
#### COVAR A Systemic Contribution Risk Measure

Tobias Adrian and Markus K. Brunnermeier

### Current financial regulation

- 1. Risk of each bank in isolation isolation isolation
  - Capital requirements
  - Haircuts/margins
  - Ratings



- 2. Procyclical of capital requirements, haircuts, ratings
- 3. Focus on asset side of the balance sheet Liability side – maturity mismatch gets little attention
  - Maturity rat race
  - Implicit subsidies for short-term funding
- 4. Focus on banks
  - shadow banking system gets little attention

#### Three challenges ....

- 1. Focus on externalities systemic risk contribution
  - What are the externalities?
    - Regulate based on externalities (functional citerion)
  - How to measure externalities (contribution to systemic risk)?
    - CoVaR
- 2. Countercyclical regulation
  - Avoid procyclicality
    - leverage, maturity mismatch,... predict future CoVaR
- 3. Incorporate funding structure asset-liability interaction, debt maturity, liquidity risk

#### 1. Externalities

"stability is a public good"

Bank 2

A

- 1. Fire-sale externality
  - Maturity mismatch + Leverage
    - Raise new funds
       FUNDING LIQUIDITY
      - Sell off assets **MARKET LIQUIDITY** (at fire sale prices due to crowded trades)
- liquidity

(rollover risk)

Bank 3

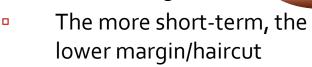
Fire-sales depress price also for others

Bank 1

A

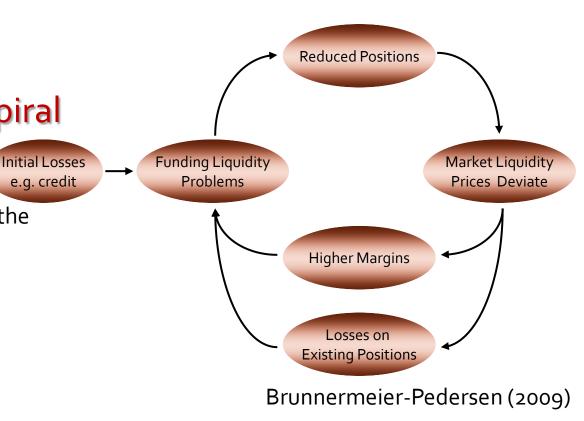
- 2. Hoarding externality
  - micro-prudent response: Hoard funds/reduce lending
  - ... but not necessarily macro-prudent
  - Systemic risk is endogenous (multiple equl)
- 3. Runs dynamic co-opetition
- 4. Network Externality
  - Hiding own's commitment buncertainty for counterparties

See Brunnermeier (2009) Journal of Economic Perspectives


# 2. Procyclicality due to Liquidity spirals

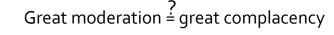
#### Loss spiral

- same leverage
- mark-to-market


#### Margin/haircut spiral

 Margin/haircut max leverage




#### delever!

- mark-to-model
  - Mark-to-funding



# Margin/haircut spiral - Procyclicality

- Margins/haircut increase in times of crisis delever margin = f(risk measure)
- Three reasons:
  - **1**. Backward-looking estimation of risk measure
    - Use forward looking measures
    - Use long enough data series
  - 2. Fundamental volatility increases
  - 3. Adverse selection
    - Debt becomes more information sensitive (not so much out of the money anymore)
  - Credit bubbles
    - whose bursting undermines financial system



cash flow

Countercyclical regulation

# Margin/haircut spiral - Procyclicality

- Margins/haircut increase in times of crisis delever margin = f(risk measure)
- Three reasons:
  - **1**. Backward-looking estimation of risk measure
    - Use forward looking measures
    - Use long enough data series
  - 2. Fundamental volatility increases
  - 3. Adverse selection
    - Debt becomes more information sensitive (not so much out of the money anymore)
  - Credit bubbles
    - whose bursting undermines financial system



cash flow

#### Credit/Leverage Bubble

- Why did nobody delever/act against it earlier?
  - "dance as long as the music plays"
  - Lack of coordination when to go against the bubble
    - Not riding a bubble for too long is ... can cost you your shirt
    - Even if one identify bubbles, predicting the time of its bursting is infinitely more difficult
    - Investors/institutions ride the bubble which allows it to persist
      - Little heterogeneity
- Credit bubble led to housing bubble
  - Note similarity to Nordic countries, Japan,...
     (foreign capital, agency problems were less of an issue there)

#### Macro-prudential regulation

#### 1. Externality:

- Measure contribution of institution to systemic risk: CoVaR
- Response to current regulation
   "hang on to others and take positions that drag others down when you are in trouble"
   (maximize bailout probability)

(maximize bailout probability ightarrow Moral Hazard)

- become big
- hold similar position (be in trouble when others are)
- become interconnected

#### 2. Procyclicality:

- Lean against "credit bubbles" laddered response
  - Bubble + maturity mismatch impair financial system (vs. NASDAQ bubble)
  - Impose Capital requirements/Pigouvian tax/Private insurance scheme
    - *not directly* on ΔCoVaR, but on
    - frequently observed factors, like maturity mismatch, leverage, B/M, crowdedness of trades/credit, ...
- 3. Funding: Asset-Liability Maturity Match

# Who should be regulated?

| group                        | examples                                       | macro-prudential | micro-prudential |
|------------------------------|------------------------------------------------|------------------|------------------|
| "individually<br>systemic"   | International banks<br>(national<br>champions) | Yes              | Yes              |
| "systemic as part of a herd" | Leveraged hedge<br>funds                       | Yes              | No               |
| non-systemic large           | Pension funds                                  | No               | Yes              |
| "tinies"                     | unlevered                                      | No               | No               |

- Micro: based on risk in isolation
- Macro: Classification on systemic risk contribution measure, e.g. CoVaR
- Annual list (not publicized)

#### CoVaR

CoVaR<sub>q</sub><sup>i</sup> is implicitly defined as quantile

 $\Pr(X^i \leq VaR_q^i) = q$ 

 CoVaR<sub>q</sub><sup>j|i</sup> is the VaR conditional on institute *i* (index) is in distress (at it's VaR level)

$$\Pr(X^{j} \leq CoVaR_{q}^{j|i} \mid X^{i} = VaR_{q}^{i}) = q$$

$$\Box \qquad \Delta CoVaR_q^{j|l} = CoVaR_q^{j|l} - VaR_q^{j}$$



- Various conditioning possibilities? (direction matters!) Contribution  $\Delta$  CoVaR
- Q1: Which institutions contribute (in a non-causal sense)
- VaR<sup>system</sup> institution *i* in distress
- Exposure Δ CoVaR
  - Q2: Which institutions are most exposed if there is a systemic crisis?
  - VaR<sup>i</sup> | system in distress
- Network △ CoVaR
  - VaR of institution j conditional on i

Can be extended to Co-Expected Shortfall!

#### Network CoVaR BAC 68 LEH 76 conditional on GS origin of arrow JPM

#### Overview

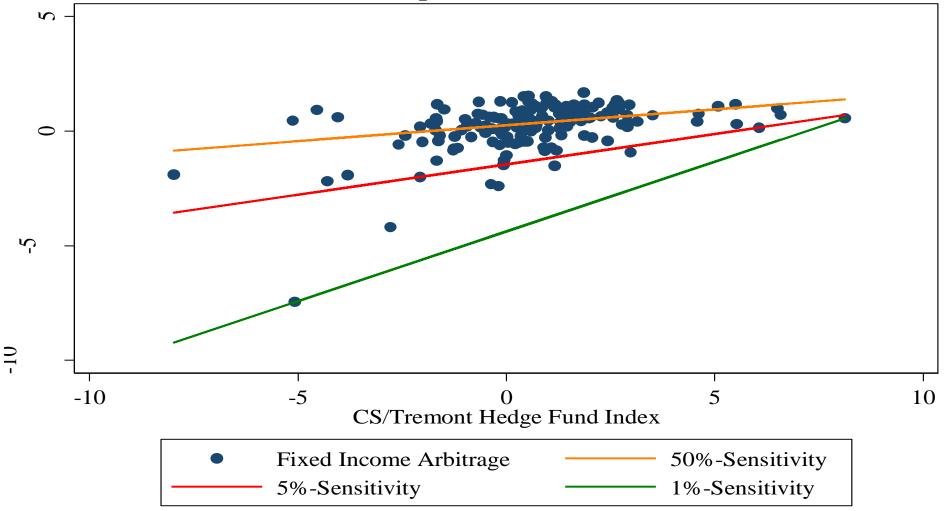
- Challanges
- Measuring Systemic Risk Spillover/Externalities
- One Method: Quantile Regressions
- CoVaR vs. VaR
- Addressing Procyclicality
  - Predict using institutions' characteristics
    - Balance sheet variables
    - Market variables (CDS, implied vol.,...)

#### **Quantile Regressions: A Refresher**

OLS Regression: min sum of squared residuals

$$\beta^{OLS} = \arg \min_{\beta} \Sigma_{t} \quad y_{t} - \alpha - \beta x_{t}^{2}$$
Predicted value:  $E[y \mid x] = \alpha + \beta x$ 

Quantile Regression: min weighted absolute values


$$\beta^{q} = \arg\min_{\beta} \Sigma_{t} \begin{cases} q |y_{t} - \alpha - \beta x_{t}| & \text{if } y_{t} - \alpha - \beta x_{t} \ge 0\\ 1 - q |y_{t} - \alpha - \beta x_{t}| & \text{if } y_{t} - \alpha - \beta x_{t} < 0 \end{cases}$$

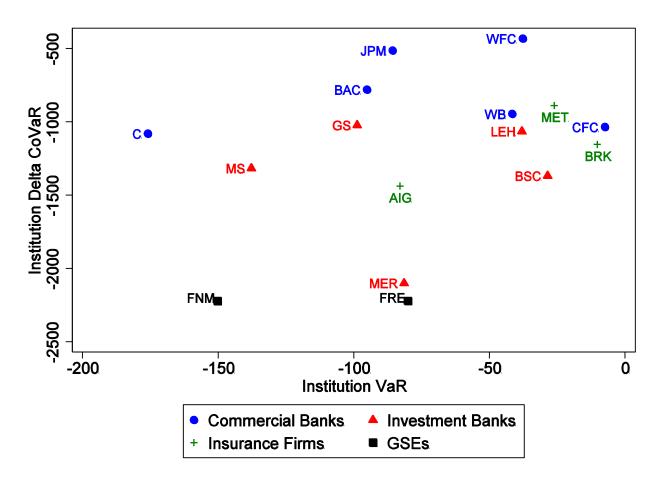
• Predicted value:  $VaR_q \mid x = F_y^{-1}(q \mid x) = \alpha_q + \beta_q x$ 

Note out (non-traditional) sign convention!

#### Quantile Regression: A Refresher

q-Sensitivities




#### Financial Intermediary Data

- Publicly traded financial intermediaries 1986-2008
  - Commercial bank, security broker-dealers, insurance companies, real estate companies, etc.
  - Weekly market equity data from CRSP
  - Quarterly balance sheet data from COMPUSTAT
- CDS and option data of top 10 US banks, daily 2004-2008

#### Overview

- Measuring Systemic Risk Contribution
- One Method: Quantile Regressions
- CoVaR vs. VaR
- Addressing Procyclicality
  - Time-varying CoVaR/VaR
  - Predict using institutions' characteristics
    - Balance sheet variables
    - Market variables (CDS, implied vol.,...)

#### $\Delta$ CoVaR vs. VaR



- VaR and

   \alpha CoVaR
   relationship
   is very weak
- Data up to 12/06

#### Overview

- Challanges
- Measuring Systemic Risk Contribution
- One Method: Quantile Regressions
- CoVaR vs. VaR
- Addressing Procyclicality
  - Step 1: Time-varying CoVaRs
  - Step 2: Predict CoVaR using institution characteristics
    - Balance sheet variables (leverage, maturity mismatch, + interdependence, ...)
    - Market variables (CDS, implied vol.,...)

# Step 1: Time-varying CoVaR

- Relate to <u>macro factors</u>, M<sub>t</sub>
  - VIX Level
  - 3 month yield
  - Repo 3 month Treasury
  - Moody's BAA 10 year Treasury
  - IoYear 3 month Treasury
  - Real estate index
  - Equity market risk

<u>interpretation</u> "Volatility"

"Flight to Liquidity" "Credit indicator" "Business Cycle" "Housing"



Obtain Panel data of CoVaR

Next step: Relate to institution specific (panel) data

#### Step 1: Time-varying ∆CoVaR

- Derive time-varying VaR<sub>t</sub>
  - For institution *i*:

$$X_t^i = \alpha_q^i + \beta_q^i M_t + \varepsilon_t^i$$

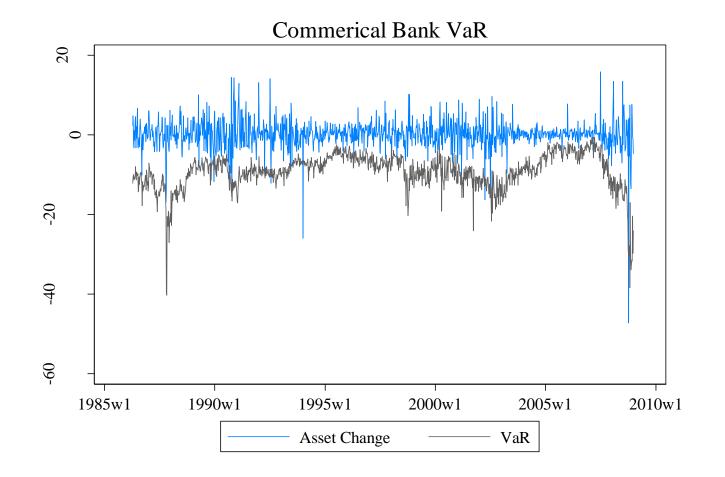
For financial system:

$$X_t^{system} = \alpha_q^{system} + \beta_q^{system} M_t + \varepsilon_t^{system}$$

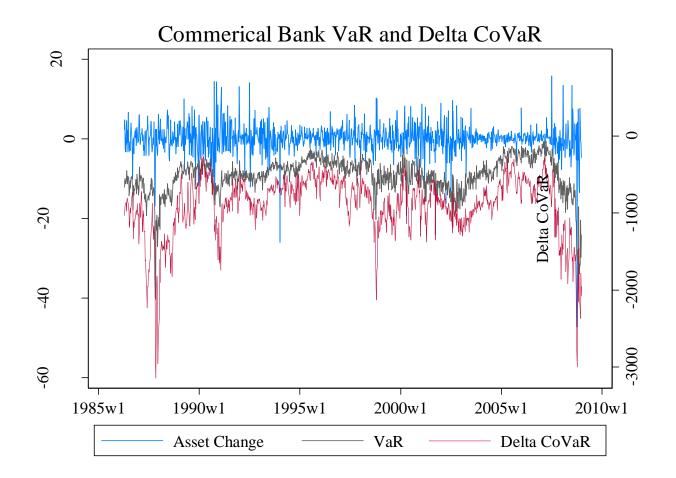
Derive time-varying CoVaR<sub>t</sub>

$$X_t^{system} = \alpha_q^{system|i} + \beta_q^{system|i} M_t + \gamma X_t^i + \varepsilon_t^{system|i}$$

• 
$$\Delta CoVaR_t = CoVaR_t - VaR_t$$


#### Table 2: Average Exposures to Risk Factors

#### INSTITUTIONS


| COEFF    | CIENT        | VaR <sup>system</sup> | VaR <sup>i</sup> | CoVaR <sup>system i</sup> |  |
|----------|--------------|-----------------------|------------------|---------------------------|--|
| Repo sp  | oread (lag)  | -1163***              | -0.60            | -877.94***                |  |
| Credit s | oread (lag)  | -107.75               | -0.47            | -226.75**                 |  |
| Term sp  | read (lag)   | 128.71                | 0.64             | 18.80                     |  |
| VIX (lag |              | -68.97***             | -0.16***         | -43.35***                 |  |
| 3 Month  | Yield (lag)  | 118.73                | 0.42             | 15.95*                    |  |
| Market I | Return (lag) | 242.74***             | 0.50***          | 196.00***                 |  |
| Housing  | (lag)        | 5.63                  | 0.03             | 5.17                      |  |

\*\*\* p< 0.01 \*\* p< 0.05 \* p< 0.1

#### Time-varying VaR



#### Time-varying VaR and ∆CoVaR



### Step 2a: Portfolios Sorted on Characteristics

- Institutional characteristics matter
- ... but individual financial institutions have changed the nature of their business over time
- Form decile portfolios, each quarter, according to previous quarter's data:
  - 1. Leverage
  - 2. Maturity mismatch
  - 3. Size
  - 4. Book-to-Market
- Add 4 industry portfolios
  - 1. Banks
  - 2. Security broker-dealers
  - 3. Insurance companies
  - 4. Real estate companies

#### Table 3A: ΔCoVaR Forecasts by Characteristics Cross-section, Portfolios, 1%

| COEFFICIENT                                       | 2 Years                    | 1 Year                 | 1 Quarter            |
|---------------------------------------------------|----------------------------|------------------------|----------------------|
| ΔCoVaR (lagged)                                   | 0.71***                    | 0.80***                | 0.94***              |
| VaR (lagged)                                      | -1.99***                   | -2.27***               | -0.47***             |
| Leverage (lagged)                                 | -9.43***                   | -10.73***              | -2.53**              |
| Maturity mismatch (lagged)                        | -0.89***                   | -0.30                  | -0.14                |
| Relative Size (lagged)<br>Book-to-Market (lagged) | -<br>170.84***<br>85.24*** | -161.99***<br>87.65*** | -38.58***<br>31.03** |
| Constant                                          | -40.92**                   | -50.04**               | -19.93*              |
| Observations                                      | 3627                       | 3805                   | 3939                 |
| R <sup>2</sup>                                    | 0.62                       | 0.69                   | 0.89                 |

#### Table 3B: ΔCoVaR Forecasts by Characteristics Cross-section, 2 years

| COEFFICIENT                | 1%       | 5%         | 10%       |
|----------------------------|----------|------------|-----------|
| ΔCoVaR (lagged)            | 0.71***  | 0.63***    | 0.70***   |
| VaR (lagged)               | -1.99*** | -1.86***   | -1.38***  |
| Leverage (lagged)          | -9.43*** | -5.08***   | -4.23**   |
| Maturity mismatch (lagged) | -0.89*** | -0.51***   | 0.10      |
| Relative Size (lagged)     | -        | -105.62*** | -86.84*** |
| Book-to-Market (lagged)    |          | 26.95***   | -14.77**  |
| Constant                   | -40.92** | -14.70*    | 36.88***  |
| Observations               | 3627     | 3627       | 3627      |
| R <sup>2</sup>             | 0.62     | 0.62       | 0.70      |

# Table 4: ΔCoVaR Forecasts by Characteristics Time Series/Cross Section, Portfolios, 1%

| COEFFICIENT                                                                                                                             | 2 Years                                                  | 1 Year                                                       | 1 Quarter                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|
| ΔCoVaR (lagged)<br>VaR (lagged)<br>Leverage (lagged)<br>Maturity mismatch (lagged)<br>Relative Size (lagged)<br>Book-to-Market (lagged) | 0.41***<br>-1.30***<br>0.92<br>-0.31<br>-230***<br>29.25 | 0.58***<br>-1.74***<br>-8.10***<br>-0.53<br>-229***<br>42.69 | 0.86***<br>0.06<br>-1.64<br>-0.33<br>-56***<br>31.03** |
| Constant<br>Observations<br>R <sup>2</sup>                                                                                              | -<br>332.58***<br>3627<br>0.69                           | -239.05***<br>3805<br>0.73                                   | -96.84***<br>3939<br>0.89                              |



Timing of tail risk is harder to forecast than cross-section contribution 41

### Step 2b: Forecasting with Market Variables

- CDS spread and equity implied volatility for 10 largest US commercial and investment banks (from Bloomberg)
- Betas:
  - Extract principal component from CDS spread changes/implied vol changes within each quarter from daily data
  - Regress each CDS spread change/ implied vol change on first principal component

# Table 6: ΔCoVaR Forecasts by Market Variables Cross Section, Portfolios, 1%

| COEFFICIENT               | 2 Years  | 1 Year    | 1 Quarter |
|---------------------------|----------|-----------|-----------|
| ΔCoVaR (lagged)           | 0.60***  | 0.79***   | 0.94***   |
| VaR (lagged)              | -1.84    | 0.05      | -0.08     |
| CDS beta (lagged)         | -1.727** | 787.92    | 95.37     |
| CDS (lagged)              | 1.320    | -2.211    | -40.26    |
| Implied Vol beta (lagged) | -8.30    | -590.28** | -85.78    |
| Implied Vol (lagged)      | -144.60  | 111.02    | 234.56*** |
| Constant                  | -335.30  | -147.72   | -114.07*  |
| Observations              | 114      | 154       | 184       |
| R <sup>2</sup>            | 0.36     | 0.57      | 0.77      |

short data-span (2004-2008)!

#### Extension to our Analysis

- Co-Expected Shortfall ("Co-ES")
  - Advantage: coherent risk measure
  - Disadvantage: any estimate "in" the tail is very noise
- Inclusion of additional information
  - derivative positions
  - off-balance sheet exposure
  - Crowdedness measure
  - Interdependence measures
  - Bank supervision information

### Countercyclical Regulation

- When market is relaxed
   Strict Laddered Response
  - Step 1: supervision enhanced
  - Step 2: forbidden to pay out dividends
    - See connection to debt-overhang problem)
  - Step 3: No Bonus for CEOs
  - Step 4: Recapitalization within two months + debt/equity swap
- When market is strict
   Relax regulatory requirement

# What type of charge?

#### 📫 Capital charge

- Strictly binding
- Might stifle competition
- Pigouvian tax + government insurance
  - Generates revenue
  - In times of crisis it is cheap to issue government debt
  - very salient
- Private insurance scheme
  - (Kashap, Rajan & Stein, 2008 + NYU report)
  - Requires lots of regulation

# Conclusion

- Macro-prudential regulation
  - Focus on externalities
  - Measure for systemic risk is needed, e.g. CoVaR
  - Maturity mismatch (+ Leverage) encourage long-term funding
- Countercyclical regulation
  - Find variables that predict average future CoVaR
  - Forward-looking measures, spreads, …
  - Also,
    - VaR measure is not sufficient incorrect focus
    - Quantile regressions are simple and efficient way to calculate CoVaR