Clock Games: Theory and Experiments

Markus K. Brunnermeier Princeton University

John Morgan UC Berkeley

- A firm contemplates a new product introduction for some high tech product
- Waiting reduces the costs of production and thereby increases profits
- However, waiting too long risks entry by a rival
- When should the new product be introduced?

It's 1 January 2000 and tech stocks are zooming up...

- Mobutu has long been in power in (then) Zaire. Should you lead a revolution against him?
- Move too soon, a Mobutu will "deal" with you.
- Move too late the and the power vacuum will be filled.

- Common features of many timing problems
 - time has to be "ripe"
 - **Congestion effect:** there is only room for *K* players
 - Waiting motive: first movers risk more
 - Uncertainty about rivals' moves
- Examples
 - Currency attacks
 - Debt renegotiation

Differences

Few key players – few cohorts – many players

Rivals' moves are difficult/easy to predict

Rivals' moves are observable/unobservable

Observations

Initial delay

Sudden onset of action

Objectives of paper

Provide tractable model

Experimentally verify predictions given complexity of the game

Some related literature

Theory on timing games Pre-emption games War of attrition games Recent papers Park & Smith (2003) Morris (1995) **AB** (2002,2003)

Experimental literature

McKelvey and Palfrey (1992)

introduction

theory

model setup

unobservable actions

observable actions

Information clustering

experiment

conclusion

- I players each deciding when to "move"
- Players receive private signals about a state relevant variable \rightarrow player *i*'s clock starts at *t*_i
 - Key tension: When you learn about the change in the state variable, don't know how many others have already learned this.
- Game ends when a critical number, K, of the players exit.

- There are I key players in the market
- Each learns about a payoff relevant event: That there have been significant outflows in the reserves of some country.
 - But each is unsure of the timing that others have learned
- Upside from staying in: Enjoy supernormal profits from domestic exchange rate
- Downside: Once there outflows by enough (K) key players, a devaluation will occur.

Model setup

Payoff structure

Payoffs

- 'exit payoff' (random)
- 'end of game payoff'

for first *K* players for last *I-K* players

Tie-breaking rule if K^{th} , $K+1^{th}$, ..., $K+n^{th}$ player exit at the same time $t > t_0$, exiting players receive the exit payoff with equal probability.

introduction

theory

model setup

unobservable actions

observable actions

information clustering

experiment

conclusion

Costs and benefits of delay

- Log Marginal Costs: Hazard rate associated with the end of the game x expected payoff drop from this event
- Log Marginal Benefits: The growth rate from waiting an additional period
- In equilibrium we have the usual MC = MB condition for each of the players.

Delay - unobserved actions ...

At
$$t = t_i + \tau$$

 $(1 - \Delta h) ge^{g(t_i + \tau)} \Delta = \Delta h E \left[e^{g(t_i + \tau)} - e^{gt_0} | D_{\Delta}, t_i \right]$
benefit of waiting
= size of payoff drop

For $\Delta \rightarrow 0$

$$g = hE\left[1 - e^{-g(t_i + \tau - t_0)}|D_0, t_i\right]$$

Solving for τ

$$\tau = \frac{1}{g} \left[\ln \frac{h}{h-g} + \ln E \left[e^{-g(t_i - t_0)} | D_0, t_i \right] \right]$$

'end of game payoff'

Equilibrium hazard rate – unobserved actions

 If everybody waits for τ periods, then at t_i + τ Prob(payoff drop at t_i + τ + Δ) = =Prob(Kth of others received signal before t_i + Δ)
 Random for two reasons:
 t₀ is random

 $t_i - h$ t_i since $t_i \S t_0 + h$ since $t_i ¥ t_0$

Timing of K^{th} signal within window of awareness is random $\begin{pmatrix} I-1\\ 1 \end{pmatrix} \pi (\Delta|t_0) \begin{pmatrix} I-2\\ K-1 \end{pmatrix} [\Pi (\Delta|t_0)]^{K-1} [1 - \Pi (\Delta|t_0)]^{I-1-K}$

Condition on fact that payoff drop did not occur

t_i

... Delay – unobservable actions

Proposition 1: In unique symmetric equilibrium

delay
$$\tau = \frac{1}{g} \ln \left(\frac{\lambda F(K, I, \eta(\lambda - g))}{g - (g - \lambda) F(K, I, \eta\lambda)} \right)$$
,

where F(a, b, x) is a Kummer function.

Integral representation

$$\frac{\Gamma(b)}{\Gamma(b-a)\Gamma(a)}\int_0^1 e^{xz}z^{a-1}(1-z)^{b-a-1}dz$$

Delay increases with window of awareness

Proposition 2: Delay increases with window of η .

Makes it more difficult to predict moves of others.

introduction

theory

model setup

unobservable actions

observable actions

information clustering

experiment

conclusion

Herding – observable actions

Proposition 3: All players exit after observing the first player exiting (if first player exits in equilibrium after receiving the signal).

Intuition: backwards induction

$$g = h_1 \frac{I-K}{I-1} E\left[1 - e^{-g(t_i + \tau - t_0)} | D_0, t_i\right]$$

 h_1 = hazard rate of the first player exiting $\frac{I-K}{I-1}$ = probability of *not* receiving the high exit payoff when herding after first

$$\tau_{1} = \frac{1}{g} \left[\ln \frac{h_{1}}{h_{1} - g_{I-K}^{I-1}} + \ln E \left[e^{-g(t_{i} - t_{0})} | D_{0}, t_{i} \right] \right]$$

Simplifies to a ratio of Kummer functions

introduction

theory

model setup

unobservable actions

observable actions

Information clustering

experiment

conclusion

Information Clustering

in / groups

continuum of players no information clustering

Comparison to AB (unobservable)

Proposition 6: $\tau > \tau_{AB}$.

- 2 effects:
 - Individual player carries more weight (focus of CC-model)

Synchronization is more complicated

- In AB: hazard rate > prob. of being "Kth" player conditional on knowing to "Kth" player, t_i knows that next player exits an instant later with probability 1 and causes payoff drop.
- In BM: hazard rate > prob. of being "Kth"

* prob. K+1th follows in next instant.

Proposition 7: Fix $K=\kappa I$. As $I \to \infty$, $\tau \to \tau_{AB}$.

(Kummer functions converge to exponentials.)

Comparison with AB (observable)

Proposition 9: τ_{1,AB} = 0. Intuition

- If at $t_i + \tau_{AB,1}$ payoff hadn't occurred it will occur with prob. one in next instant (i.e. hazard rate= ∞)
- Hazard rate is continuous

For any $\tau_{AB,1}$ >0 player i has incentive to exit earlier. Hence, $\tau_{AB,1}$ =0.

Corollary: $\tau_1 > \tau_{1,AB} = 0$.

Same reasoning as in case with unobservable actions.

Isolating information clustering (CC-model)

 Continuum of players, but *I* cohorts
 Difference: player *i* knows that his cohort exits at t_i + τ
 Before t_i+τ: drop if Kth cohort out of (*I*-1) exits
 After t_i+τ: drop if (K-1)th out of (*I*-1) exits

(since own cohort exited)

At $t_i + \tau$: drop occurs with strictly positive prob.

Isolating information clustering (CC-model)

Isolating information clustering (CC-model)

Reasoning for τ_1 in case with observable actions is analogous.

Information clustering creates an additional force for equilibrium delay in the unobservable case

- Information clustering is *necessary* to get equilibrium delay in the observable case
- What matters for equilibrium delay?
 - Transparency
 - Synchronicity
 - Clustering

introduction

theory

experiment

design and procedures

measures - delay & herding

results

further insights

conclusion

- g=2%, λ=1%, (½ second)
- 2 parallel rounds (randomly matched)
- 6 players per round
- First 3 sell at exit price e^{gt} , others e^{gt_0}

🙆 Applet Bubble started

🥶 Internet

- Average payout: ECU 30.32 = \$15.16
- Hovering to avoid coordination via mouse-click
- "Learning by doing:" focus on periods 20,...,45
- Obvious mistakes: sale within 10 periods (5 sec.)
- 16 Sessions
- Treatments:

	unobservable	observable
η=50	Compressed	Х
η=90	Baseline	Observable

introduction

theory

experiment

design and procedure

measures - delay & herding

results

further insights

conclusion

Delay measures delay bubble length Notice censoring! Herding measure GAP^{2,1} GAP^{3,2}

$$t_{\text{exit i}} - t_{\text{i}}$$

 $t_{\text{exit [K]}} - t_{0}$

$$t_{\text{exit} [2]} - t_{\text{exit} [1]}$$

 $t_{\text{exit} [3]} - t_{\text{exit} [2]}$

introduction

theory

experiment

design and procedure

measures - delay & herding

results

further insights

conclusion

Table 1: Theory Predictions

		Treatment	
	Baseline	Compressed	Observable
Bubble Length	62	26	26
Delay Length	23	5	13*
Gap Length	13	7	1

*For the Observable treatment, Delay is only meaningful for first seller

Descriptive Statistic

		Treatment	
	Baseline	Compressed	Observable
Number of Sessions	6	6	4
Bubble Length	44.00	26.46	31.00
	(25.00)	(11.31)	(24.55)
Delay Length			
Seller 1	7.26	3.97	7.06
	(9.60)	(4.25)	(12.72)
Seller 2	10.18	5.34	
	(13.68)	(5.39)	
Seller 3	12.67	6.66	
	(16.14)	(6.79)	
Gap Length			
Between 1st & 2nd seller	23.27	18.59	9.48
	(27.63)	(26.37)	(25.81)
Between 2nd & 3rd seller	15.22	8.68	1.85
	(15.87)	(9.51)	(1.49)

Histograms – Bubble Length

Histogram - Third Player's Delay

Results – Session Level Analysis

Prediction 1: Bubble Length Baseline > Compressed	Б 0/
Daseline > Compresseu	J /0
Prediction 2: Delay	
Player 1: Baseline > Compressed	5 %
Player 2:	5 %
Player 3:	1 %
Player 1: Baseline > Observable	failed to
Prediction 3: GAP	
GAP21: Baseline > Observable	5 %
GAP32:	5 %

Results: Delay – Individual Level Analysis

	Robust-Cluster-OLS			Tobit		
	Seller 1	Seller 2	Seller 3	Baseline	Compressed	
Constant	11.512	15.643	19.597	18.635	9.036	
	(12.48)**	(11.33)**	$(11.17)^{**}$	(35.09)**	(39.32)**	
Compressed	-3.471	-5.165	-6.697			
	(4.50)**	(4.60)**	(4.91)**			
Observable	-0.654					
	(0.52)					
t_0	-0.054	-0.069	-0.087			
	(10.39)**	(8.89)**	(9.41)**			
Round Fixed Effects	Yes	Yes	Yes	Yes	Yes	
Observations	738	584	583	1681	1788	
R-squared	0.23	0.26	0.28			

Results: Herding – Individual Level Analysis

	All Treatments		Observable Treatment C	
	GAP21	GAP32	GAP21	GAP32
Constant	14.24	11.431	3.278	1.733
	(7.55)**	(12.18)**	(1.57)	$(10.35)^{**}$
Compressed	-3.858	-6.182		
	(-1.48)	(6.52)**		
Observable	-12.83	-13.028		
	(4.67)**	(15.45)**		
t_0	0.112	0.047	0.084	0.002
	(5.66)**	(5.02)**	(2.48)*	(0.87)
Round Fixed Effects	Yes	Yes	Yes	Yes
Observations	785	786	201	201
R-squared	0.15	0.29	0.25	0.25

introduction

theory

experiment

design and procedure

measures - delay & herding

results

further insights

conclusion

t_0 -effect & exiting before t_i

■ t₀-effect

- **Risk** aversion stakes are higher for large t_0
- Difference in risk aversion among players
 - Delay of first seller < Delay of third seller</p>
 - Effect becomes larger for large t_0
- Misperception of constant arrival rate
- Waiting for a fixed (absolute) price increase

Exiting before t_i

mistakes

- Worries that others suffer t₀-effect (risk aversion)
- Effect is larger in Baseline since bubble is larger

Probit of Non-Delay

	Baseline and Compressed Only	Seller 1 Only
to	0.017 +0.3 %	0.017
	$(17.44)^{**}$	$(13.46)^{**}$
Compressed	-0.435 -7.1 %	-0.223
	(2.90)**	(1.20)
Observable		-0.03
		(0.18)
Constant	-2.474	-1.373
	$(12.85)^{**}$	(3.34)**
Round Fixed Effects	Yes	Yes
Observations	2259	738

base rate 8.8 %

Conclusion

Many timing games have in common

- Time has to be "ripe"
- Congestion effect
- Costly to be pioneer
- Uncertainty about others moves
- Theoretical predictions of clock games:
 - Delay increases with
 - number of key players
 - uncertainty about others moves
 - Herding/sudden onset if moves are observable
 Initial delay for first player decreases with number of players

Experiment

- Comparative static/Treatment effects are confirmed
- Delay and herding less strong (in terms of levels)
- Additional insights: t_0 -effect, ...