## The Maturity Rat Race

#### Markus Brunnermeier, Princeton University Martin Oehmke, Columbia University

August 4, 2010

## Is There Too Much Maturity Mismatch?

- Households have long-term saving needs
- Banks have long-term borrowing needs
- $\Rightarrow$  Why is intermediary borrowing so short-term?

Rationale for 'beneficial' maturity mismatch:

- Diamond and Dybvig (1983)
- Calomiris and Kahn (1991), Diamond and Rajan (2001)

There may be excessive maturity mismatch in the financial system

## This Paper

A financial institution can borrow

- from multiple creditors
- at different maturities

#### Negative externality can cause excessively short-term financing:

- shorter maturity claims dilute value of longer maturity claims
- depending on type of interim information received at rollover dates

#### **Externality** arises

- for any maturity structure
- particularly during times of high volatility (crises)

Successively unravels all long-term financing:  $\Rightarrow$  A Maturity Rat Race

## Outline

#### Model Setup

One Rollover Date

- Two Simple Examples
- ► The General Case

Multi-period Maturity Rat Race

Discussion

Related Literature

## Model Setup: Long-term Project

Long-term project:

- investment at t = 0: \$1
- payoff at t = T:  $\theta \sim F(\cdot)$  on  $[0, \overline{\theta}]$

Over time, more information is learned:

- $s_t$  observed at  $t = 1, \ldots, T 1$
- $S_t$  is sufficient statistic for all signals up to  $t: \theta \sim F(\cdot|S_t)$
- $S_t$  orders  $F(\cdot)$  according to FOSD

Premature liquidation is costly:

• early liquidation only generates  $\lambda E[\theta|S_t]$ ,  $\lambda < 1$ 

## Model Setup: Credit Markets

Risk-neutral, competitive lenders

All promised interest rates

- ► are endogenous
- depend on aggregate maturity structure

Debt contracts specifies maturity and face value:

- can match project maturity:  $D_{0,T}$
- or shorter maturity  $D_{0,t}$ , then rollover  $D_{t,t+\tau}$  etc.
- Ienders make uncoordinated rollover decisions

All debt has equal priority in default:

proportional to face value

# Model Setup: Credit Markets (2)

Main Friction: Financial institution has opaque maturity structure

- simultaneously offers debt contracts to creditors
- cannot commit to aggregate maturity structure
- can commit to aggregate amount raised

An equilibrium maturity structure must satisfy two conditions:

- 1. Break even: all creditors must break even
- 2. No deviation: no incentive to change one creditor's maturity

## Outline

Model Setup

#### **One Rollover Date**

- Two Simple Examples
- The General Case

Multi-period Maturity Rat Race

Discussion

Related Literature

## Analysis with One Rollover Date

For now: focus on only one possible rollover date, t < T

#### Outline of thought experiment:

- Conjecture an equilibrium in which all debt has maturity T
- Calculate break-even face values
- > At break-even interest rate, is there an incentive do deviate?

Denote fraction of short-term debt by  $\boldsymbol{\alpha}$ 

### A Simple Example: News about Default Probability

 $\boldsymbol{\theta}$  only takes two values:

- $\theta^H$  with probability p
- $\theta^L$  with probability 1 p

 $\boldsymbol{p}$  random, revealed at date  $\boldsymbol{t}$ 

If all financing has maturity T:

$$(1-p_0)\,\theta^L+p_0D_{0,T}=1,\qquad D_{0,T}=rac{1-(1-p_0)\,\theta^L}{p_0}$$

Break-even condition for first *t*-rollover creditor:

$$(1-p_t)\frac{D_{t,T}}{D_{0,T}}\theta^L + p_t D_{t,T} = 1, \qquad D_{t,T} = \frac{1-(1-p_0)\theta^L}{\theta^L p_0 + (1-\theta^L)p_t}$$

#### Illustration: News about Default Probability

Deviation payoff:

$$\frac{\partial \Pi}{\partial \alpha}\Big|_{\alpha=0} = E\left[p_t D_{0,T}\right] - E\left[p_t D_{t,T}\right] > 0?$$

Product of two quantities matters:

- Promised face value under ST and LT debt (left)
- Probability that face value is repaid (right)



## Illustration: News about Default Probability

Multiplying promised face value and repayment probability:



Note:

A > B implies **rolling over cheaper** in expectation

### A Simple Example: News about Recovery Value

 $\boldsymbol{\theta}$  only takes two values:

- $\theta^H$  with probability p = 1/2
- $\theta^L$  with probability 1 p

Low cash flow  $\theta^L$  random, revealed at date t

If all financing has maturity T:

$$\frac{1}{2}D_{0,T} + \frac{1}{2}E\left[\theta^{L}\right] = 1, \qquad D_{0,T} = 2 - E\left[\theta^{L}\right]$$

Break-even condition for first *t*-rollover creditor:

$$\frac{1}{2}D_{t,T} + \frac{1}{2}\frac{D_{t,T}}{D_{0,T}}\theta^{L} = 1, \qquad D_{t,T}\left(\theta^{L}\right) = 2\frac{2-E\left[\theta^{L}\right]}{2-E\left[\theta^{L}\right] + \theta^{L}}$$

#### Illustration: News about Recovery Value

Deviation payoff:

$$\frac{\partial \Pi}{\partial \alpha}\Big|_{\alpha=0} = \frac{1}{2}D_{0,T} - \frac{1}{2}E[D_{t,T}(\theta^L)] > 0?$$

Product of two quantities matters:

- Promised face value under ST and LT debt (left)
- Probability that face value is repaid (right)



#### Illustration: News about Recovery Value

Multiplying promised face value and repayment probability:



Note:

A' < B' implies rolling over more expensive in expectation

# What is going on? Interim Information Matters!

Rollover face value  $D_{t,T}$  (promised interest rate)

- is endogenous
- adjusts to interim information

| Interim Signal | $D_{t,T}$ | default           | no default |
|----------------|-----------|-------------------|------------|
| Negative       | high      | LT creditors lose | no effect  |
| Positive       | low       | LT creditors gain | no effect  |

If default sufficiently more likely after negative signals

 $\Rightarrow$  LT creditors lose on average

## General One-Step Deviation

Extend to:

- general payoff distribution
- start from any conjectured equilibrium that involves some amount of LT debt

Assumption 1: 
$$D_{t,T}(S_t) \underbrace{\int_{\bar{D}_T(S_t)}^{\infty} dF(\theta|S_t)}_{\text{repayment probability}}$$
 is weakly increasing in  $S_t$ 

Guarantees signal has sufficient effect on default probability

**Proposition:** One-step Deviation. Under Assumption 1, the unique equilibrium is all short-term financing ( $\alpha = 1$ ).

## Outline

Model Setup

One Rollover Date

- Two Simple Examples
- ► The General Case

Multi-period Maturity Rat Race

Discussion

Related Literature

### Many Rollover Dates: The Maturity Rat Race

Up to now: focus on one potential rollover date

- Assumed everyone has maturity of length T
- Showed that there is a deviation to shorten maturity to t

This extends to multiple rollover dates

- Assume all creditors roll over for the first time at some time au < T
- By same argument as before, there is an incentive to deviate
- In proof: For  $\tau < T$  replace final payoff by continuation value
- $\Rightarrow$  Successive unraveling of maturity structure



![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_23_Figure_1.jpeg)

Assumption 2: 
$$D_{t-1,t}(S_{t-1}) \underbrace{\int_{\tilde{S}_t}^{\infty} dG(S_t|S_{t-1})}_{\text{prob of rollover at t}}$$
 is increasing in  $S_{t-1} \forall t$ 

 Guarantees signal has sufficient effect on rollover probability at next rollover date

**Proposition: Sequential Unraveling.** Under Assumption 2, successive application of the one-step deviation principle results in unraveling of the maturity structure to the minimum rollover interval.

## Outline

Model Setup

One Rollover Date

- Two Simple Examples
- The General Case

Multi-period Maturity Rat Race

Discussion

Related Literature

## Rat Race Causes Inefficiencies

#### **Excessive Rollover Risk**

- Project could be financed without any rollover risk
- Rat race leads to positive rollover risk in equilibrium

#### Underinvestment

- Creditors rationally anticipate rat race
- NPV of project must outweigh eqm liquidation costs
- $\blacktriangleright$   $\Rightarrow$  some positive NPV projects don't get financed

## Rat Race Strongest During Crises

Rat race stronger when more information about default probability is released at interim dates

ability to adjust financing terms becomes more valuable

#### $\Rightarrow$ Volatile environments, such as crises, facilitate rat race

Explains drastic shortening of unsecured credit markets in crisis

e.g. commercial paper during fall of 2008

### Commercial Paper Issuance 2008

![](_page_28_Figure_1.jpeg)

# Seniority, Covenants

Priority for LT debt and covenants may limit rat race

Can reduce externality of ST debt on LT debt

- Seniority for LT debt
- Restrictions on raising face value of ST debt at t < T

#### But:

- by pulling out early, ST creditors may still have *de facto* seniority
- Particularly for financial institutions, covenants are hard to write/enforce

## Outline

Model Setup

One Rollover Date

- Two Simple Examples
- ► The General Case

Multi-period Maturity Rat Race

Discussion

**Related Literature** 

## Related Literature

'Beneficial' Maturity Mismatch

- Diamond and Dybvig (1983)
- Calomiris and Kahn (1991), Diamond and Rajan (2001)

Papers on 'Rollover Risk'

- Acharya, Gale and Yorulmazer (2009)
- ▶ He and Xiong (2009)
- Brunnermeier and Yogo (2009)

Signaling Models of Short-term Debt

- ► Flannery (1986)
- Diamond (1991)
- Stein (2005)

## Conclusion

Equilibrium maturity structure may be efficiently short-term

- Contractual externality between ST and LT creditors
- Maturity Rat Race successively unravels long-term financing

This leads to

- too much maturity mismatch
- excessive rollover risk
- underinvestment

Not easily fixed through covenants or seniority for LT debt

Extra Slides

#### A Simple Example: News about Default Probability

 $\boldsymbol{\theta}$  only takes two values:

• 
$$\theta^H = 1.5$$
 with probability  $p = 0.8$ 

• 
$$\theta^L = 0.6$$
 with probability  $1 - p = 0.2$ 

p updated at date t to  $p_t=0.8\pm0.1$ 

If all financing has maturity T:

$$(1 - p_0) \theta^L + p_0 D_{0,T} = 1, \qquad D_{0,T} = 1.1$$

Break-even condition for first *t*-rollover creditor:

$$(1-p_t) \frac{D_{t,T}}{D_{0,T}} \theta^L + p_t D_{t,T} = 1, \qquad D_{t,T} = \begin{cases} 1.047 & \text{if } p_t = 0.9\\ 1.158 & \text{if } p_t = 0.7 \end{cases}$$

Illustration: News about Default Probability

Deviation payoff:

$$\frac{\partial \Pi}{\partial \alpha} = p_0 D_{0,T} - E[p_t D_{t,T}(p_t)] > 0?$$

Product of two quantities matters:

- Promised face value under ST and LT debt
- Probability that face value is repaid

$$\frac{\partial \Pi}{\partial \alpha} = 0.8 * 1.1 - 0.5 * (0.9 * 1.047) - 0.5 * (0.7 * 1.158) = 0.0033 > 0$$

 $\Rightarrow$  Deviation profitable

#### A Simple Example: News about Recovery Value

 $\boldsymbol{\theta}$  only takes two values:

- $\theta^H = 1.5$  with probability p = 0.8
- $\theta^L = 0.6$  with probability 1 p = 0.2

Low cash flow  $\theta^L$  random, updated at date t:  $0.6 \pm 0.1$ 

If all financing has maturity T:

$$(1-p)E[\theta^{L}] + pD_{0,T} = 1, \qquad D_{0,T} = 1.1$$

Break-even condition for first *t*-rollover creditor:

$$(1-p)\frac{D_{t,T}}{D_{0,T}}\theta^{L} + pD_{t,T} = 1, \qquad D_{t,T} = \begin{cases} 1.078 & \text{if } \theta^{L} = 0.7\\ 1.112 & \text{if } \theta^{L} = 0.5 \end{cases}$$

#### Illustration: News about Recovery Value

Deviation payoff:

$$\frac{\partial \Pi}{\partial \alpha} = pD_{0,T} - pE[D_{t,T}(\theta^L)] > 0?$$

Product of two quantities matters:

- Promised face value under ST and LT debt
- Probability that face value is repaid)

$$\frac{\partial \Pi}{\partial \alpha} = 0.8 * 1.1 - 0.5 * (0.8 * 1.078) - 0.5 * (0.8 * 1.122) = -0.0003 < 0$$

 $\Rightarrow$  Deviation not profitable

## Inefficiency 1: Excessive Rollover Risk

- Project could be financed without any rollover risk
- Rat race leads to positive rollover risk in equilibrium
- $\Rightarrow$  Clearly inefficient

**Corollary: Excessive Rollover Risk.** The equilibrium maturity structure  $(\alpha = 1)$  exhibits excessive rollover risk when conditional on the worst interim signal the expected cash flow of the project is less than the initial investment 1, i.e.  $\int_{0}^{\overline{\theta}} \theta dF(\theta | S_{t}^{L}) < 1$ .

### Inefficiency 2: Underinvestment

Creditors rationally anticipate rat race:

- NPV of project must outweigh eqm liquidation costs
- $\blacktriangleright$   $\Rightarrow$  some positive NPV projects don't get financed

**Corollary: Some positive NPV projects will not get financed.** As a result of the maturity rat race, some positive NPV projects will not get financed. To be financed in equilibrium, a project's NPV must exceed

$$(1-\lambda)\int_{S_t^l}^{\widehat{S}_t(1)} E\left[ heta|S_t
ight] dG_t\left(S_t
ight).$$