether the limit order

book is due to informed trading or uninformed noise trading.

Supply-informed traders can infer more information from the equi-
librium price P1. The aggregate supply in the limit order book is given
by the normally distributed random variable u = ū + uS + uL. That is,
u is divided into the part ū which is known to everybody, uS which is
only known to the supply-informed traders, and the liquidity supply uL
which is not known to anybody. The individual value-informed trader’s
demand is, as usual, given by

xi = E[v|Si, P1]− P1

ρ Var[v|Si, P1]
.

2 To facilitate comparison across papers, I have adjusted the notation to Si = p′i,
v = p, µv = p̄, σ 2

v = 6, p1 = p0, u = m, uL = L, uS = S.
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Similarly, the supply-informed trader’s demand is given by

xj = E[v|uS, P1]− P1

ρ Var[v|uS, P1]
.

In addition to the informed traders’ demand, there is an exogenous
demand from portfolio traders who use dynamic trading strategies.
Their demand π(P1) rises as the price increases and declines as the
price falls.

As long as π(P1) is linear and common knowledge, the equilibrium
price P1 = f (v − µv − k1uL − k2uS) is a linear function with con-
stants k1 and k2. In this linear case, the price P1 is normally distributed.
For nonlinear hedging demands π(P1), the argument of the price func-
tion, f−1(P1), is still normally distributed and, therefore, the standard
technique for deriving conditional expectations for normally distributed
random variables can still be used. Discontinuity in f (·)makes “crashes”
possible, that is, a small change in the argument of f (·) leads to a large
price shift. f (·) is linear and continuous in the absence of any program
trading, π(P1) = 0. This rules out crashes.

Nevertheless, even for π(P1) = 0 an increase in the supply can lead
to a large price shift. Gennotte and Leland (1990) derive elasticities
measuring the percentage change in the price relative to the percentage
change in supply. This price elasticity depends crucially on how well a
supply shift can be observed. The price change is small if the change in
supply is common knowledge, that is, the supply change is caused by a
shift in ū. If the supply shift is only observed by supply-informed traders,
the price change is still moderate. This occurs because price-informed
and supply-informed traders take on a big part of this additional supply
even if the fraction of informed traders is small. Supply-informed traders
know that the additional excess supply does not result from different
price signals while price-informed traders can partially infer this from
their signal. If, on the other hand, the additional supply is not observable
to anybody, a small increase in the liquidity supply uL can have a large
impact on the price. In this case, traders are reluctant to counteract the
increase in liquidity supply uL by buying stocks since they cannot rule
out the possibility that the low price is due to bad information that other
traders might have received. Regardless of whether the supply shift is
known to everyone, someone, or no one, the equilibrium price is still a
linear continuous function of the fundamentals and thus no crash occurs.

By adding program trading demand, the price P1 becomes even more
volatile since π(P1) is an increasing function. Dynamic hedgers buy
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stocks when the price increases and sell stocks when the price declines.
This violates the law of demand. As long as π(P1) is linear, P1 = f (·)
is continuous and linear. Crashes only occur when the program trading
is large enough to cause a discontinuous price correspondence f (·). The
discontinuity stems from the nonlinearity of program trading π(P1) and
the lack of knowledge of the amount of program trading π(P1). Crashes
are much more likely and prices are more volatile if some investors
underestimate the supply due to program trading. Gennotte and Leland
(1990) illustrate their point by means of an example of a put-replicating
hedging strategy (synthetic put). In this example, the excess demand
curve is downward sloping as long as all traders or at least the supply
informed traders know the level of program trading demand. In the case
where hedging demand is totally unobserved, the demand curve looks
like an “inverted S.” There are multiple equilibria for a certain range of
aggregate supply.3 The aggregate supply can be depicted as a vertical
line. Thus as the aggregate supply shifts, the equilibrium with the high
asset price vanishes and the asset price discontinuously falls to a lower
equilibrium level. This is illustrated in Figure 6.1.

Gennotte and Leland’s (1990) explanation of a stock market crash
provides a different answer to the question of whether the market will
bounce back after the crash. In contrast to Grossman (1988), the price
can remain at this lower level even when the supply returns to its old

×

×
Demand

Price

Quantity

Supply shift

Figure 6.1. Price crash in a multiple equilibrium setting

3 In this range, crashes can also be generated by sunspots. A different realization of
the sunspot might induce traders to coordinate in the low-price equilibrium instead of
the high-price equilibrium.
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level. The economy stays in a different equilibrium with a lower asset
price.

The reason why uninformed portfolio trading has a larger impact in
Gennotte and Leland (1990) than in Grossman (1988) is that it affects
other investors’ trading activities as well. Asymmetric information about
the asset’s fundamental value is a crucial element of the former model.
Program trading can lead to an “inverted S”-shaped excess demand
curve. As a consequence, there are multiple equilibria in a certain range
of parameters and the price drops discontinuously as the underlying
parameter values of the economy change only slightly. It is, however,
questionable whether this discontinuity in the static setup would also
arise in a fully fledged dynamic model. In a dynamic model, traders
would take into account the fact that a possible small parameter change
can lead to a large price drop. Therefore, traders would already start
selling their shares before the critical parameter values are reached. This
behavior might smooth out the transition and the dynamic equilibrium
will not necessarily exhibit the same discontinuity.

Delayed Sudden Information Revelation in a Dynamic REE
Romer (1993) illustrates a drastic price drop in a dynamic two-period
model. In this model, a crash can occur in the second period since the
price in the second trading round leads to a sudden revelation of infor-
mation. It is assumed that traders do not know the other traders’ signal
quality. The price in the first trading round cannot reveal both the aver-
age signal about the value of the stock as well as precision of the signals,
that is higher-order uncertainty. In the second trading round, a small
commonly known supply shift leads to a different price which partially
reveals higher-order information. This can lead to large price shocks
and stock market crashes.

In Romer (1993) each investor receives one of three possible signals
about the liquidation value of the single risky asset, v ∼ N (µv, σ 2

v ):
4

Sj = v + εSj ,

where εS2 = εS1 + δ2, εS3 = εS2 + δ3 and εS1 , δ2, δ3 are independently
distributed with mean of zero and variance σ 2

εS1
, σ 2

δ2 , σ 2
δ3 , respectively.

Thus, Sj is a sufficient statistic for Sj+1. There are two equally likely states
of the world for the signal distribution. Either half of the traders receive

4 The notation in the original article is: v = α, Sj = sj,µv = µ, σ 2
v = Vα, u1 =

Q,µu1 = Q̄, σ 2
u1
= VQ.
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signal S1 and the other half receive signal S2 or half of the traders receive
signal S2 and the other half receive signal S3. It is obvious that traders
who receive signal S1 (or S3) can infer the relevant signal distribution
since each investor knows the precision of his own signal. Only traders
who receive signal S2 do not know whether the other half of the traders
have received the more precise signal S1 or the less precise signal S3.
As usual, the random supply in period 1 is given by the independently
distributed random variable u1 ∼ N (µu1 , σ 2

u1
).5

The stock holdings in equilibrium of S1-traders, x1(S1), can be directly
derived using the projection theorem. S1-traders do not make any infer-
ence from the price since they know that their information is sufficient
for any other signal. Traders with S3-signals face a more complex prob-
lem. They know the signal distribution precisely but they also know that
they have the worst information. In addition to their signal S3, they try
to infer signal S2 from the price P1. The equilibrium price in t = 1, P1,
is determined by x2(S2, P1)+ x3(S3, P1) = u1 (assuming a unit mass of
each type of investor). Since an S3 trader knows x2(·), x3(·), and the
joint distribution of S2, S3, and u1, he can derive the distribution of S2

conditional on S3 and P1. Since x2(S2, P1) is not linear in S2, x3(S3, P1)

is also nonlinear. S2-investors do not know the signal precision of the
other traders. Therefore, the Var[P1|S2] depends on the higher-order
information, that is, on whether the other half of the traders are S1- or
S3-investors. S2-traders use P1 to predict more precisely the true signal
distribution, that is, to predict the information quality of other traders.
If they observe an extreme price P1, then it is more likely that other
investors received signal S3. On the other hand, if P1 is close to the
expected price given their own signal S2, then it is more likely that the
others are S1-traders. S2-investors’ demand functions x2(S2, P1) are not
linear in P1 since P1 changes not only the expectations about v, but also
its variance. This nonlinearity forces Romer (1993) to restrict his anal-
ysis to a numerical example. His simulation shows that S2-investors’
demand functions are very responsive to price changes.

Romer’s (1993) key insight is that a small shift in aggregate supply in
period t = 2 induces a price change which allows the S2-investors to infer
the precision of the other traders’ signals. A small supply change leads
to the revelation of “old” information which has a significant impact

5 Even without the random supply term u1, the REE is not (strong form) informa-
tionally efficient since a single price cannot reveal two facts, the signal and the signal’s
quality. The structure is similar to the partially revealing REE analysis in Ausubel (1990).
However, if there is no noisy supply, the no-trade theorem applies.
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on prices. Note that in contrast to Grundy and McNichols (1989), dis-
cussed in Section 4.1.2, the supply shift in period t = 2 is common
knowledge among all traders. An uncertain supply shift would prevent
S2-investors from learning the type of the other investors with certainty.
Romer (1993) uses this insight to explain the October 1987 market
meltdown.

In his model the stock market crash in t = 2 is a price correction.
The revelation of information through P2 makes investors aware of
the early mispricing. Therefore, in contrast to Grossman (1988) but
in line with Gennotte and Leland (1990), this model does not predict
any rebounding of the price after the stock price.

In Section II of his paper, Romer (1993) develops an alternative model
to explain stock market crashes. In this model, informed traders trade
at most once. They can trade immediately if they pay a fee. Else, they
can save the fee and but then their trade will be executed at a random
time or not at all. This model is closer in spirit to the sequential trade
models that are covered in the next section.

Modeling crashes within a dynamic REE setup gets complex very
quickly. Even the analysis in Romers’ (1993) two-period REE setup is
restricted to numerical simulations. One needs models which cover a
longer time horizon to really understand the dynamics of stock mar-
ket crashes. The more simplistic sequential trade models provide one
possible framework for a dynamic analysis.

6.1.2. Crashes in Sequential Trade Models

Sequential trade models are more tractable and, thus, allow us to focus
on the dynamic aspects of crashes. The literature based on sequential
trade models also analyzes the role of portfolio insurance trading and
stresses the importance of asymmetric information to explain crashes.

The economic insights of the herding literature provide a basis for
understanding stock market crashes. An informational cascade or a par-
tial informational cascade can arise in trading models. If the market is
in a partial cascade, the actions of predecessors need not lead to a price
change for a long time. Eventually, a fragile partial cascade might burst
and cause a significant price change. This is in contrast to a full infor-
mation cascade which never bursts. Using Lee’s (1998) terminology, an
informational avalanche occurs when a partial cascade bursts.

Sequential trade models à la Glosten and Milgrom (1985) and herding
models à la Bikhchandani, Hirshleifer, and Welch (1992) share some
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common features:

1. Traders can only buy or sell a fixed number of shares. Their action
space is, therefore, discrete.

2. Agents also trade one after the other.

This replicates an exogenous sequencing model where the timing of
agents’ trade is exogeneously specified. In descending Dutch auctions,
traders can decide when to trade and thus they are closely related in
spirit to herding models with endogenous sequencing. The latter class
of models is discussed in the next section.

Portfolio Insurance Trading in Sequential Trade Models
As in Gennotte and Leland (1990), Jacklin, Kleidon, and Pfleiderer
(1992) attribute the stock market crash in 1987 to imperfect informa-
tion aggregation caused by an underestimation of the extent of dynamic
portfolio insurance trading. The authors reach this conclusion after
introducing dynamic program trading strategies in the sequential trade
model of Glosten and Milgrom (1985). The market maker sets a com-
petitive bid and ask price at the beginning of each trading round. Given
this price schedule, a single trader has the opportunity to buy or sell a
fixed number x of shares or to not trade at all. The probability that an
informed trader trades in this period is µ. This trader knows the final
liquidation value of the stock v ∈ {vL, vM, vH}. An informed trader buys
(sells) the stock when its value stock v is higher (lower) than the ask
(bid) price and does not trade at all if v is between the bid and ask price.
An uninformed trader trades in this period with probability (1 − µ).
Uninformed traders are either dynamic hedgers or liquidity traders. The
fraction of dynamic hedgers θ is not known and can be either θH or θL.
The strategy of dynamic hedgers is exogeneously modeled in a very styl-
ized manner and exhibits some similarity to herding behavior. Dynamic
hedgers either buy or sell shares. They buy shares for two reasons: to
start a new dynamic hedging strategy or to continue with an existing
strategy. In the latter case, they buy shares if the trading (in)activity in
the previous trading round increases their judgment about the value of
the stock. In addition, dynamic hedgers sell shares with some probabil-
ity. They always buy or sell shares and are never inactive in the market.
This distinguishes them from informed traders and liquidity traders.
Liquidity traders buy or sell x shares with the same probability r or do
not trade at all with the remaining probability 1− 2r.

The authors illustrate the price path by means of a numerical simu-
lation. One can rule out a stock market crash following a significant
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price rise as long as the fraction θ is known to the market makers. How-
ever, the price might rise sharply if the market maker underestimates
the degree of dynamic portfolio trading. The market maker mistak-
enly interprets buy orders from dynamic hedgers as informed traders
with positive information. This leads to a sharp price increase. After
many trading rounds, the fact that he observes only few “no trade out-
comes” makes him suspicious that the earlier order might have come
from dynamic hedgers. He updates his posterior about θ and signifi-
cantly corrects the price. This leads to a stock market crash. Since the
crash is a price correction, one does not expect the price to bounce back.

Jacklin, Kleidon, and Pfleiderer (1992) focus solely on dynamic trad-
ing strategies and make no reference to the herding literature. However,
rational hedging also generates similar behavior. The articles described
next explicitly draw the connection between the herding literature and
trading games and, hence, provide deeper insights.

Herding and Crashes in Sequential Trade Models
Avery and Zemsky (1998) illustrate a sequential trade model with an
information structure similar to the herding model in Bikhchandani,
Hirshleifer, and Welch (1992). A fraction µ of the traders are informed
while (1−µ) are uninformed liquidity traders. Liquidity traders buy, sell,
or stay inactive with equal probability. Each informed trader receives
a noisy individual signal about the value of the stock v ∈ {0, 1}. The
signal is correct with probability q > 1

2 . In a sequential trade model, the
predecessor’s action not only causes a positive informational externality
as in Bikhchandani, Hirshleifer, and Welch (1992), but also a negative
payoff externality. The price changes since the market maker also learns
from the predecessor’s trade. Hence, he adjusts the bid and ask schedule
accordingly. This changes the payoff structure for all successors. Avery
and Zemsky (1998) show that the price adjusts in such a way that it off-
sets the incentive to herd. This is the case because the market maker and
the insiders learn at the same rate from past trading rounds. Therefore,
herding will not occur given pure value uncertainty. In general, as long
as the signals are monotonic, the herding incentives are offset by the
market maker’s price adjustment. Consequently, a (full) informational
cascade does not arise.

Indeed, informational cascades can be ruled out even for information
structures which lead to herding behavior since the authors assume that
there is always a minimal amount of “useful” information. Hence, the
price converges to the true asset value and the price process exhibits no
“excess volatility,” regardless of the assumed signal structure, due to the
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price process’ martingale property. This implies that large mispricings
followed by a stock market crash occur only with a very low probability.

Avery and Zemsky (1998) also explicitly analyze some nonmono-
tonic signal structures. As in Easley and O’Hara (1992), they introduce
higher-order uncertainty via event uncertainty. Insiders receive either a
perfect signal that no new information has arrived, that is, the value of
stock remains v = 1

2 , or a noisy signal which reports the correct liquida-
tion value v ∈ {0, 1} with probability q. Viewed differently, all insiders
receive either a totally useless signal whose precision is q′ = 1/2 (no
information event) or all insiders receive possibly different signals but
with the same precision q′ = q ∈ (1/2, 1]. The precision, q′, is known
to the insiders, but not to the market maker. In other words, the mar-
ket maker does not know whether an information event occurred or
not. This asymmetry in higher-order information between insiders and
the market maker allows insiders to learn more from the price process
(trading sequence) than the market maker. Since the market maker sets
the price, the price adjustment is slower. Bikhchandani, Hirshleifer, and
Welch (1992) can be viewed as an extreme case where prices are essen-
tially “fixed.” Slow price adjustment reduces the payoff externalities
which could offset the information externality. Consequently, traders
might herd in equilibrium. However, no informational cascade arises
since the market maker can gather information about the occurrence of
an information event. Surprisingly, herding increases the market maker’s
awareness of information events and does not distort the asset price.
Therefore, herding in a setting with only “event uncertainty” cannot
explain large mispricings or stock market crashes.

A more complex information structure is needed to simulate crashes.
Avery and Zemsky (1998) consider a setting with two types of informed
traders in order to explain large mispricings. One group of traders
receives their signals with low precision qL, whereas the other receives
them with high precision qH = 1, that is, they receive a perfect sig-
nal. The proportion of insiders with the perfect signal is either high or
low and it is not known to the market maker. The authors call this
information structure composition uncertainty. This information struc-
ture makes it difficult for the market maker to differentiate between a
market composed of well-informed traders following their perfect sig-
nal from one with poorly informed traders who herd. In both situations
a whole chain of informed traders follows the same trade. If the prior
probability is very low that poorly informed traders are operating in the
market, a chain of buy orders make the market maker think that a large
fraction of traders is perfectly informed. Thus, he increases the price. If
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the unlikely event occurs in which only poorly informed traders herd,
the asset price may exceed its liquidation value v. The market maker
can infer only after many trading rounds that the uninformed traders
have herded. In that case, the asset price crashes. Avery and Zemsky
(1998) refer to this event as a bubble even though it is not a bubble in
the sense described in Section 2.3. Bubbles only occur if traders mutu-
ally know that the price is too high yet they still hold or buy the asset.
This is the case since they think that they can unwind the position at an
even higher price before the liquidation value is paid out. Bubbles in a
sequential trading setting à la Glosten and Milgrom (1985) can never
occur since this setting does not allow agents to trade a second time.
That is, traders cannot unwind their acquired position. All traders have
to hold the asset until the liquidation value is paid out.

Gervais (1997) is similar to Avery and Zemsky (1998). However,
it shows that uncertain information precision can lead to full informa-
tional cascades where the insider’s information precision never gets fully
revealed. Thus, the bid–ask spread does not reflect the true precision.
In Gervais (1997) all agents receive a signal with the same precision,
qH > qL, qL >

1
2 , or qno = 1

2 . If the signal precision is qno = 1
2 , the sig-

nal is useless, that is, no information event occurs. In contrast to Avery
and Zemsky (1998), the signals do not refer to the liquidation value of
the asset, v, directly, but only to a certain aspect vt of v. More formally,
the trader who can trade in trading round t receives a noisy signal St
about the component vt. There is only one signal for each component
vt, which takes on a value 1/T or −1/T with equal probability of 1

2 .
The final liquidation value of the asset is then given by v =∑T

t=1 vt. As
in Glosten and Milgrom (1985), the risk neutral market maker sets com-
petitive quotes. If the bid–ask spread is high, insiders trade only if their
signal precision is high. The trade/no-trade sequence allows the market
maker to update his beliefs about the quality of the insider’s signals.
He can also update his beliefs about the true asset value v. Therefore,
the competitive spread has to decrease over time. Note that the trad-
ing/quote history is more informative for insiders because they already
know the precision of the signal. When the competitive bid–ask spread
decreases below a certain level, insiders will engage in trading inde-
pendent of the precision of their signal. This prevents the competitive
market maker from learning more about the signals’ precision, that is,
the economy ends up in a cascade state with respect to the precision of
the insider’s signals.

In Madrigal and Scheinkman (1997) the market maker does not set a
competitive bid–ask spread. Instead, he sets the bid and ask prices which
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maximize his profit. The price function in this one-period model displays
a discontinuity in the order flow. As in Gennotte and Leland (1990), this
discontinuity can be viewed as a price crash since an arbitrarily small
change in the market variables leads to a large price shock.

Crashes due to Information Avalanches
Lee’s (1998) model departs in many respects from the Glosten–Milgrom
setting. It is still the case that in each period only a single trader receives a
signal about the liquidation value v ∈ {0, 1}. However, in Lee (1998) the
trader can decide when to trade and he can also trade more than once.6

In particular, traders have the possibility of unwinding their position in
later trading rounds. This model is, therefore, much closer in spirit to
herding models with endogenous sequencing. The trades are also not
restricted to a certain number of shares. However, when agents want
to trade they have to pay a one-time fixed transaction fee c to open an
account with a broker. There are no liquidity traders or dynamic hedgers
in this model; there are only risk averse informed traders. Traders are
assumed to be price takers. Prior to each trading round the market maker
sets a single price at which all orders in this trading round will be exe-
cuted. This is in contrast to the earlier models where the market maker
sets a whole price schedule, or at least a bid and an ask price. The market
maker’s single price pt = E[v|{xi

t}i∈I] is based on all observed individ-
ual orders in all the previous trading rounds. The market maker loses
money on average since he cannot charge a bid-ask spread even though
informed traders are better informed than he is. This “odd” assumption
simplifies matters and is necessary to induce informed traders to trade.
Otherwise the no-trade (speculation) theorem of Milgrom and Stokey
(1982) would apply in a setting without liquidity traders.

Each informed trader receives one of N possible signals Sn ∈
{S1, . . . , SN} =: S which differ in their precision. The signals satisfy the
monotone likelihood property and are ranked accordingly. The market
maker can observe each individual order and since there are no liquid-
ity traders he can fully infer the information of the informed trader.
However, by assumption the market maker can only adjust the price
for the next trading round. The price in the next trading period then
fully reflects the informed trader’s signal and, thus, the informed trader
has no informational advantage after his trade is completed. Due to the
market maker’s risk neutrality, no risk premium is paid and, hence, the

6 The notation departs from that in the original article: v = Y, xi
t = zi

t , Sn = θn,
S = 2.
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risk averse insider is unwilling to hold his risky position. He will unwind
his entire position immediately in the next trading round. This trading
strategy of ‘acquiring and unwinding in the next round’ would guarantee
informed traders a certain capital gain. Consequently, it would be opti-
mal for the informed traders to trade an infinite number of stocks in the
first place. In order to avoid this, Lee (1998) assumes that in each period
the liquidation value v might become common knowledge with a certain
probability γ . This makes the capital gains random and, thus, restrains
the trading activity of the risk averse informed traders. In short, the
model setup is such that the informed agents trade at most twice. After
they buy the asset they unwind their position immediately in the next
period. Therefore, the trader’s decision is de facto to wait or to trade
now and unwind the position in the next trading round. This makes the
“endogenous reduced action space” of the trading game discrete.

As trading goes on and the price converges (maybe wrongly) to the
value v = 0 or v = 1, the price impact of an individual signal and thus the
capital gains for informed traders become smaller and smaller. It is pos-
sible that the expected capital gains are so small that it is not worthwhile
for the informed trader to pay the transaction costs c. This is especially
the case for traders with less precise signals. Consequently, all traders
with less precise signals Sn ∈ Ŝ ⊂ S will opt for a “wait and see strat-
egy.” That is, all traders with signals Sn ∈ Ŝ herd by not trading. In Lee’s
words, the economy is in a partial informational cascade. When agents
do not trade based on their information, this information is not revealed
and, hence, the market accumulates a lot of hidden information which is
not reflected in the current stock price. An extreme signal can shatter this
partial informational cascade, as shown in Gale (1996) in Section 5.2.2.
A trader with an extreme signal might trade when his signal strongly
indicates that the price has converged to the wrong state. This single
investor’s trade not only induces some successors to trade but might
also enlighten traders who received their signal earlier and did not trade
so far. It might now be worthwhile for them to pay the transaction costs
c and to trade based on their information. These traders are now eager to
trade immediately in the same trading round as long as the market maker
has committed himself to the same price. Consequently, there will be an
avalanche of orders and all the hidden information will be revealed. In
other words, an informational avalanche in the form of a stock market
crash occurs. The subsequent price after the stock market crash is likely
to be closer to the true liquidation value. The analysis in Lee (1998)
also shows that the whole price process will eventually end up in a total
informational cascade, that is, where no signal can break up the cascade.
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Information avalanches in Lee (1998) hinge on the assumption that
the market maker cannot adjust his quoted price within a trading round
even when there are many individual orders coming in. Since the market
maker is forced to execute a large order flow at a price that is much too
high, he is the biggest loser in the event that a crash occurs. It would
be interesting to determine the extent to which this assumption can be
relaxed without eliminating the occurrence of informational avalanches.
As in almost all models discussed so far, there is no reason why a crash
has to be a price decline. It can also be a sharp price increase. This is a
general criticism of almost all models given the empirical observations
that one mostly observes sharp price declines.

In contrast to the standard sequential trade models, Lee’s (1998) anal-
ysis has the nice feature that traders can choose endogenously when to
trade and what amount to trade. In the standard auction theory covered
in the next sections, bidders can also choose the timing of their bid.
However, their quantity is fixed to a unit demand.

6.1.3. Crashes and Frenzies in Auctions and
War of Attrition Games

While in the standard sequential trade models à la Glosten and Milgrom
(1985) the order of trades is exogenous, auctions with ascending or
descending bidding allow bidders to decide when to bid or stop bid-
ding. Thus, these models correspond more to endogenous sequencing
herding models. In contrast to pure informational herding models but
like sequential trade models, the bidders’ decisions cause both an infor-
mation externality as well as a payoff externality. The information
externality might even relate to the payoff externality. This is the case
when the predecessor holds private information and his action affects
the payoff structure of the successors. For example, when a bidder quits
in a standard ascending auction (Japanese version), he reveals to the
remaining bidders that there is one less competitor. This is a positive
payoff externality for the remaining bidders. In addition, he reveals a
signal about the common value of the good.

This section only covers the small part of the auction literature that
focuses on crashes.7 Due to its central role in this literature, let us first

7 The auction literature was initiated by Vickrey (1961). There are several excel-
lent overview articles that describe this literature. We refer the interested reader
to Klemperer (1999, 2000), Matthews (1995), McAfee and McMillan (1987), and
Milgrom (1989).



Crashes, Investigative Herding, Bank Runs 185

discuss the revenue equivalence theorem developed by Myerson (1981)
and Riley and Samuelson (1981).

The Revenue Equivalence Theorem
The revenue equivalence theorem (RET) is the most important theorem
in auction theory. It states that under certain conditions any auction
mechanism that (1) assigns the good to the bidder with the highest signal
and (2) grants the bidder with the lowest feasible signal a zero surplus,
leads to the same expected revenue to the seller. This equivalence holds
for a fixed number of risk neutral bidders and if the signals are indepen-
dently drawn from a common, strictly increasing, atomless distribution,
for example on [V , V̄] It applies to a pure private value auction. It also
extends to a pure common value auction provided the individual signals
Si are independent and the common value is a function of them, that is,
v = f (S1, . . . , SI).

Let us outline the intuitive reasoning for this result. Without loss
of generality, we choose signals Si = vi such that they coincide with
the unconditional value of the asset for bidder i. Suppose the expected
payoff for a bidder with private signal vi is Ui(vi). If the vi-bidder tries
to mimic a bidder with a signal vi +1v, his payoff would be the payoff
of a (vi + 1v)-bidder with the difference that, in the case that he wins
the object, he values it 1v less than the (vi + 1v)-bidder. He would
receive the object with probability P(vi +1) if he mimics the (vi +1v)-
bidder. In any mechanism the bidder should have no incentive to mimic
somebody else, that is, U(vi) ≥ U(vi +1v)−1v Pr(vi +1v). Similarly,
the (vi + 1v)-bidder should not want to mimic the vi-bidder, that is,
U(vi +1v) ≥ U(vi)+1v Pr(vi). Combining both inequalities leads to

Pr(vi) ≤ Ui(vi +1v)−Ui(vi)

1v
≤ Pr(vi +1v).

For very small deviations 1v→ 0, this reduces to

dUi

dv
= Pr(vi).

Integrating this expression leads to the following expected payoff
function.

Ui(vi) = Ui(V)+
∫ vi

x=v
Pr(x) dx.
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This payoff function determines the expected payoff for any vi-type
bidder. The no mimic conditions are satisfied as long as the bidder’s
payoff function is convex, that is, the probability of winning the object
increases in vi.

The risk neutral bidder’s expected payoff U(vi) is given by his expected
value of the object E[v|vi] = vi times the probability of receiving the
object, minus his expected transfer payment, T, in short, by viPri(vi)−
T. Two different auction mechanisms lead to the same payoff for a
vi-bidder if the bidder with the lowest signals receives the same payoff
Ui(V) in both auction mechanisms. If in addition the probability of
winning is the same, then the expected transfer payoff for any type of
bidder is the same in both auctions and so is the expected revenue for
the seller.

The revenue equivalence theorem is extremely useful and powerful.
Instead of analyzing the more complicated actual auction mechanism,
one can restrict the analysis to simpler mechanisms by appealing to the
revenue equivalence theorem.

Frenzies and Crashes
Bulow and Klemperer’s (1994) auction article emphasizes frenzies and
crashes within a multi-unit Dutch auction. As in the real option litera-
ture, a potential buyer has to decide whether to buy now or later, rather
than now or never.8 Bulow and Klemperer (1994) consider a private
value setting, wherein each of K + L potential buyers’ private value for
one good vi is independently drawn from a distribution F(vi) which is
strictly increasing and atomless on [V , V̄]. A seller offers K identical
units of a good for sale to K + L potential buyers. The seller can com-
mit himself to a specific selling procedure. Hence, the seller receives the
whole social surplus except the information rent, which goes to the bid-
ders. Crashes and frenzies arise in any selling mechanism and are derived
using the revenue equivalence theorem.

For concreteness, Bulow and Klemperer (1994) illustrate crashes and
frenzies in a multi-unit Dutch auction. The seller starts at a high price and
lowers it continuously until a purchase occurs. Then, the seller asks the
remaining bidders whether somebody has changed his mind and would
like to buy at this price too. If this is the case, he sells the goods to them
and if some additional goods remain he asks the remaining bidders again

8 The trade-off in the real option literature is that by delaying the purchase, the
investor incurs waiting costs but gains the opportunity to learn something about the
common value of the product.
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whether their willingness to pay has changed. The authors define mul-
tiple sales at a single price as a frenzy. If nobody changes his mind, that
is, if nobody else is willing to buy at this price, the seller continues to
lower the price. If too many bidders have changed their mind and want
to buy at this price, he runs a new Dutch auction among these bidders
with the remaining goods. This might lead to higher prices. Therefore,
the bidder is faced with a trade-off. On the one hand, if he waits, the
price may be lower, but on the other hand waiting also increases the
likelihood of a frenzy which could lead to a higher price or to the pos-
sibility that he walks home empty handed. In general, somebody else’s
purchase generates a negative externality for the remaining bidders since
the number of remaining goods diminishes and with it the probability
of receiving a good at this price decreases. Nevertheless, the option to
wait changes the buyers “willingness to pay” in comparison to a setting
where the seller commits to a single take-it-or-leave-it price.

Since the revenue equivalence theorem applies in this multi-unit set-
ting, each bidder’s expected payment must be the same for any auction
design. In particular, the willingness to pay ω(vi) for a bidder with pri-
vate value vi equals the expected price a bidder would pay in a standard
multi-unit English auction. For k remaining goods and k+ l remaining
bidders, each bidders “willingness to pay” is equal to his expectation of
the (k + 1)st highest value out of the k + l remaining values, provided
this value is lower than his own valuation v. For bidders with high vi,
the willingness to pay is almost the same. To illustrate this, consider the
bidder with the highest possible value, v̄. He knows for sure that his
valuation is the highest. Therefore, his estimate of the (k + 1) highest
valuation is the k highest of the other (k+ l − 1) bidders. This estimate
decreases only slightly for bidders with lower vi’s as long as they are
pretty sure that they are among the k bidders with the highest values.
In other words, the WTP ω(v) is very flat, especially for high private
values, v, compared to the standard demand curve – which represents
the buyers’ willingness to accept a take-it-or-leave-it final offer. Figure
6.2, which is taken from Bulow and Klemperer (1994), illustrates this
point for a uniform distribution.

The WTP for the remaining bidders changes when one of the other
bidders buys one of the goods. A purchase reduces the number of remain-
ing goods available for the rest of the bidders. This increases the price
each remaining bidder expects to pay (negative payoff externality) and
thus shifts all other bidders’ WTP functions upwards. Therefore, when
the seller offers more sales at the same selling price, bidders with close
enough v values might change their mind and come forward to buy at
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Figure 6.2. Frenzy in an auction

the same price. Since the WTP function ω(1 − F(vi)) is very flat, it is
very likely that many bidders will come forward in the second round of
sale at the same price. That is a frenzy might emerge. More specifically
one of the following three scenarios can occur. (1) More bidders than
expected change their mind but the demand can be satisfied. In this case
the frenzy feeds itself since the bidders who did not buy in the second
round might change their mind after observing that so many bidders
have decided to buy in the second round. The seller offers the good at
the same price in a third round and so on. (2) Too many bidders come
forward and the seller cannot satisfy the demand. The seller then initi-
ates a new descending multi-unit Dutch auction among these bidders by
starting at the original starting price. (3) Although all WTPs increased
no bidder or less than the expected number of bidders are willing to
participate in the second round. In this case a “crash” occurs where it
becomes common knowledge among all bidders that no purchase will
occur until the price has fallen to a strictly lower level. The seller goes
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on lowering the price and one observes a discrete price jump. It needs
to be stressed that these effects will be even stronger in a common value
environment. With common values, the purchase is an additional signal
for the remaining bidders that the value of the good is high. Thus, the
remaining bidders’ WTP increases even further.

War of Attrition Game
A war of attrition (chicken) game is like a sealed bid all pay auction.
In an all pay auction, each bidder pays his own bid independently of
whether he wins the object or not. In a war of attrition game the player
who suffers the longest, that is, pays the most, wins the prize. Each
player’s strategy is like a bidding strategy, which specifies the point at
which to stop suffering. The only difference between a war of attrition
game and an all pay auction is that in the war of attrition game the
player’s payment does not go to the seller of an object, but is socially
wasted. In a setting with independent private values of the object, the
expected surplus of each player is the same in both games as it is in any
auction, as long as the assumptions for the RET apply. This allows us
to switch to the mechanism of the second price auction which is much
easier to analyze.

Bulow and Klemperer (1999) use the RET to analyze a generalized
war of attrition game. In Bulow and Klemperer (1999) each of K + L
player can win one of K objects. The player pays one unit per period as
long as he stays in the race. After quitting, his costs reduce to c ≤ 1 (pos-
sibly to zero) until L players (“losers”) quit, that is, the game ends. If the
players pay no costs after dropping out, that is, c = 0, L−1 players quit
immediately and the remaining K+1 players play a standard multi-unit
war of attrition game analyzed in Fudenberg and Tirole (1986). This
result is derived by means of the RET. The expected total suffering can
be calculated using a simpler standard K + 1 price auction because of
the RET. We know from the K+ 1 price auction that the expected total
payment, or suffering in this case, of all K + L players coincides with
expected K + 1 highest evaluation. After L − 1 lowest types drop out,
the expected total amount of suffering of the remaining K+1 players is
still the same. This can only be the case if the L−1 lowest types drop out
immediately. Bulow and Klemperer (1999) also analyze the case where
each player has to suffer until the game ends, independently of whether
he drops out early or not, that is, c = 1. In this case the drop out strat-
egy is independent of the number of players and of other players’ drop
out behavior. The optimal drop out strategies for intermediate cases of
0 < c < 1 are also characterized by Bulow and Klemperer (1999).
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6.2. Keynes’ Beauty Contest, Investigative Herding, and
Limits of Arbitrage

In reality, traders do not receive all information for free. They have
to decide whether and which information to gather prior to trading.
This affects their trading behavior as well as the stock price movements.
Models in this section illustrate that traders have an incentive to gather
the same information and ignore long-run information.

In his famous book The General Theory of Employment, Interest and
Money, Keynes (1936) compared the stock market with a beauty con-
test. Participating judges – rather than focusing on the relative beauty
of the contestants – try to second-guess the opinion of other judges. It
seems that they would rather choose the winner than the most beautiful
girl. Similarly in stock markets, investors’ search effort is not focused
on fundamentals but on finding out the information that other traders
will trade on in the near future. Their intention is to trade on infor-
mation right before somebody else trades on the same information. In
Keynes’ words, “skilled investment today is to ‘beat the gun’ . . . .”
This section argues that this is a rational thing to do, in particular if the
investor – for whatever reason – intends to unwind the acquired position
early.

In a setting where traders have to decide which information to collect,
the value of a piece of information for the trader might depend on the
other traders’ actions. New information allows traders to update their
estimate about the value of assets. Hence, in their view assets might
become mispriced. Yet, private information only provides investors with
a profitable trading opportunity if (1) they can acquire a position without
immediately revealing their private information, and (2) they are able
to unload their acquired position at a price which reflects their private
information. In other words, as long as they acquire the position, the
asset has to remain mispriced. However, when investors liquidate the
required position, the price has to incorporate their information. Traders
cannot exploit their knowledge if they are forced to liquidate before the
asset is priced correctly. The mispricing might become even worse in
the medium term. In this case, forced early liquidation leads to trading
losses.

An asset is mispriced if its price does not coincide with the equilib-
rium price (absolute asset pricing). The exploitation of a mispriced asset
is often referred to as arbitrage. Arbitrage – in the strict theoretical
sense – refers only to mispricing relative to other assets. It involves
no risk since one buys and sells assets such that future payoff streams
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exactly offset each other and a positive current payoff remains. In an
incomplete market setting, there are often insufficient traded securi-
ties that exactly offset future payoff streams of an asset. The asset is,
thus, not redundant. Therefore, mispricing of (nonredundant) assets
need not lead to arbitrage opportunities in the strict sense. Practi-
tioners often call all trading strategies which exploit mispricing “risky
arbitrage trading.” In contrast to riskless arbitrage trading, these trad-
ing strategies exploit mispricing even though the future payoff streams
cannot be offset. Some models in this section adopt this broader defi-
nition of arbitrage, thereby essentially covering any information based
trading.

Whether or not an asset’s mispricing is corrected before the trader
has to liquidate his position depends on whether the same information
spreads to other traders. This new information is only fully reflected
in the asset price when other market participants also base their trad-
ing activity on it. Brennan (1990) noted the strong interdependence of
individual information acquisition decisions. In a market with many
investors the value of information about a certain (latent) asset may be
very small if this asset pays a low dividend and no other investor acquires
the same information. If, on the other hand, many investors collect
this information, the share price adjusts and rewards those traders who
gathered this information first. Coordinating information collection
activities can, therefore, be mutually beneficial.

There are various reasons why investors unwind their position early
before the final liquidation value of the stock is known. The following
sections discuss three different reasons why investors might want to
unwind their position early. Traders try to unwind their position early
because of:

(1) short-livedness;
(2) risk aversion in an incomplete market setting;
(3) portfolio delegation in a principal–agent setting.

If the traders liquidate their position early then they care more about
future price developments than about the true fundamental value of the
stock. Consequently, traders prefer short-run information to long-run
information. They might even ignore long-run information. The future
development of the asset price also depends on the information other
traders gather. This explains why traders have an incentive to gather
the same information, that is, why they herd in information acquisi-
tion. Investigative herding is the focus of Froot, Scharfstein, and Stein
(1992).
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6.2.1. Unwinding due to Short Horizons

Short-Livedness and Myopia
Short-lived agents convert their stocks and other savings into consump-
tion latest in their last period of life. Agents with short horizons may live
longer but they think only a few periods ahead. Their current behavior is
often similar to that of short-lived individuals. In addition, myopic peo-
ple’s behavior is dynamically inconsistent. In the current period, myopic
investors ignore some future payoffs. However, they will value them in
some future period. The marginal rate of temporal substitution between
consumption in two periods changes dramatically over time. Myopia
is, therefore, an extreme form of hyperbolic discounting and has to
be attributed to boundedly rational behavior. Myopia alters an agent’s
trading strategy since they do not take into account how their current
trading affects their future optimal trading. However, the backwards
induction argument still applies, which rules out major alterations of
the price process in a setting with exogenous information acquisition.
Nevertheless, there might exist additional equilibria if risk averse agents
are short-lived or myopic. In these equilibria asset prices are very volatile
and traders demand a higher risk premium since short-lived agents care
only about the next period’s price and dividend. Spiegel (1998) illus-
trates this in an overlapping generations (OLG) model. Similarly in
DeLong, Shleifer, Summers and Waldmann (1990) short-livedness com-
bined with risk aversion prevents arbitrageurs from driving prices back
to their riskless fundamental value.The risk averse arbitrageurs care only
about next period’s price which is risky due to the random demand of
noise traders.

Introducing Endogenous Information Acquisition
In models with endogenous information acquisition, short-livedness can
also have a large impact on the price process. Brennan (1990) noticed
the interdependence of agents’ information acquisition decisions for low
dividend paying (latent) assets. He formalizes this argument with an
overlapping generations (OLG) model where agents only live for three
periods. A short life span might force traders to liquidate their position
before the information is reflected in the price. This is the case if the
other traders did not gather the same information.

In Froot, Scharfstein, and Stein (1992) traders are also forced to
unwind their acquired position in period t = 3 even though their infor-
mation might be only reflected in the price in t = 4. Consequently,
all traders worry only about the short-run price development since
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they have to unwind their position early. They can only profit from
their information if it is subsequently reflected in the price. Since this
is only the case if enough traders observe the same information, each
trader’s optimal information acquisition depends on the others’ infor-
mation acquisition. The resulting positive information spillover explains
why traders care more about the information of others than about the
fundamentals. Froot, Scharfstein, and Stein’s (1992) analysis focuses
on investigative herding. Herding in information acquisition would not
occur in the stock market if agents only cared about the final liquidation
value. In that case, information spillovers would be negative and thus,
it would be better to have information that others do not have. Conse-
quently, investors would try to collect information related to different
events.

In Froot, Scharfstein, and Stein (1992) each individual can only collect
one piece of information. Each trader has to decide whether to receive a
signal about event A or event B. The trading game in Froot , Scharfstein,
and Stein (1992) is based on Kyle (1985). The asset’s liquidation value
is given by the sum of two components, δA and δB,

v = δA + δB,

where δA ∼ N (0, σ 2
δA) refers to event A and δB ∼ N (0, σ 2

δB) refers to
the independent event B. Each trader can decide whether to observe
either δA or δB, but not both. After observing δA or δB a trader submits
a market order to the market maker at t = 1. Half of the submitted
market orders are executed at t = 1 and the second half at t = 2.
The period in which an order is processed is random. Liquidity traders
submit market orders of aggregate random size u1 in each period t = 1
and u2 in t = 2. As in Kyle (1985) the risk neutral market maker sets a
competitive price in each period based on the observed total net order
flow. Thus, the price only partially reveals the information collected by
the informed traders. Traders acquire their position either in t = 1 at a
price P1 or in t = 2 at a price P2, depending on when their order, which
was submitted in t = 1, will be executed. At t = 3 all traders, that is,
insiders and liquidity traders, unwind their position and by assumption
the risk neutral market maker takes on all risky positions.

The fundamental value v = δA + δB is publicly announced either in
period t = 3 before the insiders have to unwind their position or in
period t = 4 after they unwind their portfolio. With probability α, v is
known in t = 3 and with probability (1− α) it is known in t = 4. If the
fundamentals are known to everybody in t = 3, the acquired positions
are unloaded at a price P3 = δA+δB. If the public announcement occurs
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only in t = 4, the price does not change in period t = 3, that is, P3 = P2
and the traders unwind their position at the price P2. In this case the
expected profit per share for an insider is 1

2(P2−P1). The 1
2 results from

the fact that the insider’s order is only processed early with a probability
1
2 . Only then does the insider receive the shares at a price of P1, which
he can later sell in t = 3 for P3 = P2. The trader makes no profit
if his order is executed late and the fundamentals are only announced
in t = 4. With probability α, the fundamentals δA and δB are already
announced at t = 3, that is, P3 = v. In this case a trader who submitted
an order at t = 1 and buys a share for P1 or P2 with equal probability,
sells it at t = 3 for P3 = v. His expected profit in this case is given
by v − 1

2[P1 + P2]. Thus, the overall expected profit per share for an
informed trader is

E
{
α

[
v − P1 + P2

2

]
+ (1− α)

[
P2 − P1

2

]}
.

In both cases the profit is determined by P3, the price at which the
informed trader unwinds his position; P3 = v with probability α. Thus,
δA and δB are equally important, with probability α. With probability
(1−α), P3 = P2. Since P2 depends on the information set of all informed
traders, each insider cares about the information that the other traders
are collecting.

For illustrative reasons let us consider the polar case α = 0, that is
δA and δB are only publicly announced in t = 4. If all other investors
collect information δA, then information δB is worthless in this case
since δB will only enter into the price in t = 4. In period t = 4 investors
will have already unwound their positions. Consequently, all investors
will herd to gather information δA and nobody will collect information
δB.9 Thus, the short horizons of traders creates positive informational
spillovers which lead to herding in information acquisition.

In an even more extreme scenario, if all investors herd on some noise
term ζ , which is totally unrelated to the fundamental value v = δA+ δB,
a rational investor is (weakly) better off if he also collects information
ζ rather than information about fundamentals alone. If α = 0 and all
other investors are searching for ζ , the fundamentals δA and δB are only
reflected in P4. The price at which the traders have to close their position,
P3 (= P2) might depend on the “sunspot” ζ , given their strategies.

9 In a (Nash) equilibrium the information that other traders are collecting is mutual
knowledge.



Crashes, Investigative Herding, Bank Runs 195

For the more general case of α > 0, where δA and δB might already be
announced in t = 3, herding in information might still occur. This is still
the case if α is sufficiently small. In contrast if α = 1, each trader prefers
to collect information about events that are not the main focus of the
other traders’ information gathering effort. In short, individuals’ search
efforts are “strategic substitutes” if α = 1, and “strategic complements”
if α = 0.

The above reasoning can also be analyzed in a multiperiod overlap-
ping generations (OLG) framework. A new generation of short-sighted
traders enters the market in each period. Inefficient herding still occurs
in the following OLG setting. Generation t speculators can study one of
k pieces of information. At the end of period t, one of these pieces will
be randomly drawn and publicly announced. In the following period
t + 1, a new piece of information can be studied. Thus, each trader in
each generation can study one of k pieces of information. For each gen-
eration it pays off to have accidentally studied the information that gets
publicly announced at the end of the period. Since this only occurs with
a probability 1/k it is more worthwhile to collect information which is
also studied by other traders and thus is reflected in the price for sure.
In short, herding in information acquisition may also occur in this OLG
setup.

Arbitrage Chains
Dow and Gorton’s (1994) “arbitrage chains” model stresses that the
value of exploiting a certain piece of information depends on the likeli-
hood that another insider will receive the same information in the next
trading round and drive the price closer to its fundamental. Only then
can the insider, who lives for two periods, unwind his position at a
profit. If there is no agent who trades on the same information in the
next trading round then the trader would have been better off by invest-
ing in a bond since he would have saved transaction costs, c. In contrast
to Froot, Scharfstein, and Stein (1992), Dow and Gorton (1994) con-
sider an infinite horizon economy t = −∞, . . . ,∞ with overlapping
generations (OLG). Each agent lives only for two periods. All young
people receive a fixed endowment W . Consumption takes place only in
the agents’ second period of life and thus agents try to save. Agents can
save by buying a bond with riskless return of r or a stock which pays a
dividend of either 1 or 0 in each period. The dividend payments are seri-
ally uncorrelated and a dividend of 1 is paid with (prior) probability π .
Another differentiating feature of Dow and Gorton’s model from Froot,
Scharfstein, and Stein (1992) is that the information acquisition process
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is assumed to be exogenous. The insider cannot decide which informa-
tion to gather. A young trader receives a perfect signal about the dividend
payments in tdiv with a certain probability γt = γt+1ε = ε(tdiv−t).10 This
probability converges smoothly to 1 as t approaches tdiv. In addition to
the young informed trader, uninformed hedgers might also be present
in certain periods. They are active in the market place with probability
1
2 . These traders have a strong incentive to trade for hedging reasons as
their wage of 0 or 1 in the next period is perfectly negatively correlated
with the dividend payments. In short, each generation consists either of
a single informed arbitrageur and/or uninformed hedgers or nobody.

The price setting is similar to Kyle (1985). A single competitive mar-
ket maker sets the price after observing the order flow. In contrast to
Kyle (1985), he also observes each individual order. He can deduce the
orders from the old generations since they unwind their earlier trades.
This unwinding keeps the market maker’s inventory from growing ever
larger. Although the market maker can observe each individual order
he does not know whether the orders from the young generation is due
to hedging needs or informed trading. Young uninformed hedgers try to
hedge their wage income risk by buying xt stocks. The informed trader
might also buy xt stocks. Given the market maker’s beliefs, the informed
trader can only hide behind hedgers if he submits a buy order of the same
size xt. Any other order size would reveal to the market maker that he
trades for informational reasons. An informed young trader will only
buy the stock if he receives a positive signal about the dividend payment
in the near future tdiv. If the dividend payment in tdiv is more than K
periods away, he will ignore his signal. The market maker knows that
the insider might get a signal about the dividend payment (in tdiv). Prior
to tdiv−K, the market maker always sets the price pt equal to π/r since
nobody is trading for informational reasons. The stock price is equal to
the average dividend payment π in perpetuity, discounted at the rate r.
However, an insider might be trading in periods closer to tdiv and thus
the market maker adjusts the price according to the observed order flow
from the young generation. If the order flow is 2x, the market maker
knows for sure that an informed trader submitted a buy order and thus
the dividend payments in tdiv will be 1. Therefore, he adjusts the price
to pt = π/r+ (1+ r)−(tdiv−t)(1− π). If nobody submitted an order, the
insider might have received bad news or no news. Therefore, the market
maker will lower the stock price. If he observes a single buy order x

10 For consistency with the rest of the chapter, we replace the original notation δt

with γt and T with tdiv.
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then he does not know whether an informed trader or a hedger submit-
ted it. The aggregate order flow of x might stem from the insider if he
received a good signal and no hedger was active in the market place,
or it might stem from the hedgers. In the latter case, the arbitrageur
has received either no signal or a bad signal. Dow and Gorton’s (1994)
model specification is such that the market maker’s belief β about the
dividend payment in tdiv is not affected in this case. The market maker
adjusts the price only slightly to reflect the fact that the expected divi-
dend payment in tdiv of β is now one period closer and thus requires less
discounting.

Given this pricing rule, the insider’s profit is highest in the case where
only he transacts with the market maker when he buys the stock and
one period later when he sells his stock; the new generation’s order flow
is 2x, as this fully reveals the private information to the market maker.
Dow and Gorton (1994) show that the optimal trading strategy for an
insider is to ignore any long-run information that refers to dividend pay-
ments which are more than K periods in the future. This is the result of
two effects: (1) As long as tdiv is in the distant future, it is very unlikely
that the information will be reflected in the next period’s price. There-
fore, it is not worthwhile to pay the (round trip) transaction costs c. (2)
The second effect is due to discounting. If the information refers to a
positive dividend payment (= 1) in the distant future, its present value
and thus the present capital gains will be smaller. Given that transac-
tion costs c have to be paid immediately, short-run information is more
valuable. Both effects together make it optimal for an insider to ignore
any information concerning dividend payments not within a K periods’
reach. In other words, an insider only trades on short-run information.
A whole chain of insiders might emerge who trade on their information
in this window of K periods prior to tdiv.

In OLG models, bubbles are possible if long-run information is
ignored. Consider a situation where all traders in one generation – except
the market maker – know that the asset is mispriced. They might not
trade on this information if the probability is low that the next genera-
tion’s young traders will have the same information and also not trade
on it.

Dow and Gorton (1994) depart from the standard models in two
ways. (1) They introduce trading costs c and (2) they assume exoge-
nously short livedness/horizons. But even when all traders have long
horizons, transaction costs alone make very long-run information
worthless. This is due to the discounting effect described above. Trans-
action costs cause a short-term bias in the kind of information that is
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incorporated in asset prices. Traders’ short horizons multiply this bias.
To see this, even when there is an informed insider in each trading round,
that is, γ = 1, the profits of short-sighted agents are only half that of the
long-horizon decision maker. The reason is that, with probability 1

2 , no
hedger will arrive in the next period. In this case, the market maker can-
not infer the insider’s information even in the next period and, thus, the
“unwinding” price will not fully reflect the insider’s information. As the
probability that an insider trades in the next trading round γ decreases,
so do the expected capital gains for myopic traders. The smaller the
probability γ , the higher the potential capital gain has to be in order to
make up for the transaction costs c.

Dow and Gorton’s OLG model can be easily extended to a setting
with endogenous information acquisition. Obviously, traders will be
unwilling to purchase long-run information. Herding in information
acquisition might occur if traders have to choose between different
short-run information referring to the same dividend payment at tdiv,
for example, between an imprecise signal SA

t,T and an imprecise sig-
nal SB

t,T . On the other hand, traders with long horizons would not
herd. Agents are, however, endogenously myopic if they have to pay
a “cost of carry” in each period instead of the one-time transaction
cost c.

6.2.2. Unwinding due to Risk Aversion in
Incomplete Markets Settings

The short livedness assumed in Froot, Scharfstein, and Stein (1992)
induce the traders to unwind their position early. In Hirshleifer,
Subrahmanyam, and Titman (1994) and Holden and Subrahmanyam
(1996) informed traders have long horizons but they want to
unwind their position for risk-sharing purposes after their informa-
tion is revealed. This implicitly makes them partly myopic, that is,
they care about both the intermediate price and the fundamental
value.

Hirshleifer, Subrahmanyam, and Titman (1994) show that herding in
information acquisition occurs under certain parameter values in their
competitive REE model. After they have decided which information
to collect, a continuum of competitive risk averse traders receive their
signal accidentally early or late. Before focusing on the information
acquisition decision, Hirshleifer, Subrahmanyam, and Titman (1994)
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derive interesting results pertaining to the investors’ trading pattern. For
the time being, let us consider the case where all risk averse investors
search for the same information δ about the liquidation value v of a
single risky asset. Let

v = v̄ + δ + ε,

where v̄ is known and δ ∼ N (0, σ 2
δ ) and ε ∼ N (0, σ 2

ε ) are independently
distributed. Some investors, whose mass is M, receive information δ

accidentally early, that is, already in t = 1, whereas the others, whose
mass is (N −M) are informed later. Both groups of traders receive the
same information δ, but at different times. All traders maximize CARA
utility functions of the final wealth W3, that is, U = − exp(−ρW3). The
demand for the risky asset by the early-informed is denoted by xe

t (δ, ·),
whereas that by the late-informed is xl

t(·, ·). The aggregate demand of
liquidity traders is modeled by the random variables u1 ∼ N (0, σ 2

u1
) in

t = 1 and 1u2 ∼ N (0, σ 2
1u2
) in t = 2.11 Finally, there is also a group

of risk neutral competitive market makers (such as scalpers and floor
brokers) who observe the limit order book, that is, the noisy aggre-
gate demand schedules, but not the information δ. The noisy aggregate
demand function is X1(·) = Mxe

1(δ, ·) + (N − M)xl
1(·) + u1 in t = 1

and X2(·) = Mxe
2(δ, ·) + (N −M)xl

2(δ, ·) + u1 + 1u2 in t = 2. Given
risk neutrality and competitiveness of the market makers, the market
makers set a semi-strong efficient price with respect to their information
sets, that is, P1 = E[v | X1(·)] and P2 = E[v | X1(·), X2(·)].

In equilibrium, investors conjecture the following linear price rela-
tions:

P2 = v̄ + aδ + bu1 + c1u2

P1 = v̄ + eδ + fu1.

The equilibrium is derived by backward induction. At t = 2 both groups
of investors, early and late informed, know δ and, therefore, their stock
holding is as usual

xe
2(δ, P2) = xl

2(δ, P2) = v̄ + δ − P2

ρσ 2
ε

.

11 All demand functions are expressed in stock holdings, therefore the additional
demand in t = 2 is given by 1u2 := u2 − u1.
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At t = 1 only the group of early-informed investors knows δ. Their
stock holding is

xe
1(δ, P1) =

E[P2|F e
1]− P1

ρ

[
1

Var[P2|F e
1]
+ 1
σ 2
ε

]
+ v̄ + δ − E[P2|F e

1]
ρσ 2

ε

.

The demand of early-informed traders consists of two components. The
first term captures the speculative demand due to an expected price
change. The second term is the expected final stock holding which the
early-informed traders try to acquire at the “on average” better price
P1. Investors who receive their signal only at t = 2 demand nothing at
t = 1, that is, xl

1 = 0. This is due to the fact that they do not have
superior information as compared to the market makers in t = 1. Since
the market makers are risk neutral (1) no risk premium is offered and
(2) the expected P2 is unbiased. In other words, risk averse late-informed
traders cannot hedge their period 2 demands already at t = 1.

There are five equilibrium configurations for the coefficients of the
price relations in this economy. No trading occurs in the fully revealing
equilibrium. In addition, there are two equilibria where prices do not
move, that is, P1 = P2. Hirshleifer, Subrahmanyam, and Titman (1994)
focus on the remaining two equilibria in which trading occurs and the
price is not the same in both periods. In these equilibria, both price
changes (P1 − P0) and (P2 − P1), are positively correlated with δ. On
average P2 reveals more about δ than P1. This is due to the fact that the
market makers’ information set, which determines the price, improves
when two noisy aggregate demand curves are observed. Both aggregate
demand curves depend on information δ. Since 1u2 is independent of
u1, the correlation between u1 and u2 eases the inference of δ from both
demand curves. However, the price changes, (P1 − P0) and (P2 − P1),
themselves are uncorrelated and thus prices follow a martingale process
given the market makers’ filtration.

The trading behavior of the early-informed investors exhibits specu-
lative features. They take on large positions in t = 1 and “on average”
partially unwind their position in t = 2 at a more favorable price P2.
More precisely, their trading in t = 1, xe

2, is positively correlated with
the price change (P2 − P1) in t = 2. However, their trading in t = 2 is
negatively correlated with this price change. Therefore, these investors
partially unwind their position and realize capital gains “on average.”
The intuition for this result is as follows. No risk premium is paid since
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the market makers’ are risk neutral. Thus, risk averse traders would be
unwilling to take on any risky stock position in the absence of any infor-
mational advantage. Early-informed investors have an informational
advantage since they receive the signal δ in t = 1 and, hence, they are
willing to take on some risk. Their informational advantage, together
with the existence of noise traders, compensates them for taking on the
risk represented by the random variable ε. However, the informational
advantage of early-informed traders with respect to the late-informed
traders vanishes in t = 2 for two reasons. First, late-informed traders
receive the same signal δ. Thus, early-informed traders share the risk
with late-informed traders in t = 2, that is, Cov(xl

2, xe
2) > 0. Second,

the informational advantage of the early-informed traders with respect
to the market makers shrinks as well, since market makers can observe
an additional limit order book at t = 2. This limit order book carries
information for the market makers, especially since the stock holding of
the noise traders is correlated in both periods. This allows the market
makers to get a better idea about δ and, thus, P2 should be “on average”
closer to v̄ + δ than P1. In period two, both these effects cause early-
informed traders to partially unwind the position they built up in the
previous period. The unwinding behavior of early-informed traders in
this sequential information arrival model also stimulates trading volume.

The fact that early-informed traders on average unwind their position
in t = 2 is in sharp contrast to models based on Kyle (1985). In these
models the risk neutral insider tries to buy the stocks in small pieces
in order to hide behind noise trading, that is, his stock holding over
time is positively correlated. However, Brunnermeier (1998) shows in
a Kyle (1985) setting with a more general information structure that
speculative trading by a risk neutral insider can also arise for strategic
reasons. This is in contrast to Hirshleifer, Subrahmanyam, and Titman
(1994) where speculative trading is only due to investors’ risk aversion.

Having analyzed the trading stage, Hirshleifer, Subrahmanyam, and
Titman (1994) show that herding can occur in the information acquisi-
tion stage. At the time when they decide which information to collect,
traders do not know whether they will find the information early or late.
The authors derive expressions for utility levels of the early-informed
and late-informed individuals. The authors then provide a numerical
example in which the ex-ante utility before knowing when one receives
the information is increasing in the total mass of informed traders.
If this is the case, it is worthwhile for traders to concentrate on the
same informational aspects, that is, gather information about the same
stocks. In other words, traders will herd in information acquisition.
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Whether the ex-ante utility of a higher mass of informed traders really
increases depends on the parameters, especially on σ 2

ε . There are three
main effects: (1) Increasing the mass of informed traders leads to more
late-informed traders. This makes it easier for early-informed traders
to unwind larger positions in t = 2. There are more traders in t = 2
that are willing to share the risk resulting from ε. (2) This, however, is
disadvantageous for the late-informed traders since there is tougher com-
petition among them and the extent of noise trading does not change.
(3) Increasing the mass of informed traders also increases the number of
early-informed traders. This decreases the utility of both early-informed
and late-informed traders. In order to obtain herding, the former effect
has to outweigh the latter two. This requires that σ 2

ε is sufficiently high.
The authors try to extend their analysis by introducing some boundedly
rational elements. This extension lies outside the scope of the current
literature survey.

Less Valuable Long-term Information due to
Unexpected Intermediate Price Moves
In Hirshleifer, Subrahmanyam, and Titman (1994) all traders search
for the same piece of information which they randomly receive earlier
or later. In contrast, in Holden and Subrahmanyam (1996) traders can
decide whether to search for short-term information or for long-term
information. They choose between two signals which are reflected in
value at different points in time. Holden and Subrahmanyam (1996)
show that under certain conditions all risk averse traders focus exclu-
sively on the short-term signal. Trading based on long-term informa-
tion has the disadvantage that unexpected price changes can occur
before the collected long-term information is fully reflected in the
price.

The liquidation payoff of a single risky asset in their model is given by

v = v̄ + δshort + η + δlong + ε,

where δshort, η, δlong, and ε are mutually independent normally dis-
tributed and v̄ is normalized to zero without loss of generality. Traders
who acquire short-term information observe δshort at t = 1. At t = 2,
δshort as well as η becomes publicly known and thus they are fully
reflected in the price P2. No trader receives a signal about η in t = 1.
δlong and ε are made public in t = 3. Consequently, they are only fully
incorporated in the price P3 in t = 3. The long-run information signal
reveals δlong to the informed trader in t = 1. Note that the markets are
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incomplete since the components of v cannot be traded directly. This
assumption is essential for the analysis.

A competitive REE model is employed as in Hirshleifer,
Subrahmanyam, and Titman (1994). A mass of M long-term informed
traders and a mass of N = 1−M short-term traders submit limit orders
to the limit order book. The aggregate order size of the liquidity traders
is random and is given by u1 in t = 1 and 1u2 in t = 2. A group of
risk neutral market makers observes only the publicly available infor-
mation and the noisy aggregate demand schedule, that is, the limit order
book. Like in Hirshleifer, Subrahmanyam, and Titman (1994) the mar-
ket makers act competitively and they are risk neutral. Hence, their
information sets determine the prices.

Analyzing the equilibrium backwards, the mass of short-term traders,
N, and of long-term traders M, is kept fixed at the second stage and is
endogenized at the first stage. Backward induction is also applied within
the trading subgame for deriving the optimal stock holdings of informed
risk averse traders. At t = 2, the stock holding demand is standard for
the long-term informed traders,

xl
2 =

δlong + δshort + η − P2

ρσ 2
ε

and for the short-term informed traders,

xs
2 =

E[δlong|F s
2]+ δshort + η − P2

ρ[σ 2
ε + Var[δlong|F s

2]]
= 0.

xs
2 = 0, since the market makers have the same information set as the

short-term-informed traders and, therefore, the numerator in the above
equation is zero. In economic terms, it would not make a lot of sense for
risk averse short-term investors to hold risky stocks if the risk neutral
market makers have the same information. Since xs

2 is zero, xs
1 is the

same as in a myopic setting:

xs
1 =

E[P2|F s
1]− P1

ρ Var[P2 | F s
1]

.

Short-term informed traders try to exploit the expected price change
(P2 − P1) and they close their position at t = 2. Long-term traders’
stock holding at t = 1 is

xl
1 =

E[P2|F l
1]− P1

ρS1
+ %E[xl

2|F l
1],

where S1 and % are nonstochastic quantities.
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Holden and Subrahmanyam (1996) derive the REE only for a spe-
cial case and continue their analysis with numerical simulations. In
equilibrium, long-term traders reduce their period 1 demand if the
variance of η is very high. η’s realization is announced at t = 2. Early-
informed traders do not want to expose themselves to the announcement
risk generated by η (which is reflected in P2). They engage in heavier
trading after a large part of the uncertainty about the asset’s value is
resolved.

Holden and Subrahmanyam (1996) endogenize M and, thus, N =
1−M. The equilibrium mass M can be derived by comparing the ex-ante
utilities of short-term informed traders with the utility of long-term
informed traders. They show that for certain cases the ex-ante utility
from collecting short-term information is higher for M ∈ [0, 1] than the
utility from gathering the long-term signal. Thus, all traders search for
the short-term signal in equilibrium. This is the case if the traders are
sufficiently risk averse and σ 2

ε is substantially high. Intuitively, short-
term informed investors can only make use of their information from
the price change (P2 − P1) provided there are noise traders in t = 1
distorting P1. Since η makes P2 risky, high variance in η reduces their
aggressiveness. Long-term informed traders can exploit their informa-
tion from both price changes, (P2 − P1) and (P3 − P2). As described
above, high variance of η makes long-term informed agents delay their
purchase. Therefore, they are more active at t = 2 and they exploit
(P3 − P2) to a greater degree. If the variance of ε is very high, that is,
speculating at t = 2 is very risky, long-term informed traders are very
cautious at t = 2. Thus, they cannot make as much money out of their
information as short-term informed traders can.

Holden and Subrahmanyam (1996) further show that as the degree of
liquidity trading increases, both types of information are more valuable.
Short-term investors profit more from higher variance in noise trading,
at least for the case where it is the same in both periods.

The authors also address the question of whether long-term infor-
mation can be made more valuable by making it short-term. In other
words, is it profitable for long-term informed investors to disclose their
information already in t = 2? The impact of early credible disclosures
is discussed in the last section of their paper.

6.2.3. Unwinding due to Principal–Agent Problems

A wealth constrained trader who has discovered a profitable trading
strategy might have to borrow money in order to trade on his superior
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information. However, the lending party might fear that the trader could
default on loan repayment. The trader might be overconfident and his
trading strategy might not be as profitable as he claims. In order to
reassure the lender, the trader has to signal in the early stages that his
trading strategy is paying off. If this is (accidentally) not the case, the
lender will withdraw his money and the trader will be forced to liquidate
his position early. Consequently, the trader will care a lot about short-
term price movements.

Portfolio delegation leads to a similar principal–agent problem. It
leads to a principal–agent relationship between the individual investor
and the fund manager. Many individual investors delegate their portfo-
lio management to fund managers. The share of investments undertaken
by institutional investors is steadily increasing. Pension funds, mutual
funds, as well as hedge funds are becoming predominant players in
both the stock market and foreign exchange market. These professional
traders conduct the bulk of informed trading.

It is very hard for an individual investor to find out whether a cer-
tain fund manager is really able to make extra profits. Bhattacharya and
Pfleiderer (1985) show that optimal incentive contracts for the remu-
neration of fund managers might alleviate this problem by screening
good from bad managers. Nevertheless, a linear remuneration contract
is often the optimal one and full screening is not possible. Portfolio del-
egation might also induce managers to “churn bubbles” as shown in
Allen and Gorton (1993).

The threat of early withdrawal of their funds is a much more power-
ful device for individual investors than is designing the optimal ex-ante
remuneration contract. The fund manager might then be forced to liq-
uidate part of his acquired position. The power of early withdrawal of
funds changes the fund managers’ incentives dramatically. Shleifer and
Vishny (1990, 1997) show that it limits traders’ ability to exploit arbi-
trage opportunities and thus has a profound impact on the assets’ price
process. Paradoxically, a good manager is most likely to be forced to
liquidate his position when it is most profitable to extend the arbitrage
opportunity.

Limits of Arbitrage
In Shleifer and Vishny (1997) only liquidity traders and fund managers
are active in the stock market. Individual investors do not trade directly.
They entrust their money F1 to a fund manager who trades on their
behalf. The fund manager’s ability to pick the right stocks is not known
to the investors. Good fund managers have found a riskless arbitrage
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opportunity. They know the fundamental value v of the stock with
certainty. Bad fund managers have no additional information and just
want to gamble with others people’s money. Investors cannot screen
the good managers from the bad ones, by assumption. There are two
trading rounds, t = 1 and t = 2. In period t = 3 the true value of
the stock v is common knowledge and the price adjusts accordingly to
P3 = v. The price in t = 2, P2, in this limit order model is determined
by the aggregate demand from fund managers and liquidity traders. The
fund manager faces a liquidation risk in t = 2. Individual investors can
withdraw their funds conditional on P2.

Shleifer and Vishny (1997) focus on the case where (1) investors have
entrusted their money to a “good” fund manager, and (2) the asset price
goes even further down in t = 2 even though the asset was already under-
valued in t = 1, that is, P1 < v. This is due to sell orders submitted by
the uninformed liquidity traders in t = 2. In the eyes of the individual
investors, the additional price drop can be the result of three factors:
(1) a random error term, or (2) sell orders by liquidity traders, or (3) sell
orders by other informed traders in the case that the true value of the
stock is lower. If the latter case were true, then the fund manager would
have made the wrong decision and most probably he has no extraor-
dinary skills to find arbitrage opportunities. Given that the individual
investors can only observe the price process, it is rational for them to
conclude that they probably gave their money to a bad fund manager.
Consequently, they will withdraw some of their money. Shleifer and
Vishny (1997) assume in their reduced form model that the fund size in
t = 2 is F2 = F1 − aD1(1 − P2/P1), where D1 is the amount of money
the fund manager invested in the stock. The higher the coefficient a is,
the more sensitive are individual investors to past performance. If the
price does not change, the money in the fund remains constant. If the
price increases, even more investors provide money to the fund, that is,
F2 > F1. But in the case where the arbitrage opportunity becomes even
more profitable, that is, when P2 < P1, investors withdraw money for
fear of having entrusted their money to a bad fund manager. If the fund
manager fully exploited the arbitrage opportunity, that is, he invested
the whole fund into the stock, D1 = F1, he is forced to unwind part of
his position although he is sure that the price will come back in t = 3. He
incurs a loss by unwinding his position at an even lower price. Knowing
that the investors will withdraw some money if the price goes down in
t = 2, the fund manager will invest only part D1 of the fund F1 in the
undervalued asset in t = 1. In general, the fund manager does not fully
exploit the arbitrage opportunity. He will only invest the whole fund F1
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if the mispricing is very large thus making it very unlikely that the price
will go down further.

This shows that even pure long-run arbitrage opportunities are risky
since investors might withdraw their money early. Fund managers face
the risk of interim liquidation. Pure arbitrage opportunities are very rare
in reality and traders mostly discover expected arbitrage opportunities.
Therefore, risky arbitrage is not only risky for fund managers because
they cannot exactly replicate the payoff stream but also because they
face an “early liquidation risk.”

The consequence is that fund managers search for less risky arbitrage
opportunities. In order to minimize the “early liquidation risk,” they
can either concentrate their research efforts on short-run information
which will be made public very soon, or on information which is the
focus of sufficiently many other arbitrageurs. This makes it more likely
that information is reflected in the price soon. Professional arbitrage
is concentrated in a few markets like in the bond market and foreign
exchange market but is hardly ever present in the stock market. This
is the same “arbitrage chain” argument which is formalized by Dow
and Gorton (1994). Given that fund managers focus only on short-run
arbitrage opportunities, long-run assets, whose positive dividend pay-
offs will be in the far future, are more mispriced in equilibrium. No fund
manager will exploit long-run arbitrage opportunities out of fear that
he has to liquidate the position early when individual investors with-
draw their funds. Put differently, long-run arbitrage opportunities must
provide much higher returns than short-run arbitrage opportunities in
order to compensate for the additional liquidation risk. This might also
explain why stock market returns – contrary to what the capital asset
pricing model (CAPM) suggests – do not only depend on systematic
risk but also on idiosyncratic risk. The risk of wrong intermediate price
movements makes arbitrage trading less attractive and thus must lead
to higher returns.

Induced Collection of Short-Run Information
Gümbel (1999) explicitly models the principal–agent relationship and its
implication in the stock market. He shows that the individual investors
actually prefer that fund managers primarily search for short-term infor-
mation and exploit short-term arbitrage opportunities. This allows the
investors to quickly infer the manager’s ability and to lay off an unable
manager.

In Gümbel (1999) the risk neutral investor delegates his investment
decision to a risk neutral fund manager whose ability to choose the right
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trading strategy is unknown. There are two underlying risky assets in
this economy which pay a dividend of either 0 or 1 in each period t ∈
0, 1, 2, . . . ,∞. Let us assume for illustrative purposes that the individual
dividend payments are securitized and are traded. In addition, there are
traded bonds whose fixed return is r. The fund manager can gather
either short-term information or long-term information without cost.
He always receives one noisy signal {up, down} for each of the two
stocks. Short-term information provides two noisy signals about the
dividend payments of both assets in the next period t + 1, whereas
long-term information provides two noisy signals about the dividend
payments of both assets in t + 2.

There is a pool of potential fund managers, who invest on behalf of
the investor. A fraction γ has high ability and the rest is of low ability.
In contrast to Shleifer and Vishny (1997) neither the principal nor the
fund managers know their type and both learn the manager’s type at
the same speed. Fund managers receive one signal for each of the two
stocks. Each signal’s realization is either “up” or “down.” Bad fund
manager’s signals are always correct for one stock and incorrect for the
other one. Either the signal for stock A is correct and the one for stock B
is incorrect or vice versa with equal probability. Good fund managers’
signals have the same structure with probability (1− ν). However, with
probability ν(µ), their short-term (long-term) signals Sshort,j

t (Slong,j
t ) are

correct for both assets j ∈ 1, 2. The trading game for each asset is a
binary version of Kyle (1985). Liquidity traders in both markets as well
as informed fund managers submit market orders to the market makers.
The market makers only observe the aggregate order flows Xj

t of the
asset j and set informationally efficient prices Pj

t . The liquidity trader
submits a random order of fixed size −x or +x with equal probability.
Whether the fund manager submits a buy or sell order depends on his
signal. As long as the probability that he is of high type is sufficiently
high, he will submit a buy (sell) order if he gets a positive (negative)
signal. In order to disguise his order behind the liquidity traders’ orders,
his order size is also either −x or x. The market maker could imme-
diately identify any other order size as an order originating from the
fund manager. The aggregate order flow is thus −2x, 0, +2x. If the
aggregate order flow is −2x or 2x, the market maker can perfectly
infer the fund manager’s information. The market maker cannot fig-
ure out whether the manager submitted a buy or sell order only if the
aggregate order flow is zero. Only in this case does the fund manager
make a nonzero trading profit. This feature of the model simplifies the
analysis.
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The fund manager’s trading activity depends on whether the fund
manager has collected long-term information or short-term information.
In the case that the manager is induced to collect long-run information
about the dividend payments in t+2, he submits an order in t. This order
will be executed at the price Pt, which the market maker sets based on the
observed aggregate order flow in t. The market maker receives a private
signal signal Smm,j

t+1 ∈ {up, down} after he has executed the order at the
price Pt. This signal predicts the correct dt+2 with probability q ∈ [1

2 , 1].
The fund manager has the opportunity to unwind his acquired position
prior to trading in t + 1. Unwinding perfectly reveals his signal to the
market maker. Consequently, the “unwinding price” is determined by
the fund manager’s information together with the market maker’s signal
Smm,j

t+1 . The manager is indifferent between unwinding and holding the
asset until it pays the dividend in t + 2. This is because the competitive
risk neutral market maker sets the (semi-strong) informationally efficient
price and the manager has the same information as the market maker
about dt+1. That is, they expect dt+1 to be zero. De facto, a fund manager
with long-run information trades an asset in t whose “unwinding value”
prior to trading in t + 1 is

1
1+ r

E[dj
t+2|Smm,j

t+1 , q, Slong,j
t ].

The informational advantage for the manager with respect to the mar-
ket maker in t results from his knowledge of Slong,j

t . Note since dt+2
is only paid out in t + 2, the unwinding value has to be discounted
by one period. Smm,j

t+1 generates an additional noise term for the fund
manager’s “unwinding price” and thus does not affect the manager’s
expected profit.

Managers who gather short-term information trade an asset in t
whose value in t + 1 is dj

t+1. The fund manager’s best estimate in t
is E[dj

t+1|Sshort,j
t ]. The manager’s informational advantage is, however,

smaller since the market maker also holds some information about dt+1
prior to trading in period t. This is because (1) the market maker received
a private signal Smm,j

t about dj
t+1, and (2) he might have learned some-

thing from other fund managers who unwind the long-term position
that they acquired by observing the signal about dt+2 in t.12

In summary, long-run information is advantageous for the manager
since the market maker does not know it yet, i.e. he has not observed

12 This will not occur in equilibrium since the fund manager will gather short-term
information in equilibrium.
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the signal Smm,j
t+1 yet. On the other hand, short-run information of good

fund managers is assumed to be more precise, that is, ν > µ, and one
trades an asset whose dividend of 0 or 1 is paid out in t + 1 rather than
t+2. This reduces the loss from discounting. Proposition 1 of the paper
shows that a high type manager trades more profitably with long-run
information if µ > ν(1+ r)4q(1− q).

The decision whether to gather short-run or long-run information not
only affects the direct trading profits, but also affects how quickly one
learns the manager’s ability. Short-run information not only has the
advantage that it is more precise since ν > µ but it also provides the
principal a better update about the manager’s ability already in t + 1.
This again influences the employment decision of the principal, that is,
when to fire the manager and hire a new agent from the pool of potential
managers. If the manager traded in the right direction for both assets,
he is of high quality with probability one, since a bad manager always
trades in the wrong direction for at least one asset. If he has traded
in the wrong direction for one asset, it is more likely that he is a bad
manager.13 If one of the manager’s two first trades is wrong, it is better
for the principal to replace him with a new manager from the pool.

If the manager collects long-run information, the principal’s ability to
evaluate the agent in t+1 by observing his unwinding decision depends
on the quality q of the market maker’s signal, Smm,j

t+1 . Let us consider the
two polar cases q = 1

2 and q = 1. If q = 1
2 the market maker’s signal

is worthless. Since Smm,j
t+1 has no informational content, the market maker

only learns the fund manager’s signal if he unwinds it prior to trading
in t + 1. He cannot evaluate whether the manager received a correct
long-term signal or not. If q = 1 the market maker receives a perfect
signal about the dividend payment in t+2. Hence, he can infer whether
the manager received a correct long-term signal or not. If he has received
such a signal, then he is for sure of high ability; if not, it might still be the
case that he received bad information because he was unlucky. Note that
since ν > µ, it is more likely that a good manager who gathers long-run
information is unluckier than one who gathers short-run information.
Nevertheless, trading in the wrong direction makes it more likely that
he is a bad manager and thus the principal fires him and hires a new
manager from the pool. Note that a higher q makes long-run informa-
tion more attractive for two reasons: (1) it allows a quicker evaluation
of the manager’s ability, and (2) it makes the short-run information

13 Note that if the manager himself knows that he is of low ability, his trades would
always contradict one of his signals.
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less valuable since the market maker already knows part of the private
information that the fund manager will collect.

The paper assumes that the decision to collect long-run versus short-
run information is contractible and thus is decided by the principal. The
main result of this paper is that for certain parameter values, learning
about the manager’s ability induces the principal to search for short-
term information even though long-term information would be more
valuable. Short-run information allows the principal to dismiss bad
managers early. Focusing exclusively on short-run information leads
to long-run mispricing.

6.3. Firms’ Short-Termism

Mispricing of assets is not very harmful if it does not affect the real deci-
sion making within firms. This section illustrates that short-sightedness
of investors leads to short-termism in firms’ investment decisions.

Shleifer and Vishny (1990) argue convincingly that managers care
about the stock price of their company. Corporate managers’ remuner-
ations are very closely linked to the stock price via stock options. They
risk being fired because of a possible take-over if the company’s equity is
underpriced. Corporate managers have a vital interest that their invest-
ment decisions are reflected correctly in the stock price. Investors’ focus
on short horizons leads to systematically less accurate pricing of long-
term assets, for example, stocks of firms whose investment projects only
lead to positive return in the far future. Corporate managers who are
averse to mispricing, therefore, focus on short-term projects.

In Brandenburger and Polak (1996) managers ignore their superior
information and follow the opinion of the market. The market can
observe the corporate manager’s action and try to infer the manager’s
superior information, which is then reflected in the stock price. Since
the manager cares about the short-run stock price, he has an incentive
to manipulate his action and thus the market’s inference. The result is
that the corporate manager does not follow his superior information in
equilibrium.

In the first part of Brandenburger and Polak (1996), a single risk
neutral manager has to choose between action L(left) and R(right). The
payoff of his action depends on the state of the world. In state λ, action
L pays off $1 and action R pays nothing. In state ρ, the payoff structure
is exactly the opposite. Action L’s payoff is 0 and action R pays off 1.
The true state is ρ with prior probability π > 1

2 . The prior distribution
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might reflect public (short-run) information which is known to the whole
market. The manager receives an additional signal Si ∈ {l, r} which tells
him the true state with precision q > π , that is, q = Pr(l|λ) = Pr(r|ρ).
Since the signal is more precise than the prior, a manager who maximizes
the long-run value of his company should follow his signal. However, it
takes a while until the true payoffs are realized and reflected in the stock
price. In the meantime, the market tries to infer the manager’s signal
and updates the short-run market price. If the manager could truthfully
announce his signal to the market, he would always follow his signal
and the market price would adjust accordingly. The trading game is
such that the price reflects the posterior probability of the market. Note
that the market price would be higher if the manager received signal r
instead of signal l. This is due to the biased prior π > 1

2 .
In Brandenburger and Polak (1996) the manager cannot truthfully

announce his signal. The market participants try to infer the signal from
the manager’s observed action R or L. However, there exists no pure
strategy equilibrium in which the manager would follow his signal. If
such an equilibrium existed, then the market participants would believe
that the manager’s strategy is to always follow his signal. Therefore, they
would think that they can perfectly infer the manager’s signal from his
action. Consequently, they would update the stock price accordingly.
The stock price after observing action R would be higher than that after
observing L. This occurs because of the bias in the prior π > 1

2 . Since
the manager cares about the current stock price, he has an incentive to
deviate from the strategy that always chooses action R. Always choosing
R is indeed the best BNE in pure strategies. The manager ignores his
signal completely and – since in equilibrium the market participants
know this – the stock price reflects the fact that the manager’s action is
always R. Even though the stock price is informationally efficient, the
manager’s decisions are clearly (allocatively) inefficient.

There are, however, mixed strategy equilibria in which the manager
at least partly uses his information. The manager ignores part of his
information since he sometimes chooses R even though he has received
signal l. In the mixed strategy equilibria, the market participants know
which strategy the manager applies but they cannot fully infer his sig-
nal. Mixed strategies can, therefore, be thought of as “garblings” of
signals.14 Traders can partly infer the manager’s signal. The mixing
probabilities have to be such that the market participants’ posteriors

14 Note the similarity to Crawford and Sobel (1982). In Crawford and Sobel (1982)
the sender of the message cares about the receivers’ opinion since it affects his action. In
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that the manager has chosen the right action are the same. In other
words, the market conjecture is such that the short-run stock price does
not depend on the action of the manager. Consequently, the manager is
indifferent between both actions in equilibrium and has no incentive to
deviate from his mixed strategy. The bias in the unbalanced prior π > 1

2 ,
which drives the nonexistence result of informative pure strategy equi-
libria, has to be counterbalanced by the mixed strategy. Observing an
action L has to be a stronger indication of signal l than observing R is
for signal r. The stronger the bias, the more mixing is necessary and thus
the higher the loss of information. The key is actually not the skewness
or bias of the prior but the fact that the two decisions yield unequal
posteriors about the expected profit of the firm.

In the second part of the paper, a dynamic model is introduced. Many
firms receive a signal about the state λ or ρ and have to sequentially
choose action L or R. Informational cascades like in the herding model à
la Bikhchandani, Hirshleifer, and Welch (1992) arise. One might suspect
that by applying mixed strategies the information aggregation problem
due to herding might be alleviated. On the contrary, Brandenburger
and Polak (1996) show that with share price maximization, equilibrium
choices are strictly less efficient than under herding behavior. The suc-
cessors can infer less information from their predecessor’s decision but
it is still optimal for them to herd on the inferred information and to
disregard their own private signal.

There are numerous other papers dealing with short-termism of firms
induced by the stock market. Grant, King, and Polak (1996) provide a
good survey of this literature.

6.4. Bank Runs and Financial Crisis

Bank runs and bank panics are special forms of herding behavior. A
bank run occurs when the deposit holders of a bank suddenly withdraw
their money. If a run on a single bank spreads over to other banks, it
can cause a panic in the whole banking system. Strong spillover effects
can lead to contagion where many banks get into solvency problems.

This section focuses solely on the herding aspect of bank runs and
thus ignores a large part of the banking literature. Interested readers are
directed to Freixas and Rochet (1997) for a comprehensive coverage of

Brandenburger and Polak (1996) the sender cares about the action and thus the market
participants’ opinion because it affects the short-run stock price.
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the banking literature. Although withdrawals by deposit holders occur
sequentially in reality, the literature typically models bank runs as a
simultaneous move game. An exception is Chen (1999) who explicitly
models a bank run in a sequential setting.

Banks as Liquidity Insurance Providers
One role of banks is to transform illiquid technologies into liquid pay-
offs, and also to provide liquidity insurance. Diamond and Dybvig’s
(1983) seminal paper illustrates this role of banks and builds on initial
insights presented in Bryant (1980). In their model, banks offer demand
deposits to match the agents’ liquidity needs with projects’ maturities.
However, these demand deposits open up the possibility of bank runs.

In Diamond and Dybvig (1983) there are two technologies in which
money can be invested for future consumption: an illiquid technology
and a storage technology. The illiquid technology is a long-run invest-
ment project that requires one unit of investment. It can be liquidated
early in t = 1 at a salvage value of L ≤ 1.15 If one carries on with the
project until t = 2, the project pays off a fixed gross return of R > 1.
In addition to the productive long-run investment project, agents also
have access to a costless storage technology. Agents can devote a frac-
tion of their endowment to the illiquid investment project and store the
rest in the costless storage technology. The savings opportunities are
summarized in Table 6.1.

There is a continuum of ex-ante identical agents who have an endow-
ment of one unit each. Each agent faces a preference shock prior to
t = 1. Depending on this shock, each agent consumes either in t = 1
or in t = 2. They are either “early diers,” who consume in t = 1 or

Table 6.1.

Investment projects t = 0 t = 1 t = 2

Risky investment project
(a) continuation −1 0 R > 1
(b) early liquidation −1 L ≤ 1 0

Storage technology
(a) from t = 0 to t = 1 −1 +1
(b) from t = 1 to t = 2 −1 +1

15 Diamond and Dybvig (1983) restrict their analysis to L = 1. To illustrate the utility
improving role of asset markets, we consider the more general case of L ≤ 1.
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“late diers,” who consume in t = 2. In other words, early diers derive
utility U1(c1) only from consumption in t = 1, whereas late diers derive
utility U2(c2) only from consumption in t = 2. Since the agents do not
know ex-ante whether they will die early or not, they would like to
insure themselves against their uncertain liquidity needs.

Without markets or financial intermediaries each agent would invest
x in the long-run investment project and store the rest (1 − x). Early
diers who liquidate their project consume c1 = xL + (1 − x) ∈ [L, 1],
while late diers consume c2 = xR+ (1− x) ∈ [1, R]. The ex-ante utility
of each agent is given by qU(c1) + (1 − q)U(c2), where q denotes the
probability of dying early. This utility can be improved if trading of
assets is allowed in t = 1.

Financial markets allow agents to sell their stake in the long-run
investment project in t = 1. In this case, the higher consumption levels
c1 = 1 and c2 = R can be achieved even if L < 1 as long as a fraction
(1−q) is invested in the illiquid asset on aggregate. Instead of liquidating
the long-run asset in t = 1, early diers can sell their asset to the late diers
in exchange for c1-consumption at a price of P = 1. Note that the price of
the asset in t = 1 has to be 1 in order to ensure that agents are indifferent
between storage and investing in the investment project in t = 0.

However, the consumption pattern of c1 = 1 for early diers and
c2 = R for late diers is typically not ex-ante optimal since it does not
provide an optimal insurance against the ex-ante risk that one can be
either an early or late dier. Ex-ante optimal consumption levels must
satisfy

∂U
∂c1

(·) = R
∂U
∂c2

(·).

The allocation (c1 = 1, c2 = R) is ex-ante optimal only for special utility
functions. Within the class of HARA utility functions, this allocation is
only ex-ante optimal for the log-utility function. For utility functions
with a relative risk aversion coefficient, γ , larger than unity,

∂U
∂c1

(1) > R
∂U
∂c2

(R).

Thus, a contract which offers c1 = 1, and c2 = R is not ex-ante optimal.
In other words, given γ > 1, a feasible contract c∗1 > 1 and c∗2 < R which
satisfies

∂U
∂c1

(c∗1) = R
∂U
∂c2

(c∗2)

is ex-ante preferred to c1 = 1 and c2 = R.
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A bank can commit itself to perform this transfer of resources from
c2 to c1. Competitive banks offer deposit contracts (c∗1, c∗2) which maxi-
mize the agents’ ex-ante utility. Free entry in the banking sector and the
absence of aggregate risk ensures this. In equilibrium, the bank makes
zero profit, invests x∗ into the investment project, and stores the rest
(1−x∗). The stored reserves are enough to satisfy the early diers demand
in t = 1, that is, qc∗1 = (1 − x∗), while the rest is paid out to the late
diers in t = 2. Thus, (1− q)c∗2 = Rx∗.

In Diamond and Dybvig (1983) the bank can observe neither the
consumer type nor his private storage activity from t = 1 to t = 2.
Therefore, the bank has to provide the right incentives such that late
diers do not withdraw their money early and store it for later consump-
tion in t = 2. As long as only early diers withdraw their demand deposit
c1 from the bank in t = 1, the bank is prepared for this money outflow
and does not need to liquidate the long-run asset. In this case, no late
dier has an incentive to withdraw his money early and hence deposit
contracts are optimal.

Bank Runs as a Sunspot Phenomenon
However, if other late diers start withdrawing money early, then the
bank does not have enough reserves and is forced to liquidate its long-
run projects. For each additional late dier who withdraws c∗1 units
from the bank, the bank has to liquidate more than one unit. The
bank promised a payment of c∗1 > 1, which was optimal given the
deposit holder’s relative risk aversion coefficient γ > 1. If the sal-
vage value L is strictly smaller than 1, the bank has to liquidate even
a larger fraction of the long-run investment project. This reduces the
possible payments in t = 2 and thus the incentive for late diers not
to withdraw their money early. Diamond and Dybvig (1983) assume
that the bank must honor a sequential service constraint. Depositors
reach the teller one after the other and the bank honors its contracts
until it runs out of money. The sequential service constraint gives
depositors the incentive to withdraw their money as early as possible
if they think that late diers will also withdraw their demand deposits
early in t = 1 and make the bank insolvent. This payoff externality
triggers the herding behavior. The authors assume the sequential ser-
vice constraint even though they formally employ a simultaneous move
game. In short, there also exists a bank run equilibrium in which all
agents immediately withdraw their deposits in t = 1 and the bank is
forced to liquidate its assets. In the bank run case deposit contracts are
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not necessarily optimal. Whether the Pareto inferior bank run equi-
librium arises or the full insurance equilibrium arises might depend
on sunspots. Sunspots, as explained in Section 2.3, are commonly
observed extrinsic random variables which serve as a coordination
device.

Suspension of convertibility eliminates the bank run equilibrium as
long as the fraction of early diers q is deterministic. If the bank commits
itself to serve only the first q customers who show up to withdraw their
demand deposits, no assets need be liquidated and the bank has enough
money to pay c∗2. Consequently, no late dier has an incentive to withdraw
any money in t = 1 in the first place. In short, the anticipation of
suspension of convertibility prevents bank runs.

If the fraction of early diers q is random, the suspension of convert-
ibility does not prevent bank runs since the bank does not know when
to stop paying out money in t = 1.16 On the other hand, a govern-
mental deposit insurance financed by an inflation tax can eliminate the
bank run equilibrium even for a random q. If the deposit guarantee
of c∗1 is nominal, an inflation tax that depends on early withdrawals
can reduce the real value of the demand deposit. This provides the
late diers with the necessary incentive not to withdraw their money
early.

Jacklin (1987) shows that agents can achieve the same optimal con-
sumption level (c∗1, c∗2) with dividend paying equity contracts instead
of bank deposits. Furthermore, dividend paying equity contracts elim-
inate the Pareto inferior bank run equilibrium. However, the optimal
consumption level cannot be achieved with equity contracts in a more
general setting with smooth preferences where both types of agents
consume in both periods.

Possibility of Information-Induced Bank Runs in
a Unique Equilibrium
Jacklin and Bhattacharya (1988) compare demand deposits with equity
contracts. In their model bank runs are not due to sunspots, but changes
in the fundamental variables. The payoff of the long-run investment
project R̃ is random in Jacklin and Bhattacharya (1988) and some traders
receive information about R̃ prior to their withdrawal. In contrast to

16 The randomness of q also affects the bank’s investment decision x. In Diamond
and Dybvig (1983) this has no impact since L = 1 and thus investing in t = 0 and
liquidating in t = 1 provides the same return as storage.
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Table 6.2.

Investment projects t = 0 t = 1 t = 2

Illiquid risky project −1 L = 0 R =
{

RH Pr 1− θ
RL Pr θ

Storage technology
(a) from t = 0 to t = 1 −1 +1
(b) from t = 1 to t = 2 −1 +1

Diamond and Dybvig (1983), there is only one unique equilibrium. In
this equilibrium bank runs occur in some states of the world.17

Another distinction between Diamond and Dybvig (1983) and Jacklin
and Bhattacharya (1988) is that the latter authors assume smooth pref-
erences Ui(c1, c2) = u(ci

1)+ β iu(ci
2). Hence, agents want to consume a

positive amount in both periods. Impatient agents put more weight on
consumption in t = 1 and patient agents put more weight on consump-
tion in t = 2, that is, 1 ≥ β2 > β1 > 0. Smooth preferences rule out
the possibility that the optimal consumption profile can be implemented
with dividend paying equity on a bank instead of demandable deposits.

The payoff structure in Jacklin and Bhattacharya (1988) is summa-
rized in Table 6.2. The payoff structure differs from the one in Diamond
and Dybvig (1983) in two ways. First, the salvage value of the illiquid
investment project, L, is zero in t = 1. Second, the final payoff of the
illiquid project R in t = 2 is random. The probability of a high return RH
is (1− θ) and the probability of a low return RL is θ . In the latter case,
the bank can pay at most a fraction RL/RH of the maximum payment in
t = 2. Agents learn their time preference β in t = 1. That is, they discover
how strongly they prefer to consume the bulk of their endowment in
t = 1 instead of in t = 2. A fixed fraction α of the more patient “late con-
sumers” also receive a signal about the payoff of the illiquid project. This
signal allows the informed late consumers to update their prior θ to θ̂ .

Nonpatient consumers with low β1 always withdraw a large fraction
of their deposits from the bank in t = 1. Uninformed patient consumers
keep their deposits with the bank, while informed patient consumers
withdraw their money early if the posterior of the bad event RL, θ̂ , is
above the threshold level θ̄ . Jacklin and Bhattacharya (1988) show that
the bank run threshold level θ̄ decreases as the variance of R increases.

17 In this respect, their model is similar to Postlewaite and Vives (1987) who develop
an alternative setup with a unique equilibrium over a range of parameter values.
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Chari and Jagannathan (1988) analyze information induced bank
runs where uninformed late consumers infer information from the aggre-
gate withdrawal rate. In their setup, all agents are risk neutral with a
utility function Ui(c1, c2) = c1+β ic2. Type 1 agents are early consumers
and their β1 is close to zero. Type 2 agents with high β2 are late con-
sumers. Risk neutrality eliminates the bank’s role as a liquidity insurer.
The fraction q ∈ {0, q1, q2} of impatient early consumers is random in
Chari and Jagannathan (1988). As in Jacklin and Bhattacharya (1988),
a fraction α of late consumers receive a signal about the random return
of the illiquid investment project R ∈ {RL, RH}. However, this frac-
tion is also random with α ∈ {0, ᾱ}. In short, in Chari and Jagannathan
(1988) the fraction of impatient consumers q, the return R, and the frac-
tion α of informed late consumers is random. In contrast to Diamond
and Dybvig (1983), the authors do not assume the sequential service
constraint. In their model all deposit holders arrive simultaneously and
there is a pro rata allocation of the funds. If short-term funds are not
sufficient, the bank can prematurely liquidate the long-run project. As
long as the total aggregate withdrawals do not exceed some threshold K̄
the salvage value of the long-run investment project is L = 1. Otherwise,
premature liquidation is costly, that is, L < 1.

A large withdrawal of deposits can be (1) due to a large fraction of
impatient consumers, that is a high realization of q, or (2) due to the fact
that informed patient consumers received a bad signal about R. Since
uninformed patient consumers cannot distinguish between both forms
of shocks, they base their decision solely on aggregate withdrawals.
Uninformed patient consumers might misinterpret large withdrawals
due to a high q as being caused by a bad signal received by informed
late consumers. This induces them to withdraw their funds and forces
banks to liquidate their investment projects. Wrong inference by the
uninformed deposit holders can lead to bank runs even when R = RH .
The liquidation costs erode the bank’s assets and the possible payouts
in t = 2. In Chari and Jagannathan (1988), the early withdrawal by
deposit holders causes an information externality and a payoff exter-
nality. The early withdrawal sends a signal to the uninformed deposit
holders that the return of the long-run asset is probably low (informa-
tion externality) and also forces the bank to conduct costly liquidation
(payoff externality).18

18 In Gorton (1985) a bank can stop a bank run if R = RH. By paying a verification
cost, it is able to credibly communicate the true return RH and suspend convertibility.
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Potential bank runs can also serve as a discipline device for bank
managers to make the right investment decisions. Calomiris and Kahn
(1991) focus on this aspect in a model with endogenous information
acquisition by the deposit holders. Their analysis explains why demand
deposit contracts are the dominant form of savings.

Financial Crisis
A single bank run can easily spill over to other banks. A bank panic
involves runs on many banks and might lead to a collapse of the whole
banking system. Bhattacharya and Gale (1987) provide a model illus-
trating bank panics in a setting that focuses on the role of the interbank
loan market. Chen’s (1999) paper illustrates contagious runs on multiple
banks in a herding model where deposit holders can decide sequen-
tially. The analysis highlights the crucial role of information externalities
and payoff externalities. The latter is due to the sequential servicing
constraint.

In a broader context, all these problems arise from short-run financing
of long-run high-yield investment opportunities. A fund manager who
invests on behalf of individual investors also faces the same problem. As
discussed in Section 6.2.3, the fear of early withdrawal of funds makes
him reluctant to exploit profitable long-run arbitrage opportunities.

The discrepancy of maturities between investment projects and their
short-term financing might explain the scope of the financial crisis in
Southeast Asia at the end of the 1990s. Bad news about the lack of
an efficient corporate governance structure might have justified a cer-
tain correction. However, it triggered a significant outflow of funds
from these countries due to herding behavior, as in a bank run. This
resulted in a plummeting of share prices and large-scale currency deval-
uations, thereby forcing these countries to also liquidate useful long-run
investment projects.

Radelet and Sachs (1998) contrast this reasoning with other possible
causes of the recent Asian crises. Each cause leads to different predic-
tions of the price path and requires different remedies. No measures
should be taken if the crash is just a price correction, for example, the
bursting of a bubble. On the other hand, if the crisis is due to herding
behavior as in bank runs, capital controls are a useful device to avoid the
Pareto inferior bank-run equilibrium. Policy makers who are able to dif-
ferentiate between these different causes can develop the right remedies
to reduce the impact of future crises and minimize the social hardship
faced by large fractions of the population.
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